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We present a mixed-signal implementation of a re-configurable polychronous spiking

neural network capable of storing and recalling spatio-temporal patterns. The proposed

neural network contains one neuron array and one axon array. Spike Timing Dependent

Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our

mixed-signal implementation, the neurons and axons have been implemented as both

analog and digital circuits. The system thus consists of one FPGA, containing the

digital neuron array and the digital axon array, and one analog IC containing the analog

neuron array and the analog axon array. The system can be easily configured to use

different combinations of each. We present and discuss the experimental results of all

combinations of the analog and digital axon arrays and the analog and digital neuron arrays.

The test results show that the proposed neural network is capable of successfully recalling

more than 85% of stored patterns using both analog and digital circuits.

Keywords: mixed-signal implementation, polychronous spiking neural network, analog implementation,

multiplexed neuron array, neuromorphic engineering

INTRODUCTION

Increasing evidence has been found that the mammalian neural

system uses spatio-temporal coding in at least some of its opera-

tions (Van Rullen and Thorpe, 2001; Masuda and Aihara, 2003),

largely due to this coding’s potential to reduce energy consump-

tion (Levy and Baxter, 1996). An artificial network that can learn

and recall spatial and temporally encoded spike information will

have significant benefits in terms of modeling these biological

systems.

A polychronous spiking neural network is a candidate

for implementing a memory for spatio-temporal patterns.

Polychronization is the process in which spikes travel down

axons with specific delays to arrive at a common target neuron

simultaneously and cause it to fire, despite the source neurons

firing asynchronously (Izhikevich, 2006). This time-locked rela-

tion between the firing of different neurons is the key feature of

spatio-temporal patterns. Neural networks based on this prin-

ciple are referred to as “polychronous” neural networks and are

capable of storing and recalling quite complicate spatio-temporal

patterns. Figure 1 shows an example of a spatio-temporal pattern

involving five neurons. The threshold voltage of each neuron is

set so that it will fire if two pre-synaptic spikes arrive simulta-

neously. Whenever a neuron fires, its spike is transmitted to all

connected neurons via its axonal connections, each of which has

its own independent delay. These spikes will then generate post-

synaptic currents at the connected neurons. The example pattern

starts when neuron 1 fires at time 0 and neuron 5 fires at time T1.

The spikes from both neurons will arrive at neuron 3 at time

T1+T2, and together they will induce neuron 3 to fire at time

T1+T2. In the same manner, the spikes from neuron 5 and neu-

ron 3 arrive at neuron 2 simultaneously at time T1+T2+T3 and

will cause neuron 2 to fire. This process will continue as long

as at least two spikes arrive simultaneously at a neuron in the

network.

Izhikevich (2006) calls these spatio-temporal patterns groups,

and concludes that “spiking networks with delays have more

groups than neurons” after presenting a network developed

based on this polychronous principle. The groups in Izhikevich’s

network emerge in a randomly connected network of spik-

ing neurons with axonal delays, following persistent stimulation

and Spike Timing Dependent Plasticity (STDP) (Gerstner et al.,

1996). However, one of the open problems of the theoretical

model is to find patterns (groups): “Our algorithm for finding

polychronous groups considers various triplets firing with vari-

ous spiking patterns and determines the groups that are initiated

by the patterns. Because of the combinatorial explosion, it is

extremely inefficient” (Izhikevich, 2006). The method used by

Izhikevich will take months of simulation time just to find these

spatio-temporal patterns. Moreover, the polychronous groups

emerge randomly and the same stimulus is not likely to result

in the same polychronous groups every time. This makes the

Izhikevich polychronous network unsuitable for practical appli-

cations such as pattern recognition. Finally this model is not

efficient for hardware implementations, which we will discuss in

detail in section Discussion.

To solve the problems presented above, we have proposed a

digital implementation of a reconfigurable polychronous spiking

neural network that can, in real time, learn specific patterns, and

retrieve them (Wang et al., 2013b). Furthermore, our proposed

polychronous neural network can use all the available hardware

resources to store patterns. Test results show that the proposed

neural network is capable of successfully recalling more than

95% of all spikes for 96% of the stored patterns. Unlike biolog-

ical neural networks, the digital implementation is totally free
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FIGURE 1 | Example of a spatio-temporal pattern. The neurons fire

asynchronously while their spikes arrive at the destination neurons

synchronously, after traveling along axons with appropriate delays. This

time-locked relation is the key feature of the spatio-temporal patterns.

of mismatch and noise. Therefore, we also designed an analog

implementation, which is naturally subject to process variation

and device mismatch, and which more closely emulates the analog

computation in biological neurons.

Mixed-signal implementations of spiking neural networks

benefit from many of the advantages of both analog and digital

implementations. Analog implementations can realize biological

behaviors of neurons in a very efficient manner, whereas digital

implementations can provide the re-configurability needed for

rapid prototyping of spiking neural networks. As a result, mixed-

signal implementations offer an attractive neural network and

many designs have been proposed for such systems (Goldberg

et al., 2001; Gao and Hammerstrom, 2007; Mirhassani et al., 2007;

Vogelstein et al., 2007; Harkin et al., 2008, 2009; Schemmel et al.,

2008; Saighi et al., 2010; Yu and Cauwenberghs, 2010; Zaveri and

Hammerstrom, 2011; Minkovich et al., 2012).

These proposed systems tend to employ programmable devices

such as FPGAs and ASICs to route the spikes between analog com-

putation modules. Some programmable platforms using floating

gates (Basu et al., 2010; Brink et al., 2013). Furthermore, most

of these systems use DACs to configure the analog modules to

emulate different biological behaviors. Implementations of spik-

ing neural networks with time-multiplexed analog circuits are

described in Mirhassani et al. (2007), Yu and Cauwenberghs

(2010), Minkovich et al. (2012) and a version that uses nanotech-

nology is described in Gao and Hammerstrom (2007), Zaveri and

Hammerstrom (2011).

Here, we report on a mixed-signal platform, which com-

bines both our analog and digital implementations and provides

test results. Section Proposed Polychronous Network gives an

overview of the proposed polychronous neural network. Section

Design Choice presents the design choices that have been made

for the neuromorphic implementation of the proposed poly-

chronous network. The analog building blocks of the poly-

chronous network (i.e., the neurons, axons, and other analog

components) are detailed in section Analogue Implementation.

Section Mixed-signal Implementation presents the proposed

mixed-signal implementation, which includes the multiplexed

analog neuron array and the interface between the asynchronous

communication of the analog array and the (synchronous) FPGA.

Measured results and a comparison to the fully digital imple-

mentation are given in section Results. In Section Discussion we

discuss the performance of the different implementations and the

key elements that influence the capacity and scaling of electronic

realizations of polychronous networks and we conclude in section

Conclusions.

MATERIALS AND METHODS

PROPOSED POLYCHRONOUS NETWORK

Training and recalling patterns

Two procedures are needed to use our proposed polychronous

network to memorize and recall spatio-temporal patterns. The

first is a training procedure in which the connection delay val-

ues of the axon paths between neurons are configured in order

to meet the required timing relations of a given pattern. The sec-

ond is a recall procedure, needed to retrieve a pattern that has

been stored in the neural network through training. A pattern

can be recalled by presenting the first few spikes of the pattern

to the network, after which the network will complete the pat-

tern if it is recognized. For example, to recall the example pattern

shown above, neuron 1 needs to fire at time 0 and neuron 5

needs to fire at time T1. Together they will cause neuron 3 to

fire and the remainder of the pattern will be induced by the net-

work. The network is also capable of recalling parts of patterns

that start somewhere in the middle, e.g., neuron 2 firing at time

T1+T2+T3 and neuron 4 firing at time T1+T2+T3+T4 will

retrieve the remainder of the example pattern.

The goal of the training procedure is to assign appropriate con-

nection delays to axons in the polychronous neural network so

that it is able to recall a specific pattern. We propose two mech-

anisms, which are delay programming and delay adaptation, to

implement this function. Delay programming relies on a connec-

tion storing the delay value between a spike from its input neuron

and a spike from its output neuron when both are induced to fire

by some external training signal. It is not a biologically plausi-

ble method, but it is efficient in training and reduces testing time

in scenarios where the result will not be affected by the training

method. We therefore commonly use it to initialize a network.

