Catanzaro et al. Algorithms for Molecular Biology 2013, 8:3

http://www.almob.org/content/8/1/3 AMB ALGORITHMS FOR
MOLECULAR BIOLOGY

A mixed integer linear programming

model to reconstruct phylogenies from
single nucleotide polymorphism haplotypes
under the maximum parsimony criterion

Daniele Catanzaro'", Ramamoorthi Ravi® and Russell Schwartz>

Abstract

Background: Phylogeny estimation from aligned haplotype sequences has attracted more and more attention in
the recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from
medical research, to drug discovery, to epidemiology, to population dynamics. The literature on molecular
phylogenetics proposes a number of criteria for selecting a phylogeny from among plausible alternatives. Usually,
such criteria can be expressed by means of objective functions, and the phylogenies that optimize them are referred
to as optimal. One of the most important estimation criteria is the parsimony which states that the optimal phylogeny
T* for a set H of n haplotype sequences over a common set of variable loci is the one that satisfies the following
requirements: (i) it has the shortest length and (ii) it is such that, for each pair of distinct haplotypes h;, h; € H, the sum
of the edge weights belonging to the path from h; to h; in T* is not smaller than the observed number of changes
between h; and h;. Finding the most parsimonious phylogeny for H involves solving an optimization problem, called
the Most Parsimonious Phylogeny Estimation Problem (MPPEP), which is A"P-hard in many of its versions.

Results: In this article we investigate a recent version of the MPPEP that arises when input data consist of single
nucleotide polymorphism haplotypes extracted from a population of individuals on a common genomic region.
Specifically, we explore the prospects for improving on the implicit enumeration strategy of implicit enumeration
strategy used in previous work using a novel problem formulation and a series of strengthening valid inequalities and
preliminary symmetry breaking constraints to more precisely bound the solution space and accelerate implicit
enumeration of possible optimal phylogenies. We present the basic formulation and then introduce a series of
provable valid constraints to reduce the solution space. We then prove that these constraints can often lead to
significant reductions in the gap between the optimal solution and its non-integral linear programming bound
relative to the prior art as well as often substantially faster processing of moderately hard problem instances.

Conclusion: We provide an indication of the conditions under which such an optimal enumeration approach is likely
to be feasible, suggesting that these strategies are usable for relatively large numbers of taxa, although with stricter
limits on numbers of variable sites. The work thus provides methodology suitable for provably optimal solution of
some harder instances that resist all prior approaches.
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Background

Molecular phylogenetics studies the hierarchical evolu-
tionary relationships among species, or taxa, by means of
molecular data such as DNA, RNA, amino acid or codon
sequences. These relationships are usually described
through a weighted tree, called a phylogeny, whose leaves
represent the observed taxa, internal vertices represent
the intermediate ancestors, edges represent the estimated
evolutionary relationships, and edge weights represent
measures of the similarity between pairs of taxa.

Accurately characterizing evolutionary relationships
between organisms and their genomes is the basis of com-
parative genomic methods for interpreting meaning in
sequence data, and for this reason the use of molecular
phylogenetics has become widely used (and sometimes
indispensable) in a multitude of research fields such as
systematics, medical research, drug discovery, epidemi-
ology, and population dynamics [3]. For example, the
use of molecular phylogenetics was of considerable assis-
tance in predicting the evolution of human influenza A
[4], understanding the relationships between the viru-
lence and the genetic evolution of HIV [5,6], identifying
emerging viruses as SARS [7], recreating and investigating
ancestral proteins [8], designing neuropeptides causing
smooth muscle contraction [9], and relating geographic
patterns to macroevolutionary processes [10].

The literature on molecular phylogenetics proposes a
number of criteria for selecting the phylogeny of a set H
of haplotypes extracted from # taxa from among plau-
sible alternatives. The criteria can usually be quantified
and expressed in terms of objective functions, giving
rise to families of optimization problems whose general
paradigm can be stated as follows [11]:

Problem 1. — The Phylogeny Estimation Problem (PEP)

optimize  f(T)
st. gH,T)=1
TeT,

where T a phylogeny of H, T the set of all possible phylo-
genies of H, f : T — R a function modeling the selected
criterion of phylogeny estimation, and g : H x T — R
is a characteristic function equal to one if a phylogeny
T is compatible (according to the selected criterion) for
the set . A specific optimization problem is completely
characterized by defining the functions f and g, and the
phylogeny T™* that optimizes f and satisfies g is referred to
as optimal.

One of the classic criteria for phylogeny estimation is
the parsimony criterion, which assumes that one taxon
evolves from another by means of small changes and
that the most plausible phylogeny will be that requiring
the smallest number of changes. That evolution proceeds
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by small rather than smallest changes is due to the fact
that the neighborhood of possible alleles that are selected
at each instant of the life of a taxon is finite and, per-
haps more important, that the selective forces acting on
the taxon may not be constant throughout its evolution
[12,13]. Over the long term (periods of environmen-
tal change, including the intracellular environment), the
accumulation of small changes will not generally corre-
spond to the smallest possible set of changes consistent
with the observed final sequences. Nevertheless, it is
plausible to believe, at least for well-conserved molec-
ular regions where mutations are reasonably rare and
unlikely to have occurred repeatedly at any given variant
locus, that the process of approximating small changes
with smallest changes could provide a good approxima-
tion to the true evolutionary process of the observed set
of taxa [14]. Such an assumption is likely to be reason-
able, for example, in intraspecies phylogenetics, where few
generations have elapsed since the observed taxa shared
a common ancestor and thus the expected number of
mutations per locus is much less than one. When such
assumtions hold, a phylogeny of H is defined to be optimal
under the parsimony criterion if it satisfies the following
requirements: (i) it has the shortest length, i.e., the mini-
mum sum of the edge weights, and (ii) it is such that, for
each pair of distinct haplotypes 4;, i € H, the sum of the
edge weights belonging to the path from 4; to /; in T* is
not smaller than the observed number of changes between
h; and #; [11]. The first condition imposes the assump-
tion that the smallest number of mutations consistent with
the observed sequences is a good approximation to the
true accumulated set of mutations; the second condition
correlates the edge weights to the observed data.

The parsimony assumption can be considered accu-
rate in the limit of low mutation rates or short time
scales, making it a reasonable model for situations such as
analysis of intraspecies variation where little time is pre-
sumed to have elapsed since the existence of a common
ancestor of all observed taxa. Maximum parsimony also
remains valuable as a model for novel methodology devel-
opment in phylogenetics because of its relative simplicity
and amenity to theoretical analysis. Novel computational
strategies, such as those developed in this paper, might
therefore productively be developed and analyzed in the
context of maximum parsimony before being extended to
more complicated models of phylogenetics.

