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[1] A variety of surface roughness characterizations have emerged from nineteenth and
twentieth century studies of channel hydraulics. When the water depth h is much larger
than the characteristic roughness height ks, roughness formulations such as Manning’s n
and the friction factor f can be explicitly related to the momentum roughness height zo in
the log-law formulation for turbulent boundary layers, thereby unifying roughness
definitions for a given surface. However, when h is comparable to (or even smaller than)
ks, the log-law need not be valid. Using a newly proposed mixing layer analogy for the
inflectional velocity profile within and just above the roughness layer, a model for the
flow resistance in shallow flows is developed. The key model parameter is the
characteristic length scale describing the depth of the Kelvin-Helmholtz wave instability. It
is shown that the new theory, originally developed for canopy turbulence, recovers much
of the earlier roughness results for flume experiments and shallow gravel streams. This
study is the first to provide such a unifying framework between canopy atmospheric
turbulence and shallow gravel stream roughness characterization. The broader implication
of this study is to support the merger of a wealth of surface roughness characterizations
independently developed in nineteenth and twentieth century hydraulics and
atmospheric sciences and to establish a connection between roughness formulations across
traditionally distinct boundary layer types. INDEX TERMS: 1860 Hydrology: Runoff and

streamflow; 1824 Hydrology: Geomorphology (1625); 3379 Meteorology and Atmospheric Dynamics:

Turbulence; KEYWORDS: Manning’s roughness, momentum roughness height, friction factor, mixing layer

analogy, shallow gravel bed, canopy turbulence
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1. Introduction

[2] Equations for mean channel flow velocity, such as
Manning’s equation and various resistance equations, are
widely used in hydraulic engineering and surface hydrology
[e.g., French, 1985; Dooge, 1992; Hauser, 1996; Horn-
berger et al., 1998]. For channels in which shear velocity
can be determined from measurements of depth and slope,
the key parameter that must be specified is the absolute
surface roughness, e.g., the momentum roughness height zo
or Manning’s roughness n. The roughness measures can be
linked analytically for simplified boundary layer flow types
when the water depth h is much larger than the mean
roughness height of the protruding elements D [e.g., Chen,
1991]. However, when h/D is small (say <10), existing
boundary layer theories (e.g., the log-law [Monin and
Yaglom, 1971]) that describe the flow resistance may fail.
This failure becomes evident when estimating the flow
resistance for mountain rivers characterized by high gra-

dients and boulder beds [e.g., Bathurst, 1985]. While several
empirical and semi-empirical models have been useful over
this range of h/D [e.g., Hey, 1979; Colosimo et al., 1988;
Leopold, 1994], a theoretical framework that describes the
flow resistance has been lacking but is now receiving broad
attention [e.g., Millar, 1999; Ferro and Pecoraro, 2000].
[3] In this paper we present a new theory that predicts the

flow resistance from surface roughness measures and water
depth using a mixing layer analogy rather than the standard
rough-wall boundary layer theory. The mixing layer anal-
ogy provides analytical linkage between depth, roughness,
and velocity for h/D < 2. The new theory is tested with
measurements for natural gravel streams and laboratory
flumes [Bathurst et al., 1981; Bathurst, 1985; Colosimo et
al.,1988; Hey, 1979].

2. Theory

[4] Before describing the new theory, we present a brief
review of the relationship between, zo, n and flow resistance
for large h/D.

2.1. Deep Layer Formulation (Large h/D)

[5] Consider the wide channel flow represented in
Figure 1, subject to the conditions that (1) q is sufficiently
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small so that, sin (q) � tan (q) = S, where S is the bed slope,
(2) the stream is rectangular and sufficiently wide so that the
hydraulic radius Rh � h, (3) the depth h is much larger than
D, (4) the flow is fully turbulent with statistics that are
steady and planar uniform, and (5) the log-law is reasonable
for the time-averaged velocity (�u) over the profile depth.
[6] The force balance between frictional and gravitational

forces results in

tt ¼ rg h sin qð Þ ¼ rg hS ð1Þ

where tt = ru*
2 is the turbulent stress (i.e., total stress) acting

on the streambed, g is the gravitational acceleration, r is the
density, and u* is the friction velocity. With these definitions
(1) provides

u� ¼
ffiffiffiffiffiffiffiffiffiffi
g hS

p
ð2Þ

[7] From the Prandtl-Karman mixing length theory, the
velocity profile is approximated by the ‘‘log-law’’:

�u ¼ u�
k

ln
z

zo

� �
ð3Þ

where the overbar denotes time-averaging, and k(=0.4) is
Von Karman’s constant [e.g., Izakson, 1937]. In (3), the
zero-plane displacement is neglected as z � zo.The depth-
averaged mean velocity is given by:

U ¼ u�

k h� zoð Þ

Zh
zo

ln
z

zo

� �
dz ¼ u�

k
ln

h

e zo

� �
ð4Þ

where we made use of the assumption that h � zo � h.
Rearranging (4) into the dimensionless form commonly
used for flow resistance equations gives

U

u�
¼ 1

k
ln

h

e zo

� �
ð5Þ

For comparison, Manning’s equation for a wide rectangular
channel is

U ¼ 1

n
h2=3S1=2: ð6Þ

where U and h are in m-k-s units thereby leading to an n that
is not dimensionless. Combining (2) and (6) gives

U

u�
¼ h1=6

n
ffiffiffi
g

p : ð7Þ

The Darcy-Weisbach equation is

U

u�
¼

ffiffiffi
8

f

s
ð8Þ

At first glance, (5), (7) and (8) appear to have very different
forms. However, for large values of ð h

ezo
Þ the logarithmic

function is well approximated by the classic 1/7th power
law [Blasius, 1913; Hinze, 1959, p. 479; Brutsaert and Yeh,
1970; Reynolds, 1974; Chen, 1991]

ln
h

e zo

� �
� 5

2

h

e zo

� �1=7

ð9Þ

Such simple power law approximations have been recog-
nized as early as 1880 and used extensively [Stevenson,
1880; Davies, 1972; Brutsaert, 1982]. Applying (9) to (5)

U

u�
� 5

2k

h

e zo

� �1=7

ð10Þ

Upon comparing (10) with (7) and (8) we obtain

n ¼ 2ke1=7

5g1=2

� �
z1=7o � 0:06z1=7o ð11Þ

and

ffiffiffi
f

8

r
¼ 2ke1=7

5

� �
zo

h

� 	1=7
� 0:18

zo

h

� 	1=7
ð12Þ

The relationship n = 0.06 zo
1/7 is consistent with Chen’s

[1991] results for hydrodynamically rough flows with a
1/7th power law describing U. Other studies [e.g., Raudkivi,
1990; Yen, 1992] have used a 1/6th power law and yielded
results that can be extended to arrive at n = 0.069 zo

1/6.
[8] In Figure 2, we compare the predicted relationship

between n and zo with reported measurements of zo and n
for similar surfaces (reproduced in Table 1 from the original
references) in which h

D
is large. The zo estimates in Figure 2

are from atmospheric surface layer experiments while the n
estimates are for water flow over similar surfaces (flood-
plain data are used because h

D
is likely to be large). The

agreement between predictions and measurements is sur-
prisingly good given the simplifying approximations and
the crude surface characterizations for which measured n
and zo are presented. These types of relationships comple-
ment earlier work by Powell [1950] in which n was

Figure 1. Schematic of the simplified momentum balance
for uniform flow in a wide rectangular stream.
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explicitly related to the surface friction factor ( f ) of the
Darcy-Weisbach equation.

2.2. Shallow Layer Formulation

[9] For shallow streams the log-law is not applicable, as a
significant portion of the flow is within and near the
roughness layer. Recent approaches adopt semi-empirical
corrections to the log- or power law velocity distribution
using a combination of divergence functions and incom-
plete self-similarity approaches [Ferro and Pecoraro, 2000]
to reproduce velocity distribution exhibiting nonmonotonic
variation. Here, we make use of the fact that such a flow
regime is analogous to turbulent flow within and above
rigid vegetation canopies. Recent advances [Raupach et al.,
1996] in canopy atmospheric turbulence suggest that the
structure of the flow near extensive and porous roughness
elements resembles a mixing layer with an inflection near
the mean height of the roughness elements (D) as shown in
Figure 3. This inflectional profile connects the slow moving
flow within the roughness space to the faster moving fluid
above and has been observed in a wide range of canopy
experiments including wind-tunnel strips and rods, corn,
wheat, eucalyptus and pine forests [Garratt, 1992; Raupach
et al., 1996; Katul and Albertson, 1998; Finnigan, 2000].

