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Abstract. A new mixed finite element method is proposed and analyzed for simulating two-phase droplet
motion in a micro-scale device driven by Electrowetting-On-Dielectric (EWOD). The new feature of the
method is that the finite element scheme is based on a weak formulation of the problem which includes the
position of the moving interface and the curvature of its boundary as basic unknowns to be determined along
with the velocity field and pressure. Well-posedness of the semi-discrete and fully discrete formulations and
error estimates with minimal regularity assumptions are proved. Numerical examples are given to illustrate
the robustness of the method.

1. Introduction

This paper presents a new mixed finite element method to simulate two-phase droplet motion in a micro-
scale device driven by Electrowetting-On-Dielectric (EWOD) [27, 11, 34, 4, 23]. The device is essentially
a Hele-Shaw cell (i.e., two closely spaced parallel plates) with a liquid droplet bridging the two plates.
A grid of electrodes is embedded in the bottom plate which allows one to (locally) modify the surface
tension by applying voltages to the electrodes. Thus, the droplet can move, split, and merge in a controlled
fashion. Several applications use EWOD as a main driving force: mass spectrometry [44, 25], ‘lab-on-a-chip’
[33, 18, 20, 32], particle separation/concentration control [10, 41], auto-focus cell phone lenses [5], and colored
oil pixels for laptops and video-speed smart paper [19, 30, 31].

The two-dimensional mathematical model we consider is similar to the Hele-Shaw flow model with a
modification of the boundary condition to account for the electrical surface tension effect. Unlike the work
in [42, 43, 40], we do not consider contact line frictional effects. In our model, we use an explicit front-tracking
technique to capture interface motion. This is achieved by building the time-discrete update equation for
the interface’s position into the weak formulation as a linear constraint, which induces curvature to act
as a Lagrange multiplier. To the best of our knowledge, this is novel in the context of moving interface
problems. Many computational models exist for simulating the full electrowetting problem: [3, 24, 21, 7].
In particular, [21] assumes quasi-static behavior of the droplet. A diffuse interface model is presented in
[22] that simulates droplet motion in a scaled up version of the EWOD device. A Volume of Fluid (VoF)
technique is used in [3, 24] to track droplet motion, but this method does not give precise information about
the liquid-gas interface shape. A phase-field model (coupled to the Navier-Stokes fluid equations) has been
proposed in [14, 1, 16] which includes a new formulation of the problem and a detailed analysis of existence
of solutions for the continuous time-dependant problem. Recently in [28], another diffuse interface model
(also coupled to Navier-Stokes) is described that can include a wide range of custom contact line pinning
models. In addition, existence of time-dependent solutions and a well-posed numerical scheme that is built
on a projection scheme for the Navier-Stokes equations are presented.

An outline of the paper is as follows. In the next section, we describe the governing equations for the
EWOD model. In Section 3, we discuss the procedure for time discretization. A variational formulation
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and well-posedness of the discrete time problem is given in Section 4 followed by a variational formulation
and well-posedness of a fully discrete approximation scheme in Section 5. Section 6 contains error estimates.
A discussion of the solution of the discrete equations is given in Section 7 followed by some numerical
computations demonstrating the performance of the method in Section 8.

2. The EWOD model

Given an electrowetting forcing term E = E(x), we seek to determine the velocity field u and pressure
field p satisfying

α∂tu+ βu+∇p = 0, in Ω(t),(2.1)

divu = 0, in Ω(t),(2.2)

p = κ+ E, on Γ(t) = ∂Ω(t),(2.3)

where κ is the curvature of Γ(t), the droplet boundary representing the liquid-gas interface, and the non-
dimensional constants α and β depend on fluid parameters and device geometry.

To complete the model, we need to describe how the boundary Γ(t) changes with time. We have the
following equation of motion for the time-varying liquid gas interface Γ(t).

(2.4) X(·, t) = Γ(t),
dX(s, t)

dt
= [u(X(s, t), t) · n(X(s, t), t)]n(X(s, t), t),

where X(·, t) : I → Γ(t) ⊂ R
2 is a parametrization of Γ(t), s is the parametrization variable, I the

parametrization interval, n the outer unit normal vector of Ω, and t the unit tangent vector along Γ.
Finally, we recall an equation relating X(·, t) to the vector curvature κn of Γ(t):

−∆Γ X = κn,

where ∆Γ is the Laplace-Beltrami operator. Note: ∆Γ ≡ ∂2s , where ∂s is the derivative with respect to
arc-length, when Γ is a one-dimensional curve.

3. Time Discretization

We partition the time axis into time intervals ∆ti and let Ωi and Γi be approximations to the domain
Ω(ti) and boundary interface Γ(ti) at time ti. We further denote by Xi(·) a parametrization of Γi.

3.1. Discrete Time Model. We obtain ui+1, an approximation to u(ti+1), and p
i+1, an approximation to

p(ti+1), by solving the following time-discrete version of equations (2.1)–(2.3).

(3.1) α
ui+1 − ui

∆ti+1
+ βui+1 +∇pi+1 = 0, in Ωi, divui+1 = 0, in Ωi, pi+1 = κi+1 + Ei, on Γi.

Note that the updated velocity ui+1 will be defined on the current domain Ωi. Thus, since ui has been
determined on Ωi−1, it must first be extended to Ωi in order to be used in (3.1). This will be discussed
further below. In this equation, κi+1, which represents an approximation to the curvature κ(Γi+1) of Γi+1, is
also an unknown in the problem. Additional equations must be specified to determine it. Another unknown
in our problem is Xi+1(·), a parametrization of the next approximate interface Γi+1 at time ti+1. To develop

equations determining Xi+1(·), we first approximate (2.4) by the difference equation

(3.2) Xi+1(s) = X i(s) + ∆ti+1[u
i+1(X i(s)) · ni(Xi(s))]ni(Xi(s)).

Once Xi+1 is determined, we define the interface at time ti+1 by

(3.3) Γi+1 = {Xi+1(s) : s ∈ I}
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and the domain Ωi+1 at time ti+1 to be the domain enclosed by Γi+1. Writing x = Xi(s) ∈ Γi, we can also
write (3.2) in the form

(3.4) Xi+1 ◦ (X i)−1(x) = Xi ◦ (Xi)−1(x) + ∆ti+1[u
i+1(x) · ni(x)]ni(x).

Note that we can write x as the identity map on Γ, namely idΓ.

3.2. Curvature. To obtain additional equations to determine κi+1, we recall that the vector curvature of
Γi and Γi+1 are defined by

κ(Γi+1)ni+1 = −∆Γi+1(X i+1 ◦ (Xi+1)−1), κ(Γi)ni = −∆Γi(Xi ◦ (Xi)−1).

Using the first of these equations (a fully implicit approach) is problematic, since the domain Ωi+1 is not
known a priori. We follow [2] and use the semi-implicit discretization

κi+1ni = −∆Γi(X i+1 ◦ (Xi)−1),(3.5)

κi+1 = −∆Γi(Xi+1 ◦ (X i)−1) · ni.(3.6)

Because of this approximation, κi+1 will only be an approximation of κ(Γi+1).

3.3. Mapping the Domain. The model (3.1) is posed on a time-dependent domain, so a map is needed
to go from Ωi to Ωi+1. This is partially specified by (3.4) for mapping the boundary Γi to Γi+1. Mapping
the interior of Ωi is done in the following way.

Let Ωi be compactly embedded in a fixed “hold-all” domain ΩH and let Di+1 : ΩH → R
2 be a displacement

function such that

Di+1 = Xi+1 −Xi, on Γi ≡ ∂Ωi,
= 0, on ∂ΩH,

= harmonic extension, in ΩH,

(3.7)

i.e., we take a smooth extension of the boundary data Xi+1 −Xi into the interior of Ωi and the exterior
ΩH \ Ωi. There are many ways to extend a function; a harmonic extension is a convenient choice because

of its smoothness. In the fully discrete scheme, Di+1 will act as a mesh displacement function for updating
the discrete domain (mesh).

The domain Ωi+1 is defined in the following way. Assuming we have solved (3.1) on Ωi, (3.4) on Γi, and
(3.7) on Ωi, we define

Ωi+1 := {x ∈ R
2 : x = xi +Di+1(xi), for some xi ∈ Ωi},

which is equivalent to writing

Ωi+1 := Qi+1(Ωi), Qi+1 := (idΩH
+Di+1).

Qi+1 is a perturbation of the identity and is a continuous bijective map from ΩH to ΩH, provided ‖Di+1‖L∞

is sufficiently small [13, 36, 37, 26]. This is easily satisfied if ∆ti+1 is sufficiently small, because Di+1 =
O(∆ti+1) and the harmonic extension obeys the maximum principle. In particular, if Ωi is simply connected,

then so is Ωi+1 (because Qi+1 is a continuous bijective map).

