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Abstract In this work we consider solutions for the Euler-
Bernoulli and Timoshenko theories of beams in which
material behavior may be elastic or inelastic. The formu-
lation relies on the integration of the local constitutive
equation over the beam cross section to develop the
relations for beam resultants. For this case we include
axial, bending and shear effects. This permits consider-
ation in a direct manner of elastic and inelastic behavior
with or without shear deformation.

A finite element solution method is presented from a
three-field variational form based on an extension of the
Hu–Washizu principle to permit inelastic material be-
havior. The approximation for beams uses equilibrium
satisfying axial force and bending moments in each ele-
ment combined with discontinuous strain approximations.
Shear forces are computed as derivative of bending mo-
ment and, thus, also satisfy equilibrium. For quasi-static
applications no interpolation is needed for the displace-
ment fields, these are merely expressed in terms of nodal
values. The development results in a straight forward,
variationally consistent formulation which shares all the
properties of so-called flexibility methods. Moreover, the
approach leads to a shear deformable formulation which
is free of locking effects – identical to the behavior of
flexibility based elements.

The advantages of the approach are illustrated with a
few numerical examples.

Keywords Inelastic beam, Finite elements, Mixed method,
Shear deformation

1
Introduction
The development of computational models for beam
bending problems dates from the earliest days of structural

analysis and the literature is too extensive to fully cite
here. Mike Crisfield considered solution of beam problems
from many perspectives as indicated in approaches
contained in his books [1–3] and papers with co-workers
[4–8]. Most of his work was for finite displacement
applications – many using co-rotational formulations for
which he was well known. Here we would like to remember
him for his pioneering work in this field of endeavor.

In a displacement formulation, the nonlinear strain-
displacement relations are postulated and polynomial
interpolation functions are used for the displacement
approximation [9–11]. Because the postulated displace-
ment interpolation functions are approximate in nonlinear
material and geometric behavior, each structural member
needs to be discretized into several elements in order to
capture the actual variation of deformations along its axis.
This fine discretization results in a large number of
degrees of freedom in the final numerical model of the
structure, thus, reducing the computational efficiency of
this approach. Alternatively, higher order displacement
interpolation functions can be used. This approach results
in several internal degrees of freedom that need to be
condensed out during the element state determination.
Even so, mesh discretization is often required for accu-
racy. With both of these approaches numerical instabilities
are not uncommon, particularly under cyclic loading
conditions. Problems with the displacement formulation
of beam elements encouraged researchers to seek a solu-
tion with force interpolation functions. One of the earlier
studies in the field of structural analysis is by Menegotto
and Pinto [12] who interpolated both section deformations
and section flexibilities. Backlund [13] proposed a hybrid
beam element for the analysis of elasto–plastic plane
frames with large displacements. In this study the flexi-
bility matrix is determined from an assumed distribution
of forces along the element. However, this method also
uses displacement interpolation functions corresponding
to linear curvature and constant axial strain distribution
for the determination of section deformations from end
displacements. Large displacement effects are taken into
account by updating the element geometry. The paper
does not provide details on the numerical implementation
of the element, which is critical to the approach. A later
study by Mahasuverachai and Powell [14] proposed flexi-
bility-dependent shape functions that are continuously
updated during the analysis. This study is followed by the
flexibility-based element of Kaba and Mahin [15] and its
later improvement by Zeris and Mahin [16]. However,
the latter studies lack a consistent framework for the

Computational Mechanics 31 (2003) 192–203 � Springer-Verlag 2003

DOI 10.1007/s00466-003-0410-y

192

R. L. Taylor (&), F. C. Filippou, A. Saritas
Department of Civil and Environmental Engineering,
University of California at Berkeley 727
Davis Hall, Berkeley, 94720-1710 California, USA
e-mail: rlt@ce.berkeley.edu

F. Auricchio
Dip. Meccanica Strutturale Universita di Pavia 27100
Pavia, Italy

Dedicated to the memory of Prof. Mike Crisfield, for his
cheerfulness and cooperation as a colleague and friend over many
years.



formulation and, thus, suffer from limitations and
numerical problems. The first study to provide a consis-
tent formulation for a force-based element and its nu-
merical implementation in a general purpose computer
program is the work of Ciampi and Carlesimo [17]. An
independent attempt in the same direction is reported by
Carol and Murcia [18] who proposed a hybrid frame ele-
ment for nonlinear material and second-order plane frame
analysis. Second-order effects are accounted for, but the
use of a linear strain-displacement relation limits the
formulation to relatively small deformations. At about the
same time Kondoh and Atluri [19] used an assumed-stress
approach to derive the tangent stiffness of a plane frame
element under general loading. The element is assumed to
undergo arbitrarily large rigid rotations but small axial
stretch and relative (non-rigid) point-wise rotations. They
show that the tangent stiffness can be derived explicitly if a
plastic-hinge method is used. Shi and Atluri [20] extended
these ideas to three-dimensional frames. Details of the
force-formulation of Ciampi are expounded and refined in
several studies published subsequently [21–27]. With the
work of Ayoub and Filippou [28, 29] attempts are under-
taken to generalize the formulation to mixed methods with
independent interpolation of force and displacement
variables for applications with displacement dependent
equilibrium equations. Finally, the study by Souza [30]
formulates a force-based element under nonlinear geom-
etry and nonlinear material response on the basis of the
variational framework of the Hellinger–Reissner principle.
An independent attempt in this direction is reported by
Hjelmstad and Taciroglu [31] and for steel-concrete
composite beams by Limkatanyu and Spacone [32]. These
attempts, however, lack full variational consistency.