Finding the phylogeny that satisfies the parsimony cri-
terion involves solving a specific version of the PEP,
called the Most Parsimonious Phylogeny Estimation Prob-
lem (MPPEP). Some of the variants of the MPPEP, see
e.g., [15,16], can be solved in polynomial time, however,
in the most general case, the problem is A/P-hard
[11,17] and this fact has justified the development of a
number of exact and approximate solution approaches,
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such those described in [11,17,18]. Some recent ver-
sions of the MPPEP, such as the Most Parsimonious
Phylogeny Estimation Problem from SNP haplotypes
(MPPEP-SNP) investigated in this article, play a funda-
mental role in providing predictions of practical use in
several medical bioinformatics applications, such as dis-
ease association studies [19] or reconstruction of tumor
phylogenies [20,21]. In these contexts, it would be highly
desirable to have the most accurate inferences possible
for specific applications, but this in turn would imply
to have algorithms able to exactly solve instances of
such versions. As regards the MPPEP-SNP, the literature
describes some (rare) circumstances for which it is possi-
ble to solve the problem in polynomial time (see Section
Methods). Unfortunately, in the general case the MPPEP-
SNP is A/P-hard and solving provably to optimality there-
fore generally requires the use of exact approaches based
on implicit enumeration algorithms, similar to the mixed
integer programming strategies described in [1,2,22].

In this article, we explore the prospects for improv-
ing on the implicit enumeration strategy of [1,2] using a
novel problem formulation and a series of additional con-
straints to more precisely bound the solution space and
accelerate implicit enumeration of possible optimal phylo-
genies. We present a formulation for the problem based on
an adaptation of [23]’s mixed integer formulation for the
Steiner tree problem extended with a number of prepro-
cessing techniques and reduction rules to further decrease
its size. We then show that it is possible to exploit the
high symmetry inherent in most instances of the prob-
lem, through a series of strengthening valid inequalities,
to eliminate redundant solutions and reduce the practical
search space. We demonstrate through a series of empiri-
cal tests on real and artificial data that these novel insights
into the symmetry of the problem often leads to signifi-
cant reductions in the gap between the optimal solution
and its non-integral linear programming bound relative to
the prior art as well as often substantially faster process-
ing of moderately hard problem instances. More generally,
the work provides an indication of the conditions under
which such an optimal enumeration approach is likely to
be feasible, suggesting that these strategies are usable for
relatively large numbers of taxa, although with stricter
limits on numbers of variable sites. The work thus pro-
vides methodology suitable for provably optimal solution
of some harder instances that resist all prior approaches.
In future work, it may provide useful guidance for strate-
gies and prospects of similar optimization methods for
other variants of phylogeny inference.

Methods

Notation and problem formulation

Before proceeding, we shall introduce some notation and
definitions that will prove useful throughout the article.
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The human genome is divided in 23 pairs of chromo-
somes, i.e., organized structures of DNA that contain
many genes, regulatory elements and other nucleotide
sequences. When a nucleotide site of a specific chromo-
some region shows a variability within a population of
individuals then it is called a Single Nucleotide Polymor-
phism (SNP). Specifically, a site is considered a SNP if
for a minority of the population a certain nucleotide is
observed (called the minor allele) while for the rest of the
population a different nucleotide is observed (the major
allele). The minor allele, or mutant type [24], is generally
encoded as ‘1, as opposed to the major allele, or wild
type [24], generally encoded as ‘0. A haplotype is a set
of alleles, or more formally, a string of length m over an
alphabet ¥ = {0, 1} [25].

Given a set H of n haplotypes, denote S = {1,2,...,m}
as the set of alleles and /;(s), s € S, as the s-th allele of hap-
lotype h; € H. Given two distinct haplotypes k;, h; € H,
we denote Shih, as the subset of different alleles between

hi and hj, dpn; = ZSGShih, |hi(s) — hj(s)| as the distance

between /; and &, and we say that /; and /; are adjacent
if dy,p; = 1. From a biological point of view, the adjacency
between a pair of distinct haplotypes means that one of
the two haplotypes evolved from the other by mutation of
a specific SNP over time.

Consider a graph G = (H, E) having a vertex for each
haplotype in A and an edge for each pair of adjacent hap-
lotypes h;, hj € H. Then, a phylogeny T of H is a spanning
tree of G, i.e., an acyclic subgraph of G in which a pair of
vertices h;, hj € H is adjacent in T if dhih, = 1. It is worth
noting that, according to the definition of the edge set E,
in general a phylogeny of H may not exist as the graph
G = (H,E) might not be connected. To always ensure
the existence of a phylogeny for H, we introduce the set
‘H’ which consists of the minimum number of haplotypes
that should be added to H in such a way that, defined
H=HUH andE = {(h;, hy) : hy, hj € H and dj,, = 1),
the graph G = (H,E) is connected. From a biological
point of view, the set H' represents the set of haplotypes
that are ancestors of the observed ones but either had
gone extinct or just were not observed in that sample (also
called Steiner nodes).

Denote T as a phylogeny of H, E(T) as the edge set
of T, and L(T) as the length of the phylogeny T, i.e., the
sum of the distances dhihj’ for all (h;, k) € E(T). Then,
the problem of finding a phylogeny of H that satisfies
the parsimony criterion consists of solving the following
optimization problem:

Problem 2. The Most Parsimonious Phylogeny Estima-
tion Problem from SNP haplotypes (MPPEP-SNP).
Given a set H of n haplotypes having m alleles each, find
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the minimum cardinality haplotype set H' to be added to
‘H so that the phylogeny T" has minimum length.

If the haplotype set H' is empty, i.e., if G = (H,E) is
connected, then MPPEP-SNP can be solved in polynomial
time as the minimum spanning tree is a (optimal) solution
to the MPPEP-SNP. Similarly, if the input haplotype set H
satisfies the perfect phylogeny condition i.e., the require-
ment that each allele changes only once throughout the
optimal phylogeny (see [19]), then the MPPEP-SNP can be
still solved in polynomial time [26-28]. Unfortunately, it is
possible to prove that in the general case the MPPEP-SNP
is N'P-hard (see [1,22]). In fact, the binary nature of the
SNP haplotypes allows us to interpret a generic haplotype
h; € H as a vertex of a m-dimensional unit hypercube, its
s-th allele as the s-th coordinate of the vertex /;, and the
set H' as the set of Steiner vertices of the unit hypercube.
Hence the MPPEP-SNP can be seen as particular case of
the Steiner tree problem in a graph, a notorious A/P-hard
combinatorial optimization problem [29].