With the above considerations, we can now describe the mapping of ui+1 from Ωi to Ωi+1 (recall that

ui+1 is computed on Ωi). Let ûi+1 : Ωi+1 → R
2 be defined by

û
i+1(x) := ui+1 ◦ (Qi+1)−1(x), for all x ∈ Ωi+1.

In other words, we treat the time derivative d/dt in (3.1) in a Lagrangian frame [36, 37], which can be
thought of as an Arbitrary-Lagrangian-Eulerian (ALE) method [35]. [35].
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Remarks. One typical aspect of ALE methods is to include an additional convective term in (3.1) to account
for the fact that the domain Ω does not deform based on the velocity u (recall that we use the harmonic
extension in (3.7) to define the new domain). The reason we do not include an ALE correction comes
from a modeling consideration. The model (3.1) is obtained from the full 3-D Navier-Stokes equations via
averaging along the channel height of the device and a suitable non-dimensionalization [42]. When non-
dimensionalizing the equations, one finds that a small parameter α multiplies the material derivative term
of the (averaged) 2-D Navier-Stokes equations (relative to the β parameter). α has the same value regardless
of the presence of an ALE correction term. Hence, we may drop the convective term (and ALE correction)
as part of deriving the model.

This also implies that we should drop the pure time-derivative term ∂tu. However, even though it is
now non-dimensional, ∂tu may have a large magnitude if there is a fast time-scale in the problem, i.e.,
O(∂tu) ≫ 1 if the relevant time-scale is much smaller than the natural time scale given by the length scale
divided by the average droplet velocity scale. This may be caused by high frequency boundary actuation, i.e.,
the boundary function E oscillates rapidly or changes suddenly in time.

4. Variational formulation and well-posedness of the discrete time problem

4.1. Weak Formulation. Let (·, ·)Ω denote the L2 inner product on Ω and 〈·, ·〉Γ the duality pairing between
H−1/2(Γ) and H1/2(Γ) or the L2(Γ) inner product, if both functions belong to L2(Γ). If κi+1 ∈ H1/2(Γi)
were known, a variational formulation of (3.1) is given by:

Find ui+1 ∈ H(div,Ωi), p ∈ L2(Ωi) such that
(

α

∆ti+1
+ β

)
(ui+1,v)Ωi − (pi+1, div v)Ωi + 〈v · ni, κi+1〉Γi

=
α

∆ti+1
(ui,v)Ωi − 〈v · ni, Ei〉Γi , v ∈ H(div,Ωi),

(divui+1, q)Ωi = 0, q ∈ L2(Ωi).

From (3.4), we get for µ ∈ H1/2(Γi),

(4.1)
1

∆ti+1
〈Xi+1 ◦ (X i)−1(x) · ni, µ〉Γi − 〈ui+1(x) · ni(x), µ〉Γi =

1

∆ti+1
〈Xi ◦ (X i)−1(x) · ni, µ〉Γi .

Using the semi-implicit discretization (3.5) for κi+1ni, and integrating by parts, we get

〈∇Γi [Xi+1 ◦ (Xi)−1)],∇ΓiY 〉Γi − 〈κi+1ni,Y 〉Γi = 0, Y ∈H1(Γi).

Remarks. The following sections analyze the semi-discrete and fully discrete EWOD problems during a
single time step of the overall time-dependent method. Therefore, to simplify notation, we will drop the
time-index “i” notation and treat Ω and Γ as given domains.

Moreover, κi+1 plays the role of a Lagrange multiplier on Γ to enforce the constraint in (4.1). It is not
the true curvature, though one would hope that it is a useful approximation of the curvature. So we will
replace κi+1 by λ to emphasize this fact.

In addition, note that Xi+1 ◦ (Xi)−1 is a solution variable of the weak formulation. A separate step
(definition) must be made in the time-dependent method that says Xi+1 parameterizes the boundary of the

domain at the next time-step (see additional remarks below). Thus, we will replace Xi+1 ◦ (Xi)−1 by W

in the weak formulation below to emphasize this fact. Furthermore, Xi ◦ (Xi)−1 is nothing more than the
identity map on Γ: idΓ.
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Setting ∆ti+1 ≡ ∆t, and making the following substitutions

ui+1 ≡ u, ui ≡ U , pi+1 ≡ p, in Ω, κi+1 ≡ λ, Xi+1 ◦ (Xi)−1 ≡W , on Γ,

we then have the following new variational (weak) formulation:

Find u ∈ H(div,Ω), p ∈ L2(Ω), λ ∈ H1/2(Γ), W ∈H1(Γ), such that
( α

∆t
+ β

)
(u,v)Ω − (p, div v)Ω + 〈v · n, λ〉Γ =

α

∆t
(U ,v)Ω − 〈v · n, E〉Γ, v ∈ H(div,Ω),(4.2)

(divu, q)Ω = 0, q ∈ L2(Ω).(4.3)

1

∆t
〈W · n, µ〉Γ − 〈u · n, µ〉Γ =

1

∆t
〈idΓ ·n, µ〉Γ, µ ∈ H1/2(Γ),(4.4)

1

∆t
〈∇ΓW ,∇ΓY 〉Γ −

1

∆t
〈λ,n · Y 〉Γ = 0, Y ∈H1(Γ).(4.5)

Remarks. In this context, the time-dependent (discrete in time) formulation is as follows.

(1) Given Ωi and Γi, we solve equations (4.2)-(4.5) on Ωi and Γi and obtain the function W : Γi → R
2.

(2) Set Xi+1 := W .

(3) Define Γi+1 by (3.3) using Xi+1.
(4) Define Ωi+1 as the interior of Γi+1.
(5) Go back to step 1 and repeat.

This generates a sequence of domains that approximates the time-dependent flow described in Section 3.

4.2. Abstract Formulation. Defining

Σ = H(div,Ω)×H1(Γ), Θ = L2(Ω)×H1/2(Γ),

a(u,W ;v,Y ) =
( α

∆t
+ β

)
(u,v)Ω +

1

∆t
〈∇ΓW ,∇ΓY 〉Γ,

b1(p, λ;v) = −(p, div v)Ω + 〈v · n, λ〉Γ, b2(λ;Y ) = − 1

∆t
〈λ,n · Y 〉Γ,

b(p, λ;v,Y ) = b1(p, λ;v) + b2(λ;Y ),

and

F (v,Y ) =
α

∆t
(U ,v)Ω − 〈v · n, E〉Γ, G(q, µ) = − 1

∆t
〈idΓ ·n, µ〉Γ,

the variational formulation of equations (4.2)-(4.5) has the following saddle-point structure.

Find (u,W ) ∈ Σ and (p, λ) ∈ Θ, such that

a(u,W ;v,Y ) + b(p, λ;v,Y ) = F (v,Y ), (v,Y ) ∈ Σ,(4.6)

b(q, µ;u,W ) = G(q, µ), (q, µ) ∈ Θ.(4.7)

4.3. Norms. To show well-posedness of the semi-discrete problem (4.6)–(4.7), we check the standard condi-
tions for saddle-point problems of this form (c.f. [8]). To do so, we first define the following norm on H1(Γ).
We set

|W |H1
∗
(Γ) =

(
|∇ΓW |2L2(Γ) + |〈W · n, x〉Γ|2 + |〈W · n, y〉Γ|2

)1/2

.

The following proposition shows that this is indeed equivalent to the standard norm on H1(Γ).

Proposition 4.1. There exists a constant ζ > 0 such that

(4.8)
1

ζ
|W |H1(Γ) ≤ |W |H1

∗
(Γ) ≤ ζ|W |H1(Γ),

where |W |2H1(Γ) = |∇ΓW |2L2(Γ) + |W |2L2(Γ).
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Proof. It is straightforward to show by Cauchy-Schwarz that

|〈W · n, x〉Γ|2 + |〈W · n, y〉Γ|2 ≤
(∫

Γ

(x2 + y2)

)
|W |2L2(Γ),

so we obtain the right inequality of (4.8).

Next, let WA = 1
|Γ|

∫
Γ W . Using the arithmetic-geometric mean inequality, we have for µ = x and µ = y,

and any 0 ≤ δ < 1,

2|〈[W −WA] · n, µ〉||〈WA · n, µ〉| ≤ 1

1− δ |〈[W −WA] · n, µ〉|2 + (1 − δ)|〈WA · n, µ〉|2.

