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Abstract 

Computer-aided optimal experimental designs are an effective quality improvement tool that provides insights of information 

under various quality engineering problems. In the literature, considerable attention has been focused on maximizing the 

determinant of the information matrix in order to generate optimal design points. However, minimizing the average prediction 

based on the I-optimality criterion is more useful than commonly used D-optimality criterion for a number of situations. In this 

paper, special experimental design situations are explored where both qualitative and quantitative input variables are considered 

for an irregular design space with the pre-specified number of design points and the first-order polynomial model. In addition, 

this paper lays out the algorithmic foundations for the proposed D- and I-optimality criteria embedded mixed integer linear 

programming models in order to obtain optimal operating conditions using the first-order response functions. Comparative 

studies are also conducted. The results show that the proposed model for the D-optimality is able to identify approximately 30% 

smaller standard deviation value than the traditional counterpart. The proposed model for the I-optimality also provides a feasible 

solution whereas there is no optimum solution for the traditional counterpart. 
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Nomenclature 

 

( )ˆ , x z   : Response function of the process mean 

( )ˆ , −x z  : The process bias 

n  : A total number of experimental design points 

na  : Additional experimental design points 

nn  : Necessary experimental design points 

LB  : Lower bound 

LSL  : Lower specification limit 

( )2ˆ , x z  : Response function of the process variance 

ˆ ( , ) x z   : Response function of the process standard deviation 

u
s   : The uth run for the process standard deviation where u=1, 2, …, n 

2

u
s   : The uth run for the process variance where u=1, 2, …, n 

   : The desired target value 

UB  : Upper bound 

USL  : Upper specification limit 

( ),x z   : A vector of both real-valued and qualitative input variables 

*

i
x   : The ith real-valued input variable where i=1, 2, …, l 
Y  : Response variable 

u
y   : The uth mean value where u=1, 2, …, n 

*vq

j
z   : The jth indicator variable for the different levels of the vth qualitative input variable where j=1, 2, …, m 

 

1. INTRODUCTION 

 

The design of experiments is an effective continuous quality improvement tool in developing new processes, providing insights of 

the variation of information under various conditions, and enhancing process performance, including the variance reduction. For a 

number of practical situations, optimal design criteria may allow the best experimental design schemes to be generated based on 

the decision maker’s choices while the experimental design region is subject to physical restrictions and constraints using both 

qualitative and quantitative factors in production processes. 

 

Computer-aided optimal experimental designs has been in the quality engineering literature for many years. The first study of the 

field of computer-aided optimal experimental design was conducted for prediction purposes by Smith (1918). Later, Wald (1943) 

introduced the D-optimality criterion. This criterion defines maximizing the determinant of the information matrix. Then, Kiefer 

and Wolfowitz (1959) proposed computational methods in order to find optimal experimental design points. Along the same lines, 

John and Draper (1975) provided brief reviews of the procedures of D-optimal experimental designs. In addition, Cook and 

Nachtsheim (1980) reviewed the algorithms in order to generate D-optimal experimental designs. On the contrary, Box and Draper 

(1959) was offered the I-optimality criterion. This criterion focuses on the integrated variance function over a studied design region. 

Draper (1982), Borkowski (2003) and Allen and Tseng (2011) conducted the further studies in the context of the I-optimality 

criterion. Furthermore, Toro Diaz et al. (2012) and Myers et al. (2016) reviewed the existing studies and provided theoretical 

aspects of computer-aided optimal experimental designs. 

 

For optimization of design variables, Vining and Myers (1990) studied one of the first research attempt using a dual response 

model for quantitative input variables. Further, Del Castillo and Montgomery (1993) improved the dual response model. On the 

other hand, Lin and Tu (1995) proposed a mean-squared error model in order to enhance an optimum solutions of design variables. 

Copeland and Nelson (1996) conducted the further improvement of the MSE model. Furthermore, Steinberg and Bursztyn  (1998), 

Robinson et al. (2004), Park et al. (2006) and Arvidsson and Gremyr (2008) provided comprehensive reviews of optimization 

models of design variables. Recent studies were conducted by Ozdemir and Cho (2016, 2017), Lu et al. (2017) and Chatterjee et 

al. (2018). 

