

A MIXED MODE BIST SCHEME BASED ON RESEEDING OF
FOLDING COUNTERS

Sybille Hellebrand

University of Innsbruck
Austria

Hua-Guo Liang*), Hans-Joachim Wunderlich
University of Stuttgart

Germany

Abstract
In this paper a new scheme for deterministic and

mixed mode scan-based BIST is presented. It relies on a
new type of test pattern generator which resembles a pro-
grammable Johnson counter and is called folding
counter. Both the theoretical background and practical
algorithms are presented to characterize a set of deter-
ministic test cubes by a reasonably small number of seeds
for a folding counter. Combined with classical ap-
proaches for test width compression and with pseudo-
random pattern generation these new techniques provide
an efficient and flexible solution for scan-based BIST.
Experimental results show that the proposed scheme
outperforms previously published approaches based on
the reseeding of LFSRs or Johnson counters.

1 Introduction

Serial or scan-based built-in self-test (BIST) offers an
excellent solution for the challenges of today’s integrated
circuit testing. The built-in capabilities of test pattern
generation and test response evaluation allow an efficient
test even for externally inaccessible components in com-
plex systems-on-a-chip (SOCs). The classical architecture
with an LFSR feeding pseudo-random patterns into the
scan path is easy to implement and minimizes both hard-
ware overhead and the impact on the system performance
[1]. To overcome the problem of random pattern resistant
faults a number of advanced techniques have been pro-
posed in the literature. These approaches range from test
point insertion to weighted random pattern and mixed
mode testing and offer different trade-offs between fault
coverage, hardware overhead, performance degradation
and test length.

Mixed mode schemes use a limited number of pseudo-
random patterns to eliminate the easy to detect faults and
deterministic patterns to cover the remaining random pat-
tern resistant faults [7, 9 - 11, 14, 16, 17]. The determi-
nistic patterns are either stored on chip in a compressed

*) Hua-Guo Liang is with Hefei University of Technology, China.

Currently he is a guest research fellow at the University of Stuttgart,
Germany.

format and expanded during BIST (“store and generate”)
or directly embedded into an LFSR sequence by "bit-
fixing" or "bit-flipping" techniques. It has been demon-
strated that bit-fixing and bit-flipping can provide high
quality test patterns at low hardware overhead [13, 16,
17]. However, the BIST architecture is extremely tailored
to the specific circuit, and a change in the test set requires
a resynthesis of the complete BIST hardware. For appli-
cations which demand a more flexible BIST architecture
the store and generate approaches provide an alternative
at comparable cost. Here, deterministic patterns (or
groups of patterns) are encoded as seeds of simple test
pattern generators as for example LFSRs, multiple poly-
nomial LFSRs, counters or twisted ring (Johnson)
counters [4, 9 - 12, 14].

In this paper we present a novel store and generate ar-
chitecture based on the reseeding of a new and simple
type of generator called folding counter. It works with a
dynamically changing, but still very regular, state transi-
tion function. The implementation for serial BIST resem-
bles a programmable Johnson counter and can easily be
extended to a generator which is able to switch between
pseudo-random pattern generation and the generation of
deterministic patterns from folding seeds. To minimize
the storage requirements the basic scheme is combined
with classical techniques for test width compression.

The rest of this paper is organized as follows. Section
2 introduces the new generator and develops the target
architecture for the presented work. The theoretical back-
ground for the characterization of deterministic test sets
by folding seeds is given in Section 3. Subsequently,
Section 4 describes the complete synthesis procedure for
the BIST hardware, and Section 5 reports on the experi-
mental results.

2 Folding counters and deterministic BIST

In contrast to commonly used generators a folding
counter works with a dynamically changing state transi-
tion function depending on both the state of the counter
and the “index” of the transition. It is defined as follows:

Starting from an initial state s ∈ {0, 1}n a sequence of
n + 1 states s = F(0, s), F(1, s), …, F(n, s) is produced,
such that the transition from F(i, s) to F(i+1, s) retains

the first i bits and inverts the remaining ones. A simple
example sequence is shown in Figure 1.

 state register index
 contents

 F(0, s) 0110 0
 F(1, s) 1001 1
 F(2, s) 1110 2
 F(3, s) 1101 3
 F(4, s) 1100 4

Figure 1: Sequence produced by a 4-bit folding counter.