Then,

|W |2H1
∗
(Γ) = |∇ΓW |2L2(Γ) + |〈[W −WA] · n, x〉|2 + |〈[W −WA] · n, y〉|2 + |〈WA · n, x〉|2 + |〈WA · n, y〉|2

+ 2|〈[W −WA] · n, x〉||〈W A · n, x〉|+ 2|〈[W −WA] · n, y〉||〈WA · n, y〉|

≥ |∇ΓW |2L2(Γ) −
δ

1− δ
[
|〈[W −WA] · n, x〉|2 + [|〈[W −WA] · n, y〉|

]2

+ δ[|〈WA · n, x〉|2 + |〈WA · n, y〉|2]

≥
[
1− C δ

1− δ

]
|∇ΓW |2L2(Γ) + δ|WA|2|Ω|2.

where we used Cauchy-Schwarz and a standard Poincaré inequality [15]. Choosing δ sufficiently small and
applying Poincaré’s inequality again leads to

|W |2H1
∗
(Γ) ≥ C̃

(
|W −WA|2L2(Γ) + |WA|2L2(Γ)

)
= C̃|W |2L2(Γ).

The left inequality of (4.8) then follows by

|W |2H1(Γ) = |∇ΓW |2L2(Γ) + |W |2L2(Γ) ≤ |∇ΓW |2L2(Γ) +
1

C̃
|W |2H1

∗
(Γ) ≤

(
1 +

1

C̃

)
|W |2H1

∗
(Γ).

�

We then define

‖(u,W )‖2Σ =
( α

∆t
+ β

)
‖u‖2H(div,Ω) +

1

∆t
|W |2H1

∗
(Γ).

Next, we define the norm

(4.9) |λ|∗,Γ = sup
Z∈H1(Γ)

〈λn,Z〉Γ
|Z|H1

∗
(Γ)

.

Note that |λ|∗,Γ = |Y 0|H1
∗
(Γ), where Y 0 ∈ H1(Γ) is the solution of

(4.10) 〈∇ΓY 0,∇ΓZ〉Γ + 〈Y 0 · n, x〉Γ〈Z · n, x〉Γ + 〈Y 0 · n, y〉Γ〈Z · n, y〉Γ = 〈λn,Z〉Γ, Z ∈ H1(Γ).

Finally, we define

‖(p, λ)‖2Θ = ‖p− p̂‖2L2(Ω) + |λ− λ̂|2H1/2(Γ) + |p̂− λ̂|2 + (1/∆t)|λ|2∗,Γ,

where p̂ = (1/|Ω|)
∫
Ω
p dx and λ̂ = (1/|Γ|)

∫
Γ
λdΓ. It is easy to check that ‖(p, λ)‖Θ is in fact a norm on Θ.
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4.4. Continuity. We next establish the boundedness of the bilinear forms a and b and the linear functionals
F and G.

Lemma 4.2.

|a(u,W ;v,Y )| ≤ ‖(u,W )‖Σ‖(v,Y )‖Σ, ∀ (u,W ), (v,Y ) ∈ Σ,

|b(p, λ;v,Y )| ≤ C‖(p, λ)‖Θ‖(v,Y )‖Σ, ∀ (p, λ) ∈ Θ, (v,Y ) ∈ Σ,

|F (v,Y )| ≤ C
(√

α

∆t
‖U‖L2(Ω) + |E|H1/2(Γ)

)
‖(v,Y )‖Σ, ∀ (v,Y ) ∈ Σ,

|G(q, µ)| ≤ 1

∆t
| idΓ |H1

∗
(Γ)|µ|∗,Γ, ∀ (q, µ) ∈ Θ.

Proof. The first result follows immediately from the Schwarz inequality. To obtain the second estimate, we
write

b1(p, λ;v) = −(p, div v)Ω + 〈v · n, λ〉Γ = −(p− p̂, div v)Ω + 〈v · n, λ− λ̂〉Γ + 〈v · n, λ̂− p̂〉Γ
≤ ‖p− p̂‖L2(Ω)‖v‖H(div,Ω) + C[|λ− λ̂|H1/2(Γ) + |λ̂− p̂|]|v · n|H−1/2(Γ)

≤ C[‖p− p̂‖L2(Ω) + |λ− λ̂|H1/2(Γ) + |λ̂− p̂|]‖v‖H(div,Ω).

We also have

b2(λ;Y ) ≤ 1

∆t
|λ|∗,Γ|Y |H1

∗
(Γ).

The bound on b follows easily from these inequalities. Next, we have

|F (v,Y )| ≤ α

∆t
|(U ,v)Ω|+ |〈v · n, E〉Γ| ≤

α

∆t
‖U‖L2(Ω)‖v‖L2(Ω) + |E|H1/2(Γ)|v · n|H−1/2(Γ)

≤
√

α

∆t
‖U‖L2(Ω)

√
α

∆t
‖v‖L2(Ω) + |E|H1/2(Γ)‖v‖H(div,Ω) ≤ C

(√
α

∆t
‖U‖L2(Ω) + |E|H1/2(Γ)

)
‖(v,Y )‖Σ.

Finally, note that (4.9) implies 〈µn,Z〉Γ ≤ |µ|∗,Γ|Z|H1
∗
(Γ) which yields

|G(q, µ)| = 1

∆t
|〈idΓ ·n, µ〉Γ| ≤

1

∆t
|µ|∗,Γ| idΓ |H1

∗
(Γ).

�

4.5. Existence and Uniqueness. To establish well-posedness of the semi-discrete problem (4.6)-(4.7), it
is then enough by the theory presented in [8] to prove the following result.

Theorem 4.3. (i) Let (u,W ) ∈ Σ with b(q, µ;u,W ) = 0 for all (q, µ) ∈ Θ. Then

a(u,W ;u,W ) ≥ c‖(u,W )‖2
Σ
,

(ii) For all (p, λ) ∈ Θ,

sup
(v,Y )∈Σ

b(p, λ;v,Y )

‖(v,Y )‖Σ
≥ C‖(p, λ)‖Θ.

Proof. First note that

a(u,W ;u,W ) =
( α

∆t
+ β

)
‖u‖2L2(Ω) +

1

∆t
|∇ΓW |2L2(Γ).

Let φµ satisfy

∆φµ = 0, in Ω, φµ = µ, on Γ.

Since b(q, µ,u,W ) = 0 for all (q, µ) ∈ Θ, divu = 0 in Ω, and for all µ ∈ H1/2(Γ),

(1/∆t)〈W · n, µ〉Γ = 〈u · n, µ〉Γ = (u,∇φµ)Ω ≤ ‖u‖L2(Ω)‖∇φµ‖L2(Ω).
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Choosing µ = x and then µ = y, and observing that φx = x and φy = y, we get

1

∆t
[|〈W · n, x〉Γ|2 + |〈W · n, y〉Γ|2]1/2 ≤ ‖u‖L2(Ω)[‖∇φx‖2L2(Ω) + ‖∇φy‖2L2(Ω)]

1/2 =
√
2|Ω|1/2‖u‖L2(Ω).

Combining these results, we get (assuming ∆t ≤ 1)

a(u,W ;u,W ) ≥ C
[( α

∆t
+ β

)
‖u‖2H(div,Ω) +

1

∆t
|∇ΓW |2L2(Γ) +

1

(∆t)2
(
|〈W · n, x〉Γ|2 + |〈W · n, y〉Γ|2

)]

≥ c‖(u,W )‖2
Σ
.

To show that condition (ii) is satisfied, set v = ∇φ1 + ∇φ2 + ∇φ3, where φ1, φ2, and φ3 satisfy the
boundary value problems

−∆φ1 = p− p̂ in Ω,
∂φ1
∂n

= 0 on Γ,

∫

Ω

φ1 dx = 0, −∆φ2 = 0 in Ω, φ2 = λ− λ̂ on Γ,

∆φ3 =
λ̂− p̂
|Ω| in Ω,

∂φ3
∂n

=
λ̂− p̂
|Γ| on Γ,

∫

Ω

φ3 dx = 0.

Then

− div v = p− p̂− λ̂− p̂
|Ω| , v · n =

λ̂− p̂
|Γ| + ∂φ2/∂n.

Hence, we have

−(p, div v)Ω + 〈v · n, λ〉Γ = (p, p− p̂)Ω −
1

|Ω| (p, λ̂− p̂)Ω +
1

|Γ| 〈λ, λ̂− p̂〉Γ + 〈∂φ2/∂n, λ〉Γ

= ‖p− p̂‖2L2(Ω) −
1

|Ω| (p̂, λ̂− p̂)Ω +
1

|Γ| 〈λ̂, λ̂− p̂〉Γ + 〈∂φ2/∂n, λ〉Γ

= ‖p− p̂‖2L2(Ω) + |λ̂− p̂|2 + 〈∂φ2/∂n, λ− λ̂〉Γ
= ‖p− p̂‖2L2(Ω) + |λ̂− p̂|2 + 〈∂φ2/∂n, φ2〉Γ
= ‖p− p̂‖2L2(Ω) + |λ̂− p̂|2 + ‖∇φ2‖2L2(Ω).