Inspired by STDP, we developed a delay adaptation method,

Spike Timing Dependent Delay Plasticity (STDDP), to fine-tune

the delays during the training phase. We decrease the delay value

of one axon by a small amount if the destination neuron fires

(generating the post-synaptic spike) before the pre-synaptic spike

arrives (at the synapse of the destination neuron), and we increase

the delay in the opposite case. This procedure is repeated until the

pre-synaptic spike arrives at the synapse simultaneously with the

post-synaptic spike being generated. In the training phase, delay

adaptation causes the connections to attain the desired delays

through repeated presentation of the desired spatio-temporal pat-

terns. The delay programming method can be regarded as a special

case of the delay adaptation method in which the delay adaption

is completed in just a single step and the delay is never altered

subsequently. With the delay adaptation method, every time a pat-

tern is recalled the delay values in the pattern will be updated,
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allowing the learned delays to be modified over time. Hardware

implementations of non-polychronous networks that also adapt

axonal delays can be found in (Hussain et al., 2012, in press).

Neural network structure

The structure of the proposed neural network is shown in

Figure 2. It contains two functional parts: a “neuron array”

and an “axon array.” The neurons and the axons communicate

with each other via Address-Event Representation (AER) buses

(Boahen, 2000). Each neuron in the neuron array is identical in

structure and has a unique AER address. The axon modules in

the axon array are also identical in structure, and have both a

unique physical address (their position in the array) and config-

urable input and output addresses, to place an axon between two

neurons. The axon modules generate pre-synaptic spikes, which

are received by the neurons. The neurons will then generate post-

synaptic spikes if more than a certain number of pre-synaptic

spikes arrive simultaneously. To decrease the likelihood of cross-

talk between patterns, i.e., that a coincidence detecting neuron

would be set off by a random coincidence, we used coincidence

detectors with four inputs and a threshold of three spikes (Wang

et al., 2013b).

The post-synaptic spikes are sent to the axon modules in the

axon array. The axon array propagates these post-synaptic spikes

with axonal-specific delay values and generates pre-synaptic

spikes at the end of the axons. In the proposed neural network,

the communication between any two neurons must be conducted

via the axon modules in order to implement the polychronous

network. This axon array, with reconfigurable input and output

addresses, is capable of achieving much higher resource utiliza-

tion than the method we have used previously (Wang et al.,

2011), which generated spatio-temporal patterns based on fixed

connectivity between neurons. That approach always resulted

in networks where some axons remained unused. Our current

approach is to generate delay paths de novo, so that only connec-

tions that actually appear in the training patterns will be created,

by configuring the appropriate input and output addresses for

each axon. Additionally we configured the system such that there

FIGURE 2 | Structure of the proposed polychronous neural network.

The neuron array generates post-synaptic spikes and then sends them to

the axon array, which propagates these post-synaptic spikes, with

programmable axonal delays, and generates the pre-synaptic spikes at the

end of the axons. These pre-synaptic spikes are sent to the neuron array to

cause the neurons to fire. The connectivity and delay of all the axons in the

axon array are configurable.

can be any number of axonal delay paths between any two neu-

rons in the network. In other words, several axons can have

identical input and output addresses, placing them between the

same two neurons. They would still be able to have different delay

values, so that a spike originating from the input neuron would

arrive at the output neuron multiple times after different delays,

emulating the case where a neuron makes multiple synapses with

another neuron.

The axon module (see Figure 3) has five address registers,

one ramp generator, and four identical axonal delay paths. The

address registers are used to store the input address and the four

output addresses for the axonal delay paths. To place one axon

module between neurons, we need to configure its address reg-

isters. At the beginning of the training, axon module[0] (see

Figure 2) is enabled and all the other axon modules are disabled.

When the first post-synaptic spike in a training pattern arrives,

axon module[0] will latch the address of this spike as its input

address and enable axon module[1]. The output addresses will

be configured after the input address is configured. As there are

four output addresses, one for each of the destination neurons, it

will take four iterations for one axon module to finish the con-

figuration of its output addresses (using the addresses of the next

four sequential post-synaptic spikes in the training pattern after

its input address is configured).

FIGURE 3 | Structure of the axon module. The axon module receives

post-synaptic spikes generated by the neuron in the neuron array via the

AER post-synaptic bus. The axon module propagates these spikes with

axonal-specific programmable delays and generates pre-synaptic spikes at

the end of the axons. The address registers are used to store the input

address and the four output addresses for the axonal delay paths.
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Delay programming is carried out in the same way as the

address configuration. When the first post-synaptic spike arrives

at axon module[0], it will start a ramp generator, which will

send its value (ramp_out) to the four axonal delay paths. The

delay of each axonal delay path is programmed when the output

addresses are being configured (i.e., when the next four sequen-

tial post-synaptic spikes from the training pattern arrive). After

delay programming, when a post-synaptic spike arrives and its

address matches the input address of one axon module, it will

start the ramp generator again. The axonal delay path will com-

pare the output of the ramp generator with the programmed

delay. A pre-synaptic spike will be generated when the output

of the ramp generator exceeds the programmed delay with an

address as stored in the output address register. The delays can

also be configured using delay adaptation rather than delay pro-

gramming. In this case the axonal delay is increased or decreased

based on the delay between pre-synaptic spike and post-synaptic

spike by using one of the three strategies: exact correction of

the delay error in one step, correction of the error by a fixed

amount each time, or correction by an amount proportional to

the error. We have implemented all three strategies in the digital

axon module. The first method is identical to just using the delay

programming method. The second method, which uses a small

fixed step, is very slow and produces similar results to the third

method with a coefficient of 0.5. The digital axon presented here

uses the third strategy. Slightly differently, the delay of the ana-

log axon is programmed in an initial phase followed by a number

of iterations of delay adaptation with a fixed update step, which

was the simplest method to implement. An analog implementa-

tion that implements all three strategies would be too large for

practical implementation on silicon.

DESIGN CHOICE

Topology

Figure 4 shows the topology of the proposed mixed-signal plat-

form. It consists of one FPGA and one analog chip containing

an analog neuron array and an analog axon array. The FPGA

contains the digital axon array, the digital neuron array, a pat-

tern generator and checker module for training and testing, and a

router. The function of the router is to remap the addresses of the

spikes between the digital implementation and the analog imple-

mentation; but in practice the router also needs to synchronize the

spikes from the analog circuits before it can remap the addresses

for these spikes. This is due to the analog circuits operating asyn-

chronously and therefore without a clock, whereas the router is a

fully digital design, which does require a clock. The spikes from

the analog circuit therefore have to be synchronized to the clock

domain in which the router works. We will present the design

of an interface circuit for synchronization, followed by a circuit

to implement the address remapping in section Synchronization

Interface Circuit.

The system contains two types of implementations for the

axon array and two for the neuron array, resulting in four poten-

tial combinations, which are presented below:

1. A digital axon array and a digital neuron array: This is simply

the default FPGA implementation.

FIGURE 4 | Topology of the mixed-signal platform. The FPGA contains

the digital axon and neuron array, a router to control the destinations of

spikes on the bus, and a pattern generator and checker for testing

purposes. A separate IC contains the analog implementations of the axon

and neuron arrays.

2. Digital axon array and analog neuron array: In this configu-

ration, the router is required to re-map the addresses of the

spikes transmitted between the analog neuron array and the

digital axon array.

3. Analog axon array and digital neuron array: In this configura-

tion, the router is also required to re-map the addresses of the

spikes transmitted between the digital neuron array and the

analog neuron array.

4. Analog axon array and analog neuron array: Despite having

only analog implementations, the router is still required to

transmit spikes between the analog axon array and the analog

neuron array, as the addresses still require remapping. This is

done to multiplex the analog neurons, so that inactive neu-

rons in the network are not using hardware resources. This

increases the size of the analog neuron array significantly. We

will present the details of this approach in section Mixed-signal

Implementation.

The neurons in the neuron array work as coincidence detectors

that detect how many pre-synaptic spikes have arrived simulta-

neously. The FPGA implementation of these neurons uses four

timers and one comparator (see Wang et al., 2013b). The ana-

log version of these neurons is implemented using simple Leaky

Integrate and Fire (LIF) neurons, which will be described in detail

in section Analog Neuron Array. Since no complicated biological

behaviors, such as spike rate adaptation or bursting, are required

for the neurons in a polychronous network, we chose to imple-

ment LIF neurons, instead of more complex neuron models, e.g.,

the Izhikevich neuron model (Izhikevich, 2003) and the Mihalas-

Niebur neuron model (Mihala and Niebur, 2009), to keep the size

of the neuron circuit to a minimum.

For the axon module, the FPGA implementation uses a

counter to implement the ramp generator, and registers to store
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the delay values. In the analog implementation, the ramp gen-

erator is implemented with a circuit that starts charging a

MOS capacitor after receiving a spike on the AER bus. The

axonal delay is generated by comparing a programmable volt-

age, stored on a capacitor, with the output signal of the ramp

generator. The design and implementation of the ramp gen-

erator and the delay path can be found in (Wang et al.,

2013a).