Compared to classical generators the sequence pro-
duced from a single initial state (seed) is rather short, and
it is very unlikely that a complete set of deterministic
vectors can be embedded into a single folding counter
sequence. However, in general it is possible to find a rea-
sonably small number of seeds, such that the union of all
the resulting sequences covers a given deterministic test
set. This supports an efficient deterministic BIST, and in
particular for scan-based BIST the basic architecture is
very simple. As illustrated in Figure 2, in this case the
folding counter can be realized by a Johnson counter with
programmable feedback.

x1xn …

bit counter

folding
controller

folding seeds

index counter

scan path

comparator

MUT

Figure 2: Basic deterministic BIST scheme using a folding

counter.

To apply a folding sequence to the MUT a seed is
loaded into the shift register, and the index counter and
bit counter are initialized. While the first pattern is
loaded into the scan chain the Johnson counter serially
generates the next state of the folding counter. For each
bit the state of the index counter is compared to the state
of the bit counter which controls the loading of the scan
path. Since for the first pattern the index counter is zero,
the feedback function inverts all bits (in the general case
the first i bits remain unchanged according to the defini-

tion of the folding counter). As soon as the pattern is
completely loaded, it is applied to the MUT, the bit
counter is reset and the index counter is activated. This
procedure is repeated until the index counter has cycled
through all states and the next seed can be processed.

It should be noted that the bit counter is required any-
way for scan-based BIST and the additional hardware for
deterministic pattern generation merely consists of the
Johnson counter with programmable feedback and the
“folding controller” with index counter and comparator.
Despite its simple and regular structure, the basic archi-
tecture of Figure 2 has one serious drawback: the shift
register must have the same length as the scan chain,
which may be unacceptable for larger circuits. To circum-
vent this problem the technique of (pseudo) input reduc-
tion provides a good means [5, 6, 15]. As proposed in [6]
the circuit function is analyzed, and sets of “compatible”
and “inversely compatible” inputs are identified. Inputs
in each set can share a single signal in test mode without
sacrificing fault coverage. For deterministic BIST it is
then sufficient to remember the value of one test signal
for each set of inputs. To expand the patterns to their
original format during test application as simply as possi-
ble, we propose to implement a slightly modified scan
chain.

An analysis of the test set in Figure 3a shows that the
columns corresponding to inputs i1 and i4 are identical
and the column for i6 is the inverse of the column for i4.
Also the columns for i2 and i5 are identical. Therefore the
sets of compatible inputs are {i1, i4, i6}, {i2, i5} and {i3}.
The compressed test set consisting of only three columns
stores the complete test information, if the scan path is
implemented as shown in Figure 3b.

b) Scan structure

 i1 i2 i3 i4 i5 i6 i1 i2 i3
 1 0 0 1 0 0 1 0 0
 1 0 1 1 0 0 1 0 1
 1 1 0 1 1 0 1 1 0

original test set compressed
test set

a) Input reduction

i1

i4

i6

i3

1

scan-in scan-out

i5

i2

Figure 3: Test set compression by input reduction in scan-based

BIST.

However, the depicted scan structure is not suitable for
test response evaluation, as only the contents of one scan
element for each set of compatible inputs can be shifted
out. There are a number of well known solutions for this
problem:
1) The scan flip-flops may be appropriately distributed to

multiple scan chains as suggested in [6].
2) If a balanced design with multiple scan chains is not

possible, the contents of all scan cells for a set of com-
patible inputs may be collected by an EXOR-tree.

3) If the second alternative results in an unacceptable loss
of fault coverage, we propose the extended scan struc-
ture sketched in Figure 4. The scan flip-flops are able
to distinguish between a regular and a compressed
shift mode. The regular mode, where the scan chain
behaves as a conventional scan chain, can be used to
shift in uncompressed patterns and to shift out test
responses. In compressed shift mode the dotted con-
nections are active and compressed patterns are auto-
matically expanded without any additional control
logic. The proposed modifications have no impact on
the critical path in system mode and require only mod-
erate extra cost compared to a standard scan design.