Finding the optimal solutions to the MPPEP-SNP is fun-
damental to validating the parsimony criterion, i.e., to
verify whether, for a given instance of MPPEP-SNP, the
results predicted by the criterion match the experimental
ones. Unfortunately, the A/P-hardness of the MPPEP-
SNP limits the size of the instances analyzable to the
optimum, which in turn affects the ability to validate the
parsimony criterion, hence the practical utility of the pre-
dictions themselves. In order to address this concern, in
the following section we shall develop an integer pro-
gramming model able to provide optimal solutions to real
instances of the MPPEP-SNP.

A mixed integer programming model for the MPPEP-SNP
Let V = {1,2,...,mn+ Ln+2,...,n+ |H|} the set
of potential vertices of a phylogeny T of H and assume
the convention to denote the # haplotypes in H as the
first n vertices in V. The first task in designing an inte-
ger programming model for the MPPEP-SNP that uses a
polynomial-size number of variables consists of charac-
terizing V, i.e., determining an upper and a lower bound
on the cardinality of the set H'. In fact, observe that #’
contains potentially an exponential number of haplotypes,
namely all vertices of the unit hypercube that belong to the
set {0, 1} \ H. However, we can easily bound the cardi-
nality of H' by means of the following approach. Consider
the complete graph G = (H,E), where £ = {(hi, hy) -
hi, hj € H}, and construct a minimum spanning tree T, of
G. Denote E(Tg,) as the set of edges (/;, hy) of T¢;. Then,
an upper bound UB on the overall number of Steiner
vertices of the optimal phylogeny T" can be obtained by
computing the sum
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UB= Y

(hishj)€E(Tg)

(dhih,' - 1)'

Similarly, denote L(T¢) = Z(hi,hj)eE(Té) dpny» 2 lower

bound LB on the overall number of Steiner vertices of T
can be obtained as [30,31]:

Denote u;, i € V, as a decision variable equal to 1 if the
i-th vertex of V' is considered in the optimal solution to
the MPEPP-SNP and 0 otherwise; x as a decision variable
equal to 1 if in the optimal solution to the MPPEP-SNP
the s-th coordinate of the vertex u;, i € V,is 1 and 0
otherwise; zf] as a decision variable equal to 1 if in the
optimal solution to the MPPEP-SNP the pair of distinct
vertices i,j € V has a change at s-th coordinate, and 0
otherwise; and y;; as a decision variable equal to 1 if the
pair of distinct vertices i,j € V is adjacent in the optimal
solution to the MPPEP-SNP and 0 otherwise. Finally, let
Vi ={1,2,...,n}, Vi ={n+1,n+2,...,n+ UB}, and
Q = {1,2,...,n+ LB}. Then, a valid formulation for the
MPPEP-SNP is the following:

Formulation 1. Basic Model

min Z szl (1a)

ijeV:i#j seS
st % = hi(s) VseS,ieH (1b)
X < u VseS,ieV (1c)
zsz—l—xf—x;—i—y,} 1 VseS,hjeV:ii#j
(1d)
ijz—xf—i—x;—i—y,-j—l VseS,L,jeV:ii#j
(le)

VijeV:ii#j (1)

D %=
seS

yi < VijeV:i#j (lg
Vij = Uj Vi;je V:i#j (lh)

> = u VieV (1)
jEVi#j

Z yijfzui_1 YCCV:CNVy #0
ijeCi#j ieC

(1j)

ijeVitj eV

Z ui=n+1LB (D
i€Q

Ui, x‘j‘r Z,g,,yt; € {01 1}' (lm)

The objective function (la) aims at minimizing the
length of the optimal phylogeny. Constraints (1b) impose
that the coordinates of the first n vertices in V are exactly



Catanzaro et al. Algorithms for Molecular Biology 2013, 8:3
http://www.almob.org/content/8/1/3

the ones of the input haplotype set H. Constraints (1c)
impose that the s-th coordinate of vertex u;, i € V, can
assume value 1 only if vertex u; is considered in the opti-
mal solution to the problem. Constraints (1d)-(1le) force
variables z}; to be one if in the optimal solution to the
problem there exist a pair of adjacent vertices i,j € V hav-
ing a different value at the s-th coordinate. Constraints (1f)
impose that in an optimal solution to the problem two dis-
tinct vertices i,j € V can be adjacent only if dj, = 1.
Constraints (1g)-(1h) impose that in the optimal solution
to the problem variable y;; may assume value 1 only if both
vertices i and j are considered. Vice versa, constraints (1i)
impose that if in the optimal solution to the problem a
vertex u;, i € V, is considered then at least one variable
¥ must assume value 1. Constraints (1j) and (1k) impose
the Generalized Subtour Elimination Constraints (GSEC)
[23]. Finally, constraints (11) impose that the first n 4+ LB
vertices in V have to be considered in the optimal solution
to the problem.

Note that Formulation 1 can be easily extended to the
case in which the haplotypes are represented by multi-
character data, i.e., sequences over an alphabet ¥ =
{0,1,2,...,v}. In fact, in such a case it is sufficient to
replace each character c in the haplotype by a binary y -
vector v such that the s-th coordinate of v is equal to 1
if the character c is equal to s, s € X, and 0 otherwise.
For example, if the generic haplotype were, for exam-
ple, the string (AACGT), then it could be represented as
(1000 1000 0100 0010 0001).

Reducing model size

Formulation 1 is characterized by a polynomial number
of variables and an exponential number of constraints. Its
implementation can be performed by means of standard
branch-and-cut approaches that use GSEC separation
oracles such as those described in [32].

It is worth noting that variables x;} and zf] can be relaxed
in Formulation 1 as constraints (1c)-(1e) and the convex-
ity constraint (1f) suffice to guarantee their integrality in
any optimal solution to the problem. Moreover, Formula-
tion 1 can be reduced in size by removing those variables
that are redundant or whose value is known in the opti-
mal solution to the problem. For example, variables y;; can
be removed from Formulation 1 as it is easy to realize that
they are redundant. Similarly, all variables zf} such that
i,j € V3 and d;j > 1 do not need to be defined as their
value will be always zero for any s € S and in any feasible
solution to the problem. Variables u;, i € Q, do not need to
be declared as their value will be always 1 any feasible solu-
tion to the problem. Finally, variables x}, i € V3, can be
removed as their value is univocally assigned by the input
haplotype set H. The reduction process can be further
combined with the preprocessing strategies described in
[1] to obtain even smaller formulations. Such strategies
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allow one to remove alleles from the input haplotype set
‘H without altering the optimal solution to the problem.
For example, suppose that the haplotype set H is such that
there exists an allele § € S such that /;(s) = 1, for all
h; € H; then it is easy to realize that § can be removed
from S as in any feasible solution to the problem the s-th
coordinate of any vertex in the phylogeny would be char-
acterized by having xf = 1. A similar situation occurs
when there exists an allele s € S such that #;(s) = 0, for all
h; € H. Analogously, suppose that the input haplotype set
‘H is characterized by equal alleles, i.e., by the existence of
two alleles, say §; and 5, such that %;(51) = 4;(S2), for all
i € S. Then it is easy to realize that if one removes one
of the two alleles from S, say 53, and multiplies the §;-th
coordinate by 2 does not alter neither the structure nor the
value of the optimal solution to the problem. Describing
all the preprocessing techniques for shrinking the input
haplotype set H is beyond the scope of the present article.
The interested reader will find a systematic discussion of
this topic in [1].