AER bus

There are two different AER buses in the proposed neural net-

work: the AER post-synaptic bus and the AER pre-synaptic bus.

The first is used to transmit post-synaptic spikes generated by the

neurons to the axon modules. The second is used to transmit pre-

synaptic spikes generated by the axon modules to the neurons

(see Figure 3). The AER bus and protocol used in this system dif-

fers slightly from the standard AER bus and protocol (Boahen,

2000). We do not use handshaking, so we have omitted the request

and acknowledge signals. Instead we use “active” lines to tell the

receiver (neurons or axon modules) that a spike has been placed

on the bus. Each neuron receives input from four neurons via

four axons in our network. The pre-synaptic bus therefore uses

four active lines, one for each synapse of the neuron. A further

difference in our AER implementation is that there is no arbiter

to deal with collisions when two addresses are placed on the bus

simultaneously. We will address this issue in detail in section

Discussion.

In our digital implementation, a single minimum-width

binary address is used to reduce hardware costs, as the wiring

for the bus will entail more resources than the implementation of

the encoders/decoders in large scale FPGA designs (Harkin et al.,

2008). This structure, however, doesn’t satisfy our analog imple-

mentation, in which a full encoder/decoder will cost more area

than the analog neuron itself in a 0.6 µm technology (typically

each bit needs one XOR gate with 16 transistors in a full decoder).

The AER buses in the analog neuron array use active lines and

a 3/8-bit (three out of eight) address for which the encoding

and decoding can be efficiently implemented in aVLSI, as will be

shown in section Analog Neuron Array. The number of different

addresses, C, for this code are given by the binomial coefficient:

CN
M =

M!

N!(M − N)!
(1)

where M is the width of the bus and N is the number of bits

that are HIGH in each address. In our implementation, M and

N are set to 8 and 3, respectively, so that 56 addresses exist, which

suffices for the size of our implementation. Both pre- and post-

synaptic buses use this 3/8 bit code. The post-synaptic bus uses

one active line in addition to the address to indicate an address

has been placed on the bus, while the pre-synaptic bus uses four

active lines—one for each of the four synapses an axon can target.

The addresses of the AER buses in the analog axon array

are encoded in a format of 4 out of 9 high bits, yielding 126

addresses—one for each neuron. Increasing the bus width would

allow more neurons at the cost of additional area for the bus and

the decoder. The choice of 4/9 for this bus is a trade-off between

performance and the cost of silicon.

ANALOG IMPLEMENTATION

Analog neuron array

The proposed LIF neuron comprises four identical charge-and-

discharge synapses, one for each active line on the pre-synaptic

bus. The structure of the synapse was first proposed by Arthur and

Boahen (2004). Figure 5A shows the schematic of the charge-and-

discharge synapse, which will generate a post-synaptic current for

every incoming pre-synaptic spike. This synapse comprises a reset

circuit (N1-N4), a MOS capacitor (Csyn, ∼100 fF), a voltage-to-

current conversion circuit (P1-P2) and a DC current source (Iexp,

set to 12 pA).

The 3/8 high bits of the pre-synaptic address are connected to

N1-N3. On arrival of a pre-synaptic spike with these three bits

HIGH and the appropriate active line high, N1-N4 will conduct

and pull Vsyn down to ground. After that, Vsyn will be pulled up to

Vdd by Iexp. The voltage-to-current conversion circuit will trans-

duce Vsyn into Isyn, the post-synaptic current, which will decay

exponentially, due to the linearly increasing Vsyn. To reduce power

consumption, P1, a diode connected pMOS transistor, is added

to limit the gate-source voltage of P2. Isyn will be injected into the

soma for integration. All four synapses of a LIF neuron are identi-

cal, using the same 3/8 bit address, but are connected to different

active lines.

FIGURE 5 | Circuit diagram of the analog synapse (A) and soma (B).

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Wang et al. Mixed-signal polychronous spiking neural network

Figure 5B shows the schematic of the soma. The post-synaptic

currents from four synapses are sent to a current mirror (N1-N2)

for summing. The current mirror will convey Isyn, the sum of the

post-synaptic currents, to IP1, which is the input current of a first-

order low-pass filter. Furthermore, by changing the width/length

ratio of N1 or N2, the input current to the low pass filter can be

easily scaled or amplified.

The low-pass filter, which was first proposed in Python and

Enz (2001), is the basic building block of the soma. In our pre-

vious work (Wang et al., 2011), we have shown that its output

current Iout has the following equation:

τmem
dIout

dt
+ Iout = IP1 (2)

where the time constant of the implementation is given by:

τmem =
nUTCmem

It
(3)

where UT is the thermal voltage, n is the weak inversion slope

factor, and It is a DC current source (set to 1 nA ). More details

can be found in Wang et al. (2011).

To generate the post-synaptic spike, the output current of

this low-pass filter Iout is compared with a constant current Ithres

introduced by N7. The value of Ithres is set by Vthres to a value

such that three pre-synaptic spikes arriving within 1 ms will make

Iout strong enough to pull Vcmp up to Vdd. When Vcmp exceeds

the threshold of N8, N8 will conduct and pull Vpulse down to

ground. Vpulse is sent to an inverter to generate the post-synaptic

spike. It is HIGH when Vpulse is lower than the threshold of the

inverter.

The refractory period is implemented by a circuit composed of

N9, P7, a MOS capacitor (Crf , ∼100 fF) and a DC current source

(Irf , set to 12 pA). When the post-synaptic spike is HIGH, N9

will conduct and pull Vrf down to ground. After that, Vrf will

be pulled up to Vdd by Irf . P7 will conduct and pull Vmem up to

Vdd when Vrf is lower than the threshold of P7. The time when

Vmem is at Vdd is the refractory period, during which the low-

pass filter will not do any integration. Since this refractory time is

active when Vrf is lower than the threshold of P7, the refractory

time is thus controlled by the size of Crf , the capacitor, and Irf ,

the charging current.

When Vmem is pulled up to Vdd and Iout is reset to 0, Vcmp will

be pulled down to ground by Ithres. N8 will stop conducting when

Vcmp is low and Vpulse will then be pulled up to Vdd by a constant

current Ipw. The post-synaptic spike, which is the inverted signal

of Vpulse, will then be reset. A feedback circuit (P8) will pull Vpulse

up to Vdd quickly once Vpulse exceeds the threshold voltage of the

inverter, to reduce power consumption. The pulse width of the

post-synaptic spike, which is the time when Vpulse is lower than

the threshold of the inverter, is controlled by Ipw, which is used to

pull Vpulse up.

An address encoder (N10-N13, using four minimum-sized

nMOS transistors to drive the active line and 3/8-bit address

of the AER post-synaptic bus), will convert the voltage-mode

post-synaptic spike into a current-mode spike. The current-mode

spike will be sent to the AER post-synaptic bus. As the AER

post-synaptic bus needs to be driven in parallel by all the ana-

log LIF neurons, an implementation with voltage-mode spikes

would need a high fan-in OR gate or an arbiter, which would

take up a significant amount of area in the layout. Furthermore,

using voltage-mode spikes for on-chip routing will take up signif-

icant area as each spike needs one wire, whereas the current-mode

spikes can share one bus, e.g., one wire can be shared by the active

lines from all the 50 neurons.

As a trade-off between fabrication cost and the size of the neu-

ron array, we chose to implement 50 analog LIF neurons in the

analog neuron array, which led to the choice of the 3/8-bit address

format. The layout of the analog LIF neuron is as compact as pos-

sible and all signals are routed across the neuron. In this way, the

placement of the neurons in an array is quite straightforward; the

neurons are placed in one row.

All transistors are 2.4 µm wide and 3.6 µm long (P8, N3, N4,

and N8 is 0.6 µm long, N1 is 4.5 µm wide and P7 is 4.8 µm

wide and 0.6 µm long). The inverter I1 use transistors are 2.4 µm

wide and 0.6 µm long. The MOS capacitor values are: Cmem =

15 × 24 µm (∼0.6 pF) and Crfc = 3.6 × 2.4 µm (∼0.02 pF). In

the layout of the neuron array, for each neuron, we just need

to connect the three transistors that form the address decoder

(N1-N3) in the current synapse (see Figure 5A), to three bits

in the address of the AER pre-synaptic bus according to the

unique 3/8-bit address of that neuron. An active line on the

AER pre-synaptic bus is connected to N4 of a current synapse.

Each of the four current synapses will have its own active line

on the AER pre-synaptic bus. Similarly, for each neuron, we

just need to connect the four transistors, which compose the

address encoder (N10-N13) in Figure 5B, to the active line

and to the three high bits in the address on the current-mode

AER post-synaptic bus according to the unique 3/8-bit address

of that neuron. In this way, the layout of the neuron array

will remain compact as no extra routing of the AER buses is

needed.