1

i1 i2 i3

i5i4

i6

scan-in

scan-out

Figure 4: Scan design with regular and compressed shift mode.

Combining this technique with the architecture of Fig-
ure 2, the length of the Johnson counter and, accordingly,
the length of the folding seeds can be shortened consid-
erably. A further reduction of the storage amount is ob-
tained by extending the purely deterministic scheme to a
mixed mode scheme which uses pseudo-random patterns
for the easy to detect faults. The resulting architecture,
which is the target architecture for the remainder of this
paper, is shown in Figure 5.

The generator can switch between an LFSR for
pseudo-random pattern generation and the programmable
Johnson counter producing the folding counter sequences.
With some minor changes the length of the LFSR and the
Johnson counter can even be different. The crucial step in
synthesizing the architecture of Figure 5 for a particular
circuit is to identify a minimal number of seeds for the
folding counter, such that the resulting folding counter
sequences contain a width-compressed deterministic test
set for the hard faults.

x1xn …

folding seeds

scan path for
compressed test set

MUT

bit counter

folding
controller

M
U
X

0

1

linear feedback

pseudo-
random /
folding
patterns

comparator

index counter

Figure 5: Architecture for mixed mode BIST based on reseed-

ing of folding counters.

For the solution of this problem a more thorough
understanding of the nature of folding counters sequences
is required. Therefore the next section first provides the
necessary theoretical background before the complete
synthesis procedure and experimental results are pre-
sented in the subsequent sections.

3 Folding Counters – Theoretical Background

To generate deterministic test sets by a folding counter
it is crucial to have a criterion to decide whether two or
more patterns can be part of the same sequence. Further-
more, it must be possible to derive the appropriate seeds
for the folding counter. Both problems can be solved by
computationally simple procedures, which are motivated
and explained below by a more detailed analysis of the
simple example sequence of Figure 1 (see Figure 6).

 state index
register contents 0110 0
inversions 0000
register contents 1001 1
inversions 1111
register contents 1110 2
inversions 1222
register contents 1101 3
inversions 1233
register contents 1100 4
inversions 1234

Figure 6: Analysis of the example sequence of Figure 1.

For each state of the folding counter the contents of the
state register is shown as well as the number of inversions
of each bit position with respect to the seed. It may be
easily verified that the number of inversions is deter-

mined only by the bit position j and the index i of the
state. For 1 ≤ j ≤ n and 0 ≤ i ≤ n it can be computed as

(*)

 <

=
elsei

ijifj
ijinv),(.

This implies that the seed can easily be reconstructed
once the index of a state is known. Although it is not pos-
sible to determine the index of a state only from the regis-
ter contents, the bitwise EXOR of two state vectors re-
flects the index constellation of the two vectors. Consider
for example the three state vectors x1 = (1,0,0,1), x2 =
(1,1,1,0) and y = (1,1,0,1). As illustrated in Figure 7 the
bitwise EXOR-operations x1 ⊕ y and x2 ⊕ y provide vec-
tors z1 and z2 consisting both of the following parts: a
sequence of zeros in the first bit positions, a sequence of
zeros or ones in the last bit positions, and a middle part
in the case of z1.

General format of the result:

1 p -1 p i -1 i n

0 0 1 0 0 1 1

1 p -1 p i -1 i n

0 0 1 0 1 0 0

1 0 0 1 1 1 0 1

1 1 1 0 1 1 0 1 0 0 1 1

0 1 0 0=

=

x1 y

x2 y

z1

z2

Figure 7: Comparing state vectors within a folding sequence.

In general, it can be observed that for a state with in-
dex i the last n-i+1 bits either coincide with the last n-i+1
bits of all states with lower index or are exactly the logic
complement of them. Comparing the lower bit positions
to states of lower index some of the first bits may coincide
and the remaining bit positions have an alternating odd
and even difference in the number of inversions. This
leads to the general format of the result when a state of
lower index is compared to a state of higher index. Then
the bit position p-1 denoting the end of the all zero se-
quence exactly corresponds to the index of the first vec-
tor, whereas the position i identifying the tail exactly
corresponds to index of the second state vector.