By applying the previously cited reduction strategies to
Formulation 1 and denoting S as the set of alleles result-
ing from the application of the preprocessing strategies
described in [1], w* as the number of alleles in S equal
to the s-th, s € S’, Z as the set for which variables zf] are
defined, R={n+ LB+ 1,n+ LB+ 2,...,n+ UB}, and
Cy ={i € C:i € Vy}, for any C C V, the following
reduced formulation for the MPPEP-SNP can be obtained:

Formulation 2. Reduced Model

min Z Zwszf] (2a)

ijeVi e d
ijeZ
st % < u VseS,ieR (2b)
Yo Zith)—x <1 VseS ieVyjeVy
ses:
s'#s

(20)
YN —ms)+x <1 VseS ieVyjeVy
ses:
s'#s

(2d)
Y ogi+ai-a<1 Vsed8, ijeVyijeZ
se8:
§'#s

(2e)
Yoz —xita<1 Vsed, ijeVyijeZ
e8:
§'#s

(2f)
Y g<1 Vije V\R:i,jeZ (29
se8
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Zz;jful VieRjeV:ijeZ (2h)
s€S

zf,»fu, VjieRieV:ijeZ (2i
s€S
Yo > g=1 VieQ (2))
JjEV:iseS
jeZ

>z > u VieR (2K)
/:EV:SGS‘
jeZ
Yo oms Y, wtlCul-1
ijeC: e $ ieCieR
ijeZ

YCCV:CNVy £0 (2)

DPIETRRNPES SP o)
ijeV: e & i€R
i,ljez ses <
Uiy X5, Zf}-,yi,‘ € {0,1}. (2n)

Note that in Formulation 2 variables x} and zf/ cannot be
relaxed anymore.

Strengthening valid inequalities

By exploiting the integrality of variables u;, &}, and z};,
a number of valid inequalities can be developed to
strengthen Formulation 2.

Proposition 1. Constraints

Vie V\(QU{n+ UB} 3)

Uiyl = U

are valid for Formulation 2.

Proof. In a feasible solution to the problem variable
up, i € V \ (QU {n + UB}), can assume only
value 0 or 1. If u; = 0, constraint (3) reduces to
ui+1 < 0 which is trivially valid for Formulation 2. If
u; = 1, constraint (3) reduces to u;1; < 1 which is
again valid. O

Constraints (3) impose an ordering on the variables u;,
i € R, so that vertex u;;1 can be considered in the optimal
solution to the problem only if vertex u; has been already

considered.

Proposition 2. Constraints

VieR (4)

are valid for Formulation 2.
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Proof. In a feasible solution to the problem a vertex u;,
i € V4, cannot be a terminal vertex. In fact, if such a
condition held, a cheaper solution could be obtained by
dropping ; from T", contradicting the optimality of T~
itself. Hence, the degree of any vertex in V3, must be at
least 2. Now, in a feasible solution to the problem variables
u; € {0,1}. If u; = 0, constraint (4) reduces to

IPITEL
jeVised
jeZ

which is trivially valid. Vice versa, if #; = 1, constraint (4)

reduces to

PIDIL R
JEV: g8
jeZ

which is again valid for the above arguments. O

Proposition 3. Constraints

L L AEED
se8: S#S]

V0 €S 51 #80, bj€ VayiijeZ (5)

S2 S2 S1
—x; +x7 =201 —z5) — Z Zj
SES: s#s1

Vs,s0 €851 %80, ij€ VayiijeZ (6)

are valid for Formulation 2.

Proof. As observed in the previous proposition, in a fea-
sible solution to the problem }_ zj;, i,j € V3¢, i,j € Z, can
sed
assume only value 0 or 1. If ) Zf/ = 0, then constraint
se8
(5) (respectively constraint (6)) reduces to +x;* — x/s.2 <2
(respectively —x?z +x;2 < 2), which is trivially valid due to
the integrality of variables x5. If & z; = 1, then either
S
szl =lorz; = 11If sz/
SES: SES:
S#81 $7#81

(5), (respectively constraint (6)) reduces to +x;* — xjs.z <1

(respectively —x;* + x/s.z < 1), which is trivially valid. If

= 1 then constraint

ZZ» = 1 then constraint (5) (respectively constraint (6))
reduces to +x;> — xls-z < 0 (respectively —x}* + x;z < 0),

which is again valid. O

Similar arguments can be used to prove the following
proposition:
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Proposition 4. Constraints

Hhi(sy) — a2 <2(1—z) — Y 7
SESZ

S#S1
Vsl,szes’:sl #82, i€ Vy, je Vy 7)

—hi(s) + 2 <20 -2} — Y 7
ses:

S#S1
VSl,S2€3:S1 #S8, i€ Vy, je Vy (8)

are valid for Formulation 2.

Given an input haplotype set H and a pair of non-
adjacent haplotypes /; and /;, there exit multiple equiv-
alent paths that may connect /; and /; in the unary
hypercube. This characteristic constitutes the principal
class of symmetries for the MPPEP-SNP and may lead to
poor relaxations for the problem. For example, suppose
that the input haplotype set H is constituted by haplotypes
h; = (00) and sy = (11). Then a possible solution to the
instance may consist either of a star centered in haplotype
hs = (10) or a star centered in haplotype i3 = (01) (see
Figure 1). Note that both solutions are feasible and opti-
mal for the specific instance. A possible strategy to break
this class of symmetries consists of imposing the following
constraints:

10 11
| |
| |
| |
| |
| |
| |
| |

00 01

Figure 1 An example of two symmetric paths linking haplotypes
(00) and (11) .
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Proposition 5. Constraints

S S
pr=1 pr=1

Vse&,ie Vyy \R )
S S S

Z 2Pyl < Z 2P+ ZZS_P(l — Uit1)

p=1 p=1 p=1

Vse&,ieR\ {n+ UB} (10)

are valid for Formulation 2.