Since

|µ|H1/2(Γ) = inf
ψ∈H1(Ω)
ψ=µ on Γ

‖ψ‖H1(Ω),

∫

Γ

(λ− λ̂) dΓ = 0,

we have
|λ− λ̂|H1/2(Γ) ≤ ‖φ2‖H1(Ω).

By Green’s formula, we have for all w ∈ H(div,Ω) that

(∇φ2,w)Ω + (φ2, divw)Ω = 〈w · n, λ− λ̂〉Γ.
Choosing w = ∇W , where W satisfies

∆W = φ2 in Ω, ∂W/∂n = |Γ|−1

∫

Ω

φ2 on Γ,

∫

Ω

W = 0,

we have ‖w‖H(div,Ω) ≤ γ‖φ2‖L2(Ω), for some positive constant γ, and

‖φ2‖2L2(Ω) ≤ ‖∇φ2‖L2(Ω)‖w‖L2(Ω) ≤ γ‖∇φ2‖L2(Ω)‖φ2‖L2(Ω).

Hence ‖φ2‖H1(Ω) ≤ γ‖∇φ2‖L2(Ω), and so

−(p, div v)Ω + 〈v · n, λ〉Γ ≥ ‖p− p̂‖2L2(Ω) + |λ̂− p̂|2 + γ−2|λ− λ̂|2H1/2(Γ)

and

‖v‖H(div,Ω) ≤ ‖∇φ1‖L2(Ω) + ‖∆φ1‖L2(Ω) + ‖∇φ2‖L2(Ω) + ‖∇φ3‖L2(Ω) + ‖∆φ3‖L2(Ω)

≤ C(‖p− p̂‖L2(Ω) + |λ̂− p̂|+ |λ− λ̂|H1/2(Γ)).
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Next, set Y = −Y 0, where Y 0 is defined by (4.10). Then

− 1

∆t
〈λn,Y 〉Γ =

1

∆t
|Y 0|2H1

∗
,Γ =

1

∆t
|λ|2∗,Γ.

Combining these results (recall the definition of b), we have

b(p, λ;v,Y )

‖(v,Y )‖Σ
≥ C

‖p− p̂‖2L2(Ω) + γ−2|λ− λ̂|2
H1/2(Γ)

+ |λ̂− p̂|2 + (1/∆t)|λ|2∗,Γ
[(‖p− p̂‖2L2(Ω) + |λ− λ̂|2H1/2(Γ)

+ |λ̂− p̂|2) + (1/∆t)|λ|2∗,Γ]1/2
≥ C‖(p, λ)‖Θ.

The assertion follows by taking the supremum. �

5. Description and well-posedness of a fully discrete approximation scheme

We begin by approximating the domain Ω by a polygonal domain Ωh with boundary Γh. A standard
Galerkin approximation of equations (4.2)-(4.5) takes the form: Find uh ∈ V h ⊂ H(div,Ωh), ph ∈ Qh ⊂
L2(Ωh), λh ∈ Λh ⊂ H1/2(Γh), W h ∈ Υh ⊂H1(Γh) such that

( α

∆t
+ β

)
(uh,v)Ωh

− (ph, div v)Ωh
+ 〈v · n, λh〉Γh

=
α

∆t
(Uh,v)Ωh

− 〈v · n, E〉Γh
, v ∈ V h,(5.1)

(divuh, q)Ωh
= 0, q ∈ Qh.(5.2)

1

∆t
〈W h · n, µ〉Γh

− 〈uh · n, µ〉Γh
=

1

∆t
〈idΓh

·n, µ〉Γh
, µ ∈ Λh,(5.3)

1

∆t
〈∇Γh

W h,∇Γh
Y 〉Γh

− 1

∆t
〈λh,n · Y 〉Γh

= 0, Y ∈ Υh.(5.4)

Setting Σh = V h ×Υh and Θh = Qh × Λh, and defining

ah(u,W ;v,Y ) =
( α

∆t
+ β

)
(u,v)Ωh

+
1

∆t
〈∇Γh

W ,∇Γh
Y 〉Γh

,

b1h(p, λ;v) = −(p, div v)Ωh
+ 〈v · n, λ〉Γh

, b2h(λ;Y ) = − 1

∆t
〈λ,n · Y 〉Γh

,

bh(p, λ;v,Y ) = b1h(p, λ;v) + b2h(λ;Y ),

Fh(v,Y ) =
α

∆t
(Uh,v)Ωh

− 〈v · n, E〉Γh
, Gh(q, µ) = −

1

∆t
〈idΓh

·n, µ〉Γh
,

we can rewrite the above in the form

Find (uh,W h) ∈ Σh and (ph, λh) ∈ Θh, such that

ah(uh,W h;v,Y ) + bh(ph, λh;v,Y ) = Fh(v,Y ), (v,Y ) ∈ Σh,(5.5)

bh(q, µ;uh,W h) = Gh(q, µ), (q, µ) ∈ Θh.(5.6)

To establish well-posedness, we show that the discrete version of the conditions of Theorem 4.3 are satisfied.
At this time, we make the following abstract assumptions about the choice of subspaces. Later in the paper,
we consider specific choices of spaces that satisfy these assumptions. Let V̊ h = {v ∈ V h : v · n = 0 on Γh}
and Q̂h = {q ∈ Qh :

∫
Ωh
q dx = 0}. We assume that divV h = Qh, div V̊ h = Q̂h, V h contains continuous

linear functions, and that (V h, Qh) satisfy the discrete inf-sup condition

(5.7) sup
v∈V h

(div v, p)Ωh

‖v‖H(div,Ωh)
≥ c‖p‖L2(Ωh),

with c independent of h and that an analogous condition is satisfied for the pair (V̊ h, Q̂h). As for Λh, we
assume it contains globally linear functions.
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We also require the following technical assumption, which is easily verified for standard choices of the
spaces V h and Qh. For any φh ∈ Qh, there exists wh ∈ V h satisfying

(5.8) divwh = φh in Ωh, wh · n = |Γh|−1

∫

Ωh

φh on Γh, ‖wh‖H(div,Ωh) ≤ C‖φh‖L2(Ωh).

We will use a discrete analogue of |µ|H1/2(Γh) defined for µ ∈ Λh by

(5.9) |µ|
H

1/2
h (Γh)

= inf
(w,ψ)∈Zh(µ)

(‖w‖2L2(Ωh)
+ ‖ψ‖2L2(Ωh)

)1/2,

where Zh(µ) = {(w, ψ) ∈ V h ×Qh} satisfies
(5.10) (w,v)Ωh

+ (ψ, div v)Ωh
= 〈v · n, µ〉Γh

, v ∈ V h.

Note that if the infimum is achieved for (w, ψ) = (w0, ψ0) ∈ Zh(µ), then for all µ ∈ Λh and v ∈ V h,

〈v · n, µ〉Γh
= (w0,v)Ωh

+ (ψ0, div v)Ωh
≤ (‖w0‖2L2(Ωh)

+ ‖ψ0‖2L2(Ωh)
)1/2(‖v‖2L2(Ωh)

+ ‖ div v‖2L2(Ωh)
)1/2

≤ |µ|
H

1/2
h (Γh)

‖v‖H(div,Ωh).

We also define a discrete analogue of |λ|∗,Γ defined by

|λ|∗,h,Γh
= sup

Z∈Υh

〈λn,Z〉Γh

|Z|H1
∗
(Γh)

.

Note, that |λ|∗,h,Γ = |Y 0,h|H1
∗
(Γh), where Y 0,h ∈ Υh is the solution of

(5.11) 〈∇Γh
Y 0,h,∇Γh

Z〉Γh
+〈Y 0,h ·n, x〉Γh

〈Z ·n, x〉Γh
+〈Y 0,h ·n, y〉Γh

〈Z ·n, y〉Γh
= 〈λn,Z〉Γh

, Z ∈ Υh.

Finally, we define

‖(u,W )‖2Σh
=

( α

∆t
+ β

)
‖u‖2H(div,Ωh)

+
1

∆t
|W |2H1

∗
(Γh)

,

‖(p, λ)‖2Θh
= ‖p− p̂‖2L2(Ωh)

+ |λ− λ̂|2
H

1/2
h (Γh)

+ |p̂− λ̂|2 + (1/∆t)|λ|2∗,h,Γh
.