The purpose of this study is to formulate a beam ele-
ment within the generalized and variationally consistent
framework of the Hu–Washizu principle.

2
Formulation with section integration
We present here a beam formulation in which integration
of local constitutive equations is carried out on each cross
section. We start at the local level where we assume that
displacements vary linearly over each cross section.
Accordingly, for the Euler–Bernoulli theory in two
dimensions we have

u1ðx; yÞ ¼ uðxÞ � yw;x

u2ðx; yÞ ¼ wðxÞ
ð1Þ

where ð�Þ;x denotes differentiation with respect to x. This
displacement field results in the axial strain expression

�1ðx; yÞ ¼ u;x � yw;xx ¼ �ðxÞ � yvðxÞ ð2Þ
with all other strains being zero.

If we consider the effects of only the stress r1 we can
identify the axial force resultant as

Nð�1Þ ¼
Z
A

r1ð�ÞdA ð3Þ

and the bending moment resultant as

Mð�1Þ ¼ �
Z
A

yr1ð�ÞdA : ð4Þ

Equilibrium of the beam requires

oN

ox
þ bx ¼ 0 ð5Þ

in the axial direction and

o2M

ox2
þ by ¼ 0 ð6Þ

in the transverse direction. Here bx and by are loadings per
unit length of beam in the x and y directions, respectively.

2.1
Constitutive behavior
For linear elastic behavior the stress is deduced from

r1 ¼ E�1 : ð7Þ
If the beam axis is placed at the centroid whereZ
A

dA ¼ A;

Z
A

y dA ¼ 0;

Z
A

y2 dA ¼ I ð8Þ

we obtain from (3) and (4) the expressions for resultants
as

Nð�1Þ ¼ EAu;x ¼ EA�ðxÞ
Mð�1Þ ¼ EIw;xx ¼ EIvðxÞ :

ð9Þ

In the sequel we shall also consider an inelastic form in
which an elasto–plastic model is given by

r1 ¼ Eð�1 � �pÞ; _��p ¼ _ccf;r1
and f ¼ f ðr1;HÞ � 0

in which �p is the plastic strain, c is the consistency pa-
rameter and f is a yield function in terms of stress and
hardening parameter H. Equation (10) may be integrated
in time using a backward Euler scheme to obtain an
incremental form for use in numerical calculations. The
solution may be obtained locally using a return-map
algorithm [33, 34]. The solution for the stress is then in-
serted into the resultant equations to compute the internal
force resultants. Linearization can provide a means of
computing the elasto-plastic modulus which can also be
used to compute section tangent stiffness properties.

The force resultants on each cross-section are computed
from Eqs. (3) and (4). Performing a linearization on the
resultant equations gives

dNð�1Þ ¼
Z
A

dr1ð�ÞdA

dMð�1Þ ¼ �
Z
A

y dr1ð�ÞdA :

ð11Þ

The linearization of the stress involves both the axial strain
and change in curvature as

dr1 ¼ ET d�ðxÞ � y dvðxÞ½ 	 ð12Þ
where ET is the tangent modulus from the constitutive
equation. Insertion of (12) into (11) then gives
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dN
dM

� �
¼

Z
A

1
�y

� �
ET 1 �y½ 	dA

0
@

1
A du;x

dw;xx

� �
ð13Þ

Note that the behavior may become coupled when both
axial and bending deformations occur at a cross-section
and ET is variable.

2.2
Three field variational formulation
The approach we now present is based on the use of a
three-field (displacement, strain, stress) formulation based
on the Hu–Washizu variational principle. For an elastic
material with stress r1 and strain �1 the Hu–Washizu
principle may be written as

Phwðr1; �1; uÞ

¼
Z
X

Wð�1ÞdX þ
Z
X

r1
ou1

ox1
� �1

� �
dX � Pext ð14Þ

In (14) Wð�1Þ is the stored energy function from which
stresses are computed as

r1 ¼
oW

o�1
ð15Þ

and Pext is the potential for the body and boundary
loading.

Setting the variation of Eq. (14) to zero yields

dPhw ¼
Z
X

d�1
oW

o�1
� r1

� �
dX þ

Z
X

dr1
ou1

ox1
� �1

� �
dX

þ
Z
X

odu1

ox1
r1 dX � dPext ¼ 0 ð16Þ

When the term involving a derivative on du1 is integrated
by parts and combined with the boundary terms the above
functional includes all equations for solution of static
problems in one-dimensional elasticity.