Definition 1 (folding relation): Two vectors x, y ∈
{0,1}n fulfill the folding relation x F y, if and only if the
bitwise EXOR operation of both vectors results in a vec-
tor z = x ⊕ y of the form

(z1, …, zp-1, zp, …, zi-1, zi, …, zn),
where 1 ≤ i ≤ n, 1 ≤ p < i and
i) (z1, …, zp-1) = (0, …, 0),
ii) (zi, …, zn) = (0, …, 0) or (zi, …, zn) = (1, …, 1), and

iii) (zp, …, zi-1) is an alternating sequence of zeros and
ones with zp-1 ≠ zp and zi-1 ≠ zi.

The bit position i is called the folding index of x and y.
The following theorem shows that the folding index

exactly corresponds to the maximal index of x and y in a
folding counter sequence.

Theorem 1: Let x, y ∈ {0,1}n be two vectors with x F
y and folding index i. With ¬k yj denoting the operation
of inverting yj k times the seed

s = (s1, …, sn) = (¬inv(1, i) y1, …, ¬ inv(n, i) yn),
provides a folding counter sequence such that the vectors
x and y appear as states of index p-1 and i, respectively.

The proof of Theorem 1 is given in the appendix. As
an immediate consequence Theorem 2 is obtained.

Theorem 2: Let X ⊂ {0,1}n be a set of vectors, and let
x* ∈ X be a vector with x F x* for all x ∈ X \ {x*} and a
single folding index i. Then there exists a seed s ∈
{0,1}n, such that the folding counter sequence starting
from s contains the complete set X.

Example: Consider the set X = {x1 = (0,0,1,1), x2 =
(1,0,0,0), x3 = (1,0,0,1)}. The vector x* = x3 = (1,0,0,1)
yields x* ⊕ x1 = (1,0,1,0) and x* ⊕ x2 = (0,0,0,1). There-
fore x* is in folding relation with x1 and x2, and the fold-
ing index is 4 in both cases. According to Theorem 1 the
index of x1 is 0, and the index of x2 is 3. Therefore
(0,0,1,1) is a suitable seed. The complete folding counter
sequence starting from (0,0,1,1) is (0,0,1,1), (1,1,0,0),
(1,0,1,1), (1,0,0,0), (1,0,0,1).

4 The Complete Synthesis Procedure

The core of the synthesis procedure is an algorithm to
determine the minimal number of folding seeds, such that
the resulting folding counter sequences cover a given test
set T. As a consequence of Theorem 2 a „folding graph“
GF(T) can be associated with T as shown in Figure 8.

t1 t2

t3t4

t5

4

2

2

4

1

3

4

Folding Graph GF(T)Test set T

 i1 i2 i3 i4

t1 0 0 1 1
t2 0 1 1 0
t3 1 0 0 0
t4 1 0 0 1
t5 1 1 1 0

Figure 8: Deterministic test set and folding graph.

The vertices of the graph correspond to test vectors,
and there is an edge between two vertices, if and only if
the vectors are in folding relation. The edges are labeled
with the respective folding indices. The set of vertices
must be covered by a minimal number of subsets, such

that in each subset C there is a vertex vC* which is con-
nected to all other vertices in C by edges carrying a
unique label. For the example of Figure 8 it can be easily
verified that { }431 ,, tttC = and { }542 ,, tttD = form a
minimal cover with the desired properties. To solve the
covering problem in the general case a heuristic is used.
As long as the set of vertices is not completely covered by
suitable subsets, for each of the uncovered vertices a
maximum set of vertices with the required properties is
determined. The best set is selected as new subset in the
cover. Finally for all subsets the corresponding seeds are
constructed according to Theorem 1.

So far only completely specified test sets T have been
considered for the sake of clarity. However, to fully ex-
ploit the available optimization potential, the synthesis
procedure must be able to deal with test cubes efficiently.
In this case a folding relation may hold only if certain
don’t cares are fixed appropriately. Also two cubes do not
uniquely define a folding index. Instead, a set of possible
folding indices can be determined for each pair of cubes.

Consider for example the cubes x = (1,1,-,-,0) and y =
 (-,1,-1,1). Bitwise EXOR yields a cube z = (-,0,-,-,1). To
guarantee a folding relation between x and y the first bit
of z must be zero, therefore the first bit of y must be fixed
to one. The resulting folding index may be 3, 4 or 5 de-
pending on the way the remaining don’t cares are fixed.