 

This paper was organized as follows. Research motivation and scope are presented in Section 2. The proposed model development 

methodology for the D- and I-optimality criteria is presented in Section 3 with a detailed description of each step. Then, a numerical 

example is performed in Section 4. Finally, concluding remarks and future studies are drawn in Section 5. 

 

2. RESEARCH MOTIVATION AND SCOPE 

 

There are no standard response surface designs, such as the traditional central composite designs and Box-Behnken designs, which 

are not suitable to exactly fit in irregular experimental design spaces. In addition, it is believed that a mixed integer linear 

programming (MILP) model to solve optimal experimental designs embedded robust design problems has not been adequately 

addressed in the literature in finding robust solutions for both qualitative and quantitative input variables. In this paper, a MILP 

model is formulated to solve an optimization problem based on optimal experimental designs, which can efficiently provide optimal 

operating conditions in irregular design spaces. The main purpose of this paper is five-fold. One, the design space may be 
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constrained due to the physical infeasibility, safety concerns based constraints, and resource limitations. Therefore, optimal designs 

are suitable alternatives to conduct experimental designs under constrained design spaces. In addition, the D-optimality criterion 

works well in order to estimate model parameters while maximizing the determinant of the information matrix. On the other hand, 

the I-optimality criterion addresses prediction variance to generate a measure of prediction performance. Two, there are some 

special knowledge for some practical situations, such as the potential application of convex hull about the process being studied 

that may offer a nonstandard model. In these situations, optimal designs are effective to estimate or predict nonstandard model 

parameters with minimum variance and without experimental bias. Three, it may be desired to reduce the number of design points 

due to resource limitations and cost considerations. Therefore, the number of design points can be reduced with the D- and I-

optimality criteria. Fractional factorial designs may be considered in order to reduce the number of observations for quantitative 

input variables; however, they may not be effective for second-order or nonstandard models. Four, traditional experimental designs 

may not be longer effective while considering both quantitative and qualitative input variables, especially more than two coded 

levels of qualitative input variables. Thus, this limitation may be eliminated using optimal experimental designs. Five, this paper 

lays out the theoretical foundation for transmitting the D- and I-optimality criteria into a MILP model in order to obtain optimum 

operating conditions. 

 

3. METHODOLOGY DEVELOPMENT 

 

The proposed methodology development consists of three main phases: (1) Experimental design selection phase, (2) modelling 

phase, and (3) optimization phase. 

 

3.1. Experimental Design Selection Phase 

Traditional response surface designs are not appropriate while dealing with an irregular design region. In this paper, the D- and I-

optimality criteria are the alternatives. The D-optimality criterion is based on the following notion as follows: 

 optimality max  detD − = X X   (1) 

where  X X  is the information matrix. Additionally, the D-optimality criterion is the best alternative to estimate model parameters 

while maximizing the determinant of the information matrix. On the contrary, the I-optimality criterion is based on prediction 

variance to produce a measure of prediction performance through an averaging process over the region of interest R as follows: 

( ) 1( ) ( )

min  [ , ] [ , ] / [ , ]

min  [ , ] [ , ] [ , ] / [ , ]

R R

m m

R R

V d d

n d d
− 

 

 

ζ

ζ

x z x z x z

x z X X x z x z x z
  (2) 

where ( ) 1( ) ( )[ , ] [ , ] [ , ]m m
V n

− =x z x z X X x z . 

 

3.2. Modelling Phase 

In general, a low-order polynomial model is a suitable choice for many cases (Myers et al., 2016). In this paper, a first-order 

polynomial model is used. A general formula of the first-order model is denoted for both qualitative and quantitative input variables 

as follows: 

0

1 1

ˆ v v

l m
q q

i i j j

i j

y x z  
= =

= + +    (3) 

where 0  is the intercept, and i
  and 

j
  represent regression coefficients of quantitative and qualitative input variables, 

respectively. Along the same lines, the fitted mean response function is found by 

( ) ( )
1 1 1

1 1 1

1

11 21 1 11 21 1 11 21 1

12 22 2 12 22 2 12 22 2

ˆ ,

1           ... ...  ... 