To permit solution of inelastic constitutive forms, we
replace the term involving the variation of the stored
energy byZ
X

d�1
oW

o�1
dX )

Z
X

d�1r̂r1ð�1ÞdX ð17Þ

in which r̂r1ð�1Þ denotes a stress computed from any
constitutive model in terms of specified strains, strain
rates (plasticity), or functional of strain (viscoelasticity).
In this form we can directly introduce the beam approxi-
mations for all of the field variables, thus affording a very
general variational formulation basis.

2.2.1
Beam formulation
Let us now apply the Hu–Washizu functional to the so-
lution of beam problems. We first write Eq. (16) with the
aid of (17) for the beam approximations. To accomplish
this we assume that the displacements and strain over the
cross section are given by (1) and (2) to obtain

dPhw¼
Z
L

d�
Z
A

½r̂r1ð�;vÞ�r1	dA

0
@

1
A

8<
:

�dv
Z
A

y½r̂r1ð�;vÞ�r1	dA

0
@

1
A
9=
;dx

þ
Z
L

Z
A

dr1dA u;x��
� �

�
Z
A

ydr1dA w;xx�v
� �

8<
:

9=
;dx

þ
Z
L

du;x

Z
A

r1dA�dw;xx

Z
A

yr1dA

8<
:

9=
;dx

�
Z
L

dubxþdwby

� �
dx�dPbc ð18Þ

Introducing the definitions given in Eqs. (3) and (4) we
may write (18) as

dPhw ¼
Z
L

d�½N̂Nð�; vÞ � N	 þ dv½M̂Mð�; vÞ � M	
� �

dx

þ
Z
L

dN u;x � �
� �

þ dM w;xx � v
� �� �

dx

þ
Z
L

du;xN þ dw;xxM
� �

dx

�
Z
L

du bx þ dw by

� �
dx � dPbc ð19Þ

2.2.2
Finite element approximation
The solution of the three field form of the beam problem
given by (19) provides considerable flexibility in choice of
approximating functions. In general we need to ensure
that the number of terms taken for each variable satisfy
consistency and stability conditions. An essential
requirement is the mixed patch test count condition [9].
Considering a solution in two-dimensions where the
displacement degrees of freedom at each node are

~aaa ¼ ð~uua; ~wwa; ~wwa
;xÞ; a ¼ 1; 2 ð20Þ

there are six degrees of freedom for each element. For this
case we must have three rigid body modes of displacement
and three straining ones. Considering the functional form
given by Eq. (19) we can show that the conditions of ap-
proximation for stress and strain for this case must satisfy
the mixed patch test count conditions [9]

n� � nN � 1

nv � nM � 2
ð21Þ

where nN , nM are the number of unknown element
parameters in N , M and n�, nv are the number of unknown
element parameters in �, v, respectively. The approxima-
tions for each of the variables are commonly taken as
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continuous polynomials within each element; however, we shall
find that considerable advantages arise by using discontin-
uous or discrete (quadrature) approximation for the strains.

For the finite element approximation we consider a
typical element of length h ¼ x2 � x1. We begin by inte-
grating by parts all terms with derivatives on displace-
ments. The terms involving u and du becomeZ
h

dNu;x þ du;xN
� �

dx ¼ �
Z
h

dN;xu þ duN;x

� �
dx

þ dN u þ du Nf gjCh
ð22Þ

where Ch is the left and right boundary of the element. If
we assume approximations such that

N;x þ bx ¼ 0 and dN;x ¼ 0 : ð23Þ
and add the bx loading term to (22) we obtainZ
h

dN u;x þdu;xN
� �

dx�
Z
h

dubx dx¼ dN uþduNf gjCh

ð24Þ

Similarly, we can integrate by parts the terms involving
derivatives on w to obtainZ
h

dM w;xx þ dw;xxM
� �

dx:

¼
Z
h

dM;xxw þ dwM;xx

� �
dx þ dM w;x þ dw;xM

� �
jCh

� dM;x w þ dw M;x

� ���
Ch

ð25Þ

If we now assume approximations for M and dM that
satisfy

M;xx þ by ¼ 0 and dM;xx ¼ 0 ð26Þ
then from (25) we obtainZ
h

dM w;xx þ dw;xxM
� �

dx �
Z
h

dw by dx

¼ dM w;x þ dw;xM
� ���

Ch
� dM;xw þ dw M;x

� ���
Ch

:

ð27Þ
Introducing Eqs. (24) and (27) into (19) we obtain the
reduced variational functional

dPhw ¼
Z
L

d�½N̂Nð�; vÞ � N	 þ dv½M̂Mð�; vÞ � M	
� �

dx

�
Z
L

dN�þ dMvf gdx þ dN u þ du Nf gjCh

þ dM w;x þ dw;xM
� ���

Ch

� dM;xw þ dw M;x

� ���
Ch
�dPbc ¼ 0 ð28Þ

which is the form from which we will make our approxi-
mations.

Displacement approximation
We note that in the form given in (28) no interpolation for
u or w is needed in each element. We merely use their
nodal values together with nodal values of the first deriv-
ative of w (i.e., the usual nodal values for a displacement
element with 2 nodes).