Detailed �u profiles measurements by Marchand et al.
[1984] suggest that shallow streams exhibit such inflec-
tional profiles, analogous to canopy turbulence. Note that �u
over rough-wall boundaries do not possess an inflection
point.
[10] An approximate mean velocity profile that reprodu-

ces the key features of the inflectional profile, including the
important flow instabilities, is given by

�u

uo
¼ 1þ tanh

z� D

Ls

� �
ð13Þ

where Ls is a characteristic energetic eddy size (i.e.,
mixing length), typically produced by a Kelvin-Helmholtz
type instability at z = D and uo is the mean reference
velocity at z = D [Michalke, 1964; Raupach et al., 1996;
Metais, 1996]. In this first order analysis we assume that
Du

*
n > 105 so that the mixing layer in Figure 3 is
approximately inviscid [Tennekes and Lumley, 1972;
Townsend, 1976] where L is the kinematic viscosity of
water (
10�6 m2 s�1). We emphasize that a necessary
condition to the generation of such Kelvin-Helmholtz type
instabilities is that the mean velocity has a point of

Figure 2. Comparison between measured n (solid circles) and modeled n ¼ 0:06 z0
100


 �1=7
using the deep

layer formulation (solid line). For reference, n ¼ 0:0389 30 z0
100


 �1=6
is also shown (Dash-dotted line).

Table 1. Published Atmospheric zo (Four Decades of Variation) and Stream n (Fourfold Variation) for Comparable

Surface Coversa

Surface Type zo, cm nb

Smooth tarmac [Bradley, 1968] 0.002 0.013 (concrete)
Short Grass [Sutton, 1953] 0.1 0.025 (earth with grass)
Airport grass [Kondo, 1962] 2.3 0.035 (floodplain with grass)
Grass, 50 cm tall [Sutton, 1953] 5.0 0.040 (mature field crop)
1–2 m high vegetation [Fichtl and McVeil, 1970] 20 0.050 (brush with heavy tall weeds)

aFor the n data of Chow [1959], only mean values are used for deep streams (e.g., floodplain).
bFrom Chow [1959].
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inflection; Blasius type boundary layers do not admit such
instability (i.e., Rayleigh’s point of inflection theorem
[Drazin and Reid, 1981; Panton, 1984]). The inflection in
the mean velocity profile implies an elevated maximum in
the mean vorticity profile, which feeds the turbulent
vorticity field through these Kelvin-Helmholtz instabilities.
Experimental and computational flow visualization of such
vorticity production is given by Tritton [1988], Comte et
al. [1989], Lesieur [1990], and Ragab and Sheen [1993].
[11] For an incompressible and inviscid mixing layer,

Ls
�1 represents the wave number of the fastest growing
instability. Vertical velocity spectra collected over a wide
range of vegetation types, including wind tunnel strips,
agricultural crops, and forests, suggest Ls 
 a D where
a � 0.5 [see Raupach et al., 1996; Katul et al., 1998;
Katul and Albertson, 1999; Brunet and Irvine, 2000;
Scanlon and Albertson, 2001], though a may be different
for gravel bed streams. We note that if, in fact, the
complex features of the flow within and above gravel bed
roughness are characterized by three length-scales because
of anisotropy and inhomogeneity, as suggested by Nikora
et al. [1998], then arguably the 3-D modes of the Kelvin-
Helmholtz instabilities must be considered. However, we
can preserve simplicity on the basis of Squires’ theorem
for inviscid flows [Drazin and Reid, 1981; Monin and
Yaglom, 1971], which holds that for any 3-D unstable
mode, there exists a corresponding 2-D mode. Therefore
Ls can be estimated from the 2-D rather than the 3-D
instability problem. In essence, what is relevant to the
present mixing layer theory is the vorticity depth (or Ls) of
the 2-D Kelvin-Helmholtz wave problem.
[12] With Ls 
 a D the depth-averaged velocity is given

by

U

uo
¼ 1

h

Zh
0

1þ tanh
z� D

aD

� �� 
dz ¼ 1þ aD

h
ln

cosh 1
a �

h
aD


 �
cosh 1

a


 �
 !

