
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

1

A Mixing Scheme Using a Decentralized Signature

Protocol for Privacy Protection in Bitcoin

Blockchain
Ruiyang Xiao, Wei Ren, IEEE, Tianqing Zhu, IEEE, and Kim-Kwang Raymond Choo, IEEE

Abstract—Bitcoin transactions are not truly anonymous as
an attacker can attempt to reveal a user’s private information
by tracing related transactions. Existing approaches to protect
privacy (e.g. mixcoin, shuffle, and blinded token) suffer from a
number of limitations. For example, some approaches assume
the existence of a trusted third party, rely on exchanges among
various currencies, or broadcast sensitive details before mixing.
Therefore, there is a real risk of privacy breach or losing
tokens. Thus in this paper, we design a mixing scheme with one
decentralized signature protocol, which does not rely on a third
party or require a transaction fee. Specifically, our scheme uses
a negotiation process to guarantee transaction details, which is
monitored by the participants. Furthermore, the scheme includes
a signature protocol based on the ElGamal signature protocol and
secret sharing. The proposed scheme is then proven secure.

Index Terms—Blockchain, privacy protection, coin mixing,
multi-party signature.

I. INTRODUCTION

B
ITCOIN has been known to be exploited by criminals,

for example for ransomware payment [1], [2]. This is

partly fulled by the fact or belief that Bitcoin transactions

are anonymous or impossible to trace, since one does not

necessarily need to use his/her real identity to create an

account. However, such a belief or perception is not truly

accurate, as each Bitcoin transaction is linked to at least one

other transaction in the previous block and all transactions in

the Bitcoin blockchain can be traced back to their origin. Even

if these anonymous addresses are not linked to real identities,

attackers can deduce from a user’s transaction network [3], [4]

and infer the user’s or owner’s real identities using techniques

such as clustering analysis [5], [6]. In addition, vulnerabilities

in a Bitcoin wallet can be exploited to recover either the

user’s identity or gain access to the Bitcoins stored in the

wallet [7], [8]. Thus, another individual (e.g. attacker or

R.Y. Xiao is with the School of Computer Science, China University of
Geosciences (Wuhan), Wuhan, China, 430074, and the School of Mathematics
and Physics, China University of Geosciences (Wuhan), Wuhan, Hubei, China,
430074.

W. Ren is with the School of Computer Science, China University of
Geosciences(Wuhan), Wuhan, China, 430074, the Hubei Key Laboratory
of Intelligent Geo-Information Processing, China University of Geosciences
(Wuhan), Wuhan, Hubei, China, 430074, and the Guizhou Provincial Key
Laboratory of Public Big Data, Guizhou University, Guizhou, P.R. China.
Corresponding Author email:weirencs@cug.edu.cn.

T.Q. Zhu is with the School of Software, University of Technology Sydney,
Ultimo, NSW 2007, Australia.

K.-K.R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249-0631,
USA.

Manuscript received November 7, 2018; revised .

investigator) can trace existing Bitcoin transactions in the

blockchain to determine a particular user’s complete addresses,

their transaction network, and infer their real identities (also

using other available information).

Hence, several privacy-enhancing technologies have been

developed and such solutions can be broadly categorized into

the following:

1) Solutions that avoid having a real link between input and

output addresses in a transaction but require advanced

cryptographic technologies (e.g, coinjoin [9], [10], coin

shuffle [11] or blinded token [12], [13]).

2) Solutions that split the relationship between several

different addresses of a user but require the use of ad-

ditional currencies (e.g. Altcoin [3] and Zerocash[14]).

3) Solutions that prevent the tracing of user’s transactions.

In addition to these mixing approaches, a number of third-

party entities provide paid mixing services (e.g. Bitcoin Fog

[15], BitLaundry [16], Dark Wallet [17] and Bitmixer [18]),

although there are known limitations in such services (e.g.

delayed transaction, additional charges, and privacy breaches).

For example, schemes that require a third-party or additional

currencies require more time to complete the mixing service.

Also, users who mix coins with a third-party mixing server

or convert coins between pairwise currencies typically have to

pay for the service. Bitcoins (or other cryptocurrencies) are

also at risk of being stolen by mixing servers because the

servers possess all the valid signatures. In addition, a user’s

initial transactions can be exposed because mixing servers are

at risk of attack. Furthermore, one can predict another user’s

output addresses by tracing information on a bulletin board.

Therefore to mitigate these limitations, in this paper we

present a mixing scheme with a decentralized signature pro-

tocol that places specific emphasis on multiple-transaction

processes in Bitcoin (BTC) blockchain. Specifically, the con-

tributions of this paper are as follows:

1) To avoid unnecessary delays, we introduce a negotiation

process, where each user keeps his/her initial transaction

details secret. Thus, this requires less mixing time than

using a third-party.

2) To avoid incurring additional charges, we design a mix-

ing scheme that splits the direct relationships between

the initial input addresses and output addresses, in order

to ensure randomness and anonymity.

