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1 Introduction

This paper introduces the mixed finite element method as a viable numerical
procedure for the boundary contro’iability of the linear wave equation. Another
numerical implementation using C:alerkin finite elements has been investigated
by Glowinski, Li, and Lions in [4]. However, due to approximation problems
of the normal derivative on the boundary, the method becomes unstable as the
mesh is refined. To correct for the ill-posedness of the approximate problem, a
Tychonoff regularization method was implemented in [4]. The aforementioned
paper also presents other possible remedies; among them is the mixed finite ele-
ment method. The mixed finite element approximation is a plausible procedure
to overcome these difficulties since the derivative at certain nodal values arises
naturally from the formulation.

This paper is numerical in nature; related theoretical results to this method
will be presented at a later time. The first section gives a brief description
of the control problem. For further details, we refer you to [4]. The second
section of the paper describes the mixed finite element method along with the
approximating spaces used in the procedure. The third section describes how
the mixed method is applied to the controllability of the wave equation. The
last section presents numerical results for a particular test problem constructed
in such a fashion so that the exact solution is known. This test problem was
taken from [4].

2 Formulation of the Control Problem

Let 2 be a bounded domain of R® and let T be its boundary. Let T be a given
positive number, where

Q=9 x(0,T), =T x (0,T). (1)
Let p° € L%(Q) , p' € H-}(R).
The linear wave equation, together with the initial conditions p(z, 0) = p°(z)
and %(z,0) = pl(z), is
8%p
— —Ap=0. 2
5z ~Ap=0 - (2)
The problem is the following: Is it possible to find ¢ € L?(T) such that
adding the boundary condition p = g on I, will imply p(z,T) = 0, %%(x, T) =0,
a.e. ? The answer is yes if T is sufficiently large. The proof can be found [5]
and [6].
The following subsections briefly describe a method, introduced in [5], [6],
and [7)], for constructing a boundary function, ¢ € L?(Z), such that the con-




ditions previously mentioned hold. This again has already been presented in
[4].
2.1 Definition of the Operator A

Define E by
E = H}(Q) x L*Q); (2)

then its dual E' is given by

E' =H"Y(Q) x L¥9Q). (4)

Now define A € L(E, E') as follows: with

e = (€% e!') € E, solve the linear wave problem,

Pt —Ap =0inQ, (5)
p=00nkL, (6)
p(z,0) = €%(z), a.e.; pe(z,0) = e'(z), ace. )

Then solve

Yu—AYy=0inQ,¢¥ = g%on E,9(z,T)=0,a.e;9(z,T) = 0,a.e. (8)
Finally, define A by

Ae = (¥:(0), ~¥(0)). (9)
The fundamental result states the following:

If T is sufficiently large, then A is an isomorphism from E onto E'.
The proof can be found in [6] and [7].

2.2 Application to the Boundary Control of the Wave
Equation

Let f € E' be defined to be




[ =" -r°. (10)

Now consider the linear problem,

Ae = f. (11)
From the fundamental result it follows that (11) has a unique solution if T

is sufficiently large. If one takes the solution ¢ as data to solve (5) — (7) and

qg= %‘s on ¥ in (8), then from the construction of A, it follows that p = ¥ and
p(T)=p(T)=0.

It can be shown that for sufficiently large values of T, A is strongly elliptic
from E onto E'. This follows from [6] and [7). A is a self-adjoint operator,
thereby allowing one to solve the problem using conjugate gradient methods.
For further properties of A, see [4].

3 An Explicit Formulation of the mixed method
for the linear wave equation

Let H(Q; div) be the set of vector functions v € (L%(Q))" such that V - v €

L%*(Q). Consider the linear wave equation:

9%p

with p(z,0) = p°(z) and 2(z,0) = p'(z). Set u = —Vp . Multiplying by

v € H(Q; div) and integrating by parts yields

/ywdf-—/PY‘ydw—/Pz-nd‘r: (13)
1] 1 r

where 7 is defined to be the outer normal to the boundary of Q. Multiplying
(12) by w € L%(Q) and integrating gives

%p
nmwd.t-f- ny-gwd.z:O. (14)

The system is then approximated using finite elements. We define the finite
dimensional subspaces , V and WV, such that V C H(Q; div) and WV C L*(Q).




For convergence, we further assume the property that (V - v | y € V) C W.

For details for elliptic partial differential equations; see [1}, [3], and [8]. For the
linear wave equation, results for the continuous time case as well as convergence
results and stability for the implicit and explicit time procedures can be found
in Dupont, Kinton, and Wheeler [2]. In this paper we only treat the following
explicit formulation.

Spaces satisfying the property that the divV C W are the Raviart-TlLomas
spaces. An example of these spaces is:

w
v

ML, (6:) ® M} (&) : (15)
Moz(éz)®M-l-1(6y) X M11(63)®M3(5y)~ (16)

Here M1 ,(5;)® M (8,) is the tensor product of piecewise discontinuous lin-
ears. M2(6,)®ML 1(8y) is the tensor product of piecewise continuous quadratics
with piecewice discontinuous linears. M1,(6;) ® M2(8,) is the tensor product
of piecewise discontinuous linears with piecewise continuous quadratics.

Let At >0andt" = nAt. Let 4™ = u(-,t") and p" = p(-, t"), forn a
positive integer. Define (", P*) € V x W by

/Q"-gdz-/P"Y~2<"=‘/”"2'nd%VzGV' (17
o] a r
n+1 _ n n-—1
/P 2P*+ P wd.‘L‘+/ V- Ulw=0,YwueW (18)
Q At? a~ -
P° = p(z,0), (19)
Pl_p-t  9p
—2ar @0 (20
(21)

L}

4 Discrete formulation of the Conjugate Gra-
dient Method

Recalling from Section 2, ¢® and e! are initial data for solving the forward wave
equation (5) — (7) so that the normal derivative of ¢ on ¥ is the boundary
function, q, such that p(T) = p,(T) = 0. In this discrete formulation, we begin

this iterative procedure with an initial guess for € and e!. The subscripts
denote iteration count.




Assume
edew,elew (22)

are given;

Now solve the discrete forward wave equation :

" ~ ", (23)
T" =~ ", where 1* = -V¢", (24)
/Ig,gdz_LQSY-Edz=O,VQEV, (25)
Y]
n+l n—-1 ']

/‘1’0 +‘I>02 2®°wdz‘+/ V- -Towdz=0,YweW, (26)

a At n
ot ew, (27)
@5 [r=0, (28)
n=0,1,...N, (29)

where the forward equation is initialized by ®3 = €3 , ®} — ®;! = 2Ate}. Store
N
oy , %, XY

Now forn = N,N —1,....,0, compute g € W , T3 €V, ¥p~l e W by
backward time integration.

If n < N, compute $3 € W by solving

n n+2 n+41
/(I>0+<I)0 h 2%, wd.’t+/ Y.’IS“wd::O,VwEVV, (30)
a At a

/Ig-gdz—/¢gy-gdz=0,‘¢y€v, (31)
a a
3 lr=0. (32)

Ifn=N, T{ €V is stored from forward time integration.

Then solve




r
n-1 n+l n
/‘I"’ + %o 2‘I'°wdz+/y-g3wdz=o,vwew,
a At o
N-1 N _
‘I’f)vH_‘I’o =% =Y
¥ 'r: YOa
23~ 23, where 23 = — V4§,
To =~ 135, where 75 = - Vg,

(33)

(34)

(35)
(36)

(37
(38)

(39)

Now compute go = (93,93) € W x W by solving the discrete Dirichlet

problem,

n 1]

T
/V-@owd:z.':/ O——O—wd:c—/plwdx,VwEW,
a~ = a 24t a
g0 Ir=0;

and then

/géwd::/powd.r—/‘Ilgwdr,VwGW'.
0 a 0

If go=0orsmall then set e = ¢o; else set wo = go.

Then for k > 0, compute

€k+ls $k+1 Wt Pryr1, Vi

as follows:

7 Step 1: Descent: (3, T}) €W x V.

(40)

(41)
(42)

(43)

(44)




=3

s

=n+l =-n-1

:-gdz—/ﬂy-gd;z::O,VgGV,
Q
/q”‘ +‘Z"t, —2‘1”'wdz+/y-’f2wdz=0,vwew,
o a

@, Ir=0,
n=01,..N,

(45)

(46)

(47)
(48)
(49)

where the forward equation is initialized by 7(72 = uw{ and —5: - 3;1 = 2Atw}.

Store Tfiv , Ef“ EW,TVeV.