ð14Þ

By letting uo ¼ Cuu�; x ¼ h
D
; f x;að Þ ¼ 1þ a 1

x ln
cosh 1

a�
1
axð Þ

cosh 1
að Þ

� �
;

U

u�
¼ Cu f x;að Þ ð15Þ

where Cu is a similarity constant to be determined later. The
result in (15) is highly dependent on the definition of D. In
natural gravel bed streams, the assumption that D 
 D84 is
commonly employed [Hey, 1979; Bray, 1979; Wiberg and
Smith, 1991], where D84 is a characteristic bed-material size
of which 84% of the bed-stream material is finer. Upon
comparing equations (7) and (15), an explicit relationship
between n and D84 can be derived and is given by

n ¼ h1=6ffiffiffi
g

p
Cu f x;að Þ : ð16Þ

Analogous relationship between f and D84 can be
determined from (8) and (15).
[13] While the use of D84 as a standard measure of bed

roughness is common, other measures are equally popular.
For example, in many engineering flows, it is common to
express surface roughness in equivalent type sand-grain
roughness (ks). This roughness measure is defined as the
sand-grain size that would, in fully rough flows, reproduce
the same friction coefficient as the original surface after
Nikuradse’s [1933] pioneering work. Interestingly, as dis-
cussed by Schlichting [1968], Reynolds [1974], and Yen
[1992], zo = ks/30 for rough-wall boundary flows which
leads to ks 
 3D84. Hence, in (15)–(16), D84 can be
replaced by ks/b if the latter roughness is known or
available, where 2.95 < b < 3.5 [e.g., Hey, 1979; Whiting
and Dietrich, 1990; Wiberg and Smith, 1991; Pitlick, 1992].
[14] Previous models for flow resistance or f commonly

employ dimensional analysis in which f is assumed to
depend on the following dimensionless groups [e.g., Colo-
simo et al., 1988]

1ffiffiffi
f

p ¼ fsim
h

D
;f;y;Re; V;Fr;Y

� �
ð17Þ

where f and y represent the influence of the cross-sectional
channel shape and the form of the grain-size curve,
respectively, Re is the Reynolds number, V is the flow
sinuosity, Fr and Y are the Froude number and the sediment
mobility parameter, respectively, and fsim is a similarity
function determined from experiments. Typically for wide
gravel bed streams on steep slopes for which stream reaches
can be approximated as straight section, Re, V, f, and Y are
of minor importance when compared to h/D. It is for this
reason that several similarity formulations produce f that
depends on h and D. The functional dependence from such
studies is empirically derived [e.g., Hey, 1979; Bathurst,
1985]. In contrast, the proposed mixing layer analogy in
(14) theoretically describes the form and parameters of fsim
provided Ls is a known fraction of D.
[15] The two unknown constants a and Cu are required

for the proposed theory. To estimate Cu, we note that the
flow near a shallow gravel bed roughness is not identical to
either canopy turbulence or a fully rough-wall boundary
layer. This suggests that the numerical value of Cu is
bounded by its representative values for these two flow

Figure 3. Onset of free shear (vis-à-vis wall bounded)
turbulent flows in shallow streams. The flow within the
roughness elements is much slower than the flow in the
fluid aloft resulting in a turbulence structure that resembles
a free shear flow (e.g., a mixing layer) rather than a rough
wall boundary layer.
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types. For dense canopies, Cu � 3.3 [Raupach et al., 1996;
Katul et al., 1998]. For rough-wall boundary layer flows, Cu

can be estimated from the log-law using Cu � 1
k
lnðD84

zo
Þ.

Assuming zo 
 D84/10 [Brutsaert, 1982; Wiberg and Smith,
1991] results in Cu � 5.8. Hence, in a first order analysis,
we choose Cu � 4.5 or the mean of these two estimates.
With regards to a, we expect that the sizes of the insta-
bilities defining Ls to be as large as the obstacle size D84

thereby leading to a 
 1. The ability of the fluid to fully
penetrate the entire roughness element depth in gravel bed
channels differs from the situation in dense canopies in
which the instabilities originating at the canopy-atmosphere
interface penetrate a limited portion of the canopy depth hc.
Figure 4 illustrates the effect of a on two velocity profiles:
one measured in a stream [Marchard et al., 1984; Wiberg
and Smith, 1991], while the other is measured in a pine
forest [Katul and Albertson, 1998]. The contrast between
mean velocity attenuation in streams and canopies is evident
with severe attenuation for the canopy case (a = 0.5) and