The current version of the proposed synthesis proce-
dure does not attempt to find an optimal fixing of un-
specified bits. Instead, a simple iterative procedure is
used to build the folding graph. The main algorithm de-
scribed before then operates on this graph. Whenever a
new subset is selected with a specific folding index, the
corresponding bits are fixed to guarantee the consistency
of the procedure. With these extensions the complete syn-
thesis procedure for the proposed BIST architecture basi-
cally consists of the following three steps:
1) The feedback polynomial for the LFSR and the desired

number N of random patterns are selected. The first N
patterns of the LFSR sequence are fault simulated to
determine the set Fhard of random pattern resistant
faults [8, 11].

2) A set of deterministic test cubes nT },1,0{ −⊂ is com-
puted for Fhard, and input reduction is performed ap-
plying the algorithms proposed in [6]. As a result a
width compressed test set kT },1,0{' −⊂ is obtained.

3) The algorithm described above is applied to solve the
folding cover problem for T'.
Since the overall hardware overhead for the proposed

BIST scheme may depend on both the choice of the LFSR
and the number of random patterns, the complete proce-
dure may be iterated with a different choice of these pa-
rameters.

5 Experimental Results
A series of experiments has been performed with the

ISCAS-85 and the combinational parts of the ISCAS-89
circuits [2, 3]. Only circuits which still had undetected
faults after 10000 random patterns were analyzed in fur-
ther detail. To generate the deterministic test cubes for
the hard faults a proprietary ATPG tool was used with the
option to minimize the number of specified bits.

Table 1 shows the results for the advanced scheme of
Figure 5. Columns one and two contain the names of the
circuits and the number of pseudo-primary inputs. The
next two columns list the lengths of the LFSRs used in
the advanced architecture as well as the number of inputs
remaining after input reduction. Columns five and six
contain the number of folding seeds and the total number
of bits to be stored (“ROM(A)”). To estimate the impact
of input reduction the last column shows the ratio of the
storage requirements for the advanced scheme and for the
basic scheme of Figure 2 (“ROM(B)”). It can be observed
that, particularly for the larger circuits with relatively
long scan chains, input reduction results in an enormous
reduction of the overall storage amount. For the largest
two circuits, s38417 and s38584, the number of bits to be
stored for the advanced scheme is only 5 % and 2 %,
respectively.

Advanced Scheme

with Input Reduction
Circuit PPI

LFSR Circuit Seeds ROM(A)
ROM(B)

ROM(A)

s420 34 13 12 11 132 0,65

s641 54 11 10 5 50 0,46

s713 54 11 9 4 36 0,33

s838 66 28 28 25 700 0,42

s953 45 13 6 2 12 0,13

s1196 32 13 5 2 10 0,01

s1238 32 13 8 3 24 0,03

s5378 214 13 11 12 132 0,06

s9234 247 26 33 70 2310 0,20

s13207 700 13 13 19 247 0,01

s15850 611 27 27 89 2403 0,13

s38417 1664 20 38 179 6802 0,05

s38584 1464 21 20 33 660 0,02

c2670 233 26 40 27 1080 0,21

c7552 207 18 42 64 2688 0,30

Table 1: Comparison of basic and advanced schemes.

These results also outperform the results achieved by
competitive approaches relying on the reseeding of multi-
ple-polynomial LFSRs and of “twisted ring” (Johnson)

counters [4, 10]. For our comparison we referred to pub-
lished results for a mixed-mode BIST using 10000
pseudo-random patterns to eliminate the easy to detect
faults. In all cases the proposed scheme had the lowest
number of bits to be stored. The reduction of storage
amount with respect to both previously published ap-
proaches is summarized in Table 2, which lists the ratios
of the storage requirements for the respective schemes.