Analog axon array

The structure of the analog axon module is shown in Figure 3. It

comprises three parts: a ramp generator, four axonal delay paths

and an AER interface circuit. The AER interface circuit carries out

the function of the address configuration, the address decoding

and the address encoding. The ramp generator will start when

receiving a spike on the AER bus. The details of the design and

implementation of the ramp generator and the delay path can be

found in Wang et al. (2013a).

The analog axon array contains 100 identical analog axon

modules connected serially. Due to the size of the axon module,

we cannot place these 100 axon modules physically in one row

(it would be 20 mm long) but instead the array is folded to cre-

ate a 10×10 2-D array, as shown in Figure 6. As in the layout of

the neuron module all the AER buses, control signals, and bias

currents are routed horizontally across the axon module so that

neighboring neurons in a row are simply connected by placing

them next to each other. The horizontal buses in each row are

connected to two vertical buses placed on both sides of the axon

array for interconnection. As for the neuron array, the spikes gen-

erated by the axon modules are all current-mode spikes within the
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chip and they are converted to voltage-mode spikes for off-chip

transmission.

MIXED-SIGNAL IMPLEMENTATION

Multiplexed analog neuron array

The motivation for developing a multiplexed analog neuron array

is to increase the size of the analog neuron array without increas-

ing the cost of the system significantly. A polychronous neural

network composed of a neuron array with 50 neurons will suf-

fer from severe cross-talk between patterns, which occurs when

a neuron belonging to one pattern fires accidently as a result of

pre-synaptic spikes from other patterns or another part of the

same pattern. The effect of cross-talk depends on the overlap

(correlation) of the patterns and can be regarded as noise. The

more overlap there is, the higher the possibility that a pattern

plus some noise spikes will also set off a different pattern. Also,

the more input connections a neuron has, i.e., the more patterns

this neuron is a member of, the more likely this neuron is to get

three simultaneous inputs as a result of noise. In severe cases of

cross-talk, all neurons in the network will fire continuously in

an uncontrolled manner. To mitigate this problem, we need to

increase the sparsity of the neural network, i.e., decrease the num-

ber of patterns to which each neuron is sensitive. This can be

achieved by increasing the size of the neuron array, as the patterns

generated by the pattern generator are evenly distributed over the

whole network. The conventional approach to increase the size of

the analog neuron array is to simply add more physical neurons.

As expected, hardware costs increase linearly in relation to the

size of the neuron array if all the neurons are to be implemented

physically.

Inspired by the multiplexed neuron array used in the digi-

tal implementation (Wang et al., 2013b), we propose a similar

approach to implement a multiplexed analog neuron array. We

FIGURE 6 | Layout of the axon array. Arrows show how the axons

modules are placed in a 1-D array.

can use the fact that in a typical polychronous network, only a

small percentage (less than 5%) of the neurons are active at any

given time, and only those active neurons need to be physically

implemented.

The structure of the multiplexed analog neuron array is shown

in Figure 7. It consists of two sub-blocks: a physical neuron

array and a controller. They communicate with each other via

two internal AER buses: the AER physical pre-synaptic bus and

the AER physical post-synaptic bus. The controller receives pre-

synaptic spikes from the axon array and assigns them to the

physical neurons for the generation of post-synaptic spikes, which

will be sent to the axon array. From the point of view of the axon

array, the multiplexed neuron array appears as a neuron array

with 4k neurons. The addresses of the spikes between the con-

troller (a single minimum-width binary address) and the analog

neuron array (the 3/8-bit address format) need to be remapped by

the router, which will also synchronize the spikes from the analog

circuits. For simplicity, in the following description, we assume

the controller is connected to the analog neuron array without

synchronization and address remapping.

The controller dynamically assigns analog neurons to each

incoming pre-synaptic spike. The analog neurons are used to

detect how many pre-synaptic spikes have arrived within 1 ms

of each other. When a spike arrives from the axon array and an

analog neuron has already been assigned for that spike’s address,

the spike will be sent to that neuron. The address of this incom-

ing spike will have been latched in a register linked to that analog

neuron. If no neuron has been assigned for the arriving address,

the spike will be sent to an unassigned neuron, which will then

be labeled as assigned by the controller, by latching the address

of the spike. The controller will also start a timer linked to that

analog neuron. Once the timer of that neuron has expired (after

1 ms), the neuron will be freed and labeled as unassigned by

the controller. When a post-synaptic spike is generated by an

analog neuron, the controller will send it to the axon array with

FIGURE 7 | Structure of the multiplexed analog neuron array. The

controller and router map virtual addresses from the AER busses to

physical addresses on the analog neuron array, so that only active neurons

in the network are using hardware resources.
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the address that is stored in its register. More details about the

controller can be found in Wang et al. (2013b).

Based on this structure, a neuron array with 4k virtual ana-

log neurons can be achieved using only 50 physical neurons. This

multiplexed analog neuron array is thus 80 times more efficient

in silicon area on the analog side. It does, however, require a con-

troller implemented on an FPGA. This does not increase the cost

of the system significantly as the FPGA is needed anyway to carry

out other tasks such as pattern generation, address remapping and

other miscellaneous tasks. Furthermore, this mixed-signal imple-

mentation offers a much higher degree of extensibility as the LIF

neurons used in this implementation could easily be replaced with

other neuron models if desired.

Synchronization interface circuit

To use the asynchronous analog circuits with the FPGA, synchro-

nization with its clock domain is needed. In digital circuit design,

a general method used to do this is to use two (or more) serially

connected flip-flops to sample the input (Weste and Harris, 2005).

This scheme works well for 1-bit signals but it does not extend to

catering for parallel signals, such as the address bus and data bus,

due to potential timing skew on these buses that could cause each

bit in the bus to arrive at a slightly different time. This can lead to

race conditions and hazard problems, and can ultimately lead to

the wrong address being sampled (Weste and Harris, 2005).

In our design, this timing skew comes from two sources. The

first is the analog circuit that converts the current-mode spikes

to voltage-mode spikes. Due to process variation and parasitic

capacitors between the wires and transistors, the conversion for

each line of the bus will take a slightly different amount of time.

For the very same reasons, the pulse width of each active line and

each bit in the address will also be slightly different. The second

source of timing skew is caused by the propagation delay of the

signals along the tracks of the Printed Circuit Board on their way

to the FPGA.

Figure 8 illustrates a waveform of a post-synaptic spike from

an analog LIF neuron (the waveform from the analog axon is quite

similar). In the figure, the timing skew can clearly be seen as each

bit in the bus arrives at a slightly different time. Besides the timing

skew, there is also an additional problem in the form of glitches,

which are brief digital pulses, up to tens of nanoseconds long.

FIGURE 8 | Waveform of a spike from an analog neuron on the

post-synaptic AER bus showing timing skew and glitches.

They are caused by the coupling capacitance between the wires

and transistors. These glitches, in spite of their short period, are

still likely to be sampled by the digital circuit (running at 50 MHz)

and ultimately may lead to the wrong addresses being sampled.

One common method to minimize the timing skew caused by

transistor mismatch is to use clocked flip-flops (Weste and Harris,

2005) to generate these spikes. We have not used this method

because it would increase the design overhead of circuit and intro-

duce another problem, namely that of synchronizing the clock

signal of the chip and the FPGA. The timing skew caused by

propagation delays on the PCB is usually minimized by carefully

tuning the length of the tracks on the PCB. We have not used that

method either as it would significantly increase the effort and cost

of manufacturing the PCB.

In digital designs, the general way to sample an asynchronous

parallel bus is to use a handshake protocol to guarantee that the

receiver will only sample the data when the data is stable (Weste

and Harris, 2005). In other words, the sender needs to inform the

receiver when to sample the data. The drawback of this method

is that it requires extra logic circuits on both the sender and the

receiver. In cases where there is more than one sender on the bus

trying to send data, some form of arbitration is required, fur-

ther increasing the circuit complexity and the cost of hardware

resources.

Instead of the above methods, we chose to synchronize the

spikes from the analog implementations by using an interface

circuit to carry out the synchronization in three steps without

requiring a handshake protocol. For illustration, we will use the

AER bus of the analog neuron array in the following explanation.

The interface circuit handles the AER bus of the analog axon array

in the same way.

The first step is to synchronize each active line and each bit of

the address of the incoming spike in the conventional manner by

using a circuit composed of a serial connected flip-flop for each

of them (four in total). The output values of the flip-flops for the

address and active lines are referred to as the synchronized address

and the synchronized active line, respectively. The address of the

post-synaptic spike is encoded in the 3/8-bit format, which means

that any address that does not have exactly three out of eight bits

active is invalid.