Now forn = N,N —1,....,0, compute & € W,TreV ,W:_l € W by

backward time integration.

If n < N, compute &, € W by solving

=n+2 ——n<+1

/ T, +9, 7 - 2%,
o At?

wd:+/ vV -Tit'wdz=0,VweW,
)

/T:-gd1~/$zy-gdz=0,Vg EV
n 0

3 Ir=0.

Ifn=N,T} €V isstored from forward time integration.

Then solve

(50)

(81)

(52)




/wk + ¥ ‘2‘I’kwdr+/V.fzwdz‘=0,Vw€W’,
a At? a”~ -

—=N+1 =N-1 =N

\I’k _\I’k =‘Pk 20,

—=n on

\I’k ll‘= Ykr

3 - —n

Zr =~ Z¢,wherez? = -V ¥y,

Ti~ T}, where7} = ~ V7Y,
=n

(53)

(54)

(55)
156)

(37)
(58)

(59)

Now compute i = (32,7l) € W x W by solving the discrete Dirichlet

problem
/gk'gdz—/ﬁy-gdz,‘:O,Vy_GV,
ol n
!
5 e~ Pk
: = [ £k ydpy
/nY Qiwdz /r; sar Vds YweWw,
9 le=0;
and then

/y;wdz=_/‘q72wdz,\fwsw.
1] n

Then compute p; by

Ja©1- Qudz+ [yoigids

Jo Bs- Tz + [ Ghbulds

Pr =

Once py is known, compute

(60)

(61)
(62)

(65)




k4l =  €E— PEUE, (66)

Srpr = i —pu®s, (67)
Yepr = Vi — pe¥y, (68)
g+l = Qk—Peqk- (69)

If gk+1 = 0, or is small , then set Eh= €kl Dy = Pryy, U = Viy1

else compute

Ja Qr+1: Qrprdz + [ 00,1044, d2

Ja Qr - Qudz+ [ygigidz

= (70)

Set

We1 = Ghe1 + 7 Wi (71)

and k = k + 1 and go to Step 1.

Remarks:

e As pointed out in [4], substantial computer memory cost is reduced by
solving the wave equation backward in time.

e This formulation is only valid for problems with smooth data. A variant
of this conjugate gradient method is required to handle nonsmooth data.
Procedure can be generalized to treat this case.

5 Numerical Results

This method was used for a test problem used in [4]. In [4], an exact solution
is constructed for the problem A ¢ = f on the unit square. For details of this

calculation, we refer you to [4]. Only the results will be presented here.

If

e’(z)

el(z)

sin vz sin Txy, (72)

m/2sin 1z} sin 719, (73)




then

w(z,t) = V2cos T2t — ﬁ)sin wZsin Ty, (74)

Defining I';,i = 1,2, 3,4 by
Fh=(z|zel,z, =0),
Fy=(z]zel,z; =1),
F3=(z|zel,z;=0)
Ly=(zlzelz,=1),

we have
9¢ Ir,ur,= —7V2 cos 7V2(t — L)sin TTo (75)
on "2 42 ’
6—"0 Iryor, = —7V2 cos 7r\/§(t - L)sin Ty, (76)
Gn Ts0rs 2

Using final time T = 71-2-(n + %) (n is a nonnegative integer), ¥ = o + ¥,
where g and 1, are the following:

Yo = -—xm 2cos7r\/‘2(t—L)(sinm:lcos27ra:2+c0527razlsin7r:r2), (77)
42
1
= 4n(T - t)sin7V2(t — —=) + 78
Y= AR OsinmVEe - ) (78)
28
=" sin V2(t — T) sin 72y sin 7z
( ) 3\/§ ( ) 1 2
, m 2(-1)"+ 3
+4sin 7z, z;, - [\/1+m2 sint/ 14 m2(t — T)
m odd
+n?2—\{§4 cos 7r\/§(t - 4\1/§)J sin maz,
: m_ [2(=p"tt
+4sin 7z, sintv/14+m2(t—T
’°§m2_1[\/1_+m2 ™=
m odd
3
+m2\{—§4 cos mV/2(t — ﬁ)] sinmnz,.

Since p = y, we compute ?° and p! froin Yo and 1 so that
p(x) Yo(z,0) + $1(z,0), (79)
av oY ,
p'(z) S (50 + %(z,O). (80,

10




Since p® and p! involve infinite trigonometric series, Fast Fourier Transforms
are used for these calculations ( m is taken to be 255).

In the conjugate gradient algorithm, e and e! are initialized to be zero and

final T is ﬁ;, (n = 3). The following pages represent calculations for h = 1/16

, 1/32, and 1/64. The first six plots represent graphs c{ the calculated e) and
e} along with the known e° and e!. The last three plots represent variations of
Il ¢(2) llLary and |} gc(2) || z2(r) with ¢. All approximate solutions are represented
by dotted lines and known solutions are represented by solid lines.

The first table shows that the method is much better behaved as the mesh
is refined However, the second table shows that the iteration count goes up as
the mesh refined; roughly speaking like A~%. This is substantially better than

the Galerkin finite element procedure without the regularization discussed in
I4].

= i/8 1/16 1/32 1764
e’ —eg L3(01) 3.03 x 10721 1.00 x 10~} 3.11 x 10=3 | 1.25 x 103
el — el [lLaa) | 560 x 10-2 | 1.79 x 10-7 | 9.76 x 10-3 | 4.22 x 10-°
CD—CS HL(Q) 1.38 % 10_1 4.95 % 10—2 1.70 x 10_2 7.39 x 10?"
q—qe llzazy 285 x 1072 [1.02 x 1072 { 3.31 x 10~3 | 1.37 x 102
2e ooy 7.102 7.298 7.401 7.394

h | no. of iterations

I 19

—

ne 72

é—}- 119

64.

6 Conclusion

From the numerical results, the ill-posedness of the approximate problem is
allieviated considerably when using the mixed finite element procedure. Even
though the iteration count goes up as the mesh is refined, there is no oscillatory
behavior present as in [4] with no regularization.
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0. Introduction. In (1] Glowinski and Wheeler defined domain decomposition algorithms for solving
mixe‘d finite element approximations of elliptic problems with non-constant coefficients. A key result
in [1] was the formulation of the matching conditions at the interfaces of the subdomains as variational
problems defined over convenient trace space. These new problems were solved by conjugate gradient
algorithms using simple preconditioners resulting in a 0(}1—'5) number of iterations to achieve
convergence. In this paper we shall discuss a procedure for acceclerating the convergence of the abuve
algorithms which is essentially based on a multi-level technique acting on the trice space associated to

the interfaces.

In Section 1, we shall give some examples of elliptic problems originating from flow in porous
media. Compared to more traditional solution methods the algorithm described in this paper have been
quite successful as we shall demonstrate in Section 4. In Section 2 which follows closely [1] we shall
recall the mixed variational formulation of elliptic problems, the mixed finite element approximations
and the associated domain decomposition methods. In Section 3 we shall discuss a multilevel method
to speed up convergence of the domain decomposition algorithms discussed in Section 2. Results of
numerical experiments will be discussed in Section 4. Finally some mesh refinement methods well

suited for domain decomposition and mixed finite element methods will be discussed in Section 3.

1. Motivation for Robust Elliptic Solvers.

In our first example we consider the pressure equation which arises from miscible displacements

in porous media. The equation has the form

(1.1) u =-—Agrad pin ,
(1.2) Vou =q in{,
(1.3) u-v=0 on0Q,

where

A = K(x, ¥)/u(o)-




In this problem  is the flow region, u is the Darcy velocity, p is the pressure, q is a source or sinks
term, k is the permeability of the porous media, p is the viscosity of the concentration ¢ of the fluid
which is flowing through the porous media. In this example we use a permeability field and a form of
the viscosity which has been previously obtained from laboratory experiments. In Figure 1.1, a

visualization of A is shown. In this case we have
min A=.810x10"2 and max A=.282x10"3,

implying that (1.1)-(1.3) is badly conditioned. However, as it will be seen with more detail in Section

4, we have been able to solve this problem, using domain decomposition, in less than 10 iterations.

Variation of coefficient A

Figure 1.1




2. Mixed Formulation of Elliptic Problems - Associated Finite Element Approximation and Domain

Decompeosition.
———————————

2.1 The Model Problem.

Ve consider on QCR" the following Neumann problem
—V.AVp={ i Q,
(2.1)
AVp.v=g on 8Q(=T),

where v is the outward normal vector. We assume the compatibility condition

(2.2) /fdx+/gdr=o.
Q T .