Although to this point we do not need an approxima-
tion for the displacement within the element, there are
occasions for which one is needed. One case is merely for
graphical display of the final displaced shape and others
are for beams on elastic foundations, transient analysis,
and non-linear geometric behavior. There is no fully
consistent means to recover the displacements from the
variational formulation presented above. Indeed, any field
which satisfies the end conditions (20) is sufficient. Con-
sequently, we will rely on computing the displacement by a
double integration of the curvature field over the element.
This approach is discussed in previous work (e.g., see [26])
and is used here to plot deformed shapes.

Resultant approximations
To satisfy (23) and (26) we will write the approximation
for force resultants as

N ¼ ~NN þ NpðnÞ
dN ¼ d ~NN

ð29Þ

and bending moment resultants as

M ¼ 1
2ð1 � nÞ ~MM1 þ 1

2ð1 þ nÞ ~MM2 þ MpðnÞ
dM ¼ 1

2ð1 � nÞd ~MM1 þ 1
2ð1 þ nÞd ~MM2

ð30Þ

where �1 � n � 1, ~NN , ~MM1 and ~MM2 are element parameters
and Np and Mp are particular solutions for specified non-
zero bx or by. For example, if bx and by are constant within
each element suitable forms are

Np ¼ �1
2bxhn and Mp ¼ 1

8byh2ð1 � n2Þ : ð31Þ
For simplicity, we use (31) for Np and Mp in the remaining
development. The shape functions for unknown parameters
in the axial force and bending moment are shown in Fig. 1.

Expanding the boundary terms in (28) we obtain

dNu þ duNf gjCh
¼ d ~NNð~uu2 � ~uu1Þ þ ðd~uu2 � d~uu1Þ ~NN
� ðd~uu2 þ d~uu1Þ1

2bxh ð32Þ
for axial loading terms and

dMw;x þ dw;xM
� ���

Ch

¼ d ~MM2~hh2 � d ~MM1~hh1 þ d~hh2 ~MM2 � d~hh1 ~MM1 ð33Þ

Fig. 1. Beam force and moment shape functions
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dM;xw þ dwM;x

� ���
Ch

¼ 1

h
d ~MM1 � d ~MM2
� �

~ww1 � ~ww2
� �

þ 1

h
d~ww1 � d~ww2
� �

~MM1 � ~MM2
� �

� d~ww1 þ d~ww2
� �1

2
byh ð34Þ

for bending moment terms, where h ¼ ow=ox.
The product terms between the stress and strains are

considered next. For interpolation of the strains � and v we
can use discontinuous piecewise constant functions where
we take

� ¼
X

a

Ne
a~��

a

v ¼
X

a

Ne
a~vv

a
ð35Þ

with typical Ne
a as shown in Fig. 2. The integration may

be conveniently carried out by defining the Ne
a as Lag-

range polynomials with reference to quadrature points
and approximating the integrals with a single point
evaluation. In this case the ~��a and ~vva are merely
amplitudes at the quadrature points. When multiplied
by the strain parameters for each part and superimposed
a typical strain distribution in an element is shown in
Fig. 3.

The line integrals in Eq. (28) are now approximated as

Z
L

d�½N̂Nð�; vÞ � N	dx �
X

l

d~��l½N̂Nð~��l; ~vvlÞ � ~NN � Np	Wl

Z
L

dv½M̂Mð�; vÞ � M	dx �
X

l

d~vvl M̂Mð~��l; ~vvlÞ � 1
2ð1 � nlÞ ~MM1

�

� 1

2
ð1 þ nlÞ ~MM2 � Mp

�
WlZ

L

dN� dx �
X

l

d ~NN~��lWl

Z
L

dMv dx �
X

l

½12 ð1 � nlÞd ~MM1 þ 1
2 ð1 þ nlÞd ~MM2	~vvlWl

ð36Þ
where nl denotes one quadrature point for each discon-
tinuous function and Wl denotes a quadrature weight and
length.

As an alternative to (35), we can use continuous shape
functions with their definition point coinciding with
Gauss–Lobbato (or other quadrature type) points as
shown for a 4-point case in Fig. 4. Combining the function
for strain as

� ¼
X

a

Ne
a~��

a

we obtain a continuous function in each element as shown
in Fig. 5.

Matrix expression for equations
Assembling the above approximations, Eq. (19) may be
written in matrix form as:

dP ¼
d~aa

d~qq

d~eel

8><
>:

9>=
>;

T
0 HT 0

H 0 �bT
l

0 �bl 0

2
64

3
75

~aa

~qq

~eel

8><
>:

9>=
>;

0
B@

�
F

0

s
p
l � ŝsl

8><
>:

9>=
>;

1
CA ¼ 0 ð37Þ

where l denotes evaluation at a quadrature point,

Fig. 2. Beam discontinuous strain shape functions

Fig. 3. Typical discontinuous strain distribution in a beam
element

Fig. 4. Beam continuous strain shape functions

Fig. 5. Typical continuous strain distribution in a beam element
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H ¼
�1 0 0 1 0 0
0 1=h �1 0 �1=h 0
0 �1=h 0 0 1=h 1