1           ... ...  ... 
where  

                                     

v v v

v v v

q q qq q q

i m m

q q qq q q

i i i

x x x z z z z z z

x x x z z z z z z

 − =

=

x z X X X X y

X  

1 1 1

1 2

1 2 1 2 1 2

 and ,  ,  ...,  
         

1            ... ...  ... v v v

n

q q qq q q

l l il m m im m m im

y y y

x x x z z z z z z

 
 
  = 
 
 
 

y
 (4) 

In addition, the fitted standard deviation and variance response functions are 

( ) ( )  1

1 2
ˆ ,  where ,  ,  ...,  

n
s s s −  = =x z X X X X s s   (5) 

( ) ( ) 12 2 2 2 2 2

1 2
ˆ ,  where ,  ,  ...,

n
s s s −    = =  x z X X X X s s   (6) 
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3.3. Optimization Phase 

One of the important goals in quality engineering problems is to minimize the process variance. Therefore, the objective function 

of the proposed MILP model is to minimize the process variance for quality improvement. The proposed model is subject to five 

constraints. The first constraint is related to the process mean requirements in order to provide the customer’s satisfaction for the 

process. The second constraint is non-negative variance to prevent meaningless results. The third constraint is defined an indicator 

variable for levels of qualitative input variables. The design region is irregular; therefore, the fourth constraint is based on the non-

standard design region. The last constraint is related to boundary requirements for both qualitative and quantitative input variables. 

Table 1 shows the proposed MILP model. 

 

Table 1. Proposed MILP model 

Objective ( )2ˆmin  , x z  

Subject to Constraints: 

(1) Process mean requirements:  

( )ˆ ,LSL USL x z  

(2) Non-negative variance:  

( )2ˆ , 0 x z  

    (3) Indicator variable: 

1

1v

m
q

j

j

z
=

  for 1,  2,  ...,  j m=  

(4) Non-standard design region: 

( ),  for 1,  2,  ...,  
u u

h L u k =x z  

(5) Bounds for both real-valued and qualitative input variables: 

 
 for  and 1,  2,  ...,  

0,1  and 1,  2,  ...,  v

i i i i

q

j

LB x UB x R i l

z j m

   =

 =
 

Approach A branch-and-cut solution technique 

Find Optimal robust solution for *

i
x  and 

*vq

j
z  

 

In Table 1, the proposed MILP model can be solved over the polyhedra and an optimal operating condition exists at the extreme 

point of the solution space if the optimization problem is feasible. In the ideal case, each extreme point is an integer point, so an 

integer linear programming model can be solved. Therefore, the geometric aspect of compact sets plays a significant role to obtain 

robust solutions to proposed MILP model. It is then defined as the convex hull of the feasible experimental design space, ( )conv X

, as follows: 

( )  
1 1 1 1 1 1

, ,  1,  0,  0
,

for 1,  2,  ...,   and 1,  2,  ...,  

v

l m l m l m
q

i i j j i j i j

i j i j i j

x z
conv X

i l j m

     
= = = = = =

 
= + + =   =  

 = = 

     x z
x z  (7) 

In addition, two proposed propositions are expressed to the proposed MILP optimization as follows: 

Proposition 1. ( )conv X  is a polyhedron for the proposed MILP optimization model. 

Proof. The fitted response functions of the mean and variance in the proposed MILP optimization are linear due to the first-order 

polynomial model. In addition, the extreme points are at the corner points because all constraints in the optimization model are 

linear. Therefore, the convex hull should be a polyhedron. 

 

Proposition 2. The extreme points of ( )conv X  all lie in a bounded polyhedral set, X . 

Proof. The extreme points are not interior points of any line segment in the extreme points of the convex set. In addition, the 

extreme points of the convex hull are the subset of the feasible experimental design space. Therefore, the extreme points all lie in 

X. 

  

Further, the proposed optimization model is also formulated with the convex hull of the problem in the context of the MILP 

framework as follows: 

( )
( ) ( )

( )

2

2

1

ˆ ˆ, , , 0,

ˆMILP min  ,
1, ,  and ,v

m
q

j u u

j

LSL USL

z h L X

 


=

   
 

=  
   

 


x z x z

x z
x z x z

 (8) 
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where   , , 0,1 , 1,  2,  ...,  ,  1,  2,  ...,  ,  and 1,  2,  ...,  vq

i i i j
X LB x UB z i l j m u k=    = = =x z . The MILP can be then replaced by 

the equivalent LP (linear programming) as follows: 

( ) 2ˆLP min  , , ( )conv X= x z x z   (9) 

Note that the ideal solution of ( )conv X  has the property, which is expressed as ( )X conv X P   for all polyhedral (P) 

formulations. In addition, the ideal solution of ( )conv X  is solved efficiently by using a branch-and-cut (BC) algorithm. 