less for gravel bed streams (a = 1). The severe attenuation
in the case of canopies is perhaps best illustrated via the
roughness concentrations, also shown in Figure 4. Notice
that much of the roughness concentration is distributed
within the lower 20% of D84 for the gravel bed stream
while much of the roughness concentration is in the top
50% of the canopy height for the pine forest. Hence, for the
pine forest, much of the fluid momentum is extracted within
the upper 50% layers in clear contrast to the gravel stream,
in which significant momentum is maintained in the top
60% of D84. It is for this reason that instabilities can
penetrate the entire D84 for gravel streams but are restricted
to the upper 50% for dense canopies. Table 2 summarizes
the key differences between rough wall boundary layer
turbulence, canopy turbulence, and gravel bed streams
turbulence. A necessary condition for the application of
(15) and (16) is that �u (z) must satisfy, at some z along h, the
condition d2�u

dz2
�u� uoð Þ < 0 (Fjørtoft’s theorem [see Panton,

1984]). In practice, this condition is almost always satisfied

Figure 4. The similarity in inflectional velocity profiles for gravel streams (top) with a = 1 and canopy
flows (bottom) for a = 0.5. The gravel measurements are reported by Wiberg and Smith [1991] and the
canopy flow measurements (both data sets are shown as pluses) are for a 14 m tall (= Hc) pine forest
described by Katul and Albertson [1998]. The roughness distribution for the gravel stream (top right) is
from Gomez [1994]. The leaf area density, adjusted by the foliage drag coefficient (Cd), is also shown for
reference [Katul and Albertson, 1998].
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for the mean flow inside the roughness elements when a �
1. When a � 1. (e.g., as may occur in a mobile bed), the
entire mixing layer analogy may be invalid.

[16] Finally, we note that this approach is consistent with
the closure model calculations of Wiberg and Smith [1991],
which relied on closure principles of the spatially averaged
mean momentum equation. In the Wiberg-Smith approach,
the mechanism by which the roughness elements extract
momentum from the fluid is treated explicitly and locally.
When the roughness elements are arranged densely, inte-
gration of the momentum balance results in a mean velocity
profile possessing a strong inflection point analogous to
the hyperbolic tangent profile of Michalke [1964]. In the
proposed formulation, we assume a priori that the flow
within the roughness elements is much slower than the flow
aloft, thereby leading to a velocity profile exhibiting a
strong inflection point (analogous to a mixing layer).

3. Results

[17] With Cu = 4.5 and a = 1, predictions from (15) and
(16) can now be independently tested against the experi-
ments summarized in Table 3. In Figure 5, predictions of n
and U/u* from the mixing layer formulation are compared
with measurements reported for several shallow gravel
streams by Hey [1979], Bathurst [1985], and Colosimo et
al. [1988] as well as a laboratory flume by Bathurst et al.
[1981]. The range of S, D, and h encountered in these data
sets are also presented in Table 3. For reference, we
compared our results with the standard semi-empirical for-
mulations proposed byHey [1979] and Leopold and Wolman
[1957] given by

Hey
1ffiffiffi
f

p ¼ 2:03 log10 12
h

D84

1

3:5

� �

Leopold
1ffiffiffi
f

p ¼ 2 log10
h

D84

� �
þ 1 ð18Þ

Among these formulations, the Leopold equation is widely
used for estimating river roughness in geomorphology

[Limerinos, 1970; Dunne and Leopold, 1978; Leopold,
1994]. In (18), we assumed that ks = bD84 with b = 3.5 [Hey,
1979]. We emphasize that the two equations in (18) were
derived from regression analysis applied to a wide range of
gravel bed streams in Europe and the United States.