2
4

3
5 ð38Þ

and

bl ¼
1 0 0
0 1

2ð1 � nlÞ 1
2 ð1 þ nlÞ

� �
: ð39Þ

The particular solution is given as

s
p
l ¼ NpWl

MpWl

� �
ð40Þ

and the constitutive equation evaluation by

ŝsl ¼ N̂NWl

M̂MWl

� �
: ð41Þ

Applying a linearization to (37) gives the incremental form
for a Newton solution process as

d~aa
d~qq
d~eel

8<
:

9=
;

T
0 HT 0
H 0 �bT

l

0 �bl kll

2
4

3
5 d~aa

d~qq
d~eel

8<
:

9=
; ¼

Ra

Rq

Rel

8<
:

9=
;

0
@

1
A

ð42Þ
where ‘‘d’’ is an increment, the residual expression is given
by

Ra

Rq

Rel

8<
:

9=
; ¼

F � HT~qq
bT

l ~ee
l � H~aa

bl~qq þ s
p
l � ŝsl

8<
:

9=
; ð43Þ

and the tangent matrix by

kll ¼
Z

AðnlÞ

1
�y

� �
ETðnl; yÞ 1 �y½ 	dA ð44Þ

The forces F are nodal values computed from the partic-
ular solutions Np and Mp and any applied concentrated
forces at the nodes.1

Solution strategy
It should be noted in the above formulation that continuity
between elements is enforced only for displacement
degrees of freedom. Forces and strains may be discontin-
uous between elements. Thus, the parameters for forces
and strains may be eliminated at the element level
resulting in a stiffness matrix for displacement parameter
determination. The elimination may be performed in two
steps:

1. Eliminate section strain components separately, result-
ing in

d~eel ¼ k�1
ll bld~qq þ Rel½ 	

where from (43) we have

Rel ¼ bl~qq þ s
p
l � ŝsl :

Substitute into the remaining equations to obtain

d~aa
d~qq

� �T
0 HT

H �f

� �
d~aa
d~qq

� �
¼ Ra

�RRq

� ��  

where

f ¼
X

l

bT
l k�1

ll bl

is the element flexibility and

�RRq ¼ Rq þ
X

l

bT
l k�1

ll Rel

is a modified stress residual. Given an increment d~aa the
second of the above equations may be solved for incre-
ments in ~qq.2

2. Eliminate the stress parameters for each element giving3

d~qq ¼ f�1 Hd~aa � �RRq

� �
When the result of the above two steps is substituted
into the remaining equation set we obtain

�KKd~aa ¼ �RRa

where an element stiffness is given as

�KK ¼ HTf�1H

and a modified element residual by

�RRa ¼ Ra þ HTf�1�RRq

The resulting stiffness and residual now may be assembled
into the global equations in an identical manner to any
displacement formulation. We note that at convergence
the Rq and Rel residuals are zero for each element and,
thus, the Ra residual becomes the usual element residual
on equilibrium. During iteration steps, however, the strain
residuals Rel in general will not be zero (except for linear
problems).

The update strategy for the parameters may be carried
out as follows:

1. For solution at time tnþ1 assume the state at the pre-
vious step tn is known.4 For the first iteration step j ¼ 0,
set ~aa

ð0Þ
nþ1 ¼ ~aan, ~qq

ð0Þ
nþ1 ¼ ~qqn and ~ee

ð0Þ
nþ1 ¼ ~een.

2. Form element matrix and residual for state at iteration j.
3. Condense arrays as described above and assemble

global stiffness and residual for the nodal parameters ~aa.
4. Solve equation system

Kd~aa ¼ R
and update solution

~aa
jþ1
nþ1 ¼ ~aa

j
nþ1 þ d~aa

5. For each element determine d~qq and d~ee and update the
stress and strain parameters

1 Concentrated forces applied at an element interior are used to
compute solutions for Np and/or Mp.

2 In solution of highly non-linear problems we sometimes find it
necessary to subincrement the displacement increments d~aa in
order to converge the solution for the ~qq.
3 For non-linear materials it may be desirable to use a singular
valued decomposition and construct an inverse or pseudo-inverse
to avoid numerical precision problems [35].
4 In some definitions we delete the individual cross-section
identifier l when defining the ~eel to avoid cumbersome notation.
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~qq
jþ1
nþ1 ¼ ~qq

j
nþ1 þ d~qq

~ee
jþ1
nþ1 ¼ ~ee

j
nþ1 þ d~ee

6. Check convergence on global residual for the displace-
ments R and each element residual Rq and Rel .
(a) If converged: set n ¼ n þ 1 and go to Step 1.
(b) If not converged: set j ¼ j þ 1 and go to Step 2.

Generally, it is more efficient to compute and perform the
update step for stress and strain just before the next ele-
ment matrix and residual are computed for iteration j þ 1.
This requires one to either recompute the element matrix
and residual at the values of the j iteration or store the
matrices for later use. In either case, however, it is nec-
essary to save the parameters for stress, ~qq, and strain ~ee for
each element.