The second step is then to latch the synchronized address and

active line only when a valid address is present, i.e., when exactly

three bits are HIGH, and store it in a register. We have imple-

mented this register as a 32×9 bit FIFO, using eight bits for the

address and one bit for the active line. We use a counter to deter-

mine how many bits are HIGH in the synchronized address and

we can distinguish two situations that need an action when a valid

address is detected:

1. The arrival of a spike with a valid address when the address

at the previous clock cycle was invalid. In this condition, the

value of the counter in current clock cycle is three, whilst the

value of the counter at previous clock cycle was not equal to

three. The address of the spike is latched in the FIFO

2. The arrival of a spike with a valid address that is different from

a valid address at the previous clock cycle. In this case, the

value of the counter in the current clock cycle and previous
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clock cycle are both equal to three, whereas the value of the

synchronized address in current clock cycle is not equal to the

value at the previous clock cycle. The new address is stored in

the FIFO.

In all other cases, including when a valid address is detected that

is the same as in the previous clock cycle, the data on the bus

is ignored. In this way, the asynchronous spikes from the ana-

log neuron array are synchronized and stored in the FIFO. The

third step is to generate spikes with a fixed pulse width (four clock

cycles) by reading the FIFO. If the FIFO is empty, all the synchro-

nized pre-synaptic spikes have been read out and no new spikes

will be generated.

The interface circuit for the spikes from the analog axon array

operates in the same way with the exception that a third condition

needs to be handled:

3. The arrival of a spike with a valid address that is the same as the

last one that arrived, but on a different synapse. In this case,

the value of the counter in current clock cycle and previous

clock cycle are both four (4/9-bit format) and the value of the

synchronized address in both cycles is the same, but the value

of the synchronized active lines is different. The new address

and active line are stored in a 32×13 bit FIFO (nine bits for

the address and four bits for the active lines).

The interface circuit effectively eliminate the problems of timing

skew and glitches on the bus. It is also capable of sampling the

asynchronous spikes from the analog circuits with a high tem-

poral accuracy, as shown by the results that will be presented in

section Performance of the Interface Circuit. For spikes that need

to be sent to the analog chip, we use the conventional means of

synchronizing them to the system clock by using flip-flops on the

FPGA to minimize the timing skew on the address lines (Weste

and Harris, 2005).

Address remapping

Address remapping is the second function of the router. The con-

troller can be configured for multiplexed analog neuron arrays

or multiplexed digital neuron arrays. When it is configured for a

multiplexed analog neuron array, the router needs to carry out

the remapping for the addresses of spikes traveling between the

controller and the analog neuron array. To use the analog axon

array, the router needs to carry out the address remapping for the

spikes traveling between the analog axon array and the controller

regardless of whether it is configured for multiplexed analog or

digital neuron array.

The router was implemented using four look-up tables, one

for each of the four address remapping possibilities. For spikes

from the analog axon/neuron array, the router synchronizes them

using the interface circuit first. These synchronized spikes are then

compared to the look-up tables in order to convert their addresses

to the corresponding binary-encoded addresses. These spikes are

then sent to the controller for processing. Spikes generated by the

controller are also compared against the look-up tables to convert

their addresses to either 3/8-bit or 4/9-bit addresses. After being

converted, these spikes are sent to the analog axon/neuron array.

RESULTS

The proposed polychronous neural network is designed to train

and recall patterns rather than to randomly react to some spatio-

temporal patterns (groups) that have emerged in the network,

as is the case in Izhikevich (2006). Performance in our net-

work is therefore measured as the rate of success in recalling the

trained patterns. The advantage of our approach is that the net-

work can be used as a memory that can learn spatio-temporal

patterns. Furthermore this approach optimizes the use of the

available hardware, so that in our approach all available neurons

and axons in the hardware arrays can be used, while in the origi-

nal polychronous network some neurons and many connections

are not part of any pattern and thus never used. The disadvan-

tage of our approach is that overlap between patterns (cross-talk)

has to be limited and it is not possible to store near identical

patterns.

There are four possible combinations of analog or digital

axons and neurons. The fully digital (FPGA) combination imple-

ments the proposed neural network faithfully with hardly any

effect of noise and process variations. The measurements form

this combination therefore present the optimal performance of

our polychronous neural network model. The results of all the

other three combinations will be compared with the results of the

fully digital implementation in the sections Digital Axon Array

and Analog Neuron Array to Analog Axon Array and Analog

Neuron Array. Section Performance of the Interface Circuit first

discusses the performance of the interface circuit described in

section Synchronization Interface Circuit.

PERFORMANCE OF THE INTERFACE CIRCUIT

Testing the interface circuit is the first step in testing the whole sys-

tem. To obtain a direct measurement of the ability of the interface

circuit to synchronize and latch addresses correctly, we use the

FPGA to send a pre-synaptic spike to an analog neuron to induce

it to fire. The interface circuit is then used to synchronize and

latch the spike from the analog neuron with the FPGA’s clock. We

then compare the address of this latched post-synaptic spike with

the expected address, as determined by which neuron the FPGA

induced to fire. If their addresses match, this means the interface

circuit works correctly.

Sometimes the interface circuit samples the same address

twice. This is caused by glitches that can cause a valid address to

become briefly invalid, when more than three address lines are

high, before returning to the valid address as the glitches subside.

This double sampling could be solved by adding an internal timer

to the interface circuit to guarantee that an address could only be

sampled once within a short period (say 1 µs). However, we have

not employed this method as the second spike sampled will only

cause a small offset (<1 µs) in the axonal delay, which starts on

the arrival of a post-synaptic spike. This offset will not affect the

performance of the proposed polychronous neural network at all.

Figure 9 shows the results of the tests. All 50 addresses (one

for each analog neuron) were tested 128 times (with an interval

time of 5 ms to guarantee there will be one post-synaptic spike

each time). This test was then repeated 10 times. In each of the 10

runs, for approximately 75% of the time the correct address was

sampled once while for the remainder of the cases, the correct
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FIGURE 9 | Performance of the interface circuit. Dark gray: valid address

sampled once; Light gray: valid address sampled twice in succession.

address was sampled twice in succession. No wrong addresses

were sampled in these tests.

DIGITAL AXON ARRAY AND ANALOG NEURON ARRAY

Delay programming

In the setup for the delay programming tests, a single axon array

was used in the neural network, yielding 4k axon modules with

16k (16384) axonal delay paths (connections). Note that unlike

in Izhikevich (2006), no connections are shared between two

patterns, so that the number of available connections directly

determines the maximum number of inter-spike intervals that

can be programmed into our network. Each axon module con-

tains four axonal delay paths (see Figure 3), and for each spike

in the polychronous pattern, 4 delay paths are needed from the

four previous spikes in the pattern. Thus, the number of the inter-

spike intervals that our neural network can store is simply equal

to the number of axon modules. If, for instance, the patterns to be

stored each contain 50 inter-spike intervals, the maximum num-

ber of such patterns that can be stored in the neural network is 82

(4k/51).

The patterns are trained only once when using delay pro-

gramming. There is also only one recall test as there is no

adaptation, and the result of a recall will be the same each time.

For each configuration of the neural network, 10 test runs were

conducted. The pattern generator & checker module generates

spatio-temporal patterns for training and for testing whether the

patterns can be recalled successfully. We tested neuron array sizes

ranging from 128 to 4k neurons and test results are shown in

Figure 10A. For the configurations consisting of 128 and 256 neu-

rons (not shown in Figure 10A) and trained with 82 patterns

having 51 spikes each, the neural network enters an all firing

state in which all the neurons fire simultaneously, showing that

a network of this size using analog neurons cannot cope with

that number of patterns. In the digital implementation, this only

happens for configurations consisting of 128 neurons, while a net-

work with 256 neurons achieves an average success rate about

80%. To achieve a similar success rate when using analog LIF

neurons, the network needs at least 512 neurons. Furthermore,

the results for a network with 1k and 2k analog neurons are also

slightly worse than their digital counterparts. Only the result for

FIGURE 10 | Percentage of stored patterns successfully recalled for

different neuron array sizes. (A) delay programming and (B) delay

adaptation, respectively. The results for the fully digital implementation are

added for comparison purpose. Error bars are standard errors of the mean.

4k analog neurons matches the digital implementation. As an

aside, this proves that the proposed interface circuit is capable of

sampling the asynchronous spikes from the analog circuits cor-

rectly, because otherwise the performance would be much worse

than in the digital implementation.