 

4. NUMERICAL EXAMPLE 

 

Reconsider the experiment, conducted by Myers et al. (2016), in which the amount of extraction is modelled a function of type of 

solvent (with solvent A, B, and C). Temperature ( 1x ) and time ( 2x ) are also continuous-valued quantitative input variables taken 

as -1 to +1 on the coded variable scale. The amount of extraction with higher temperatures may give higher yields due to increased 

solubility. Therefore, it is also desired to obtain higher temperatures for solvent A in this paper. In terms of coded input variables, 

this leads to constraints on the design variables as follows: 

1

1

1

1 1

1

2

1 2

1 if solvent A is the level
where 

0 elsewhere

1 if solvent B is the level
           

0 elsewhere

q

q

q

x z

z

z

 + 


= 



= 


  (10) 

In addition, the desired target value for the amount of extraction is 10 grams, where the allowable lower and upper bounds are 9.5 

and 10.5 grams, respectively. Furthermore, the regression model assumed is first-order in temperature, time and the qualitative 

input variable (solvent) for MILP optimization models. The regression model is also written formally as follows: 

1 1 1 1

0 1 1 2 2 1 1 2 2
ˆ q q q q
y x x z z    = + + + +   (11) 

In this section, the numerical examples are provided using the proposed model development methodology in this paper for the D- 

and I-optimality criteria, respectively. Note that the computer, which has 2.3 GHz Intel Core i5 with 8 GB DDR4 memory, is used 

to run programs with JMP and AMPL software. The desired design point runs are 11 where 5p =  and 6
a

n = . In addition, Table 

2 shows global solutions of design points for the D- and I-optimality criteria. 

 

Table 2. Globally D- and I-optimal designs 

Design Criterion D-optimality  I-optimality 

Input Variables 1x  2x  1q
z   

1x  2x  1q
z  

Design Matrix (DM) 

 0.00 -1.00 A   1.00  1.00 C 

-1.00  1.00 B  -1.00  1.00 B 

-1.00 -1.00 C  -1.00 -1.00 C 

 1.00  1.00 A   0.00 -1.00 A 

 1.00 -1.00 C   0.00  1.00 A 

 1.00  1.00 C   1.00  1.00 B 

 1.00 -1.00 A   1.00 -1.00 B 

 1.00 -1.00 B   0.01  0.00 A 

 1.00  1.00 B  -1.00 -1.00 B 

-1.00  1.00 C  -1.00  1.00 C 

-1.00 -1.00 B   1.00 -1.00 C 

Number of iterations 100000  100000 

D-efficiency 94.164  91.569 

Average variance of prediction 0.370  0.353 

Running time (seconds) 62.22  81.48 

Solution type Global  Global 
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In Table 2, the D-efficiency is 94% for the D-optimality criterion and the D-efficiency of the I-optimality criterion is about 92%. 

Hence, the D-optimality criterion generates a better solution in order to estimate the model coefficients. In addition, the average 

variance of prediction for the I-optimality is 0.353 compared to 0.370 for the D-optimality. This explains confidence intervals for 

prediction is almost 5% longer for the D-optimality. Therefore, the I-optimality criterion is preferable for predicting the response 

in the irregular design space. In addition, the D- and I-optimal experimental designs and the data are shown in Tables 3 and 4, 

respectively. 

 

Table 3. D-Optimal experimental design and data 

Run 
Coded levels  Observed data  

u
y  u

s  2

u
s  

1x  2x  1q
z   

1u
y  2u

y  3u
y  4u

y   

1  0.00 -1.00 A  8.70 11.54 10.07 7.90  9.55 1.600 2.561 

2 -1.00  1.00 B  13.97 14.22 6.41 9.61  11.05 3.750 14.063 

3 -1.00 -1.00 C  10.13 9.24 10.78 13.80  10.99 1.978 3.913 

4  1.00  1.00 A  13.08 8.80 11.38 9.21  10.62 1.996 3.983 

5  1.00 -1.00 C  10.21 8.13 9.25 11.50  9.77 1.432 2.0519 

6  1.00  1.00 C  12.54 9.30 7.79 8.68  9.58 2.072 4.293 

7  1.00 -1.00 A  9.20 8.23 11.09 9.56  9.52 1.188 1.411 

8  1.00 -1.00 B  8.96 7.63 7.36 7.87  7.95 0.701 0.491 

9  1.00  1.00 B  11.53 7.36 5.97 9.86  8.68 2.488 6.193 

10 -1.00  1.00 C  10.22 13.55 11.81 8.97  11.14 1.986 3.944 

11 -1.00 -1.00 B  9.09 11.23 10.59 10.08  10.25 0.902 0.813 

 