Our formalism is motivated {rom flow in porous media where (2.1) is the pressure equation, but the
method to be described applies to other branches of science and engineering. Also we have been
considering the pure Neumann problem since it is the ont; occurring most frequently in applications. In
fact, it is also the most difficult case.

2.2 A Mixed Veriational Formulation of Problem (2.1)

Define u by

\

(2.3) u=—AVp.

We then have

(2.4) Vou—{=0,

and




(25) -+ Vp=—A"lu

Multiplying (2.4) and (2.5) by q and v respectively, we obtain

(2.6) / (V-u=Dadx=0, ¥ qeLX(Q),
Q
and
(2.7) /A"l u-y dx—/pV-v dx=0, YveVq,
Q
where
(2.8) Vo={v | veH(Q, div), v-»=0 on T}.
Here
(2.9) H(; div )={ v (L2(Q))" and div veL2(9)}.
1

Suppose chQ(Q), ge H 2(I‘) and A is symmetric such that Ae(L%°(Q))"*® and
A()E-£20l€l?, VERD, a. e on Q
with o a positive constant.

If (2:2) holds then (2.1) has a unique solution on HI(Q)/R implying the uniqueness of u. An

alternative formulation of (2.1) is given by

Find chQ(Q), ueH(Q; div), such that




u-v + g=0onT,
/ (V-u—{) q dx=0, V qeL2(Q),
(2.10)

/ A" luy dx—/p Vevdx=0, V veV,.
Q Q

2.3 Finite Element Approximation of Problem (2.10).

We denote by Wh and V1 finite dimensional subspaces of L2(Q) and H(Q; div), respectively.

In addition we set Vg =\’hﬂ\’o. We shall assume that div VhCVVh.

It is natural then to approximate problem (2.1), using its mixed equivalent formulation, by
Find p W, u eVP satisfyi
PpeW™, u) eVE sa 1sfying
/(uh-v-i-g)V-u dI'=g, Vve'\’h,
r
(2.11) /(V-uh—f)q dx=0, V¥ qeWh,

Q

/A—luh-vdx-—/ph V.vdx=0, V veVD.
‘ Q

Examples of particular {inite element spaces for which (2.11) is well posed and for whick
iim vy —u and lim P, —P can be found in [2]. Additional convergence results including error estimates
can be found in (3, 4)].

2.4 Domain Decomposition Method for Problem (2.1), (2.11).

We follow here the notation and methodology developed in [1].  Considering first the

continuous problem whose formula is much simpler we suppose that © has been decomposed in two




subdomains Q2 and Q,. Figures 2.1a and 2.1b show such domain decompositions and corresponding

notation,

; Qa,

Figure 2.1a Figure 2.1b

If we denote by {p;, u;} the restriction of {p, u} to Q. there is equivalence between (2.10) and

(Veu;—f) q,dx=0, V qicL?'(Qi),

O

(A_1 u; vy =~ in-vi) dx=0, VvicVio, i=1, 2,

...:3\.

(2.13) u v +g=0 on I'NOQ, i=1, 2,
2
(2.14) S u-v; =0 on v,
1=1
2
(2.13) 3 (A—lui-v—-piv-v) dx=0, VveVy,
i=1
Q.
with !




Vi°={vi|vicll(0i, div), v;-v;=0 on 6Qi}.

Since \’O=V109V2°ev7o (where V4o is a complementary subspace of V; & Vo in Vo) it follows

from (2.12) and (2.15) that (2.15) can be replaced by

2 -
(2.16) 12—:1 / (A 1 u;-v—p; V-v) dx=0, VYveVqo.
- Q

1

In addition to (2.12)-(2.16), {p-l, ui} must satisfy the compatibility condition

(2.17) fdx+ / gdl + / u;-v; dy=0.

Q oa;,nr 7

From (2.12)-(2.16), the local solutions satisfy at the interface v the matching conditions (2.14)
and (2.16). From this observation we can generate two classes (at least) of iterative methods for
solving problem (2.11) by domain decomposition. In both approaches we assume that one of the
matching conditions is satisfied by an appropriate choice of boundary conditions on 7 and we try
iteratively to satisfy the other matching condition. In this paper we shall concentrate on the case

where the balance given by (2.14) is satisfied; we try therefore to verify (2.16).

\

This leads to the introduction of a variational problem involving functional spaces defined on

v. Precisely such a functional space is \"970 defined by
(2.18) Vio={plu €Vyo, /l"l’ dy=0}.
‘ Y
We define next a bilinear form a(-,-) over \'970 X V%o as f{ollows:

Consider l“v?yo? we associate to p, ui(p) and pi(p) by solving




9
(2.19) /v‘ul(ll) \'idx=0, VViEL“(Qi),

o

(2.20) / (A—l u(p) -v;—p;(p) Vov)dx=0, VvieV,
Q.

1

(2.21) u(p) -»;=0 on TN, u;(p) - v;=p-v; on 7.

Since / u;(B)-y; dr;=0, the above problem is well posed in H({;, div) x L2(Qi)/R. To insure
aQ.

1

uniqueness of p.(u) we enforce the conditions

2
(2.22) / py (#) dx=0, .21 / (A"'1 u(p)-M—p;(p) V-I) dx=0
Q, =

where Hf(v'yo—V?yo)- Finally we define a(-,-) by

2 -
(2.23) a(y, p’) ='E1 / (A Ly, (y).#'_pi(y)v.y')a, V u'eVo.
1=
Q.
o1

It has been shown in (1] that the bilinear form a(- , -) is symmetric and positive semi-definite over
A
V'.oyox\"?ro. Moreover, it is ellipt.i'c for the norm induced by H(£}; div) over the quotient space \’%O/R,

A A
where R is the equivalence relation defined by xR 4/ — (u—p')-u=0 on «.

From the above result we can interpret (2.12)-(2.17) as a linear variational problem in \’%o.

To formulate this latter problem consider Aq ¢H(Q; div) such that
(2.24) dov+g=0o0nT,

(2.25) /fdx + / g dl + /Ao-ui dy=0, Vi=1, 2;
Y

Q rnaq,

9




solve then for i=1, 2,

2
(2.26) /(Vouoi—Oqi dx=0, ticL (Qi)’
&
-1 L
(2.27) /(A Ui Vi —Poi v V)X =0, ¥ eV,
&
(2.28) u vy +g=0on 7ﬂ69i,
(2.29) U v AV on 7.

o1 1 1

The constants associated to the p oi 3T¢ adjusted as follows:
(2.30) / Po1 dx=0,
9y

2
(2.31) igl/(A ly ,-I-p; V-I) dx=0.
=1

1

Let us now denote by ug the element of H(Q; div) such that UolQ_ =u;. If we define @ by
i

we clearly have UcV,. Denoting :\c\".yo as the component of U in the decomposition

Vo=V{,©V,,6Vyo we have from (2.17), (2.25), (2.28), (2.29) that

(2.33) / X-ui dvy=0, i.c. :\e\'%,o;
y

10




define similarly B; by ;=D; —Po;’

We have then

')
H (2.34) /V-ﬁiqidx=0, ¥ qeL7(Q,),

Q.
i

(2.35) '/‘(A_'1 G -v;—P; Vov,)dx=0, Vv;eV;,

8
(2.36) 0, - v;=0 on 8Q,NT, ﬁ-l-t/-l=:(-ui on v,
2 1
(2.37)" Ppdx=0, ¥ /(A“ u, - IT-p; V-I)dx=0.
Q =1g,

1t follows from (2.16) that

2
(2.38) 5 / (A_lui - p—p; V-p)dx =0, V p c\’%o.
i=1
Q.
i

From the definition of T, p; and from (2.38) we obtain

f)
(2.39) > /(A—lﬁi-p-—-ﬁi' V-u) dx:—.zl/(A—luoi'p—poiV-,u) dx, Vp\’?ro.
1=
Q.
i

i=1 a.
i

It follows from (2.23) and (2.33) that X is the unique solution of the linear variational equation

Find XeVSq such that
(2.40)

a(}, p) =—
i

I~

-1 . o
/(A LIRS Vep)dx, ¥V peVio.

1

1

11




In [}], we showed that the variational problem (2.40) can be approximated by a finite
dimensional problem of the same nature, obtained by combining the mixed approximation of Section
2.3 with the domain decomposition principle of Section 2.4. In addition, a conjugate gradient method
for solving this finite dimensional problem approximating (2.40) was discussed in detail in the above

reference.

In the following Section 3, we shall describe multilevel techniques for solving the finite
dimensional problem approximating {2.40); it can be scen as a multigrid method operating on the
interface v.