The results indicate that the effects of cross-talk are more seri-

ous when using the multiplexed analog neuron array, so that a

network with analog neurons performs worse than one with dig-

ital neurons when the size of the network is small. Due to process

variation and device mismatch, the analog neurons cannot be per-

fectly tuned to all generate a post-synaptic spike only when at

least 3 out of 4 pre-synaptic spikes arrive within 1 ms. In other

words, the analog neuron is not as precise a coincidence detector

as the digital neuron. Moreover, due to the parasitic capacitances

on chip, the analog LIF neuron will sometimes generate spikes by

accident, e.g., the firing of one neuron will trigger its neighboring

neuron to fire, which increases cross-talk. Increasing the size of

the network increases the sparsity (i.e., decreases the number of

patterns to which a neuron belongs Wang et al., 2013b), and the

difference in the performance between the analog neurons and

the digital neurons will become negligible for larger networks.

Delay adaptation

In the tests for the delay-adaptation mode, each pattern was

trained five times and recalled one time. The strategy used
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adapted the delay by half the time difference between the pre- and

post-synaptic spikes each time a neuron fired. The same settings

used in the delay programming scenario were used for these tests,

but all delays were initialized with random values. We again tested

neuron array sizes from 128 to 4k neurons and the test results

are shown in Figure 10B. For the networks with a size smaller

than 2k neurons, only a few patterns can be recalled success-

fully and their results are therefore not included in Figure 10B.

The results in Figure 10 also show the performance drops more

in delay adaptation mode than in the delay programming mode

when compared with the digital implementation. This is again the

result of the larger sensitivity to cross-talk in the analog neuron

array.

Effect of noise

In this set of tests, random noise was injected into the network.

The Poisson rate of the noise, generated by a LFSR, was varied

from 2 to 128 spikes per second. This firing rate represents the

number of additional spikes, i.e., not belonging to any of the

trained patterns, presented to the network in a one second win-

dow. As each spike is generated by a randomly chosen neuron,

the spike rate measures the total noise input, not the firing rate of

individual neurons.

All other settings were kept the same as in the delay-

programming mode and the delay-adaptation mode with a neu-

ron array consisting of 4k neurons. In both modes, no noise was

added during the first training time. Figure 11 shows the result,

which proves that the system is fairly robust to noise when the

sparsity of the neural network is large.

Capacity for storing spatio-temporal patterns

To test the capacity for storing spatio-temporal patterns when

using the multiplexed analog neuron array, it was configured with

4k neurons and 80k axon modules. Delay programming and delay

adaptation were both used with a pattern length of 51 spikes.

For a pattern length of 51 spikes, we tested storing and recalling

1000 and 1200 patterns. Ten test runs were conducted. The system

works well for the 1000 pattern case. Figure 12 shows the results

FIGURE 11 | Recall percentage for various Poisson rates of the noise

generator. The firing rate represents the total number of additional random

spikes per second in the network. For comparison, the firing rate of a

stored pattern is about 100 spikes per second (50 events in about 500 ms).

Light gray: delay programming; Dark gray: delay adaptation. Error bars are

standard errors of the mean.

for 1000 patterns and the successful recall rate is about 95% on

average which is quite close to the result of the fully digital imple-

mentation (Wang et al., 2013b). With 1200 patterns the recall

no longer works as the effect of cross-talk becomes too severe,

indicating that once cross-talk reaches a critical level, it quickly

becomes catastrophic. Two reasons caused this performance drop.

The first reason is that the mixed-signal system suffers more noise

compared to the fully digital implementation, the successful rate

of which is 95% for 1200 patterns. The second reason is that the

theoretical maximum firing rate of the pre-synaptic spikes that

the multiplexed analog neuron array can handle is only 50/128 ≈

40% of the maximum firing rate that the digital one can handle, as

the number of the physical neurons is only 50, whereas the digital

implementation has 128 physical neurons.

ANALOG AXON ARRAY AND DIGITAL NEURON ARRAY

Unlike the results presented in section Digital axon array and

Analog Neuron Array, the testing scenarios for the combination

of analog axon array and digital neuron array will focus on the

percentage of spikes in a pattern that have been recalled success-

fully. This is because the capacity of the analog axon array is much

smaller than that of the digital axon array, which means that only

a few patterns can be stored in this network, so that the percentage

of patterns recalled is a much less accurate measure of perfor-

mance. Furthermore, the dynamics caused by process variation

and device mismatch causes variations in the number of spikes

that are correctly recalled in each pattern.

For this test, we only had access to one analog axon array with

100 analog axon modules, each with 4 axonal delay paths. The

maximum accessible address of the 4/9-bit bus on the analog axon

array is 126, which means the maximum size of the digital neuron

array that can be used is 126 neurons. As the experimental results

in Wang et al. (2013b) show, a neural network consisting of only

126 neurons will be affected seriously by cross-talk. To measure

the performance of the analog axon array without the effect of

this cross-talk, we used specially generated random patterns with

no overlap (correlation) for testing.

FIGURE 12 | Result for capacity testing with 1000 stored patterns of 51

spikes each. The network consists of 4k neurons and 80k axon modules.

Both methods of delay configuration resulted in approximately 95% of the

stored patterns being successfully recalled. Error bars are standard errors

of the mean.
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Delay programming and delay adaptation were both used with

pattern lengths of 20, 25, 33, and 50 spikes. The patterns were

trained with a single presentation in the delay programming

mode and for 20 presentations in the delay adaptation mode.

As there are 400 axons in the analog axon array, for the pattern

length of 20, 25, 33, 50 spikes, the maximum number of such pat-

terns that can be stored in the neural network is five, four, three,

and two, respectively. For each pattern length, 127 test runs were

conducted.

Figure 13 shows, for each pattern stored in the neural network,

what percentage of spikes were recalled correctly. As discussed

in section Analog Axon Array, the delay of the analog axon is

programmed in an initial phase followed by a number of itera-

tions of delay adaptation with a fixed delay update step. This is to

reduce the errors in delay that result from the initial delay pro-

gramming step. Figure 13 shows that after 20 iterations of delay

adaptation, the percentage of the spikes in the patterns that have

been correctly recalled has been slightly increased for the patterns

with 50 spikes. For the other pattern lengths, the improvement is

negligible. The average percentage of spikes in each pattern cor-

rectly recorded across four pattern lengths (over 127 test runs)

using delay programming is 86.2% and using delay adaptation

is 87%.

Compared to the test results presented in Wang et al. (2013b),

which uses the fully digital implementations, the combination of

analog axon array and digital neuron array has an 8% drop in

performance, which is mainly because the analog axon cannot

be as precisely programmed and tuned as the digital axon. As

the experimental results of one axon module presented in (Wang

et al., 2013a) show, the offset between the actual programmed

and the desired value is about 10%, after delay programming.

When the ramp generator’s voltage is latched by the analog mem-

ory (for delay programming), there is always a slight deviation

(∼10 mV) between the programmed voltage and the desired volt-

age, as a combined result of charge injection (Liu et al., 2002)

and the inaccuracy of the ramp generator itself. The ramp gen-

erator will not charge at exactly the same speed each time due

to noise in the charging current. The analog axon will therefore

propagate each incoming pre-synaptic event with an offset com-

pared to the desired axonal delay. After delay adaptation, this

error can be reduced to less than 300 µs throughout the work-

ing range of a single axonal delay path (Wang et al., 2013a), but

due to process variation and device mismatch, it is impossible

to tune all axonal delay paths with such accuracy. This offset,

when large enough, will destroy the time-locked relations that are

the basis of polychronous spiking neural networks. We will dis-

cuss possible solutions for this issue in section Analog vs. Digital

Implementations. Another factor in the drop in performance is

the fact that the analog axon will sometimes generate spikes due

to on-chip parasitic coupling between axons, so that the firing of

one axonal delay path can trigger its neighboring paths to fire by

accident.

ANALOG AXON ARRAY AND ANALOG NEURON ARRAY

In this section, we will present the experimental results of the

combination with an analog axon array and an analog neuron

FIGURE 13 | Percentage of spikes in pattern correctly recalled for

different pattern lengths: (A) 50 spikes, (B) 33 spikes, (C) 25

spikes, and (D) 20 spikes. These results are from the

combination of analog axons and digital neurons. For most patterns

across all four pattern lengths, more than 85% of spikes are

recalled successfully.

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 12

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Wang et al. Mixed-signal polychronous spiking neural network

array. For the same reasons as presented in the previous section,

the testing scenarios will also focus on the percentage of spikes in

a pattern that have been recalled successfully, and the setup for

testing is the same as described in the previous section.