Proof. The statement trivially follows from the integral-
ity of variables x} and from constraints (2b). O

Constraints (9)-(10) impose an ordering on the coor-
dinates of the vertices in V3, by means of the smallest
big-M possible, i.e., a power of 2. Note that the distinction
between constraints (9) and (10) is necessary, as in princi-
ple vertices in R may not be needed in the optimal solution
to the problem.

Proposition 6. Constraints

DD D DY I

JjeV:ses JeVises
jezZ jezZ

Vie Vi \ {(n+ UB)

(11)

are valid for Formulation 2.

Proof. In a feasible solution to the problem, the sum
> zf]., i,j € Vay, i,j € Z, can assume only value 0 or 1. If

seS
>y Z(;+1); = 0, constraint (11) reduces to > 2>

JeV:se8 jeVises
jeZ jeZ
0 which is trivially valid. Vice versa, If Z Z zfiﬂ)]. =1,
J€ViseS
jezZ
constraint (11) reduces to > 3} z; > 1 which is again
j€Vises
jeZ
valid due to Propositions 1 and 2. O

Proposition 6 forces vertices in V4, to be sorted accord-
ing to a decreasing degree order. In this way, it is possible
to avoid the occurrence of symmetric solutions to the
problem differing just for the degree of the Steiner vertices
(see e.g., Figure 2).

Let Q3 = {i,j € V3 :dyj > 3}and k € V, k ¢ Q3. Then
the following proposition holds:
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Figure 2 An example of two symmetric solution to the MPPEP-SNP.
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Proposition 7. Constraints

ZZ;k+ZZ;<jf 1

seS seS

VijeQs (12)

are valid for Formulation 2.

Proof. In a feasible solution to the problem the path
between two distinct haplotypes /;,h; € H cannot be
shorter than the distance dhihj' Hence, if the distance
between /; and /; is greater or equal to three, vertices i and
j cannot be adjacent to a same vertex &, i.e., only one of the
two sums ) sz} Or ) s zj, can be equal to 1. O

Note that if k € R then (12) can be strengthened by
replacing the right-hand-side by ux. Moreover, Proposi-
tion 7 can be generalized as follows. Consider the sets
Qu=1{i,je Vy:dj=>d},de(34. . .,m}CCVsuh
that2 < |C|] < d —1and CN Qg = ¥, and a path p that
involves only vertices in C. Denote pi the k-th vertex in p.
Then the following proposition holds:

Proposition 8. The family of constraints

ICl—-1
ZZ;P1+ Z szﬂkpk+1+zzzwcuflc| Vij € Ka,
seS k=1 seS seS

(13)

called forbidden path constraints, are valid for Formula-
tion 2.

Proof. Similarly to Proposition 7, in a feasible solution
to the problem the path p between two distinct haplo-
types h;, h; € H cannot be shorter than the distance dhl.hj.
Hence, if the distance between /; and /; is greater or equal
to d, at most |C| vertices can belong to p. O

Experiments

In this section we analyze the performance of our model to
solve the MPPEP-SNP. Our experiments were motivated
by a twofold reason, namely: to evaluate, with respect to
Formulation 1, the benefits obtained by the removal of
the redundant variables and by the inclusion of the valid

inequalities previously described; and to allow the analy-
sis of larger datasets with respect to the ones analyzable by
means of [1]’'s algorithm, currently the best known exact
approach to solution of the MPPEP-SNP.

Similar to [1], we emphasize that the experiments aim
simply to evaluate the runtime performance of our model
for solving MPPEP-SNP. We neither attempt to study the
efficiency of MPPEP-SNP for phylogeny estimation nor
compare the accuracy of our algorithm to phylogeny esti-
mation solvers that do not use the parsimony criterion.
The reader interested in a systematic discussion about
such issues is referred to [19,33].

Implementation

We implemented Formulations 1 and 2 by means of
Mosel 64 bit 3.2.0 of Xpress-MP, Optimizer version 22,
running on a Pentium 4, 3.2 GHz, equipped with 2 GByte
RAM and operating system Gentoo release 7 (kernel linux
2.6.17). In both formulations, we computed the overall
solution time to solve a generic instance of the problem
as the sum of the preprocessing time due to the imple-
mentation of [22]’s reduction rules plus the solution time
taken by the Optimizer to find the optimal solution to the
instance. In preliminary experiments, we observed that
Formulation 2 has two main advantages with respect to
Formulation 1, namely: it requires much less memory to
load the model (at least 27% RAM less in the analyzed
instances) and it is characterized by faster linear relax-
ations at each node of the search tree. As result, Formu-
lation 2 allows potentially the analysis of larger instances
than Formulation 1 and may be characterized by faster
solution times. Hence, we preferred to use Formulation 2
in our experiments.

We considered two different implementations of For-
mulation 2, namely: the GESC-based Reduced Model
(GSEC-RM) and the Flow-based Reduced Model (Flow-
RM). The GESC-RM consists of Formulation 2 strength-
ened by the valid inequalities previously described. The
Flow-RM consists of Formulation 2 strengthened by the
valid inequalities and such that the GSEC are replaced
by a multi-commodity flows. Specifically, by denoting ;
as a decision variable equal to one if there exists a flow
from vertex 1 to vertex g € Vy passing through edge
@G,)) € E and 0 otherwise, the Flow-RM can be obtained
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by replacing constraints (21) with:

A+fl <) 2 YqeVy:q#l ijeViijeZ
seS

(14)
Zfl’fi:1 Vge Vy:q#1 (15)

ieVi#l
D= D =0 VqeVyiq#l ieV:ii¢{lq)

jeVii#j jeVii#j
(16)
Zfig— > fa=1 VqeVy:iq#1 (17)

ieVitq ieVitq

VqgeVy iq#l, ijeV i jeZ.
(18)

In preliminary experiments we observed that the Flow-
RM outperforms the GESC-RM in terms of solution time.
This fact is mainly due to the computational overhead
introduced by the GSEC separation oracle which seems to
be not compensated by the size of the analyzed instances.
Hence, we did not consider the GESC-RM any further in
our experiments.

During the runtime, we enabled the Xpress-MP auto-
matic cuts and the Xpress-MP pre-solving strategy. More-
over, we also tested a number of generic primal heuristics
for the Steiner tree problem to generate a first primal
bound to the MPPEP-SNP (see, e.g., [34]). Unfortunately,
in preliminary experiments we observed that the use
of such heuristics interferes negatively with the Xpress
Optimizer, by delaying the solution time of the analyzed
instances. Hence, we disabled the used of the generic
primal heuristics and enabled the use of the Xpress-MP
primal heuristic instead. The source code of the algo-
rithm can be downloaded at http://homepages.ulb.ac.be/~
dacatanz/Site/Software_files/iIMPPEP.zip.