3. Muitilevel Solution of Problem (2.40).

3.1. Domain Decomposition of the Discrete Problem.

Following Section 2.3, it is easily shown that the discrete mixed problem (2.11) is equivalent to finding

{uh o Ph i} 1=1, 2, satisfying

(3.1) /(V-uh’i-—f) q; dx=0, tif\vh,i’

Q.

i
-1 L

(3.2) /(A up it Vi ph,iV-vi) dx=0, VYv;eV hi

&
(3.3) / (uh,i-u+g) v.rdl=0, V vifvoh,i’

oq;nr

2

(3.4) ; uh’i-uizo on 7,

1=1

™
o)
N

-1 L
, 1/ (A U V=P V.v) dx=0, YveV oy,
Q

where V , | (resp. W, ;) is equal to Vonla. (resp. Wy lq)- As in the continuous case we associate to
! : ! i

v a complementary subspace V oh,y of \/oh,le Voh.? in voh; that is

12




Voh=Von,1%Von,2®Voh, -

oh, v

It follows from (3.1) and (3.2) that (3.5) can be replaced by

‘ (3.6)

N

i=1 / (A_luh,i'v_ph,i Vov) dx=0, ¥ oveV oy
i
Q.

1

1)

In addition to (3.5) and (3.6) {uh o Py i} has to satisfy the'compatibility conditions

(3.7) [fax + / gdl“+/uh pvdr=0,i=1,2.
J 1
Q,  eq.nr Y

Finally we decompose voh RS the direct sum,

o0 I
(3.8) voh,-;'—‘voh,'r © Voh,7
where
(3.9) Vgh,-;'z{uvohq | / z-v dy=0},
7
and
(3.10) viI

={tIo,teR and Ne V_, _with | O.vdyz0)}.
o,h,y oh,y
>

3.2. Discretization of the Boundary Problem (2.40).

)

Following the development in Section 2.4, we approximate (2.40) by the following variational problem

13




. 70 10 .
in Voh o X Voh,y'

Find :\h ¢ \’gh - such that
(3.11)

f)
- -~ _1 .
3y, ("11-”)=‘i§1/ (A7 ugp g+ #=Pop i Vdx, VueVey, o,
=1

1

where '_\h’ and p are obtained as discretc analogues of 1}, u; and Po; in Section 2.4 (sec [1]

Yoh,i oh,i

for all the details).

3.3. Multilevel Algorithms for Solving Problem (3.11).

3.3.1. Synopsis

We first introduce a discretization parameters hj to which we associate all the above discrete
spaces. For simplicity we denote by 7 the space \’gh » We assume that the sequence {ZJ} satisfies
j’
the following inclusion property

(3.12) 20 czlc ... c2’.

At level J (the finest level) we wish to solve problem (2.11) with h=h,.

A
Before defining 2 multilevel algorithm for solving problem (3.11), we describe in the following

Section 3.3.2 the solution of general variational problems by multilevel methods. The application to
the specific problem (3.11) will be discussed in Section 3.3.3.

3.3.2. A Multi level Method for Linear Variational Problem in Hilbert Spaces.

Let V be a Hilbert space with (-, -} as inner product and HHV the corresponding norm. e

consider the following probiem

\

14




Find ueV such that

(3.13)
a(u, v)=L(v), VYveV,
where
(1) a: VxV—=R is bilinear, continuous and V-elliptic,

(2) L: V=R is linear and continuous.

We consider now a family of finite dimensional subspaces \’OCVIC '\’QC...C \’JC\v’. The

idea here is to approximate (3.13) by

Find u‘]c\"] such that
(3.14)

aJ(uJ, \’):LJ(V), Y \'e\"],

where aj and LJ are approximations to a(-,-) and L respectively (for those applications associated to
mixed finite element approximations, ay and L; are never the restrictions of a(-,-) and L to VxV and

V respectively).

i

The basic principle of all multilevel methods is to solve (3.14) using solutions of problems of
\ .
the form (3.14) defined on \’J, j=0, 1, ... J=1. A classical way to handle this is to use a V-cycle

multilevel method {3, 6, 7, 8]. For problem (3.14) the V-cycle with J levels takes the following form:

J

Step 0: Suppose tha! u}],c\' 1s known.

Step 1: Stariing from u}]], iterale vy steps of some iteralive method and call the result uf]‘].

. . . j+1 . .
Step 2: Now for j=J—1, ..., 1, assuming that u;J is known and starting from 0 perform v, steps

of some ilerative procedure for solving the following veriational residual eguation




j R J
8 (un, ")’-‘-‘LJ(")"IZJal (un’, ¥), veVs,
(3.15) B

n 9
eV,
uJ

Call u:l‘] the resull of this smooiking.

. . b0
Step 3:  For j=0 solve ezactly the residual equation (3.15). Sct uil =uf.

j— j—1 j . ..
Step 4: Forj=1,2, ..., ], assuming ug'] 1 is known, take ug‘] +u:,'] as an initial condition.

Perform Hs sleps of some ilerative procedure for.solving (3.15). Call the result uI,)J.

J
Step 5: Take ui_’_l:u,ri .

3.3.3 -Application of the V-cvcle Method to the Solution of Problem (3.11).

Problem (3.11) is a particular case of problem (3.14). Thus, it can be solved by the multilevel method
described in Section 3.3.2. Orce the basic iterative methods involved in the V-cycle have been

specified, thus applying the above multilevel method is canonical.

The numerical results discussed in Section 4 have been obtained using conjugate gradient as a
smoother in Steps 1 and 2, taking uj=2. For j=0 we also used conjugate gradient to obtain ud. In

Step 4 we employed one iteration of steepest descent.

The conjugate gradient algorithm for solving problem (3.11) is described in Section 4 of [1].

4. Numerical Results

In this section we shall present the results of numerical experiments where the mixed
element/multi-ievel domain decomposition methods described in Section 2.3 have been zpplied to the
solution of test problems. The examples considered here include both some standard cases as well as
physical problems arising in flow in porous media, such as (1.1)-(1.3) of Section 1. In all our examples,
the discrete problem (2.11) approximating the elliptic problem (2.1) has been obtained using for wh
and VO the Raviart-Thomas mixed finite element spaces. A full description of these elements can be

found in [1] and [2]; however for completeness we shall describe these spaces in the following Sectiion

4.1.
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4.1 Mixed Finite Element Appioximations of Problem (2.1).

Let Q be the rectangular domain (0, x{)x(0, yp) and let Ay: 0=x0<x1<...<xNx=xL and  Qy:
0=y, <')'1<...<,\'N-\_=,\'L define partitions of [0, x;] and [0, y|], respectively. For & a partition,
define the piecewise polynomial space

ME(A)={veC®([0, L]): v is a polynomial of degree <r on each subinterval of A),

where s=—1 refers to the discontinuous funciions. We define now the following approximations of

LQ(Q), H(Q; div) and V, respectively
Wit =ML (Ay) @ ML (Ay),
“';’r{M;ﬂ(Ax) ® M§(A_\.)]x|:M§(Ax) ® M;ﬁ(/_\.y):l,
Vi'fo:\’;'rﬂ{\': v-v=0 on BQ},

where h:maﬁj {(Xi-:-l—xi)' (}'j+1—yj)}. We remark that these spaces satisfy

Vv eW} ', ¥ veVy (e V-VPTCWY).

In our numerical experiments we set r=1.

432. Solution of Standard Test Problems

Motivated by applications in reservoir engineering we are considering now the following class of
- P & o o

test problems:

—VAYR=dy, 40, 1y
(4.1)’

AVp-v=0 on 80,

. 9 . ~ ' .
where Q=(0, 1)~ and where A .- defined by either




(i) A=A =],

or
1

(ii) C A=Ay y=—————],
2T 141002 +y2)
or
(iii) A=Agq=al, where =100 if 0<x<.5 and a=1if .5<x<1.

The partitionings of  used to implement the domain decomposition are those shown in
Section 8 of [1). In particular a (N, Ny) decomposition involves a partitioning into NxNy rectangular

subdomains whose edges are parallel to the coordinate axis.

Table 4.1 depicts the number of multi-level V cycles versus mesh and subdomain partitions:

Coefficient )_1—1 (£Subdomains, £V cvcles)

Ay 20 (4, 6)

40 (4, 6% (16, 7)

80 (4, 9); (16, 8); (64, 7)
A, 20 (4, 6)

40 (4, 8); (16, 7)

80 (4, 10); (16, 8); (64, 7)
Asg 20 4,7

40 (4, 6); (16, 7)

80 (4, 10); (16, 8); (64, 7)

Number of Cycles versus Mesh Size and Subdomain Partition for the 3-Level V-Cycle.