Circuit

ROM(LFSR)

g)ROM(Foldin
ROM(TRC)

g)ROM(Foldin

s420 0,53 0,47

s641 0,27 0,10

s713 0,20 0,08

s838 0,43 0,36

s953 0,09 0,04

s1196 0,04 0,03

s1238 0,10 0,08

s5378 0,18 0,62

s9234 0,33 -

s13207 0,07 0,01

s15850 0,37 -

s38417 0,28 -

s38584 0,19 -

c2670 0,32 0,07

c7552 0,51 0,12

Table 2: Storage amount for the proposed scheme as percent-
age of the storage requirements for [10] and [4].

The proposed scheme only requires between 7% and
53 % of the storage for reseeding of multiple-polynomial
LFSRs and between 3 % and 67 % of the storage amount
for the method based on twisted ring counters (TRC).

It should be noted that the method based on twisted
ring counters published in [4] can also be combined with
width compression techniques. Unfortunately, results for
this extension were only available for a pure deterministic
test without an initial pseudo-random pattern generation
and only for few of the hard circuits. To allow a fair com-
parison we reran the experiments for the proposed
scheme also without initial pseudo-random pattern gen-
eration (see Table 3). The results show that for the small
circuits the method based on twisted ring counters is
superior. This is largely due to the fact that the results
presented in [CHAK99] are obtained using a more
sophisticated technique of width compression (as can be
seen by comparing the widths listed in columns two and
five). However, for the larger circuits the proposed
scheme outperforms the twisted ring approach and also

provides good results for the circuits which could not be
processed by the latter.

TRC with width

compression
Folding Circuit

Width Seeds ROM Width Seeds ROM

s420 16 8 128 21 28 588

s641 8 5 40 18 16 288

s713 9 5 45 18 15 270

s838 9 5 45 17 29 493

s953 14 18 252 19 57 1083

s1196 15 44 660 19 62 1178

s1238 15 43 645 37 50 1850

s5378 - - - 30 106 3180

s9234 - - - 43 194 8342

s13207 27 177 4779 39 89 3471

s15850 32 314 10048 46 163 7498

s38417 - - - 71 500 35500

s38584 - - - 41 178 7298

c2670 33 193 6369 55 90 4950

c7552 64 649 41536 73 434 31682

Table 3: Comparing the proposed technique and the technique
based on twisted ring counters (TRC) combined with
test width compaction (results without pseudo-
random pattern generation).

6 Conclusions

A new and efficient scheme for scan-based BIST has
been presented. The core of this scheme is a new type of
generator called folding counter, which is enhanced with
features for pseudo-random pattern generation. With the
scan design being adapted to process width compressed
test patterns the proposed target architecture can produce
pseudo-random patterns for the easy to detect faults and
characterize width compressed deterministic test sets for
the hard faults as a small number of seeds for the folding
counter. An experimental analysis shows that the storage
amount for the seeds is considerably lower than for com-
petitive approaches. Furthermore, the simple and regular
structure of the folding counter allows an efficient hard-
ware implementation, such that the overall scheme pro-
vides a flexible low cost solution for high quality BIST.

7 References

1 M. Abramovici, M. Breuer, A. Friedman: Digital Systems
Testing and Testable Design; New York: Computer Science
Press (W. H. Freeman and Co.), 1990

2 F. Brglez et al.: Accelerated ATPG and fault grading via
testability analysis; Proc. IEEE Int. Symp. on Circuits and
Systems, Kyoto, 1985

3 F. Brglez, D. Bryan and K. Kozminski: Combinational Pro-
files of Sequential Benchmark Circuits; Proc. IEEE Int.
Symp. on Circuits and Systems, 1989, pp. 1929-1934

4 K. Chakrabarty, B. T. Murray, and V. Iyengar: Built-In Test
Pattern Generation for High-Performance Circuits Using
Twisted-Ring Counters; Proc. 17th IEEE VLSI Test Symp.,
Dana Point, CA, 1999, pp. 22-27

5 C.-A. Chen, S. K. Gupta: A Methodology to Design Effi-
cient BIST Test Pattern Generators; Proc. IEEE Int. Test
Conf., Washington, DC, 1995, pp. 814-823

6 C.-A. Chen, S. K. Gupta: Efficient BIST TPG Design and
Test Set Compaction via Input Reduction; IEEE Trans. on
CAD, Vol. 17, No. 8, August 1998, pp. 692-705