Table 4. I-optimal experimental design and data 

Run 
Coded levels  Observed data  

u
y  u

s  2

u
s  

1x  2x  1q
z   

1u
y  2u

y  3u
y  4u

y   

1  1.00  1.00 C  10.68 10.89 11.96 10.92  11.11 0.576 0.332 

2 -1.00  1.00 B  8.91 10.00 11.50 8.66  9.77 1.290 1.663 

3 -1.00 -1.00 C  7.33 10.62 8.65 8.91  8.88 1.350 1.822 

4  0.00 -1.00 A  8.78 10.81 8.18 5.83  8.40 2.051 4.205 

5  0.00  1.00 A  5.55 11.17 12.28 9.38  9.60 2.950 8.701 

6  1.00  1.00 B  6.82 12.19 12.35 13.59  11.24 3.013 9.079 

7  1.00 -1.00 B  7.77 10.11 9.64 15.94  10.87 3.533 12.483 

8  0.01  0.00 A  13.35 7.38 10.31 4.96  9.00 3.635 13.210 

9 -1.00 -1.00 B  9.96 12.07 9.40 8.17  9.90 1.627 2.649 

10 -1.00  1.00 C  8.65 8.90 8.06 10.48  9.02 1.033 1.067 

11  1.00 -1.00 C  11.48 9.81 11.60 8.89  10.45 1.319 1.741 

 

Tables 5 and 6 show Analysis of Variance (ANOVA) for the D- and I-optimal experimental designs. 

 

Table 5. ANOVA for the D-optimal experimental design 

Source  Degrees of Freedom  Sum of Squares  Mean Square  F Ratio 

Model  4  8.542078  2.13552  7.0383 

Error  6  1.820486  0.30341  P-value 

C. Total  10  10.362564    0.0188* 

   **R2=0.824 

 

Table 6. ANOVA for the I-optimal experimental design 

Source  Degrees of Freedom  Sum of Squares  Mean Square  F Ratio 

Model  4  8.7372425  2.18431  18.5122 

Error  6  0.7079575  0.11799  P-value 

C. Total  10  9.4452000    0.0016* 

     **R2=0.925 
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The values of the determination coefficient, R2, are 0.824 and 0.925, respectively. Therefore, the models may predict 82.40% and 

92.50% of the variability for the D- and I-optimal responses, respectively. The analysis of variance (ANOVA) is shown in Table 

5, and the value of an F-test is 7.0383 where the p-value is 0.0188. In addition, the value of an F-test is found 18.5122 for the I-

optimal experimental design where the p-value is obtained 0.0016. Therefore, it is concluded that the regression models are highly 

significant. 

 

No VIF is larger than 10, so there is no severe multicollinearity for the D-optimal design in Table 3. The fitted response functions 

for the mean, standard deviation, and variance are also obtained using JMP software as follows: 
1 1

1 2 1 2
ˆ( , ) 10.14 0.84 0.33 0.43 0.66

q q
x x z z = − + + −x z   (12) 

1 1

1 2 1 2
ˆ( , ) 1.93 0.27 0.59 0.04 0.03

q q
x x z z = − + + +x z   (13) 

( ) 1 12

1 2 1 2
ˆ , 4.41 1.29 2.32 0.12 0.98

q q
x x z z = − + − +x z   (14) 

In addition, no VIF is larger than 10, so there is no severe multicollinearity for the I-optimal design in Table 4. The fitted response 

functions for the mean, standard deviation, and variance are also obtained using JMP software as follows:  

1 1

1 2 1 2
ˆ( , ) 9.76 0.76 0.22 0.77 0.68

q q
x x z z = + + − +x z   (15) 