2.3
Beam formulation with shear deformation
Let us now apply the Hu–Washizu functional to the so-
lution of beam problems which include shearing defor-
mation. The displacement approximation for a beam
which includes the primary effect of shear deformation is
given by

u1ðx; yÞ ¼ uðxÞ � yhðxÞ and u2 ¼ wðxÞ ð45Þ
where h is the rotation of the beam cross-section and c is
the average cross-section shearing strain. In this case we
have two strain components at each point in the beam
which are given by

�1 ¼
ou

ox
� y

oh
ox

¼ �ðxÞ � yvðxÞ

c12 ¼
ow

ox
� h ¼ cðxÞ :

ð46Þ

We first modify Eq. (14) to include r12 and c12 for the
shear effects. We then assume strain distributions given by
(46), define the shear resultant by

V ¼
Z
A

s dA ð47Þ

and integrate over the cross section to obtain

dPhw

¼
Z
L

d�½N̂Nð�;c;vÞ�N	þdN
ou

ox
� �

� �
þodu

ox
N

� �
dx

þ
Z
L

dv½M̂Mð�;c;vÞ�M	þdM
oh
ox

�v

� �
þodh

ox
M

� �
dx

þ
Z
L

dc½V̂Vð�;c;vÞ�V	þdV
ow

ox
�h� c

� �� �
dx

þ
Z
L

odw

ox
�dh

� �
V

� �
dx

�
Z
L

dubx þdwby

� �
dxþdPbc ð48Þ

Finite element approximation
We again use the mixed patch test count condition as a
guide to construct finite element approximations. Con-
sidering a 2-node element in which the displacement
degrees of freedom at each node are

aa ¼ ð~uua; ~wwa; ~hhaÞ; a ¼ 1; 2 ð49Þ

there are again six degrees of freedom for each element
(Note that now the ~hha is a parameter describing the rota-
tion of the beam cross section and, in general, is not equal
to wa

;x). For the case with shear deformation we must have
three rigid body modes of displacement and three strain-
ing ones. Considering the functional form given by Eq.
(48), the conditions to approximate stress resultants and
strain functions must satisfy the mixed patch test count
conditions

n� � nN � 1

nc � nV � 1

nv � nM � 2

ð50Þ

where nN , nV , nM are the number of unknown element
parameters in N , V , M and n�, nc, nv are the number of
unknown element parameters in �, c, v, respectively. By
using force solutions which satisfy equilibrium we will be
able to satisfy these conditions easily.

For the finite element approximation we again consider
a typical element of length h ¼ x2 � x1 and integrate by
parts all terms with derivatives on displacements. The
terms involving u and du again yield (22) and we assume
approximations which satisfy (23). Including the element
force bx we obtain (24) again.

Similarly, we can integrate by parts the terms involving
derivatives on h to obtain

Z
h

dM
oh
ox

þ odh
ox

M

� �
dx ¼ �

Z
h

odM

ox
h þ dh

oM

ox

� �
dx

þ dMh þ dhMf gjCh
ð51Þ

and those involving derivatives on w to obtain

Z
h

dV
ow

ox
þ odw

ox
V

� �
dx ¼ �

Z
h

odV

ox
w þ dw

oV

ox

� �
dx

þ dVw þ dwVf gjCh
ð52Þ

We assume that the approximations for M; V and
dM; dV satisfy the equilibrium relations

oV

ox
þ by ¼ 0 and

odV

ox
¼ 0

oM

ox
þ V ¼ 0 and

odM

ox
þ dV ¼ 0 :

ð53Þ

We then combine (52) and (53) with the remaining terms
for w and h in (48) to obtain
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Z
h

dM
oh
ox

þ odh
@x

M

� �
dx �

Z
h

dhV þ dVhf gdx

þ
Z
h

dV
ow

ox
þ odw

ox
V

� �
dx �

Z
h

dwby dx

¼ dMh þ dhMf gjCh
þ dVw þ dwVf gjCh

ð54Þ
Introducing the above into (48) we obtain

dPhw ¼
Z
L

d�½N̂Nð�; c; vÞ � N	 � dN�
� �

dx

þ
Z
L

dv½M̂Mð�; c; vÞ � M	 þ dMv
� �

dx

þ
Z
L

dc½V̂Vð�; c; vÞ � V	 þ dVc
� �

dx

þ dNu þ duNf gjCh
þ dMh þ dhMf gjCh

þ dVw þ dwVf gjCh
þdPbc ð55Þ

which is the form from which we will make the approxi-
mations. We note that in this form, subject to the condi-
tions imposed on N , V and M, no interpolation for u, w or
h is needed in each element. We merely use their nodal
values (i.e., the usual nodal values for a shear deformable
displacement formulation element with 2 nodes). We can
again use the approximation for force and bending mo-
ment resultants given by (29) and (30). We also note that
the shear in each element may be computed from moment
equilibrium as

V ¼ � oM

ox
¼ 1

h
ðM1 � M2Þ þ Vp with Vp ¼ � oMp

ox
ð56Þ

and, thus, it is not necessary to add additional force
parameters to the element.