7 C. Dufaza, G. Cambon: LFSR based Deterministic and
Pseudo-Random Test Pattern Generator Structures; Proc.
Eur. Test Conf., Munich, 1991, pp. 27-34

8 C. Fagot, O. Gascuel, P. Girard, C. Landrault: On calculat-
ing efficient LFSR seeds for built-in self test; Proc. IEEE
Eur. Test Workshop 1999 (ETW’99), Constance, Germany,
1999, pp. 7-14

9 S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and
B. Courtois: Built-in Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers; IEEE Trans. on Comp., Vol. 44, No.2, February
1995, pp. 223-233

10 S. Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunderlich: Pat-
tern Generation for a Deterministic BIST Scheme; Proc.
IEEE/ACM Int. Conf. on CAD-95, San Jose, CA, November
1995, pp. 88-94

11 S. Hellebrand, H.-J. Wunderlich, A. Hertwig: Mixed-Mode
BIST Using Embedded Processors; Journal of Electronic
Testing Theory and Applications (JETTA), Vol. 12, Nos.
1/2, February/April 1998, pp. 127-138

12 D. Kagaris, S. Tragoudas, A. Majumdar: On the Use of
Counters for Reproducing Deterministic Test Sets; IEEE
Trans. on Comp., Vol. 45, No. 12, Dec. 1996, pp.1405-1419

13 G. Kiefer, H.-J. Wunderlich: Using BIST Control for Pat-
tern Generation; Proc. IEEE Int. Test Conf., Washington,
DC, November 1997, pp. 347-355

14 B. Koenemann: LFSR-Coded Test Patterns for Scan De-
signs; Proc. Eur. Test Conf., Munich 1991, pp. 237-242

15 E. J. McCluskey: Verification Testing - A Pseudoexhaustive
Test Technique; IEEE Trans. on Comp., Vol. C-33, No.6,
June 1984, pp. 541 - 546

16 N. A. Touba and E. J. McCluskey: Altering a Pseudo-Ran-
dom Bit Sequence for Scan-Based BIST; Proc. IEEE Int.
Test Conf., Washington, DC, 1996, pp. 167-175

17 H.-J. Wunderlich, G. Kiefer: Bit-Flipping BIST; Proc.
ACM/IEEE Int. Conf. on CAD-96 (ICCAD96), San Jose,
CA, November 1996, pp. 337-343

Appendix: Proof of Theorem 1

Since x F y with folding index i, the vector z = x ⊕ y is
of the form (z1, …, zp-1, zp, …, zi-1, zi, …, zn) with the
properties listed in Definition 1. Consequently (z1, …,
zp-1) = (0, …, 0) and zp-1 ≠ zp hold, and therefore zp = 1 is
true. If the difference i – p is odd, then the tail is given by
(zi, …, zn) = (0, …, 0), else (zi, …, zn) = (1, …, 1) holds.

Obviously
s = (s1, …, sn) = (¬inv(1, i) y1, …, ¬ inv(n, i) yn),

implies
y = (¬inv(1, i) s1, …, ¬ inv(n, i) sn)

and y appears as state of index i in a folding counter
sequence starting from s.

To show that that p-1 indicates the index of x in the
sequence define

x* = (¬inv(1, p-1) s1, …, ¬ inv(n, p-1) sn).
Then x* appears as state of index p-1 in the folding
counter sequence and the bitwise EXOR operation z* =
x* ⊕ y yields a vector of the form (z1*, …, zp-1*, zp*, …,
zi-1*, zi*, …, zn*). Since inv(j, p-1) = inv(j, i) for j ≤ p-1 <
i, the EXOR operation
 zj* = xj* ⊕ yj = ¬inv(j, p-1) sj ⊕ ¬inv(j, i) sj
provides 0 for j ≤ p-1 < i. For p ≤ j < i the value of
inv(j, p-1) is constant while inv(j, i) increases with j.
Therefore xj* ⊕ yj produces an alternating sequence of
zeros and ones. For j ≥ i both inv(j, p-1) and inv(j, i) are
constant, and we have (zi*, …, zn*) = (0, …, 0), if the
difference i – p is odd, else (zi*, …, zn*) = (1, …, 1).
Thus z = z* and x = x*. q.e.d.