The following result, whose proof is analogous to the proof of Lemma 4.2, gives additional bounds for the
bilinear form bh and the linear functionals Fh and Gh.

Lemma 5.1.

|ah(u,W ;v,Y )| ≤ ‖(u,W )‖Σh
‖(v,Y )‖Σh

, ∀ (u,W ), (v,Y ) ∈ Σh,

|bh(p, λ;v,Y )| ≤ C‖(p, λ)‖Θh
‖(v,Y )‖Σh

, ∀ (p, λ) ∈ Θh, (v,Y ) ∈ Σh,

|Fh(v,Y )| ≤ C
(√

α

∆t
‖Uh‖L2(Ω) + |E|H1/2(Γh)

)
‖(v,Y )‖Σh

, ∀ (v,Y ) ∈ Σh,

|Gh(q, µ)| ≤
1

∆t
| idΓh

|H1
∗
(Γh)|µ|∗,h,Γh

, ∀ (q, µ) ∈ Θh.

Theorem 5.2. (i) Let (uh,W h) ∈ Σh with bh(q, µ;uh,W h) = 0 for all (q, µ) ∈ Θh. Then there exists a
constant c independent of h, such that

ah(uh,W h;uh,W h) ≥ c‖(uh,W h)‖2Σh
.

(ii) There exists a constant C independent of h such that

sup
(v,Y )∈Σh

bh(p, λ;v,Y )

‖(v,Y )‖Σh

≥ C‖(p, λ)‖Θh
,

for all (p, λ) ∈ Θh.
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Proof. Let (uh,W h) ∈ Σh with b(q, µ,uh,W h) = 0 for all (q, µ) ∈ Θh. Now

a(uh,W h;uh,W h) =
( α

∆t
+ β

)
‖uh‖2L2(Ωh)

+
1

∆t
|∇Γh

W h|2L2(Γh)
.

Since bh(q, µ,uh,W h) = 0 for all (q, µ) ∈ Θh, and divV h = Qh, we have divuh = 0 in Ωh and for all
µ ∈ Λh,

(1/∆t)〈W h · n, µ〉Γh
= 〈uh · n, µ〉Γh

.

However, since x and y ∈ Λh, we may proceed exactly as in the continuous case to show that

(1/∆t)[|〈W h · n, x〉Γh
|2 + |〈W h · n, y〉Γh

|2]1/2 ≤
√
2|Ωh|1/2‖uh‖L2(Ωh).

Combining these results, we get (assuming ∆t ≤ 1)

a(uh,W h;uh,W h) ≥ C
(( α

∆t
+ β

)
‖uh‖2H(div,Ωh)

+
1

∆t
|∇Γh

W h|2L2(Γh)

+
1

∆t2
(
|〈W h · n, x〉Γh

|2 + |〈W h · n, y〉Γh
|2
))
≥ c‖(uh,W h)‖2Σh

.

To show that condition (ii) is satisfied, set vh = v1,h+ v2,h + v3,h, where (v1,h, φ1,h) ∈ V̊ h × Q̂h satisfies

(v1,h,w)Ωh
+ (φ1,h, divw)Ωh

= 0, w ∈ V h,

(div v1,h, qh)Ωh
= −(p− p̂, qh)Ωh

qh ∈ Qh.
(v2,h, φ2,h) ∈ V h ×Qh satisfies

(v2,h,w)Ωh
+ (φ2,h, divw)Ωh

− 〈w · n, λ− λ̂〉Γh
= 0, w ∈ V h,(5.12)

(div v2,h, q)Ωh
= 0, q ∈ Qh,

and (v3,h, φ3,h) ∈ V h × Q̂h satisfies

(v3,h,w)Ωh
+ (φ3,h, divw)Ωh

= 0, w ∈ V̊ h,

(div v3,h, qh)Ωh
=

1

|Ωh|
(λ̂− p̂, qh)Ωh

qh ∈ Qh,

v3,h · n =
λ̂− p̂
|Γh|

on Γh.

Hypotheses (5.7) and (5.8) ensure the existence and uniqueness of v1,h and v3,h, respectively, and also the
a priori estimates

‖v1,h‖H(div,Ωh) ≤ C‖p− p̂‖L2(Ωh), ‖v3,h‖H(div,Ωh) ≤ C|λ̂ − p̂|.
Then,

− (p, div vh)Ωh
+ 〈vh · n, λ〉Γh

= (p, p− p̂)Ωh
− 1

|Ωh|
(p, λ̂− p̂)Ωh

+
1

|Γh|
〈λ, λ̂− p̂〉Γh

+ 〈v2,h · n, λ〉Γh
= ‖p− p̂‖2L2(Ωh)

+ |λ̂− p̂|2 + 〈v2,h · n, λ〉Γh

= ‖p− p̂‖2L2(Ωh)
+ |λ̂− p̂|2 + 〈v2,h · n, λ− λ̂〉Γh

.

= ‖p− p̂‖2L2(Ωh)
+ |λ̂− p̂|2 + ‖v2,h‖2L2(Ωh)

.

Hypothesis (5.8) implies we can find w ∈ V h such that

divw = φ2,h in Ωh, w · n =
1

|Γh|

∫

Ωh

φ2,h dx on Γh, ‖w‖H(div,Ω) ≤ γ‖φ2,h‖L2(Ωh).
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Using (5.12), and applying simple estimates, we get

‖φ2,h‖L2(Ωh) ≤ γ‖v2,h‖L2(Ωh),

and so, by (5.9), (5.10), we get

|λ− λ̂|
H

1/2
h

(Γh)
≤ (‖v2,h‖2L2(Ωh)

+ ‖φ2,h‖2L2(Ωh)
)1/2 ≤ (1 + γ2)1/2‖v2,h‖L2(Ωh).

Combining these results, we have

− (p, div vh)Ωh
+ 〈vh · n, λ〉Γh

= ‖p− p̂‖2L2(Ωh)
+ |λ̂− p̂|2 + ‖v2,h‖2L2(Ωh)

≥ ‖p− p̂‖2L2(Ωh)
+ |λ̂− p̂|2 + (1 + γ2)−1|λ− λ̂|2

H
1/2
h

(Γh)
.

Finally, we need an upper bound:

‖vh‖H(div,Ωh) ≤ ‖v1,h‖H(div,Ωh) + ‖v2,h‖L2(Ωh) + ‖v3,h‖H(div,Ωh).

Since div v2,h = 0, to obtain a bound on ‖v2,h‖H(div,Ωh) = ‖v2,h‖L2(Ωh), we choose w = v2,h in (5.12) to get

‖v2,h‖2L2(Ωh)
= 〈v2,h · n, λ− λ̂〉Γh

≤ |λ− λ̂|
H

1/2
h (Γh)

‖v2,h‖L2(Ωh).

Hence,

‖v2,h‖L2(Ωh) ≤ |λ− λ̂|H1/2
h (Γh)

.

Inserting the bounds on ‖v1,h‖H(div,Ωh) and ‖v3,h‖H(div,Ωh) given above, we have

‖vh‖H(div,Ωh) ≤ C(‖p− p̂‖L2(Ωh) + |λ̂− p̂|+ |λ− λ̂|H1/2
h (Γh)

).

Next, set Y = −Y 0,h, where Y 0,h is defined by (5.11). Then

− 1

∆t
〈λn,Y 〉Γh

=
1

∆t
|Y 0,h|2H1

∗
(Γh)

=
1

∆t
|λ|2∗,h,Γh

.

Combining these results, we have

bh(p, λ;v,Y )

‖(v,Y )‖Σh

≥ C
‖p− p̂‖2L2(Ωh)

+ |λ− λ̂|2
H

1/2
h (Γh)

+ |λ̂− p̂|2 + (1/∆t)|λ|2∗,h,Γh

[(‖p− p̂‖2L2(Ωh)
+ |λ− λ̂|2

H
1/2
h (Γh)

+ |λ̂− p̂|2) + (1/∆t)|λ|2∗,h,Γh
]1/2
≥ C‖(p, λ)‖Θh

.

The assertion follows by taking the supremum. �

6. Error Estimates

In this section, we derive error estimates in a much simplified situation. More specifically, we obtain an
upper bound on the error over one time step, assuming that Ω = Ωh is a polygonal domain and that Uh = U .
Thus, we ignore the approximation of the domain and also the error accumulated over previous time steps
due to time discretization and space discretization of the domain. Clearly, the result desired is a full error
analysis over all time steps. The fact that the domain is changing makes this a challenging problem, which
we hope to address in future work.