From Eq. (55) we again obtain the axial load terms
given by Eq. (32) and for bending moments and shears

dMh þ dhMf gjCh
¼ d ~MM2~hh2 � d ~MM1~hh1 þ d~hh2 ~MM2 � d~hh1 ~MM1

ð57Þ

dVw þ dwVf gjCh
¼ 1

h
d ~MM1 � d ~MM2
� �

~ww2 � ~ww1
� �

þ 1

h
d~ww2 � d~ww1
� �

~MM1 � ~MM2
� �

þ d~ww2V2
p � d~ww1V1

p ð58Þ
where V1

p and V2
p are values of the particular solution for

shear at the 1 and 2 ends, respectively. These boundary
terms may be written in matrix form (38) and we note that
no differences arise by including shear deformation.

The product terms between the stress and strains are
considered next. For interpolation of the strain parts �, c
and v we can use discontinuous piecewise constant
functions given by Eq. (35) and evaluated at a single
quadrature point or continuous shape functions with their
definition point coinciding with the Gauss–Lobbato

(or other quadrature type) point as shown for the 4-point
case in Fig. 4.

The line integrals in Eq. (55) are again approximated asZ
L

d�½N̂Nð�; c; vÞ � N	dx

�
X

l

d~��l½N̂Nð~��l;~ccl; ~vvlÞ � ~NN � Np	Wl

Z
L

dv½M̂Mð�; c; vÞ � M	d

�
X

l

d~vvl M̂Mð~��l;~ccl; ~vvlÞ � 1
2ð1 � nlÞ ~MM1

�

�1
2ð1 þ nlÞ ~MM2 � Mp

�
WlZ

L

dc½V̂Vð�; c; vÞ � V	dx

�
X

l

d~ccl½V̂Vð~��l;~ccl; ~vvlÞ � ~VV � Vp	Wl

Z
L

dN� dx �
X

l

d ~NN~��lWl

Z
L

dMv dx �
X

l

½12ð1 � nlÞd ~MM1 þ 1
2ð1 þ nlÞd ~MM2	~vvlWl

Z
L

dVc dx �
X

l

d ~VV~cclWl

ð59Þ
where nl denotes one quadrature point for each function
and Wl denotes a quadrature weight and length. All terms
except those involving N̂N , V̂V and M̂M may be written in
matrix form as

d~��l ~NN þ d~vvl½12ð1 � nlÞ ~MM1 þ 1
2ð1 þ nlÞ ~MM2	

þ d~ccl ~VV ¼ ðd~eelÞTbl~qq ð60Þ
and

d ~NN~��l þ ½12ð1 � nlÞd ~MM1 þ 1
2ð1 þ nlÞd ~MM2	~vvl

þ d ~VV~ccl ¼ d~qqTbT
l ~ee

l ð61Þ
where ~eel ¼ ð~��l; ~vvl; ~cclÞT, ~qq ¼ ð ~NN; ~MM1; ~MM2ÞT and

bl ¼
1 0 0
0 1

2 ð1 � nlÞ 1
2 ð1 þ nlÞ

0 �1
h

1
h

2
4

3
5 : ð62Þ

Here a difference with the formulation without shear de-
formation arises from the addition of a third row in the bl

array and the inclusion of ~ccl in the definition of ~eel.
Applying a linearization to the equations equivalent to

(37) results in the element expression

d~aa
d~qq
d~eel

2
4

3
5

T
0 HT 0
H 0 �bT

l

0 �bl kll

2
4

3
5 d~aa

d~qq
d~eel

2
4

3
5 ¼

Ra

Rq

Rel

2
4

3
5

0
@

1
A ð63Þ

where ‘‘d’’is an increment and the residual expression is
given by
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Ra

Rq

Rel

2
4

3
5 ¼

F � HT~qq
bT

l ~ee
l � H~aa

bl~qq þ s
p
l � ŝsl

2
4

3
5 : ð64Þ

The constitutive equation terms are

ŝsl ¼
N̂NWl

M̂MWl

V̂VWl

8<
:

9=
; and s

p
l ¼

NpWl

MpWl

VpWl

8<
:

9=
; ð65Þ

and the tangent matrix for a decoupled bending-shear
behavior becomes

kll ¼
Z
A

1 0
�y 0
0 1

2
4

3
5 ETðyÞ 0

0 GTðyÞ

� �
1 �y 0
0 0 1

� �
dA ð66Þ

where ET and GT are tangent Young’s and shear modulus,
respectively. Coupling between the behavior merely adds
off diagonals to the modulus array.

The modifications to include shear behavior are mini-
mal and the solution strategy for the model is identical to
that already presented for the case without transverse
shearing strains.