Table 4.1




Interestingly the above table applies for the three cases (i)—(iii). We also observe that the number of
grid points by subdomain is the same for the three decompositions considered and that the number of
V cycles’is practically independent of h despite the fact that the dimension of the interface problem is

growing like h™ 1

To further illustrate the efficiency of the above methods we are providing in Table 4.2 below
the dimensions of the various {inite element and boundary spaces involved in our combined domain

decomposition/mixed finite elements methodology (below, + is defined by an N x M decomposition).

p—! Dim Wh Dim VB Dim VO, _

20 1600 3120 40 (N + M) — 79 —NM
40 6400 12640 80 (N + M) —159 —NM
80 25600 50800 160 (N + M) —319 —NM

Dimension of the Discrete Spaces

Tzable 4.2
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This insensibility to the smooth or fast variation of coefficient A over Q is a remarkable
property which shows that this methodology has attractive potential for the solutic of badly

conditioned practical problem such as geostatistics problems arising in porous n: -lia ([9, 10}.)

The above results represent a substantial improvement in terms of robu-iness and speedup
compared to the results obtained in [I] for the same test problems with the same grids and

decompositions.

Another interesting property of the above methodology (already observed in {1]) is that the
subdomain problems nced not be solved exactly. We also observed, concerning the multilevel solution
of the matching problem, that one to two V cycles are sufficient in practice to achieve the solution
within truncation ecrror; in particular, with uj=pj=2 in the algorithm of Section 3.3.2, the initial
residual is reduced by six orders of magnitude in six to seven iterations, the largest reduction taking
place in the first V-cycle.

4.3. Solution of Real-Life Test Problems.

To be honest the test cases discussed here are more relevant to [1] since the domain
decomposition methodology is exactly the one described in the above reference, i.e. without-yet-
multilevel speedup. Nevertheless, we have inserted these problems because they are typical of real-life

applications in petroleum reservoir engineering. Also they provide significant benchmarks for elliptic

solvers of various types.

This first problem to be considered was communicated to us by petroleum reservoir engineers.
It is a model for a discrete shale barrier and involves solving (1.1)-(1.3) where A is visualized in Figure
4:1, where we have used different scales for L and H since L is of the order of 300 feet and H is of the
o.rder of 20 feet implying an aspect ratio of 15. Also the thickness of the barrier is of order one foot.

. e - . 92
The ratio of permeability coefficients is 10~.
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DISCRETE SHALE BARRIER PROBLEM

i —_—
—_— —
—
] L i md
H — 100 md

|
il
l

-
—
. AN

Geometry of the Discrete Shale Barrier Problem

Figure 4.1

The arrows in Figure 4.1 indicate the flow direciion.

Concerning the numerical solution of the above problem we have been using a 40x40Q finite
element grid and a (2, 2) domain decomposition. For comparison purposes we have treated the cases

with aspect ratios 1 and 15.

Using the domain decomposition algorithm discussed in [1] we need 33 iterations if R=1 and

48 if R=15. We can expect the number of iterations to be practically independent of R once our V
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In the same vein the second problem is also a real life problem (1.1)-(1.3) where

A=Kk(x, y)/u(c) and

1 1/4

ue)=cuy M (1—)uy M4,

with Byike >{.

Applying the domain decomposition-mixed finite element methods of [1] to the above problem,
with a 80 x 80 finite element grid and a (10, 10) domain decomposition, the solution was obtained in
9 conjugate gradient iterations. This represents a substgntial improvement over a preconditioned
conjugate gradient solution of the same discrete problem (without domain decomposition) since the
convergence was requiring then about 150 iteration, (taking advantage of a good unital guess).
Incidentally the lowest order Raviart-Thomas space (r=0 (in 4.1)) or cell-centered finite differences (11)
do not work well on this type of problems due to the impossibility for these low order approximations

to reproduce correctly flows which are not parallel to the coordinate axes; this drawback disappears if

we chose r=1.

In Figure 4.2 we have visu..ized the permeability k(x, y), this data was measured by researchers at
Atlantic Richfield Corporation and kindly communicated to us. Similarly the function A=k/u is

visualized in Figure 4.3.

5. Mesh Refinements Via Domain Decomposition

Mesh refinements are necessary when strong gradients arise locally. In view of saving computer
storage and avoiding complicated data structures it is interesting to incorporate local grid refinement
over subdomains where the strong variations are arising and retain coarser grids elsewhere. The
concept of domain decomposition provides an elegant and systematic way to implement the above
ideas. In this section we would like to present a particular implementation of our scheme, new to our
knowledge, relying again on a combination of Raviart-Thomas mixed finite element and domzin

decomposition methods.

(S
[ 3]




Representation of k(x, y)
Figure 4.2

Representation of A=k/pu.
Figure 4.3




5.1 Mesh Refinement Via a Modified Raneart-Thomas Mixed Finite Element Method

Consider the situation depirted in Figure 5.1 where e Jocal refincment is necessary iu a
subregion Q* of Q. The basic idea is to employ essentially mixed finite clements of Raviart-Thomas
type inside and outside subregion Q*: the main issue here is clearly the matching between the fine”
and “coarse” approximations. To realize this matching we introduce the following finite dimensional

spaces of mixed type.

Let Q*=(a*, b*)x(c*, d*) and define A% and Ay be partitions of [a*, b*] and [c*, d*,

respectively. Generalizing the notation of Section 4.1, we denote by

(5.1) wil TN =M (oY) © MY, (ar"),

(5.2) v;‘,l' r‘(n*):@ag"”(m*) ® M’ (Ay*)) (MT(8x%) © M) "1y,
and

(5.3) ;‘,}0’ @9=vih Ty T A {a: Q=0 on 80*).

Similarly we define the corresponding "coarse” spaces by

- 21
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Q-qo*
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i *

! 0 -0

' i
i
Figure 5.1

and
. -1, r -1, r
(5.5) Vh (Q—Q*):Vh lQ-Q*'

with \’Vl:ll’ r and V;xl’ T as defined in Section 4.1. We set

‘1y * 'lv
(5.6) - Wfl‘:wh* (0% U W, Q-0
c - -1, r* -1, r
(5.7) v}1}=vh* @) u vy (a-a%),
\
5.8) VR =V n (¢ qu=0 on 89}
h, 0= Vh

Strictly speaking \\’]}} and \rlI]{ are not Raviart-Thomas spaces, however, they share the same

approximating properties which include div VII:”CW}?' and the order approximation is the same if

I =r.

From a computational point of view this refinement technique is well suited for domain

decomposition with Q% and Q-Q" as subdomains.

[

™
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The above approach is well suited for a multi-level solution of problem (2.1) in which we shall
use different number of grid levels in the subdomains (usually more grid levels in the more refined
regions).” Domain decomposition allow a lot of flexibility by the fact that in one of the phases of their

realization they decouple the computation to be done in each subdomain.

6. Conclusions

From the numerical results described in this paper the combination of mixed finite element,
domain decomposition and multilevel methods discussed in Sections 2, 3 and 4 provides a robust,
accurate and fast technique for solving elliptic problem with non-smooth coefficients like those arising

in flow in porous media and other applications from Mechanics and Physics.

These methods are quite interesting from a parallel computing point of view since the ratio

Work in Solving Subdomain Problems
Communication Costs

is of order O(h—l).

Here the communication involves the transfer of the boundary data at the subdomain . -*erfaces.

We are presently cooperating with the computer scienAtist.s at the National Science Foundation
Center for Research in Parallel Computation in the parallel implementation of the methods discussed
in this paper.
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ABSTRACT .

The main goal of this paper is to discuss mixed variational formulations for
time dependent problems such as initial and boundary value problems for the heat
and wave equations in a bounded domain 0 of R¥(N > 1). Then we shall
use these formulations to derive mixed finite element approximations of the heat
and wave equations. Finally, an application to an exact boundary controllability
problem for the wave equation will be presented together with some numericai
results. The techniques and application briefly considered here will be discussed

with more details in a forthcoming paper.