Let Th denote a quasi-uniform triangulation of Ω consisting of triangles of maximum size h. The error
estimates derived in this section will be for a special choice of finite dimensional spaces. Let V h = BDM1 ⊂
H(div,Ω), the lowest order Brezzi-Douglas-Marini space of piecewise linear vector functions, and Qh be the
set of piecewise constants. It is well-known that these spaces satisfy hypothesis (5.7). Hypothesis (5.8) is
easily satisfied by first finding w ∈ [H1(Ω)]2 satisfying the equations of (5.8) and then choosing wh to be
the canonical interpolant of w in BDM1, i.e., on each edge e of the triangulation, wh has zero and first
order moments agreeing with those of w. Finally, choose Λh and each of the two components of the space
Υh to be the space of continuous piecewise linear functions defined with respect to the mesh obtained by
the restriction of Th to Γ.



A MIXED FINITE ELEMENT METHOD FOR EWOD 13

Remarks. The method developed by [40] required the use of an H1 conforming velocity space (i.e., continuous
piecewise quadratic for velocity). This requires more degrees-of-freedom to represent the vector velocity field
than the BDM1 space used here. Also, it is not the “natural” finite element space to use, since the velocity
is only in H(div,Ω). Note: the simulation results for the two methods look qualitatively very similar.

To obtain error estimates, we will make use of results on a continuous approximation of the discontinuous
normal vector to a polygonal domain. These are presented below.

6.1. Continuous Normal Vector on Discrete Domains. Let Γh be a polygonal (oriented) curve with an
ordered set of vertices {xi}Ni=1 that interpolates a C2 curve Γ (i.e., the true boundary). Denote by E+

i ⊂ Γh
the edge segment with (ordered) end points (xi,xi+1); similarly, E−

i ⊂ Γh corresponds to the edge segment
(xi−1,xi). The obvious considerations are made at the end points of an open polygonal curve; likewise for
a closed curve.

For a polygonal domain, the unit normal vector is discontinuous (piecewise constant). However, we have
the following result [38].

Lemma 6.1. Let Γ̂ be a C2 regular closed curve with approximating polygon Γh, where h denotes the
maximum length of all edges of the polygon. Suppose that Γh approximates Γ̂ such that Γ̂ can be represented
as the graph of a function f near the edge E+

k ⊂ Γh. Hence, the derivative is bounded by a constant (i.e.,
|f ′| ≤ Cf ). Then, the following estimates are true:

|n+
k − n̂k+1| ≤ C0hk|f ′′|∞,E+

k
≤ C1hkκk, |n+

k − n̂k| ≤ C0hk|f ′′|∞,E+

k
≤ C1hkκk,

where n̂k and n̂k+1 are the unit normals of Γ̂ at the points xk and xk+1, respectively, n
+
k is the unit normal

vector of E+
k , hk is the length of E+

k , κk is the maximum curvature of the portion of Γ̂ between xk and xk+1,
and C0 and C1 are constants independent of hk.

Using Lemma 6.1, we can establish the following results.

Lemma 6.2. Let Γh ⊂ R
2 be a polygonal curve (open or closed) and let n be the piecewise constant normal

vector of Γh. Assume that Γh interpolates a smooth C2 curve Γ. Then there exists a vector field ns that
satisfies the following properties:

(1) ns is continuous and piecewise linear on Γh.
(2) ns · n = 1 everywhere on Γh.
(3) ‖ns‖H1(Γh) ≤ K, where K > 0 is independent of h, depending only on the curvature of Γ.

Remarks. The assumption that there exists a smooth curve Γ that Γh interpolates is easily satisfied by
taking a cubic spline interpolant (a C2 curve) whose “knots” coincide with the vertices of the polygon Γh.

Proof. Let {φi}Ni=1 be the set of continuous piecewise linear ‘hat’ functions defined on Γh, i.e.,

φi(xj) =

{
1, i = j,
0, i 6= j.

The continuous vector field ns is given by an explicit construction:

ns :=

N∑

i=1

n+
i + n−

i

1 + n+
i · n−

i

φi.

Note ns is bounded in L∞(Γh) as long as the angles of the polygon at the vertices are strictly bounded away
from 0◦ and 360◦.
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Property (1) is satisfied because the set {φi}Ni=1 is a continuous basis. To prove property (2), we compute
ns · n on the “left” and “right” edges of each vertex:

ns(x
−
k ) · n(x−

k ) = n(x−
k ) ·

N∑

i=1

n+
i + n−

i

1 + n+
i · n−

i

φi(x
−
k ) =

n−
k · (n+

k + n−
k )

1 + n+
k · n−

k

= 1.

ns(x
+
k ) · n(x+

k ) = n(x+
k ) ·

N∑

i=1

n+
i + n−

i

1 + n+
i · n−

i

φi(x
+
k ) =

n+
k · (n+

k + n−
k )

1 + n+
k · n−

k

= 1.

Ergo, (ns · n)(xk) = 1, for 1 ≤ k ≤ N . Since ns · n is linear on each edge segment of Γh, then ns · n = 1
everywhere on Γh, which proves property (2).

Property (3) can be easily verified using Lemma 6.1. �

6.2. Error estimates over a single time step. To derive an error estimate, we first define some standard
projection operators for the spaces V h and Qh and discuss their approximation properties. We let uI be
the canonical projection of u into BDM1, pI the L2 projection of p into Qh, λI the L2 projection of λ into
Λh, and WI the continuous, piecewise, linear interpolant of W in Υh. Note that uI and pI satisfy

∫

e

[u− uI ] · n r ds = 0, r ∈ span(1, s),

∫

T

[p− pI ] dx = 0,

for each edge e and triangle T of Th. For u in [H1(Ω)]2, we have the standard estimate

(6.1) ‖u− uI‖L2(Ω) ≤ Ch‖u‖H1(Ω).

To obtain error estimates with minimal regularity assumptions, we need a non-standard estimate for the
error ‖u− uI‖L2(Ω), which we now derive.

Lemma 6.3. Suppose for some p > 2 and 0 < s ≤ 1, u ∈ [Lp(Ω) ∩W s
q (Ω)]

2, where q = 2p/(2 + s(p − 2)).
If divu = 0, then

‖u− uI‖L2(Ω) ≤ Chs‖u‖W s
q (Ω).

Proof. Since divu = 0 and u ∈ Lp(Ω), we have u = curl z for some z in W 1,p(Ω). Let zI be an interpolant
of z in the space of continuous piecewise quadratics defined by zI − z = 0 at the vertices of the triangulation
and the average value of zI − z = 0 on each edge of the triangulation. It is then easy to check that uI , the
BDM1 interpolant of u defined above, satisfies uI = curlzI . Hence, using standard estimates (c.f. [12], p.
124), for p > 2,

(6.2) ‖u− uI‖L2(Ω) ≤ ‖u− uI‖Lp(Ω) = ‖ curl(z − zI)‖Lp(Ω) ≤ C‖ curl z‖Lp(Ω) = C‖u‖Lp(Ω).

We can now interpolate between the spaces Lp and H1 to get an error estimate with less regularity. From
Theorem 6.4.5 of [6], we have

[W s0
p0 ,W

s1
p1 ][θ] =W s

q , s0 6= s1, 1 < p0, p1 <∞,
where

s = (1 − θ)s0 + θs1,
1

q
=

1− θ
p0

+
θ

p1
.

In our case, s0 = 0, s1 = 1, p0 = p, and p1 = 2. So s = θ, and q = 2p/[2+ s(p− 2)]. Finally, we can combine
(6.1) and (6.2) (c.f. [9], p. 115) to get

(6.3) ‖u− uI‖L2(Ω) ≤ Chs‖u‖W s
q (Ω), 0 < s ≤ 1,

where we note that for s = 1, q = 2. �

We now turn to the statement and proof of our basic error estimate.
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Theorem 6.4. Let (u,W ) ∈ Σ and (p, λ) ∈ Θ be the solution of (4.6)-(4.7) and (uh,W h) ∈ Σh and
(ph, λh) ∈ Θh be the solution of (5.5)-(5.6). Then

‖uh − uI‖2L2(Ω) + |∇Γ[W h −W I ]|2L2(Γ) ≤ C
(
‖u− uI‖2L2(Ω) + |∇Γ[W −W I ]|2L2(Γ)

+h−2|W −W I |2L2(Γ) + (∆t)2|λ− λI |2H1/2(Γ) + h2|λ− λI |2L2(Γ)

)
.