Figure 14 shows for each pattern stored in the analog axon

array how many spikes were recalled correctly. Figure 14 shows

that more than 70% of the spikes are correctly recalled for nearly

all the patterns across three pattern lengths (20, 25, and 33 spikes)

in both delay programming mode and delay adaptation mode.

For the longest patterns (50 spikes) the probability of correctly

recalling the full pattern is significantly lower, with only 57.4%

of the spikes successfully recalled on average, as mismatch and

noise are more likely to destroy the time-locked relations, result-

ing in the final part of the pattern not being recalled. Figure 14

also shows that for these longest patterns, 20 iterations of delay

adaptation improve the percentage of the spikes in the patterns

that have been correctly recalled to 64.7%. The average percent-

ages of spikes in pattern correctly recorded across four pattern

lengths (20, 25, 33, and 50 spikes) using delay programming

are 77.2, 78, 72.8, and 57.4%, respectively. After 20 iterations of

delay adaptation, these numbers have been improved to 78.1,

78.6, 73.9, 64.7%, respectively. Compared to the results pre-

sented in section Analog Axon Array and Digital Neuron array

for the analog axon array and digital neuron array, the fully

analog combination has an overall Performance drop of about

14%. Compared to the test results presented in section Digital

Axon Array and Analog Neuron Array for the digital axon array

and analog neuron array, the performance drop increases to

about 20%.

These drops are the results of two major factors. The first one

is that the analog axon and neuron arrays both generate spuri-

ous spikes due to on-chip parasitic coupling. The second factor

is that the analog axon fails to perfectly produce the time-locked

relations as the digital axon does. Both factors play a larger role

the longer the pattern is (in terms of number of spikes). Together,

these effects causes the combination of the analog axon and ana-

log neuron array to have the lowest performance of the four

combinations.

DISCUSSION

PERFORMANCE COMPARISON

Efficiency of the implementation

In Izhikevich (2006), the polychronous network is created with

random delays, and STDP is used to prune the connections.

Patterns are not stored or programmed into the network, but

rather, random patterns emerge. A single connection between

neurons could be active in a number of patterns, while other

connections will become totally inactive. In our implementation,

patterns can be directly programmed into the network and all

connections are used when the maximum number of patterns

has been programmed into the network. We aimed to avoid inac-

tive connections, since hardware would still be dedicated to these

inactive connections, but never used.

A drawback of a polychronous neural network is that a com-

mon sequence of four spikes in multiple patterns would initiate

all patterns that have this sequence when it occurred. To distin-

guish between two patterns with identical sub-sequences, it will

be necessary to set up the network so that continuous input is

FIGURE 14 | Percentage of spikes in each pattern correctly recalled for

different pattern lengths: (A) 50 spikes, (B) 33 spikes, (C) 25 spikes, and

(D) 20 spikes. These results are from the full analog system.

needed from the input pattern to keep the pattern going, for

example by setting the threshold to 5 simultaneous input spikes (4

from the previous neurons in the pattern and 1 from the input).

Such a system would then only follow a pattern if it had been
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previously learned, and if it corresponded with the input pattern.

One of the two potential patterns (with identical starts) would die

out once the input signal identified which of the two patterns is

being presented.

The probability of overlap between patterns can be reduced

by setting a higher threshold at each neuron and connecting it

to more of the previous neurons in the pattern. The number of

patterns a network can store decreases linearly with the number

of neurons each neuron is connected to, so this would come at the

cost of a decreased storage capacity.

Analog vs. digital implementations

The experimental results show that, on average, the fully digital

implementation has the best performance. For comparison, the

combination of the digital axon array and the analog neuron array

achieves a similar performance when the network is sparse. The

combination of the analog axon array and digital neuron array

has a considerable performance drop, even when care has been

taken to remove all cross-talk from the spatio-temporal patterns.

Finally, the combination of the analog axon and neuron array

has the worst performance out of the four combinations. The

fully digital implementation has the strongest time-locked rela-

tion, whereas the fully analog implementation has the weakest,

due to the offset between the actual programmed and the desired

delay during programming; and the analog implementation is

further hampered by noise and spurious spikes. As a result, we

may conclude that the most important requirement of a hardware

implementation of a polychronous network is to provide a strong

time-locked relation.

For the analog axon, as presented in section Analogue Axon

Array and Digital Neuron Array, the error is introduced when

the ramp generator is writing its output voltage to the analog

memory (for delay programming) as a combined result of the

charge injection and the inaccuracy of the ramp generator. As the

results presented in Wang et al. (2013a) show, the offset will still

be about 300 µs even after adaptation. One possible solution is to

use analog-to-digital conversions and then store these digital val-

ues in digital memories (Horio et al., 1990; Cauwenberghs, 1996).

This method has a major advantage in that data can be stored in

non-volatile digital memory. The drawback is also quite obvious.

It requires at least one analog-to-digital converter (ADC) for stor-

age and usually one digital-to-analog converter (DAC) for read

out. This problem will become critical when massive storage is

required as each analog cell will either have its own ADC or share

one ADC, which will increase the complexity of the circuit. Other

factors, such as the accuracy and the bandwidth of the converters,

will lead to the requirement for a high precision ADC. The second

possible solution is to use floating-gate devices, which employ

programmable elements that that could be used to store the ana-

log values in a non-volatile memory (Basu et al., 2010; Brink et al.,

2013; Hasler and Marr, 2013). This feature is a promising alterna-

tive for the implementation of our polychronous spiking neural

network. On the other hand, the time-multiplexed digital axon

achieves an excellent balance between hardware cost and perfor-

mance and therefore is the preferred choice when using FPGAs.

As for a custom design, this design choice needs to be carefully

investigated because the cost will be highly process dependent.

While it is common cause in neuromorphic engineering that

analog circuits provide superior simulation of biological neurons

as a result of their continuous and noisy representation of signals,

these results show that in this application the analog implemen-

tation is consistently poorer in performance and scalability than

the digital implementation, which emphasizes that practitioners

should recognize that the use of analog circuits comes at a signifi-

cant cost and should not necessarily be an automatic choice in all

applications.

Comparison with other solutions

For the analog implementation of the axonal delay, a similar

approach was implemented by charging a capacitor using a tran-

sistor operating in sub-threshold (Dowrick et al., 2013), so that

the duration of the delay can be programmed by adjusting the

gate voltage of the charging transistor. However, their implemen-

tation is not able to learn delays, as the value of the gate voltage

was assigned externally and the authors have not addressed the

issues of obtaining and maintaining this voltage. In contrast, our

circuit is capable of learning and storing the axonal delay between

two spikes. In (Sheik et al., 2012, 2013), the authors show how

slow dynamics of analog synapses, combined with the variability

of neuromorphic analog circuits, can be used to generate a range

of temporal delays. Again, this work is used to generate the desired

delay rather than learn the delay.

For the digital implementation of the (axonal) delay, another

approach is to use a look-up table for the axonal delay values and

use a delay sorter directly before the neurons (Scholze et al., 2011).

The delay sorter records the arrival time of a spike and will re-emit

the spike when the axonal delay time found in the look-up-table

is reached. Our polychronous network generates delay paths de

novo, so that only connections that actually appear in the training

patterns will be created. Each axon module of our polychronous

network not only propagates the post-synaptic spike with a pro-

grammable axonal delay but also transmits the pre-synaptic spike

to the destination neuron (using address remapping by configur-

ing the input and output addresses). An implementation with a

look-up table would need the axon module to store the address

of the desired axonal delay from the look-up-table, and would

need to receive the notification from the look-up-table when that

axonal delay is reached. Address-remapping would then have to

be carried out by the axon module through the configuration of

its input and output addresses. An implementation using look-

up tables would therefore be more complex and larger than our

proposed implementation.

SCALING

The performance of the proposed polychronous network (the

number of storable patterns) will scale linearly with the num-

ber of axons as long as the average number of connections per

neuron is kept below 1/4 of the number of neurons in the net-

work to ensure that cross-talk is not much of an issue (Wang

et al., 2013b). In other words, the number of neurons needs to

be increased proportionally to the number of axons to maintain

performance.

The fully digital implementation of the polychronous neural

network is a scalable design. The number of time-multiplexed
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axons implemented by one physical axon will increase linearly

with the amount of available on-chip SRAM, as long as the mul-

tiplexing rate keeps the time resolution of the system within

the biological time scale, which is generally less than 1 ms. The

number of physical axons (i.e., the ones that could be activated

simultaneously) will increase linearly with the number of avail-

able Slice LUTs, which is indeed the bottleneck for large-scale

FPGA designs. The total number of virtual axons therefore scales

linearly with the quantity of both the available on-chip SRAM

and Slice LUTs. The number of physical neurons also scales

directly with the number of the available Slice LUTs. Finally, the

timing requirement will become quite critical when the utiliza-

tion becomes high, e.g., 90% of the LUTs on an FPGA, due to

the difficulties in routing. A good balance between the number

of the physical axons, the multiplexing rate and the number of

physical neurons is therefore the key to the implementation of

a large-scale polychronous network with a good time resolu-

tion and a high utilization of the available hardware recourses

on FPGA.