3
Numerical examples

3.1
Simply supported beam with uniform loading
Consider a simply supported beam under uniformly dis-
tributed load of intensity q with length L, elastic properties
E and G, cross sectional area A and moment of inertia I as
shown in Fig. 6. The exact displacement at mid-span for
the Euler–Bernoulli theory is

wE
max ¼ 5 q L4

384 EI
ð67Þ

and including the effects of shear deformation (Timo-
shenko beam theory) is

wT
max ¼ 5 q L4

384 EI
þ q L2

8 j GA
ð68Þ

where j is the shear correction factor. Similarly the cross-
section rotation at the left support for the two theories is
the same and is given by

hE
max ¼ � q L3

24 EI
¼ hT

max : ð69Þ

For the comparison with the element presented above
we consider a rectangular cross section with linear elastic
material. The properties are: E ¼ 106, m ¼ 0:25, q ¼ 1,
j ¼ 5=6, h ¼ b ¼ 1. Using symmetry, one half of the beam
is modeled with one element based on the theory given

above. This problem has been analyzed by Reddy [36]
where it is shown that several elements are required along
the length to get satisfactory answers using standard dis-
placement approaches. We note that our approach uses
shape functions which involve no material parameters,
contrary to the displacement shape functions proposed by
Reddy to avoid shear locking. Table 1 shows that the
solution at the nodes is exact for the present development.

3.2
Frame structure
The frame structure considered by Reddy [36] is analyzed
using the beam element developed above. The only mod-
ification from that presented previously is the need to
transform the member from local coordinates (where the
theory is developed) to global coordinates. This standard
operation is described in any text on structural analysis.
The geometry for the frame is shown in Fig. 7. Cross-
section properties are: A ¼ 10 in2, I ¼ 10 in4, E ¼ 106 psi,
m ¼ 0:3, and j ¼ 5=6. Our model for the frame consists of
three elements: one for the vertical column and two for the
inclined beam. The results for the displacement at point B
are compared with the exact solution (given in [36]) in
Table 2. We note that the results are exact at this point.
Moreover, the force distribution obtained is also exact.
The ability of the mixed formulation given here to produce
correct results with and without shear and no shear
locking is clearly evident.

3.3
Simply supported beam with point load
As a final problem we consider a simply supported beam
with a central point load as shown in Fig. 8. To show the

Table 1. Simply supported beam: wmax ¼ wðL=2Þ and h0 ¼ ðh0Þ

L=h ¼ 10 L=h ¼ 100

wmax � 102 h0 � 103 wmax � 10�2 h0

Exact
(no shear)

0.15625 )0.50000 0.15625 )0.50000

Exact
(with shear)

0.16000 )0.50000 0.15629 )0.50000

Present
(no shear)

0.15625 )0.50000 0.15625 )0.50000

Present
(shear)

0.16000 )0.50000 0.15629 )0.50000

Fig. 6. Uniformly loaded, simply supported beam Fig. 7. Frame structure
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advantages of the formulation presented here we allow the
beam to have elasto–plastic behavior. The entire beam is
modeled with two elements (one element for each sym-
metric half); five Gauss-Lobatto curvature stations per
element are used along the beam axis. A rectangular
cross-section is considered with 10 Gauss–Lobatto points
through the depth to permit modeling of the spread of the
plastic zone. No shear deformation is included. The
properties for the analysis are:

The central load is allowed to vary using a load control
strategy [3]. For the comparison we also consider the
solution using a standard displacement model with cubic
Hermite polynomial shape functions. Solutions for two,
four, and eight elements for the length are used (one, two
and four on each half length). In Fig. 9 we show the force-
displacement relation, deformed shape and distribution of
moment and curvature along the length of the beam at the
last computed load state for each analysis. The displace-
ment model permits only linear change, whereas the mixed
model presented here allows for arbitrary change at each
axial station used (5 in the present case). The superiority
of the mixed form is evident in both the force-displace-
ment, the computed deformed shape and the moment and
the curvature distribution.

4
Closure
In this work we have presented a three-field variational
formulation for beams. The presentation is restricted to
two-dimensional, small-displacement theory and includes

Table 2. Displacement at B for frame structure

Displacement/P at B �104

uB wB hB

Exact (no shear) 0.83904 )0.68124 )0.96098
Exact (with shear) 0.83898 )0.68123 )0.96206
Present (no shear) 0.83904 )0.68124 )0.96098
Present (shear) 0.83898 )0.68123 )0.96206

Table 3. Properties for inelastic beam

Length L ¼ 180
Depth h ¼ 10
Width b ¼ 10
Elastic modulus E ¼ 29000
Yield stress ry ¼ 50
Hardening modulus Hiso ¼ 290 (1%)

Fig. 8. Simply supported beam with central point load

Fig. 9. Simply supported, point
loaded beam – inelastic
solution. DF = Displacement
formulation; MF = Mixed
formulation
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the effects of shear deformation. Shear deformation can be
readily included without danger of shear locking and, thus,
behavior is independent of the number of integration
points along the axis of each element. Non-linear material
behavior is included by integrating the resultants for axial
force, shear force, and bending moment over the member
cross-section.

The extension to three dimensions is straightforward.
Geometric nonlinearity may be included with the ap-
proach presented by Sousa [30] for linear and nonlinear
material response. In that study full geometric-nonlinear-
ity for large displacements is included with the co-rota-
tional formulation that Crisfield was so instrumental in
developing and refining over the years.

The numerical examples demonstrate the advantages of
the mixed approach over results from traditional dis-
placement based formulations – especially for very coarse
mesh discretizations.

In closing, we again wish to remember our late col-
league Mike Crisfield and the motivation he has instilled
in us to pursue our development. Mike’s wry wit and
insights into computational mechanics will be sorely
missed!
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