INTRODUCTION

Mized variational principles and the associated finite element approzimations
Lave proved to be very useful in order to derive accurate solution methods for
boundéry value problems for partial differential equations. This is particularly true
for elliptic problems (see, e.g., |1], [2] and the references therein). A strong point
of these techniques - compared to more traditional finite element methods - is that
they give fairly accurcte approzimations of the derivatives; this last property is
very interesting since in many problems one is more interested by the cerivatives
of a function than by the function itself. Mixed methods have aiso been appiied
to time dependent problems (see, c.g., |3;) but there are indeed very few published

papers and applications where these methods have been used for time dependent
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problems compared to the more classical finite element methods. Motivated by

optimal control applications (cf. [4], [5]) we shall briefly discuss in this short article

the following topics:

(i) Mized variational formulations for the heat and wave equations (Section 1.).

(iV Mized finite element appromimations of the heat and wave equations (Section

2.).

(iii) An application to a boundary control problem for the wave equation (Section

3.).
1. MIXED VARIATIONAL FORMULATIONS FOR THE HEAT AND WAVE EQUATIONS.

1.1 Formulation of the basic time dependent problems.

Let O be a bounded domain of RY (N > 1) ; we denote by T the boundary of
(1. Let T be a positive number (possibly equal to +o0) ; we denote by Q and T

the following sets of R 72 :
@Q=0x(0,T),L=Tx(0,T).

We suppose now that physical phenomena are taking place on 2 , modelled by

either the foliowing heat equation

(1.1) us — Au=f1tnQ,
(1.2) u=gonZ,
{1.3) u(z,0) = u,(z) on 0,

or by the following wave equation

(1.4) tye — Au= fin Q,
(1.5) u=gonZ,
(1.6) u(z,0) = u,(z), ue(z,0) = uy(z) on Q.

o
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In (1.1) - (1.6) we have

N du Pu N 92
z={z}izpue = S0 T 3 AT g
t=1 "t

It follows from, e.g. [6], (7], that each of the two above problems has a unique
solution provided that the data f and g belong to well chosen functional spaces.
Since this paper is engineering oriented we shal. not go into the details of those
(Sobolev type) spaces for which the above problems are well-posed (there will be

however some exceptions).

1.2 Mized variational formulations for problems (1 ) — (1.3) and (1.4) — (1.6).

The key idea is to take Vu(V = {32-}/L,) as master variable ; we introduce

therefore a new unknown p defined by
(1.7) p = Vu(in Q).

Assuming that u and p are sufficiently smooth we obtain - tntegrating by parts with
respect to the space variables - the following mixed variational formulations:

Mized variational formulations of the heat equation (1.1) — (1.3) :

(1.8) /O(ut ~ V:.p — f)vdz = 0, YveL?*(Q),a.e. on (0,T),

(1.9) / (p-q+uV-q)dz= / 9q - ndl,VqeH (1, div), a.e. on (0,T),
o r .
(1.10)  u(z,0) = uo(z) on Q.

Mized variational formulations of the wave equation (1.4} — {1.6) :

1.11 uge — V - p — flvdz = 0,VveL?(Q), a.e.on (0, T,
(1.11) ( ) )
a

: I

1.12) /;(p-q-i-uV-q)d:z:: -/I:gq-ndl‘,\'/qu(ﬂ,div),u.e. on (0,T), ‘
(1.13) u(.z, 0) = uo(z), us(z,0) = uy(z).0
In (1.8) - (1.13), we have used the following notation: y - z = Zf\;ly;zi,\'/y,zeRN;n
is the unit vector of the outward normal at T';dz = dz, - - - dzj and finally
H(Q,div) = {q|qeL?(Q), V - qeL*()}.
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2. MIXED FINITE ELEMENT APPROXIMATIONS OF THE HEAT AND WAVE EQUATIONS,
2.1 Generalities.
With h a space discretization step, we approximate L?(1) and H(Q, div) by V},
and Qj, , respectively. We suppose that Vj, € L2(2),Q, C H(R, div) and also that
Vi and Q,, satisfy compatibility conditions implying convergence properties for the
corresponding approximations (see e.g., [1], [2] for details); an important condition

to be satisfied is:
(2.1) V:QnCVh.

In the particular case where (2 is a 2 dimensional polygonal whose boundary is the
union of segments parallel to the coordinate axis, we associate to {1 a “partition”

R, such that

) — U —

(ii) Each K is a rectangle whose edges are parallel to the coordinate axis,
(iii) If K and K'eRp, then KN K’ = ¢, and either KnEK = ¢, or K and K’ have
only a whole edge or one vertex in common.

Following [1], {2] and [8] - [10], a convergent choice for Vj, and Q, constructed

from the above Rj, is given by:

Uh|k€Qk, VK ERL},

(22) ‘fh = {vh
Qn ={qniqn = {qin}2 |, qrlx €(Pe+1 ® Pi) X (Px ® Pr+1),
(2.3) VKeRyL; Q:n 15 continuous along the edges
l of Ry, parallel to 0z;,};

in (2.2), (2.3), k£ is a nonnegative integer, Qx = Px ® Px, P, is the space of the
polynomials in one variable of degree < s, and ¢ + 1 has to be taken modulo 2.

With such a choice for V}, and Q) , condition (2.1) is clearly satisfied.

4




2.2 Discretization of the heat equation (1.1) — (1.3).

Semi — Discretization in space :

Using the spaces V), and Qj we shall “space discretize” (1.1) - (1.3), via (1.8)
- (1.10) as follows:
Find a pair {un(t),pn(t)}eVh x @p, a.c. on(0,T), such that

(2.4) / (QE'-'- — V Dy — fa)vrdz = 0,VvpeVy, a.e. on (0,7),
o

(2.5) /;(p;, ‘qr+upV-q,)dz = / grqn - ndl;VqneQp, a.e. on (0,T),
r

(2.6) uh(O) = Uoh-

In (2.4) - (2.6), fa,gn and u,p are convenient approximations of f, g and u,, respec-
tively (we can take, for example, u,; as the L?-projection of u, on Va) .

The above approximation is not practical since we still have to solve an ordinary
differential system, or to be more precise a system, coupling ordinary differential
equations and (linear) algebraic equations.

Full Discretization in space — time : Concentrating (for simplicity) on the back-

ward Euler time discretization of (2.4) - (2.6) we finally obtain the following system
of difference - algebraic equations (with At(> 0) a time discretization step):

For n >0, find {ul*,pR*1}eV) X Qp such that

(2 7) ‘U.'.; = Uoh,
(2.8) uptt —up Y 7 dz = 0. Yo eV . -
. a At Pr h UpdZ = U, VUp€Vy,
(2.9) / (PR an + w77 qy) dz = /Paﬁ“qh - ndl,¥q,€Qh.
ol .

From a practical point of view, we can ecasily eliminate up*! from (2.8), using

the fact that V- q,eV), ; we obtain then the following linear variational equation

n-+1 .

satisfied by p}

{ Jo(AtV -pR=IV - q, + pptt-qu)dz = [Lgptiqn - ndT

(2.10)
~ [o(u) + AtfFT)V - q,dz,VqreQr; PRt leQn.
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Solving (2.10) can be done by a direct method - such as Cholesky’s since the bilin-
ear form in (2.10) is symmetric and positive definite - or by a conjugate gradient
algorithm (see, for example, [11]). Once pp*?! is known, computing u2*! from (2.8)

is straightforward.

Similarly, instead of backward Euler, we could have used schemes such as for-
ward Euler, Crank - Nicholson, multisteps, Runge - Kutta, ....

2.3 Discretization of the wave equation (1.4) — (1.6).

Starting from the following variant of (2.4) - (2.6): Find a pair

{uh(t)’ ph(t)}cvh X Qh, a.c.on(O,T), such that

0%u,,
(2.11) ( = V. py — fa)vrdz = 0,YvpeVy, a.e. on(0,T),
o

ot?
(2.12) /(;(Ph -qn +upV-q,)dz = / grqn - ndl',VqreQp, a.c. on(0,T),
r
, 2]
(2.13) uh(O) = Ugh, —é"ff'(()) = U1ih,

we can fully discretize the wave problem (1.4) - (1.6) by the following variant of the
usual second order accurate, explicit finite difference discretization scheme of the

wave equation:

Assuming that, for n > 0,u}, pp and u}~! are known compute first up+! as

the solution of

. un+1+un—l — 2y -
(2.14) /;‘( h |Aht|2 A — V.pp — fR)vndz = 0,YoneVy; ul eV,

and then pi*?! as the solution of
(2.15) / pPrt!-aqndz = / gntlqn - ndl —-/ upt!V . q,dz,YqneQn;pr Q.
Ja r )

A most important step is clearly the tnitialization of scheme (2.14), (2.15); assum-

ing that f,g,u,,u; are sufficiently smooth we shall proceed as follows: compute
up,u;t,pp and uj
(2.16) Up = Uoh,  Up = Uy '+ 2Atugs,
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(2.17) { PieQn,

JoP% - andz = [ g2an - ndT — [ uonV - q5dz,VqreQh.
As shown in [12], ux(t) and px(t) will converge to u(t) and Vu(t)(u : solution of

(1.4) - (1.6)) as h and At — O if a stability condition such as
(2.18) At < Ch

is satisfied.
Second order, unconditionally stable implicit variants of the above scheme can
be obtained; they will discussed in a following paper, together with applications to

boundary control of the wave equation.