Separation oracle for the forbidden path constraints
When using the Flow-RM, the valid inequalities (3)-(12)
are loaded together with the reduced model. On the con-
trary, the valid inequalities (13) are dynamically generated
by means of a separation oracle working as follows. Before
loading the reduced model, we precompute the sets Q,
foralld € {3,4,...,m}. Let (i,%,z) be the current frac-
tional solution at a given node of the search tree and, for
alld € {3,4,...,m}, consider a pair of vertices i,j € Q.
Then, the forbidden path constraints (13) are violated if
there exists a path p having internal vertices in C C V,
2<|C|<d-1,CNQyz =9, and such that

ICl-1
sz'pl + Z Z%kﬁm + ZE;\CII' >Cl. (19)
seS k=1 seS s€S
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Note that searching for the most violated constraint (19)
is in general N'P-hard as it involves solving a longest path
problem on the weighted graph @; \Qd, i.e., the graph G
whose edges are weighted by variables z and whose vertex
set is restricted to (V' \ Qg) U {i,j}. In order to have a fast
separation oracle for the forbidden path constraints we
do not solve exactly (19) but we use a heuristic approach
instead. Specifically, we first sort edges of E in decreasing
order according to their weights and we select two dis-
tinct vertices vi,v2 € V' \ Qg such that edge (v, v2) has
the largest weight. Subsequently, we set C = {v1, v2}, mark
v1 and vy as visited, and build a simple path from vertex
i to vertex j passing by v; and v;. If p is such that (19) is
satisfied then we add the constraint

IC]—1
szpl + Z Zzifkpkﬂ + ZZ;\CU = |C| (20)
seS k=1 seS seS

to the formulation; otherwise, we select a different pair of
vertices in V' \ Qg and iterate this procedure until either
10 distinct paths have been generated or all possible pairs
of vertices in V'\ Q4 have been selected. If all vertices have
been selected but less than 10 distinct paths have been
generated, then we select a larger subset of V' \ Q, (e.g., a
triplet of vertices) and we iterate again the previous steps.
It is easy to realize that this procedure may potentially
generate all the possible paths violating (13). However,
we stop the procedure after generating 10 paths or after
considering subset C containing more than 5 vertices as
we observed in preliminary experiments that this strategy
provides the best trade-off between speed and tightness of
the cut.

Branching strategies

In preliminary experiments we observed that the stan-
dard branching strategy implemented in the Xpress-MP
Optimizer is not appropriate for the problem as it is not
able to exploit the dissimilarity of the weights w* in the
objective function. This inconveniently leads to formula-
tions characterized by slow solution times. To improve
this aspect we implemented a different strategy consisting
of branching on the following constraints:

> 4z

ijeV:
ijeZ

VseS (21)

or

Z Zf] > «, Vse8
ijeV:
ijez

(22)

where o € {1,2,...,q} and g = min{X:kEvH hy(s), n/2}).
Constraints (21)-(22) limit the number of changes along a
phylogeny with respect to a given coordinate s € S and
tend to be more effective when the weights w* are very
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dissimilar among them. This branching strategy can be
implemented by introducing a decision variable

1 if the overall number of changes at coordinate
Bo = se Sof T is equal to «
0 otherwise,

foralls € Sand o € {1,2,...
following constraints

,q}, and by adding the

q
S 4=Yp vses
ijeV: a=1
ijeZ
VseS.

q
Y oB =1
a=1

We observed that even better runtime performance can
be obtained by sorting the coordinates of the input haplo-
types in decreasing way according to the weights w® and by
branching first on variables B, then on variables u;, and
subsequently on variables x} and finally on variables zf/

Performance analysis

In order to obtain a measure of the performance of
the Flow-RM, we compared [1]’s polynomial-size for-
mulation versus the Flow-RM on [1]’s real instances of
the MPPEP-SNP, namely: Human chromosome Y con-
stituted by 150 haplotypes having 49 SNPs each; bac-
terial DNA constituted by 17 haplotypes having 1510
SNPs each; Chimpanzee mitochondrial DNA constituted
by 24 haplotypes having 1041 SNPs each; Chimpanzee
chromosome Y constituted by 24 haplotypes having
1041 SNPs each; and a set of four Human mitochon-
drial DNA from HapMap [35] constituted by 40 haplo-
types having 52 SNPs each, 395 haplotypes having 830
SNPs each, 13 haplotypes having 390 SNPs each, and
44 haplotypes having 405 SNPs each, respectively. Such
instances consist only of non-recombining data (Y chro-
mosome, mitochondrial, and bacterial DNA) and can
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be downloaded at http://homepages.ulb.ac.be/~dacatanz/
Site/Software_files/iMPPEP.zip.

Table 1 shows the results obtained by such compari-
son. Specifically, the fourth and fifth columns refer to the
gaps (expressed in percentage) of the respective formu-
lations, i.e., to the difference between the optimal value
to a specific instance and the value of linear relaxation
at the root node of the search tree, divided by the opti-
mal value. The table shows that, excluding the cases in
which the solution to a specific instance was trivially a
minimum spanning tree (see e.g., Human chromosome Y,
Chimpanzee mtDNA, and Chimpanzee chromosome Y),
the Flow-RM is always characterized by (sometimes dra-
matically) smaller gaps. This fact derives on the one
hand from the tightness of the Flow-RM with respect to
[1]’s polynomial-size formulation and on the other hand
from the efficiency of the strengthening valid inequali-
ties previously described. The poor relaxations of their
formulation led [1] to propose an alternative and faster
exact approach to solution of the MPPEP-SNP based on
the brute-force enumeration of all possible Steiner ver-
tices necessary to solve a specific instance of the problem.
To speed up the computation, the brute-force enumer-
ation algorithm makes use of a set of reduction rules
based on Buneman graph enumeration to decrease the
number of Steiner vertices to be considered. Interestingly,
despite the differences in terms of implementation lan-
guage between the two programs (namely, Mosel for the
Flow-RM and C++ for [1]’s brute-force enumeration algo-
rithm), the Flow-RM proved to be competitive with [1]’s
enumeration algorithm, being able to solve almost all the
considered instances within 1 second computing time.
Only in two cases, namely Human mtDNA 40 x 52 and
Human mtDNA 395 x 830, the Flow-RM needed more
than 5 minutes to find the corresponding optimal solu-
tions. The deterioration of the runtime performance in
those instances is mainly due to the overhead necessary
to load the formulation (that in both cases is considerably
bigger than in the other instances) and to an intensive use

Table 1 Comparison between the gap of [1]'s polynomial size integer programming model for the MPPEP-SNP versus the
gap of the flow-based reduced model and its strengthening valid inequalities

Dataset Haplotypes SNPs GAP (%) GAP (%) Optimum MST
[1] Flow-RM Solution
Human chromosome Y 150 49 0.00 0.00 16 yes
Bacterial mtDNA 17 1510 26.04 20.83 96 no
Chimpanzee mtDNA 24 1041 20.63 20.63 63 yes
Chimpanzee chromosome Y 15 98 0.00 0.00 99 yes
Human mtDNA 40 52 24.66 1.37 73 no
Human mtDNA 395 830 22.64 7.55 53 no
Human mtDNA 13 390 12.50 6.25 48 no
Human mtDNA 44 405 6.98 4.65 43 no
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of the separation oracle for the forbidden path constraints.
Possibly, a more thorough implementation of the separa-
tion oracle and the use of more performing languages (e.g.,
C++) could help in speeding up computations in those
instances at least.