Proof. Combining the continuous and discrete equations, we get the error equations

a(uh − uI ,W h −W I ;v,Y )+b(ph − pI , λh − λI ;v,Y )

= a(u− uI ,W −W I ;v,Y ) + b(p− pI , λ− λI ;v,Y ),

b(q, µ;uh − uI ,W h −W I) = b(q, µ;u− uI ,W −W I),

(6.4)

for all (v,Y ) ∈ V h ×Υh and all (q, µ) ∈ Qh × Λh. Choosing ṽ = uh − uI , Ỹ = W h −W I , q̃ = ph − pI ,
and µ̃ = λh − λI , with uI , pI , W I and λI defined above, and taking the difference of the error equations,
we have

a(uh − uI ,W h −W I ; ṽ, Ỹ ) = a(u − uI ,W −W I ; ṽ, Ỹ )

+ b(p− pI , λ− λI ; ṽ, Ỹ ) − b(q̃, µ̃;u− uI ,W −W I).

Hence,
( α

∆t
+ β

)
‖uh − uI‖2L2(Ω) +

1

∆t
|∇Γ[W h −W I ]|2L2(Γ)

=
( α

∆t
+ β

)
(u − uI ,uh − uI)Ω +

1

∆t
〈∇Γ[W −W I ], |∇Γ[W h −W I ]〉Γ

− (p− pI , div[uh − uI ])Ω + 〈[uh − uI ] · n, λ− λI〉Γ −
1

∆t
〈λ− λI ,n · [W h −W I ]〉Γ

−
[
−(ph − pI , div[u− uI ])Ω + 〈[u− uI ] · n, λh − λI〉Γ −

1

∆t
〈λh − λI ,n · [W −W I ]〉Γ

]
.

From the definitions of uI and pI , we have

(qh, div[u− uI ])Ω = 0, qh ∈ Qh, (p− pI , div vh)Ω = 0, vh ∈ V h, 〈[u− uI ] · n, µh〉Γ = 0, µh ∈ Λh.

Using this result, we can simplify the previous identity and obtain

(6.5)
( α

∆t
+ β

)
‖uh − uI‖2L2(Ω) +

1

∆t
|∇Γ[W h −W I ]|2L2(Γ)

=
( α

∆t
+ β

)
(u − uI ,uh − uI)Ω +

1

∆t
〈∇Γ[W −W I ], |∇Γ[W h −W I ]〉Γ

+ 〈λ− λI , [uh − uI ] · n〉Γ −
1

∆t
〈λ − λI ,n · [W h −W I ]〉Γ +

1

∆t
〈λh − λI ,n · [W −W I ]〉Γ.

Using the Schwarz inequality, we can bound the first two terms.

(u− uI ,uh − uI)Ω ≤ ‖u− uI‖L2(Ω)‖uh − uI‖L2(Ω),(6.6)

〈∇Γ[W −W I ], |∇Γ[W h −W I ]〉Γ ≤ |∇Γ[W −W I ]|L2(Γ)|∇Γ[W h −W I ]|L2(Γ).(6.7)

Since div[uh − uI ] = 0, we have

(6.8) 〈λ− λI , [uh − uI ] · n〉Γ ≤ |λ− λI |H1/2(Γ)|[uh − uI ] · n|H−1/2(Γ)

≤ C|λ − λI |H1/2(Γ)‖uh − uI‖H(div,Ω) ≤ C|λ− λI |H1/2(Γ)‖uh − uI‖L2(Ω).

It thus remains to bound the terms 〈λ − λI ,n · [W h −W I ]〉Γ and 〈λh − λI ,n · [W −W I ]〉Γ. Since
the derivation is somewhat lengthy, we state the results here and prove them in two lemmas following the
theorem. We will show that
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(6.9) 〈λ− λI ,n · [W h −W I ]〉Γ
≤ Ch|λ − λI |L2(Γ)

(
|∇Γ[W h −W I ]|L2(Γ) + |W −W I |L2(Γ) +∆t‖uh − uI‖L2(Ω) +∆t‖uI − u‖L2(Ω)

)

and

(6.10) 〈λh − λI ,n · [W −W I ]〉Γ
≤ C|W −W I |L2(Γ)(|λ − λI |L2(Γ) + h−1|∇Γ[W h −W I ]|L2(Γ) + h−1|∇Γ[W I −W ]|L2(Γ)).

Inserting (6.6), (6.7), (6.8), (6.9), and (6.10) in (6.5) gives

( α

∆t
+ β

)
‖uh − uI‖2L2(Ω) +

1

∆t
|∇Γ[W h −W I ]|2L2(Γ)

≤
( α

∆t
+ β

)
‖u− uI‖L2(Ω)‖uh − uI‖L2(Ω) +

1

∆t
|∇Γ[W −W I ]|L2(Γ)|∇Γ[W h −W I ]|L2(Γ)

+
Ch

∆t
|λ− λI |L2(Γ)

{
|∇Γ[W h −W I ]|L2(Γ) + |W −W I |L2(Γ) +∆t‖uh − uI‖L2(Ω) +∆t‖uI − u‖L2(Ω)

}

+ C|λ− λI |H1/2(Γ)‖uh − uI‖L2(Ω)

+
C

∆t
|W −W I |L2(Γ)

{
|λ− λI |L2(Γ) + h−1|∇Γ[W h −W I ]|L2(Γ) + h−1|∇Γ[W I −W ]|L2(Γ)

}
.

Applying the arithmetic-geometric mean inequality and moving terms to the left-hand-side, we obtain

( α

∆t
+ β

)
‖uh − uI‖2L2(Ω) +

1

∆t
|∇Γ[W h −W I ]|2L2(Γ)

≤ C
(( α

∆t
+ β

)
‖u− uI‖2L2(Ω) +

1

∆t
|∇Γ[W −W I ]|2L2(Γ)

+∆t|λ− λI |2H1/2(Γ) +
1

∆t
h−2|W −W I |2L2(Γ) +

1

∆t
h2|λ− λI |2L2(Γ)

)
.

The proof is completed by multiplying the inequality by ∆t. �

Applying (6.3) and standard approximation theory estimates for our choice of finite dimensional spaces,
we get the following order of convergence estimates.

Corollary 6.5. Let (u,W ) ∈ Σ and (p, λ) ∈ Θ be the solution of (4.6)-(4.7) and (uh,W h) ∈ Σh and
(ph, λh) ∈ Θh be the solution of (5.5)-(5.6). If for some 0 < s ≤ 1, and q ≥ 2, u ∈ W s

q (Ω), W ∈ H1+s(Γ),

λ ∈ H1/2+s(Γ), then

‖u− uh‖L2(Ω) + |∇Γ[W −W h]|L2(Γ) ≤ Chs
[
‖u‖W s

q (Ω) + |W |1+s,Γ + (∆t+ h3/2)|λ|1/2+s,Γ
]
.

Proof. The result follows by applying Theorem 6.4 and the triangle inequality. �

Lemma 6.6.

〈λ− λI ,n · [W h −W I ]〉Γ
≤ Ch|λ− λI |L2(Γ)

(
|∇Γ[W h −W I ]|L2(Γ) + |W −W I |L2(Γ) +∆t‖uh − uI‖L2(Ω) +∆t‖uI − u‖L2(Ω)

)
.

Proof. Since λI is the L2 projection of λ into Λh, we get for all µ ∈ Λh,

〈λ− λI ,n · [W h −W I ]〉Γ = 〈λ− λI ,n · [W h −W I ]− µ〉Γ ≤ |λ− λI |L2(Γ)|n · [W h −W I ]− µ|L2(Γ).

We now choose µ =
∑NS

i=1[W h −W I ](xi) · n̂i φi, where n̂i is defined in Lemma 6.1. Then on the edge E+
k ,

we have

n · [W h −W I ]− µ = [n+
k − n̂k] · [W h −W I ](xk)φk + [n+

k − n̂k+1] · [W h −W I ](xk+1)φk+1.
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By Lemma 6.1, we then obtain

|n· [W h−W I ]−µ|L2(Γ) ≤ max
k

max(|n+
k −n̂k|, |n+

k −n̂k+1|)|W h−W I |L2(Γ) ≤ Ch(max
k

κk)|W h−W I |L2(Γ).

By the proof of Proposition 4.1, we have |W |L2(Γ) ≤ C|W |H1
∗
(Γ). Hence, in order to complete our error

estimates, we need to bound |〈[W h −W I ] · n, µ〉Γ| for µ = x and µ = y. Now

1

∆t
〈[W h −W I ] · n, µ〉Γ =

1

∆t
〈[W h −W ] · n, µ〉Γ +

1

∆t
〈[W −W I ] · n, µ〉Γ

= 〈[uh − u] · n, µ〉Γ +
1

∆t
〈[W −W I ] · n, µ〉Γ = (uh − u,∇µ)Γ +

1

∆t
〈[W −W I ] · n, µ〉Γ.