3. APPLICATION TO AN EXACT CONTROLLABILITY PROBLEM FOR THE WAVE
EQUATION, VIA DIRICHLET BOUNDARY CONTROLS.

3.1 Formulation of the boundary control problem.

We follow here [4], [5]; we consider then a phenomenon taking place in 2 and

modelled by the wave equation (we keep the notation of Section 1):
(3.1) up — Au=01in Q,

with the fnitial conditions

(3.2} -+ u(z,0) = uo(z), us(z,0) = uy(z) in Q.

Tlie problem here is to find g defined over Y (=T x (0,T)) such that the following

fina! conditions

(3.3) u(z,T) =0, u(z,T) =00n Q
hold if one has
(3.4) u=gonk




as boundary condition.

It has been proved by several authors (see (4], [5], [13] for references) that such a
g exists provided that T is sufficiently large (the lower bound of the T”s for which
(3.3) holds, Vu,,u;, is - not surprisingly - of the order of diameter (1)).

3.2 Calculation of an ezact Dirichlet control via the HilbertUniquenessMethod

of J. L. Lions

In [4], [5], J.L. Lions has introduced and analyzed a systematic way for con-
structing Dirichlet controls for which (3.3) holds. The construction technique is
systematic and based on the Hilbert Uniqueness Method (HUM) to be briefly dis-

cussed below. From now on, we suppose that
(3.5) u,eL?(0), u1ed Q) (= (H1{(N)),

where P
HY(Q) = {v]veL2(Q), E%eLﬁ(n),w =1,---N,v=0on T},

H~(Q) is the dual space of H1(0),
and we define E and E’ by

(3.6) E = H;(Q) x L*(0), E' = H~(Q) x L*(0).

Next we define an operator AeL(E, E’) as follows:

() Take e = {eo, €1 }¢E;

(i7) Integrate from 0 to T :

(3.7 ¢t — 8¢ =01nQ,

(3.7)2 $=00n) ,

(3.7)3 é(z,0) = e,(z), $¢(z,0) = es(z) on Q.
(i4i) Integrate from T 10 0 :

(3.8), b — AY =0 inQ,
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a
(3.8)2 = a—i on Z,

(3.8)3 ¥(z,T) =0,¢¢(z,T) =0o0n 1.
(iv) take
(3.9) Ae = {1:(0), ~%(0)},

where 1(0) (resp. ¥¢(0) ) ¢s the function z — (z,0) (resp. z — ¢(z,0)).
It follows from J.L. Lions [4), [5] that A¢L(E, E'),YT > O; moreover, if T is
sufficiently large (T > diameter (2) ) then A is a strongly elliptic operator from E

onto E’. In addition to these properties, A is self-adjcint and satisfies (with obvious

notation):

(3.10) (Ae,e’) = / i adydI‘dt Ve,e'¢E;

in (3.10), (-, -} denotes the duality pairing between E’ and E which satisfies

(Ae,e') = /n(Ae) -e'dz

if Ae is sufficiently smooth.

Application to the exact boundary controllabslity of the wave equation :

(i) Solve
(3.11) Ae = {uy,—u,}.

(ii)) Solve (3.7) taking for e, in (3.7)5 , the solution of (3.11).

(iii) Take g =22 on Y.

If T is suﬂiczcntly large, it follows - from the properties of A - that (3.11) has a
unique solution in E ; we have (cf. [4], [5]) geL?(}"), and the corresponding solution
of (3.8) satisfies (3.1) - (3.4), implying that g is a Dirichlet boundary control for
which the exact controllability property (3.3) holds. Actually, of all the Dirichlet

boundary control for which exact controllability holds, the one obtained by HUM,
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i.e. by solving (3.11) is the only one of minimal norm in L?(3_), as shown in [4],
[5]. From the properties of A , problem (3.11) can be solved by a conjugate gradient
algorithm operating in space E ; such an algorithm is described in [13], [14], together
with conforming finite finite element implementations of it.

3.3 Mized formulation of the boundary control problem.

In fact, we shall describe a mixed formulation of problem (3.11):
Assuming that the initial data u, and u; are sufficiently smooth, so that we
can use integral representations, the problem is now to find a triple {e,,Po,€1}

satisfying

(3.12) { {eos Po}eWo, e16L?(Q);V{vo, To} W, U1€L2(n) we have

Jo (¥t (0)vo — ¥(0)v1)dz = [ (u1vo — uov1)dz,
where in (3.12):

(i) The space W, is defined by

(3.13) { Wo = {{vo, mo}|voeL2(0), moe(L2 ()N . [ (70 - @ + v,V - q)dz = 0,
VqeHd (Q1,d:v)};

it can be shown that

{Vo, 7o} W, e voe HL(Q), 7o = Vv,

(ii) ¥(0) and 9:(0) are obtained from e,, po, €1 as follows:

Integrate from O to T the mized formulated following wave equation (cf. Section

2):

(3.14), L(én — ¥V - p)vdz = 0,VveL?*(Q), a.e. on(0,T),
(3.14)2 /n(p -z + ¢V -z)dz = 0,Vze H(Q, div), a.e. on (0,T),
(3.14)3 ¢(z,0) = e, {z),0:(z,0) = e1(z) on {; )

then from T to O (using the fact that 32 =p-non ¥):

(3.13), [)(k’)g: ~ V¥V -q)véz = 0,VveL?(N), a.e. on(0,T),

(3.15)2 /)(q 249V . 2)dz = /Fp ‘nz-ndl,Vze H(Q, div), a.e. on(0,T),
¢

(3.15)3¢(z,T) = 0,¢¢(z,T) =0 on 1.
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An easy calculation will show that (with obvious notation):

Jo(¥e(0)e, — (0)e})dz = [ p-np’: ndldt,
(3.16) >
V{eo, Toi €1}, {eh, i €] }eW, x L2(Q2).

From (3.16) it appears that the bilinear form occuring in (3.12) is symmetric and
positive semi definite ; actually, for T sufficiently large it is strongly elliptic (co-
ercive) over (W, x L?(1))2. From these properties, problem (3.12) can be solved
by a conjugate gradient algorithm operating in W, x L2(Q) ; such an algorithm is
described in Section 3.4.

3.4 Conjugate gradient solution of problem (8.12).

3.4.1. Generalitses.

Problem (3.12) is a particular case of
(3.17) Find ueV such thata(u,v) = L(v),VveV,

where in (3.17):

(i) V is an Hilbert space, equipped with the scalar product (-,+) , and the corre-
sponding norm || - || .

(ii) a:V xV — R is bilinear, continuous and V- clliptic (i.e. 3@ > 0 such that
a(v,v) > aljv||?, VveV). |

(iii) L: V — R is linear and continuous.

It is well known (cf., e.g., [15, Appendix 1]) that under the above hypotheses,
problem (3.17) has a unique solution. If in addition to (i) - (iii), the bilinear form
a(-,-) is symmetric then problem {3.17) is equivalent to the following;‘_mz'm'mz'zatt'on

one

ueV,
(3.18) {J(u) < J(v),VveV,

with J(v) = %a(v,u) — L(v). Preblem (3.17), (3.18) can then be solved by the

following conjugate gradient algorithm:
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Instialization

(3.19) u®€eV s given.
Solve then
9%V,
(3.20) {
(9°,v) = a(u®,v) — L(v), VveV.

If g° =0, oris “small”, take u = u® ; if not, set
(3.21) w’ = ¢°0]

Now for n > 0, suppose that u®, g™, w", are known with w™ # 0 ; define then

untl gntl ywrtl gs follows:

Descent:  Compute

(3.22) pn = lg"|I*/a(w", w"),
and
(3.23) utl =y — p w™,

Test of the convergence and updeting the descent direction :  Solve

g"'HGV,
(g™t v) = (g™, v) — ppa(w™,v),VveV.