The analog implementation is nowhere near as scalable as the

digital implementation, since it can only be scaled up by imple-

menting more physical copies of the neurons and axons. However,

the introduction of the multiplexed analog neuron array, making

use of the fact that only a few neurons are active at any given time

in a polychronous network, allows the number of virtual neurons

to be about 80 times larger than the number of physical neurons.

In systems that need slow dynamics or memory of past events,

i.e., using neurons with longer time constants than we have used

here, the multiplex rate would go down and we would need more

physical neurons.

LESSONS LEARNED

Some lessons have been learnt from the implementation of this

mixed-signal platform and these are discussed below.

Virtualization, i.e., the mapping of a larger address space onto

a smaller number of physical components through multiplexing

these components, is one of the key ideas for implementing large-

scale spiking neural networks, because physical components are

costly. Virtualization, when simulating neural networks, is sup-

ported by biological observations that only 1% of neurons in

our brains are active on average at any moment (Johansson and

Lansner, 2007), which means it is not necessary to implement all

neurons physically on silicon.

A mixed-signal system appears to be a powerful tool for

real-time emulation of large-scale neural networks as it can

use analog circuits for computation while keeping the flexibility

of using programmable devices such as FPGA. As the on-chip

topology of the analog circuits is generally fixed after fabrica-

tion, it is better to implement the whole system in an FPGA

for prototyping and optimization before fabricating the analog

circuits.

For the sake of multiplexing analog building blocks such as

neurons and axons in a neuromorphic system, these circuits

must be designed as standardized building blocks with a standard

protocol for communication (such as AER) with programmable

devices. Furthermore, for the maximum utilization of a fixed

sized analog chip, it is best to reduce the on-chip routing as much

as possible as the routing can be carried out off-chip by FPGAs

with more flexibility and extensibility.

Our polychronous network stores spatiotemporal patterns. A

certain amount of jitter can be tolerated in the initial spikes when

recalling a stored pattern, which is controlled by setting a time

window for coincidence detection in the FPGA implementation,

and by the neuronal time constant in the analog implemen-

tation. If the patterns are to be generated by a neuromorphic

sensor, then care needs to be taken that the sensor reliably pro-

duces (near) identical spatiotemporal patterns for identical input

signals.

CONCLUSIONS

We have presented a mixed-signal implementation of a poly-

chronous spiking neural network composed of both an analog

implementation and a digital implementation of the axon array

and the neuron array. A multiplexed analog neuron array with 4k

analog neurons was achieved by multiplexing 50 physical analog

neurons. Compared to conventional time-multiplexing systems

that operate serially and have to store and retrieve analog vari-

ables, our scheme operates in parallel, and does not require analog

storage. A novel interface circuit for synchronizing the spikes

from the analog circuits has also been presented. The proposed

interface circuit effectively eliminates the problems of timing skew

and glitches on the bus and is capable of sampling the asyn-

chronous spikes from the analog circuits correctly. The test results

using the four possible configurations of analog or digital com-

ponents have been compared and discussed. We compared our

mixed-signal implementation with our fully digital implemen-

tation and addressed the key factor that most influences the

performance of the neural network—that of generating accurate

time locked relations. The proposed implementation can be lin-

early scaled up with the quantity of available hardware resources,

although the digital implementations are significantly easier to

scale than the analog equivalents, owing to the generic FPGA

platforms used.

ACKNOWLEDGMENTS

This work has been supported by the Australian Research Council

Grant DP0881219.

REFERENCES
Arthur, J. V., and Boahen, K. (2004). “Recurrently connected silicon neurons

with active dendrites for one-shot learning,” in 2004 IEEE International Joint

Conference on Neural Networks (IEEE Cat. No.04CH37541) (IEEE) (Vancouver,

BC), 1699–1704. doi: 10.1109/IJCNN.2004.1380858

Basu, A., Ramakrishnan, S., Petre, C., Koziol, S., Brink, S., and Hasler, P. E. (2010).

Neural dynamics in reconfigurable silicon. IEEE Trans. Biomed. Circuits Syst. 4,

311–319. doi: 10.1109/TBCAS.2010.2055157

Boahen, K. (2000). Point-to-point connectivity between neuromorphic chips using

address events. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47,

416–434. doi: 10.1109/82.842110

Brink, S., Nease, S., Hasler, P., Ramakrishnan, S., Wunderlich, R., Basu, A., et al.

(2013). A learning-enabled neuron array IC based upon transistor channel

models of biological phenomena. IEEE Trans. Biomed. Circuits Syst. 7, 71–81.

doi: 10.1109/TBCAS.2012.2197858

Cauwenberghs, G. (1996). “Analog VLSI long-term dynamic storage,” in 1996

IEEE International Symposium on Circuits and Systems. Circuits and Systems

Connecting the World. ISCAS 96 (IEEE) (Atlanta, GA), 334–337. doi:

10.1109/ISCAS.1996.541601

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Wang et al. Mixed-signal polychronous spiking neural network

Dowrick, T., Hall, S., and McDaid, L. (2013). A simple programmable axonal

delay scheme for spiking neural networks. Neurocomputing 108, 79–83. doi:

10.1016/j.neucom.2012.12.004

Gao, C., and Hammerstrom, D. (2007). Cortical models onto CMOL and CMOS—

architectures and performance/price. IEEE Trans. Circuits Syst. I Regul. Pap. 54,

2502–2515. doi: 10.1109/TCSI.2007.907830

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A neu-

ronal learning rule for sub-millisecond temporal coding. Nature 383, 76–81.

doi: 10.1038/383076a0

Goldberg, D., Cauwenberghs, G., and Andreou, A. (2001). Probabilistic synap-

tic weighting in a reconfigurable network of VLSI integrate-and-fire neurons.

Neural Netw. 14, 781–793. doi: 10.1016/S0893-6080(01)00057-0

Harkin, J., Morgan, F., Hall, S., Dudek, P., Dowrick, T., and McDaid, L.

(2008). “Reconfigurable platforms and the challenges for large-scale imple-

mentations of spiking neural networks,” in 2008 International Conference on

Field Programmable Logic and Applications (IEEE) (Heidelberg), 483–486. doi:

10.1109/FPL.2008.4629989

Harkin, J., Morgan, F., McDaid, L., Hall, S., McGinley, B., and Cawley, S. (2009).

A reconfigurable and biologically inspired paradigm for computation using

network-on-chip and spiking neural networks. Int. J. Reconfig. Comput. 2009,

1–13. doi: 10.1155/2009/908740

Hasler, J., and Marr, B. (2013). Finding a roadmap to achieve large neuromorphic

hardware systems. Front. Neurosci. 7:118. doi: 10.3389/fnins.2013.00118

Horio, Y., Ymamamoto, M., and Nakamura, S. (1990). Active analog memo-

ries for neuro-computing. IEEE Int. Symp. Circuits Syst. 4, 2986–2989. doi:

10.1109/ISCAS.1990.112638

Hussain, S., Basu, A., Wang, R., and Hamilton, T. (in press). Delay learning

architectures for memory and classification. Neurocomputing 1–27.

Hussain, S., Basu, A., Wang, M., and Hamilton, T. J. (2012). “DELTRON:

neuromorphic architectures for delay based learning,” in 2012 IEEE Asia

Pacific Conference on Circuits and Systems (IEEE) (Kaohsiung), 304–307. doi:

10.1109/APCCAS.2012.6419032

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural

Comput. 18, 245–282. doi: 10.1162/089976606775093882

Johansson, C., and Lansner, A. (2007). Towards cortex sized artificial neural

systems. Neural Netw. 20, 48–61. doi: 10.1016/j.neunet.2006.05.029

Levy, W. B., and Baxter, R. A. (1996). Energy efficient neural codes. Neural Comput.

8, 531–543. doi: 10.1162/neco.1996.8.3.531

Liu, S., Kramer, J., Indiveri, G., Delbrück, T., and Douglas, R. (2002). Analog VLSI:

Circuits and Principles. Cambridge, MA: MIT Press.

Masuda, N., and Aihara, K. (2003). Duality of rate coding and temporal cod-

ing in multilayered feedforward networks. Neural Comput. 15, 103–125. doi:

10.1162/089976603321043711
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