Then for µ = x or µ = y, we get

|〈[W h −W I ] · n, µ〉Γ| ≤ C
(
|W −W I |L2(Γ) +∆t‖uh − uI‖L2(Ω) +∆t‖uI − u‖L2(Ω)

)
.

Hence,

|W h −W I |L2(Γ) ≤ C
(
|∇Γ[W h −W I ]|L2(Γ) + |W −W I |L2(Γ) +∆t‖uh − uI‖L2(Ω) +∆t‖uI − u‖L2(Ω)

)
.

Combining these results, we get

〈λ− λI ,n · [W h −W I ]〉Γ
≤ Ch|λ− λI |L2(Γ)

(
|∇Γ[W h −W I ]|L2(Γ) + |W −W I |L2(Γ) +∆t‖uh − uI‖L2(Ω) +∆t‖uI − u‖L2(Ω)

)
.

�

Lemma 6.7.

〈λh−λI ,n·[W−W I ]〉Γ ≤ C|W−W I |L2(Γ)(|λ−λI |L2(Γ)+h
−1|∇Γ[W h−W I ]|L2(Γ)+h

−1|∇Γ[W I−W ]|L2(Γ)).

Proof. To bound the term 〈λh − λI ,n · [W −W I ]〉Γ, we first apply the Schwarz inequality to get

〈λh − λI ,n · [W −W I ]〉Γ ≤ |λh − λI |L2(Γ)|W −W I |L2(Γ),

and then proceed as follows to bound the term |λh − λI |L2(Γ). Since

〈λh,n · Y 〉Γ = 〈∇ΓW h,∇ΓY 〉Γ, Y ∈ Υh, 〈λ,n · Y 〉Γ = 〈∇ΓW ,∇ΓY 〉Γ, Y ∈H1(Γ).

we can subtract the second equation from the first to obtain the error equation:

〈λh − λI ,n · Y 〉Γ = 〈λ− λI ,n · Y 〉Γ + 〈∇Γ[W h −W I ],∇ΓY 〉Γ + 〈∇Γ[W I −W ],∇ΓY 〉Γ, Y ∈ Υh.

Choose

Y =

NS∑

i=1

n+
i + n−

i

1 + n+
i · n−

i

[λh − λI ](xi)φi.

Note that Y · n will be a piecewise linear function. In fact, Y · n is also continuous, as we show below.

Y (x−
k ) · n(x−

k ) = Y (x−
k ) · n−

k =

NS∑

i=1

n−
k · [n+

i + n−
i ]

1 + n+
i · n−

i

[λh − λI ](xi)φi(x−
k )

=
n−
k · [n+

k + n−
k ]

1 + n+
k · n−

k

[λh − λI ](xk) = [λh − λI ](xk),

Y (x+
k ) · n(x+

k ) = Y (x+
k ) · n+

k =

NS∑

i=1

n+
k · [n+

i + n−
i ]

1 + n+
i · n−

i

[λh − λI ](xi)φi(x+
k )

=
n+
k · [n+

k + n−
k ]

1 + n+
k · n−

k

[λh − λI ](xk) = [λh − λI ](xk).
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Hence, we see that Y · n is a continuous, piecewise, linear function satisfying (Y · n)(xk) = (λh − λI)(xk),
and so Y · n = λh − λI . Now for µ ∈ Λh,

C1|µ|L2(Γ) ≤ [h

NS∑

i=1

µ2(xi)]
1/2 ≤ C2|µ|L2(Γ).

It easily follows from this fact and standard inverse estimates that

|Y |L2(Γ) ≤ C|λh − λI |L2(Γ), |∇ΓY |L2(Γ) ≤ Ch−1|λh − λI |L2(Γ).

Using these results and applying the Schwarz inequality, we get

|λh − λI |2L2(Γ) = 〈λh − λI ,n · Y 〉Γ = 〈λ− λI , λh − λI〉Γ
+ 〈∇Γ[W h −W I ],∇ΓY 〉Γ + 〈∇Γ[W I −W ],∇ΓY 〉Γ,

≤ C(|λ − λI |L2(Γ) + h−1|∇Γ[W h −W I ]|L2(Γ) + h−1|∇Γ[W I −W ]|L2(Γ))|λh − λI |L2(Γ),

and so

|λh − λI |L2(Γ) ≤ C(|λ − λI |L2(Γ) + h−1|∇Γ[W h −W I ]|L2(Γ) + h−1|∇Γ[W I −W ]|L2(Γ)).

Hence,

〈λh − λI ,n · [W −W I ]〉Γ ≤ |λh − λI |L2(Γ)|W −W I |L2(Γ)

≤ C|W −W I |L2(Γ)(|λ − λI |L2(Γ) + h−1|∇Γ[W h −W I ]|L2(Γ) + h−1|∇Γ[W I −W ]|L2(Γ)).

�

Remarks. The constants that appear in the error estimates depend (in general) on the curvature of Γ (the
true boundary). Therefore, an a priori estimate on the curvature of the time-dependent domain boundary is
necessary to proceed to a full time-dependent analysis.

7. Solving the Mixed System

We describe here a simple iterative (Uzawa) method for computing λ with a predetermined step size ρ.
More sophisticated methods (e.g., conjugate gradient Uzawa with exact line searches) follow similar lines
(see [17]). All the remaining variables are then easily computed as functions of λ.

7.1. Uzawa Method. We define a stopping tolerance: ǫ > 0, step size ρ > 0 sufficiently small, and proceed
as follows.

(1) Let λ0 ∈ Λh (initial guess).
(2) FOR k = 0, 1, 2, ...
(3) Solve: find uk ∈ V h, p

k ∈ Qh such that
( α

∆t
+ β

)
(uk,v)Ω − (pk, div v)Ω =

α

∆t
(U ,v)Ω − 〈E,v · n〉Γ − 〈λk,v · n〉Γ, ∀v ∈ V h,

(q, divuk)Ω = 0, ∀q ∈ Qh,
(7.1)

and find W k ∈ Υh such that

〈∇ΓW
k,∇ΓY 〉Γ = 〈λk,n · Y 〉Γ, ∀Y ∈ Υh,

1

∆t
〈W k · n, φ〉Γ − 〈uk · n, φ〉Γ =

1

∆t
〈idΓ ·n, φ〉Γ, φ = x, y. ← (set constant part.)

(7.2)

(4) Update λk+1 ∈ Λh by

λk+1 = λk − ρΠ
(

1

∆t
W k · n− uk · n− 1

∆t
idΓ ·n

)
,(7.3)

where Π denotes the L2(Γ) projection into Λh.
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(5) If ‖λk+1‖L2(Γ)/‖λ0‖L2(Γ) ≤ ǫ, then set λ = λk+1 and EXIT LOOP.
(6) END FOR.

8. Numerical Computations

In this final section, we show two simulations of the EWOD model using the algorithm proposed in this
paper. Figure 1 shows a simulation of the EWOD model in which the electrowetting force term is defined

via an auxiliary function Ê that is time-independent and defined over [0, 1]× [0, 1] (unit square). Then E is

defined (i.e., the term appearing in the pressure boundary condition) as the restriction of Ê to Γ. We chose

Ê in order to drive the five droplets toward each other. Once the droplets are sufficiently close, we stop the
simulation and use a hybrid level set/mesh generation method to enable the topological change [29, 39]; this

happens during one time-step and creates a new domain Ω̃. We then restart the simulation using Ω̃ as the
initial domain with initial velocity obtained by interpolating from the previous domain. After the droplets
merge, the force E is set to zero. Thus, the remainder of the evolution is only governed by surface tension,
which causes the large (merged) droplet to settle into a circular shape.

Figure 2 shows a simulation of droplet splitting by EWOD. The auxiliary function Ê is chosen to be
negative on the left and right regions of the unit square, zero in the middle, and continuous everywhere.
This mimics the actuation used in some EWOD devices; see [43] for an example. Thus, just as before, E is

obtained by restricting Ê to Γ. The droplet splits into two large pieces and one small satellite droplet. After
the split, we set E to zero which causes the droplets to relax to a circular shape. We use the same hybrid
level set/mesh generation method to enable the droplet to split.
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4. B. Berge, Électrocapillarité et mouillage de films isolants par l’eau (including an english translation), Comptes Rendus de
l’Académie des Sciences de Paris, Série II 317 (1993), 157–163.

5. B. Berge and J. Peseux, Variable focal lens controlled by an external voltage: An application of electrowetting, European
Physical Journal E 3 (2000), no. 2, 159–163.
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