(3.24)
If g"*! =0- or is small-take u = u™*! ; {f not compute
(3.25) Yo = g™ M/ lg" 112,

and update w" by

(3.26) wttl =gt 4 w0

Don=n+1 and go to (3.22).

12




The above algorithm converges, Yu®¢V, and we have (cf. [16]):

(3.27) lu = ]| < Cllu°—ull<%> ,

where C is a constant, and where the condition number v, is given by

_ sup inf
(3.28) Vo = veSa(v’ v)/vesa(v, v),

with § = {v|veV,||v|| = 1}. _
3.4.2 Application to the solution of problem(8.12)

Since problem (3.12) is a particular problem (3.17), with V = W, x L2(Q), it
can be solved by the conjugate gradient algorithm (3.19) - (3.26). An important
practical issue is the proper choice of the scalar product to be used over W, x L?(12).

A fairly convenient one is provided by

(3.29) { Jalvov, + 7o - 7, + vyvl)dz,

V{v,, To; 1}, {vh, 7l v }eW, x L3(Q).
Applying algorithm (3.19) - (3.26) to the solution of problem (3.12), with W,x L2(Q)
equipped with the scalar product (3.29), we obtain the foliowing algorithm:

Instialization :

(3.30) {5, po}eW,, eSeL?(N) are given.

Integrate then from 0 to T the wave equation

(3.31); / (09, — V - p°)vdz = 0,VveL?*(Q), a.e. on (0,7T),
O

(3.31)2 / (p®-2+ ¢°V - 2)dz = 0,Vze H(N,div), a.e. on (0,T),
0

331y 6°(0) = e 42(0) = €5,
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Then from T to O :

(3.32)4 / (Y& — V- q°)vdz = 0,YveL?(Q), a.c. on (0,T),
o
3.32)2 / (Q°-z+ y°V -2z)dz = / p°-n z-ndl,VzeH (0, div),
Q r
a.e. on (0,T),
(3.32)s ¥°(T) = 0,9¢(T) = 0.

Compute then {93,793} and g¢ as follows:
Solve the mized elliptic problem:
Find {g2,7g3}eW, such that

(3.33)2 /;](gg -V .ngd)vdz = /0(1,/)2’(0) — u;)vdz, YveL?*(0),
(3.33), /n(7rgg -q + ¢SV - q)dz = 0,VqeH (N, div),

and then

(3.34) 02 = 10— ¥°(0).

If {¢3,7g%} = {0,0},9¢ = 0, or are small, take p° - n]Z as boundary control; if
not, set
(3.35) {wd, rwg;wi} = {g2,mg3;97}.0
Then for n 2 0 , assuming that {e2, D2}, 2,8 ¥™, {g2, 7g2} 67, {wl, Twl}, u
are known, we compute {e27! piTl} Tl gntl yntl Lfgntl ponti

gt {wr zwl Tt} witl, as follows :
Descent :

integiate from 0 to T

(3.36), / (5:; —~ V -p")vdz = 0,YveL?(N),a.e. on (0,7T),
0

(3.36)2 / (P™ -2 o V- z)dz = 0,Vze H(Q, div), a.e. on (0,T),
Q

(336 3(0) = ulhar(0) = wf.
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Then from T to O :

/ (Ve — V - T*)vdz = 0,VveL?(N),
0
(3.37)1 a.c. on (0,7T),
/ (@ -2+9 V- 2)dzr = / P" - nz - ndl',VzeH (0, div),
Q r

(3.37)2 a.e. on (0,T),

(3.37)3 ¥ (T)=0,%(T)=0

Solve now the mized elliptic problem :

Find {Go,7go}eW, such that

(3.38), / (g2 - V - 7gy)vdz = / Ve (0)vdz, YveL?(Q),
0 0

(3.38)2 / (g5 -q+ 92V - q)dz = 0,YqeH (R, div),
0

and set

(3.39) 7t =-9"(0)-

Compute now

oo = L (gl +Ima]|* +107 1) d=
" [ (Wl (0)-wlv"(0))dz

(3.40) .
S tiza?+1=g712 +071%)dz
T s wpngr gl w])dz
end then
(3.41) {exthpa™h et Y = {el,p2, 7} — pu{wy, Ty, Wi},
-~ . -n _
(3.42) {6"*L,p" 1Y = {¢",p"} — pu{d , D"},
(3'43) {wn*l,qn-ﬁ-l} — {tz,n’qv:}_p’l{an,.q-n}’
(3.44) {gg“,rrg;ﬁlygzn;l} = {9.';‘»793,911;} - pn{i:;)"rgg’—g-’lt’ }




Test of the convergence. New descent Direction :

If {gn+,mgn+1,gp+1} = {0,0,0} - or is small - take p*** - n|__ as boundary
control; if not compute

_ Jallgs*? + |mgp*?|? + g7 |%)dz

3.45 o =
(3.45) o= T lenF+ e P F r )z

and then

(3.46) (il mwith wptl) o (g mgnt, gn ) oy (w2, mu, wl).

Do n=n+1 and go to (3.36).

Remark 8.1 : Problems (3.33) and (3.38) are particular cases of

(3.47); /n(u. - 7-p)vdz = /n fvdz,YveL*(0),

(3.47)2 /(p -q+uV-q)dz = 0,VqeH (01, div),

9]
which is the mixed formulation of the following Dirichlet problem
(3.48) ~Au+u=jinl, u=0o0nT.

Observing that V - qeL?(0), Vqe H (Q, div), we can eliminate u from (3.47);, (3.47),

to obtain that p satisfies (if feL2(Q2)) :

(3.49) { peH(Q, div),

[a(V-pV-q+p-q)dz =~ [, [V -qdz,YqeH(, div).

Solving (3.49) (in fact its discrete variants) is fairly easy and can be done by con-
jugate gradient algorithms (see, e.g., [9] for details). Once p is knowﬁ, one obtains
easil, u from {3.47), . Combining the above algorithm with the mixed finite element
approximations and time discretization schemes of the wave equation discussed in

Section 2 is (almost) straightforward; this issue will be discussed in a forthcoming

paper.
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3.4.3. Numerical ezperiments.

The mixed finite element approximation and time discretization schemes of the
wave equation, described in Section 2, have been combined to algorithm (3.30) -
(3.46), to solve problem (3.11) when = (0,1) x (0,1) and T = 2v/2 . Using the
Fourier series techniques described in [13] we have computed those initial data u,

and u; for which the solution e(= {e,,e;}) of (3.11) is given by
(3.50) eo(Z1,22) =sinrz;sinnzs, €; = v 2e,.

We have used the mixed finite element approximations of Section 2, with k = 1
and Rj the regular partition of  associated to the vertices {th,7h} with0< 1,57 <
N, N being an integer such that Nh = 1 ; we have taken N = 16,32,64 . The
time discretization of the various wave equations involved in the calculations was
obtained using the (conditionally stable) explicit scheme described in Section 2.
Obtaining the (approximate) values of the control %3 = p-non Y, , was quite
easy since the values of the fluxes (i.e. of the normal components of p,, ), at the
element interfaces and at the boundary I' , are the natural degrees of freedom for the
functions belonging to the finite dimensional space @} approximating H(Q, div).

For h = 1/16(resp.1/32,1/64) the finite dimensional variant of algorithm (3.30)
- (3.4€) converges in 48 (resp. 72, 119) iterations (the number of iterations varies
- approximately - like VN ). These numbers are much higher than those obtained
in [13’, wlere the space approximation was achiev;ad by a conforming finite element
mel:od, coupled to a biharmonic Tychonoff regularization to eliminate spurious
osciliations. On the other hand, using, as in the present paper, mixed finite element
approximaticns, it is not necessary to use regularization to obtain very good nu-
merical results, as shown in Figures 3.1 (a), (b), (¢} (N=6), 3.2 (a), (b), (c) (N=32),
3.3(aj. {b), (c) (N=64).

Fizures (a) (resp. (b)) show the variation of the exact (-) and computed (--)e,

(resp. €1 ), for 0 < z; < 1,z = -5. Figures (c) show the variation on (0,T) of the
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L2(T)—- norm of the exact and approximate boundary controls.
All the above calculations have been done on a CRAY X-MP supercomputer.
4. CONCLUSION.

In this paper we have discussed the application of mized finite element methods
to the numerical solution of direct or inverse problems for time dependent equations.
These mixed methods are robust and accurate. They are however more complicated
to implement than the traditional finite element methods. Indeed many important
issues remain concerning the practical use of the mixed methods considered here,
such as speeding up calculations by multigrid and/or domain decomposition meth-

ods (cf. [10]); we intend to investigate them in the near future.
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