1 1

1 2 1 2
ˆ( , ) 2.10 0.39 0.10 0.77 0.26

q q
x x z z = + − + +x z   (16) 

( ) 1 12

1 2 1 2
ˆ , 5.46 2.06 0.21 3.22 1.00

q q
x x z z = + − + +x z   (17) 

The proposed optimization models are also formulated with the convex hull of the D- and I-optimal design problems as follows: 

1 1

1 1

1 1

1 1 1

1 2

1 2

1 2

1 2 1 2

1 2

1 1 1 2

9.50 10.14 0.84 0.33

0.43 0.66 10.50,

4.41 1.29 2.32
MILP = min 4.41 1.29 2.32 0.12 0.98

0.12 0.98 0,

 1 2,  1

 and 

q q

q q

D q q

q q q

x x

z z

x x
x x z z

z z

x z z z

X

  − + 
 

+ −  
 − + − + − + 

− +  
  +  +  
  x,z

 (18) 

1 1

1 1

1 1

1 1 1

1 2

1 2

1 2

1 2 1 2

1 2

1 1 1 2

9.50 9.76 0.76 0.22

0.77 0.68 10.50,

5.46 2.06 0.21
MILP = min 5.46 2.06 0.21 3.22 1.00

3.22 1.00 0,

 1 2,  1

 and 

q q

q q

I q q

q q q

x x

z z

x x
x x z z

z z

x z z z

X

  + + 
 

− +  
 + − + − + + 

+ +  
  +  +  
  x,z

 (19) 

where MILP
D  and MILP

I  represent D- and I-optimal designs embedded proposed MILP models, respectively and 

  1, 1 1, 0,1 ,  1,  2,  and 1,  2
q

i j
X x z i j= −    = =x z . In addition, the results of the proposed model and traditional counterpart 

are summarized in Table 7. 

 

Table 7. The results of the proposed model and traditional counterpart for MILP models 

Model Design 
Optimal solution 

Bias* *ˆ ( , ) x z  Solvent *

1x  
*

2x  1*

1

q
z  1*

2

q
z  

VM 

VM 

D-optimality 0.286 -1.000 1.000 0.000 0.000 1.303 A 

I-optimality - - - - - - - 

Proposed 

Proposed 

D-optimality 0.881 -1.000 1.000 0.000 0.500 0.913 A 

I-optimality 1.000 -0.091 0.000 0.000 0.500 2.746 C 

 

In Table 7, the proposed models are superior to traditional counterparts when attaining slight bias. For example, the proposed 

model for the D-optimality achieve approximately 30% more variability reduction than the VM (Vining and Myers, 1990) model.  

In addition, the VM model does not give an optimal operating condition for the I-optimality due to the strict equality constraint. 
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Furthermore, some traditional models in the literature may not be appropriate for MILP models. For example, Lin and Tu (1995) 

model is not appropriate due to ( )( )2ˆ ,  −x z , so this model is not used for the comparison studies in this section. 

 

5. CONCLUSIONS 

 

In this paper, a MILP model is proposed using computer-aided optimal experimental designs in order to obtain an optimum 

operating condition of both quantitative and qualitative input variables for quality improvement. For the design selection phase, 

the D- and I-optimality criteria are preferred over the traditional response designs while considering a non-standard design region. 

For the estimation purpose, the D-optimality criterion is selected. On the other hand, the I-optimality criterion is preferred over the 

D-optimality criterion while the prediction performance is priority. For the modeling phase, the first-order polynomial model is 

used. The mean, the standard deviation and the variance response functions are also calculated for the optimization phase. An 

application of the convex hull is illustrated in the optimization phase. For the solution procedure, the branch-and-cut method is 

applied in order to find an optimum operating condition of both qualitative and quantitative input variables. The proposed 

optimization model achieves more variance reduction than the traditional counterparts. Finally, the proposed methodology is an 

effective technique to improve the production processes for quality improvement. 

 

For future research studies, multiple quality characteristics could be implement the proposed methodology for multiple response 

optimization problems. Another research study could be to consider a second-order polynomial model for quadratic effects of 

quantitative input variables. Then, a general polynomial approximation model could be defined while considering quantitative 

input variables of a second-order model and qualitative input variables.  For the optimization phase, a mixed integer nonlinear 

programming model could be proposed due to quadratic effects of quantitative input variables. 
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