Interestingly, sometimes in real applications the num-
ber of haplotypes can be much bigger than the number
of SNPs. Hence, it is important to test the ability of an
exact algorithm to tackle instances of the MPPEP-SNP
containing e.g., hundreds haplotypes. [1] observed that
their brute force enumeration algorithm is able to tackle
instances of the problem containing up to 270 haplo-
types having up to 9 SNPs each within 12 hours com-
puting time. Unfortunately, the authors also observed that
their algorithm is unable to solve larger instances of the
MPPEP-SNP, no matter the maximum runtime consid-
ered. In this context, the Flow-RM makes the difference,
being able to tackle instances of the MPPEP-SNP hav-
ing up to 300 haplotypes and 10 SNPs within 3 hours
computing time. To show this result, we considered a
number of random instances of the problem containing
100, 150, 200, 250, and 300 haplotypes, respectively. Fixing
the number of haplotypes n € {100, 150, 200, 250, 300}, we
created an instance of the problem by generating at ran-
dom 7 strings of length 10 over the alphabet ¥ = {0, 1}.
During the generation process, we randomly selected the
number of SNPs equal to 1 in a given haplotype, and sub-
sequently we randomly chose the sites of the haplotype to
be set to 1. We iterated the instance generation process 10
times for a fixed value of #, obtaining eventually an over-
all number of 50 random instances of the MPPEP-SNP
downloadable at http://homepages.ulb.ac.be/~dacatanz/
Site/Software_files/iMPPEP.zip.

The results obtained in our experiments are shown in
Table 2. Specifically, the column “Time” refers to the solu-
tion time (expressed in seconds) necessary to solve exactly
a specific instance of the MPPEP-SNP. Analogously, the
column “Nodes” refers to the number of explored nodes in
the search tree needed to solve exactly the instance. The
table does not report on the performance of [1]’s enumera-
tion algorithm, as their algorithm never found the optimal
solution to the analyzed instances within the limit runtime
of 3 hours. As a general trend, the table shows that the
considered instances can be exactly solved within 1 hour
computing time. The only exceptions are constituted by
the 7th instance of the group 150 x 10, the 9th instance of
the group 200 x 10, the 2th instance of the group 250 x 10,
and 3th instance of the group 300 x 10 which needed
8719.65, 4600.69, 7757.98, and 5371.05 seconds, respec-
tively, to be solved. These instances are much more sparse
than the others, are characterized by smaller reduction
ratios, and tend to have more degenerate relaxations than
the other instances. The presence of these factors might
explain the loss of performance of the Flow-RM.
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The results showed that the integrality gaps are usually
very low, ranging from 0% to 4.63% and assuming in aver-
age a value about 1%, confirming once again the tightness
of the Flow-RM and the efficiency of the strengthening
valid inequalities.

Finally, we also tested the performance of the Flow-
RM on a set of 5 HapMap Human mitochondrial DNA
instances of the MPPEP-SNP that were not solvable by
using [1]’s brute-force enumeration algorithm, namely: f1
constituted by 63 haplotypes having 16569 SNPs each, i2
constituted by 40 haplotypes having 977 SNPs each, k3
constituted by 100 haplotypes having 757 SNPs each, m4
constituted by 26 haplotypes having 48 SNPs each, and
p5 constituted by 21 haplotypes having 16548 SNPs each.
Such instances can be downloaded at the same address
and consist only of non-recombining data (Y chromo-
some, mitochondrial, and bacterial DNA).

A part from m4, all the remaining instances gave rise
to too large formulations (several hundreds Mbytes RAM)
to be handled by the Xpress Optimizer. Hence, instead of
analyzing entirely each instance we decomposed it into
contiguous SNP blocks and analyzed the most difficult
block separately. In more in detail, we define H, to be
the haplotype matrix obtained by the application of [1]’s
reduction rules, we sorted the columns of H, according
to an increasing ordering of the weights w*, s € S; subse-
quently, we considered the submatrices obtained by taking
k contiguous SNPs (or k-block) in S, ke {10, 13,15}. We
did not consider greater values for k as we observed that
k = 15 was already a threshold after which the haplo-
type submatrix gave rise to too large formulations. For
each k-block 53 in 1, we considered the hamming distance
dhihj = ) g Ihi(s) — h;(s)| between each pair of distinct
haplotypes in H,, and chose the k-block maximizing the
sum Zh,-,h,-e?—[,,h,' < Apipy- Finally, we assumed three hours
as maximum runtime per instance.

Table 3 shows the results obtained in our experiments.
As for Table 2, the columns “Time” and “Nodes” refer to
the solution time (expressed in seconds) and to the num-
ber of nodes in the search tree necessary to solve exactly a
specific instance of the MPPEP-SNP, respectively. In such
a case, the values in the columns “Gap” refers to the gap
between the best primal bound found within the limit
time and the root relaxation and “Nodes” refers to the
number of nodes explored in the tree search within the
limit time.