[18] With a = 1 and Cu = 4.5, the mixing layer theory
agreed well with the semi-empirical regression curves and
all measurements (Figure 5) in the range of h/D84 between
0.2 and 7 (Figure 5). A practical advantage of the mixing
layer formulation over the formulations in (18) is that for
h/D84 < 0.5, the friction nD84

�1/6 remains nearly constant and
comparable in magnitude to the larger h/D84. Hence, when
h/D84 < 1, the mixing layer formulation is well behaved in
terms of reproducing realistic values of n. In contrast, n
D84

�1/6 determined from logarithmic relationships for mean
velocity display extreme variations when h/D84 < 1. For
values of h/D84 > 7, the flow becomes sufficiently deep to
resemble a rough-wall boundary layer (vis-à-vis a mixing
layer) thereby permitting the use of the log-law.
[19] The mixing layer theory reproduces the measure-

ments and regression models collected or calibrated for high
stream roughness conditions (i.e., h/D84 < 7). Though not
superior to the Leopold or Hey semi-empirical models, our
approach is based on an entirely different view of shallow
gravel stream turbulence. This suggests that the interactions
between roughness elements and the fluid leading to drag
and resistance are consistent with a mixing layer analogy.

4. Conclusions

[20] We proposed a new theory applicable to a wide range
of h/D (2[0.2,7]), thereby permitting an objective estimate
of the flow resistance from surface roughness properties.
The new theory acknowledges that the mean velocity within
the roughness elements is small, while above the roughness
elements the mean velocity is large. The layer between the
slow and fast moving fluids leads to free shear instabilities
more consistent with a mixing layer than the classical
boundary layer analogy. In many natural streams, it is likely
that protrusions from the surface into the fluid are suffi-
ciently dense to slow down the fluid but not so dense as to

Table 2. Characteristic Roughness, Velocity, and Mixing Length for Canopy Turbulence, Rough-Wall Boundary

Layers, and Gravel Bed Streamsa

Flow Type
Canopy

Turbulence
Rough-Wall
Turbulence

Gravel Bed
Turbulence

Roughness measure hc zo D84

Cu 3.3 (neutral flows) 5.8 4.5 (expected value)
Mixing length 
0.5 hc 
k z 
1.0 D84

aHere, hc is the canopy height, zo is the momentum roughness height, D84 is the relevant bed material diameter, k = 0.4 is the Von
Karman constant, and z is the height from wall surface.

Table 3. Range of Bed Slopes (S ), Water Depth (h), and D84 From the Experiments of Bathurst [1985], Colosimo et al. [1988], and Hey

[1979]a

Experiment N h/D84 S h, m D84, m

Bathurst [1985], rivers, 13 British mountain rivers 41 0.43–7.0 0.004–0.0373 0.14–1.3 0.24–0.50
Bathurst et al. [1981], flume measurements 33 1.1–7.0 0.020–0.080 0.008–0.042 0.007–0.09
Colosimo et al. [1988], river, Calabria, Italy 43 2.2–12 0.0026–0.019 0.26–0.58 0.046–0.12
Hey [1979], rivers, Wye, Dulas Severn, and Tweed, United Kingdom 17 1.3–26 0.0025–0.031 0.29–3.43 0.046–0.25

aThe number of sections or stages (N) for each study is also shown.
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impose a no-slip boundary condition on the fluid at a
displacement height. This finite velocity within the rough-
ness elements implies that monotonic power law velocity
profiles are not always suitable for such problems. We
showed that the new mixing layer theory with its inflec-
tional profile yields mean flow velocities at high relative
roughness that are consistent with many data sets and
widely used semi empirical formulations for flow resistance.
Hence, this study provides a unifying framework for much
of the ongoing research in atmospheric canopy turbulence
and shallow gravel streams, somewhat analogous to the
relationship between the log-law and Manning’s equation.
[21] With recent developments in laser altimeters, it may

be possible to relate U (or flow rate) to depth, slope, and
observable bed characteristics via the proposed theory.
High-resolution laser altimeters from aircraft can now
measure the three-dimensional structure of terrain (includ-
ing obstacles and vegetation) and water surface position

[Weishampel et al., 2000; Dubayah, 2000] thereby provid-
ing critical information about streambed roughness needed
to infer D84 (or ks) and water depth h. Alternative methods
such as bed surface elevation profiles and vertical photo-
graphs can be used to estimate D84 or ks [e.g., Gomez, 1993;
Lane, 2000]. With such detailed measurements, n (or f ) and
U may be inferred from a combination of remotely sensed
observations and the newly proposed theory in (15) and
(16).
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