Table 3 shows that, apart from the instances fl and
m4, the Flow-RM was unable to exactly solve, within the
limit time, the considered instances for values of k €
{13,15}. Specifically, The Flow-RM exactly solved in less
than a minute the instance f1 when considering values of
k € {10,13} ; in 20 minutes the instance i2 when con-
sidering k = 10 ; in less than 3 minutes the instance
k3 when considering k = 10 ; and the instance m4 in 5
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Table 2 Performances of the Flow-RM on a set of random instances of the MPPEP-SNP

|H| Instance |H| post Time GAP (%) Nodes |H| Instance |H | post Time GAP (%) Nodes
reduction (sec.) reduction (sec.)
100 1 57 520.05 0 1807 150 1 82 284.51 0 424
2 60 59.74 0 174 2 83 314.27 0.76 56
3 63 377.75 1.45 110 3 81 799.01 0 67
4 61 2491.62 3.81 3351 4 67 1809.26 2.66 6617
5 60 2918.09 4.63 2062 5 79 1001.14 2.29 187
6 57 349.54 1.59 264 6 74 1976.73 241 1071
7 65 258.53 1.90 85 7 73 8719.65 3.92 4814
8 58 293.97 0 1299 8 83 3497.73 217 421
9 62 862.48 2.85 540 9 72 1154.77 251 410
10 64 87.19 0 92 10 80 399.89 1.56 256
200 1 99 614.86 0 72 250 1 117 115541 0 197
2 99 1353.16 1.28 149 2 109 7757.98 1.72 1596
3 96 896.68 0.67 226 3 17 387.141 0.84 180
4 104 652.44 047 150 4 126 1267.77 0.51 114
5 96 382.83 0 56 5 116 188.188 0.84 162
6 106 2535.09 0.60 71 6 116 231161 1.14 685
7 100 233.50 0 21 7 116 1256.24 0 265
8 99 1650.17 0.96 79 8 124 67.556 0 528
9 87 4600.69 210 954 9 122 2000.77 0.53 107
10 102 2554.84 1.23 1965 10 m 1200.89 0.87 272
300 1 133 297.19 0 15
2 123 275353 039 68
3 142 5371.05 0 941
4 133 420.72 0 43
5 126 388.99 0 433
6 134 397.01 0 61
7 138 1173.65 0 1788
8 126 666.21 0 186
8 127 449.30 0.77 42
10 145 201.87 0 876

seconds. In contrast, the Flow-RM was unable to solve the
instance p5, regardless of the value of k considered. In fact,
already when considering k = 10, the Xpress Optimizer
took more than 12 hours to exactly solve the instance p5
and explored over 10 million nodes in the search tree. A
more detailed analysis of the instance showed that, despite
the presence of the strengthening valid inequalities, p5
is characterized by highly fractional relaxations. This fact
implies the existence of equivalent optimal solutions to
the instance that, on the one hand, delay the finding of
a primal bound and, on the other hand, force the Opti-
mizer to explore many more nodes in the tree search.
This situation in more pronounced in p5 but also occurs
in the instances i2 and k3. To improve the tightness of

the formulation we tried to include in the Flow-RM also
classical facets and strengthening valid inequalities for the
Steiner tree problem in a graph (see [23,36-38]). However,
we did not observe any benefit from the inclusion. We sus-
pect that the presence of highly fractional solutions to the
problem could be caused both by poor lower bounds on
the number of Steiner vertices considered in the Flow-RM
and by the existence of a number of non trivial classes of
symmetries still present in the problem. Investigating such
issues warrants future research efforts.

In order to measure the performance of the model
on multi-state character data we also considered [2] set
of instances of the MPPEP-SNP. Specifically, we con-
sidered the following instances: a set of 41 sequences
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Table 3 Performances of the Flow-RM on a set of real instances of the MPPEP-SNP

Dataset Haplotypes SNPs Block Size Time (sec.) GAP (%) Nodes MST Solution
10 1 | | yes

f1 63 16569 13 56 3.1 1 no
15 10286.1 26.92 773521 no

i2 40 977 10 781.85 20.00 37511 no

3 100 757 10 150 7.65 353 no
13 588.38 14.29 11265 no

m4 26 48 10 5 5.88 109 no

PS5 21 16548 10 222834 50.79 6125448 no

of O.rufipogon DNA (red rice) having 1043 sites each;
80 human mtDNA sequences having 245 sites each; 50
HIV-1 reverse transcriptase amino acid sequences hav-
ing 176 sites each; a set of 500 sequences of mtDNA
from the NCBI BLASTN best aligned taxa having 3000
sites each; a set of 500 sequences of mtDNA from the
NCBI BLASTN best aligned taxa having 5000 sites each;
and a set of 500 sequences of mtDNA from the NCBI
BLASTN best aligned taxa having 10000 sites each. When
running the same experiments described in [2] we regis-
tered a very poor performance for the Flow-RM, mainly
due to the large dimension of the considered instances
and the presence of symmetries despite the use of con-
straints (13)-(15). We observed that the combination of
these two factors increased the runtime performance of
the Flow-RM of 2-3 orders of magnitude with respect to
[2] approach. However, we also observed that when per-
forming [2]’s “window analysis” (i.e., when decomposing
into blocks of 10 SNPs the input matrix) the Flow-RM
performed better than [2]’s, being characterized by an
average solution time of 8.27 seconds. This fact suggests
that, when considering instances constituted by less than
a dozen sites, an exact approach entirely based on inte-
ger programming may perform better than the implicit
enumeration of the vertices of the generalized Buneman
graph. Vice-versa, for larger instances the implicit enu-
meration of the vertices of the generalized Buneman graph
appears more suitable.

Conclusion

In this article we investigated the Most Parsimonious
Phylogeny Estimation Problem from Single Nucleotide
Polymorphism (SNP) haplotypes (MPPEP-SNP), a recent
version of the phylogeny estimation problem that arises
when input data consist of SNPs extracted from a given
population of individuals. The MPPEP-SNP is A/P-hard
and this fact has justified the development of exact and
approximate solution approaches such as those described
in [1,19,22,26-28]. We explored the prospects for improv-
ing on the strategy of [1,2] using a novel problem
formulation and a series of additional constraints to more

precisely bound the solution space and accelerate implicit
enumeration of possible optimal phylogenies. We present
a formulation for the problem based on an adaptation of
[23]’s mixed integer formulation for the Steiner tree prob-
lem extended with a number of preprocessing techniques
and reduction rules to further decrease its size. We then
show that it is possible to exploit the high symmetry inher-
ent in most instances of the problem, through a series
of strengthening valid inequalities, to eliminate redun-
dant solutions and reduce the practical search space. We
demonstrate through a series of empirical tests on real and
artificial data that these novel insights into the symmetry
of the problem often leads to significant reductions in the
gap between the optimal solution and its non-integral lin-
ear programming bound relative to the prior art as well
as often substantially faster processing of moderately hard
problem instances. More generally, the work provides an
indication of the conditions under which such an optimal
enumeration approach is likely to be feasible, suggesting
that these strategies are usable for relatively large numbers
of taxa, although with stricter limits on numbers of vari-
able sites. The work thus provides methodology suitable
for provably optimal solution of some harder instances
that resist all prior approaches. Our results may pro-
vide also useful guidance for strategies and prospects of
similar optimization methods for other variants of phy-
logeny inference. In fact, if appropriately adapted, some
of the results we presented here (e.g., symmetry breaking
strategies) can be generalized with respect to other phy-
logenetic estimation criteria (e.g., the likelihood criterion)
and provide important computational benefits.
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