3) To protect privacy, we do not rely on third parties and

instead use a decentralized signature protocol based on

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

2

ElGamal signature protocol. In the protocol, detected

malicious behavior will be penalized by temporarily

suspending the associated assets.

Having introduced the paper, we will briefly review related

work in the next section (see Section II). In Section III, we

describe the problem formulation and other relevant materials.

In Section IV, we present our proposed approach, prior to

presenting the evaluation findings in Section V. We conclude

the paper in Section VI.

II. RELATED WORK

We will briefly describe key mixing approaches below.

Mixcoin: The Mixcoin process [19] is completed by a single

trusted third-party mixing server. Users only need to provide

their input addresses and related fresh output addresses. Ad-

ditionally, a number of transactions with multiple input and

output addresses need to be mixed by the third-party server.

However, there are several security issues. First, a malicious

third-party can steal the currency it is handling (e.g. by chang-

ing the output address). Also, as this third-party has access

to all original transactions, it becomes an attractive target to

cybercriminals seeking to steal the cryptocurrencies. In the

event that multiple users need to transfer fund to the same

address (e.g. for an international conference registration), this

mixing payment method means transactions are ambiguous,

and the recipient may find it challenging to identify which

payment is made by who. Lastly, such service is usually not

free.

Coinjoin: The coin mixing process [9], [10] is conducted

by a trusted third-party mixing server (i.e. a mixing server),

where multiple users agree to generate a combined transaction

with multiple inputs and outputs. This scheme also suffers

from several limitations. For example, each output address

must be a fresh new address because two users who share the

same output address would otherwise not be able to recognize

their own transaction details in a mixed transaction. As a

result, the mixing server knows each original transaction and,

if that mixing server is successfully compromised, then the

transaction details will be leaked. Users also need to pay

additional fees for this mixing service.

CoinShuffle: In this scheme, users broadcast their require-

ments, which include the amounts to be mixed. Users who

are in need of the same coins can join as one group [10],

[11]. They merely exchange each other’s output addresses

directly. However, finding a mixing group to join is difficult

and waiting for another can result in time wastage. Addition-

ally, because all users put their requirements on a bulletin

board, one can potentially infer another user’s real output

addresses from his/her mixed amount. Moreover, malicious

nodes may promise signatures and then refuse to sign after

gaining other valid signatures. Such malicious nodes may also

steal valid signatures for illegal uses, and CoinShuffle’s pun-

ishment mechanism has little to do with financial punishments.

Moreover, this scheme is completed without monitoring by a

trusted third party; therefore, it is hard to prove that a node is

malicious or dishonest.

Altcoin: In Altcoin [3], users convert their mixing coins

into other virtual currencies, such as Zerocoin [14]. After

the conversion, the users’ coins are aggregated. However, an

additional underlying protocol is needed for the conversion

between different currencies. In addition, the values of these

currencies fluctuate daily, and market fluctuations may occur

between pairwise currencies. This means users may not receive

the same amount of coins when the currency is returned.

Moreover, this conversion process incurs additional time.

Blinded token: In this scheme, a user randomly selects

other users to join and create mixing groups. A ”so-called”

trusted mixing server is selected by users from several third-

party mixing servers [13]. Without knowing the links between

the input addresses and output addresses [12], the selected

server verifies the validity of the signatures. However, the

mixing servers may become so busy that users experience

significant delays, and additional fees for the third-party still

apply.

Our proposed scheme seeks to split the initial links among

input addresses and output addresses. Therefore, similar to

mixing technologies like Mixcoin and Coinjoin, our scheme

can form multiple input addresses and multiple output address-

es in one transaction.

Although our scheme is on the basis of mixing technologies,

it uses each user rather than a third-party to form the final

transaction. In terms of replacing the mixing third party, we

introduce a multi-signature protocol dynamically formed by a

group of signers [20], which was first proposed by K. Itakura

and K. Nakamura [21] and was formally defined by Silvio

Micali, Kazuo Ohta, Leonid Reyzin [22].

III. PROBLEM FORMULATION

A. Adversary Model

Definitions of the problems are listed below:

Dishonest/cheating behaviour This includes both a user′is
and a third-party′is dishonest behavior. The former relates to a

user providing fake addresses, useless signatures, and doublge

spending transactions. The latter relates to a third party′is
deliberate behavior, such as counterfeiting output addresses,

signatures or transactions, leaking initial transaction details,

and refusing to provide mixing services.

Dishonest/malicious nodes Any individuals or organiza-

tions that behave dishonestly can be thought of as a dishon-

est/malicious node.

Third parties Third parties are divided into two categories:

negotiating third parties, which provide alternative chatting

services (e.g., Wechat, a BBS, WhatsApp), and mixing third

parties, which provide specific mixing services (e.g., Bitcoin

Fog, BitLaundry, Dark Wallet, Bitmixer).

B. Design Goals

We outlined three main disadvantages of existing schemes

in Section I and Section III-A: delay, extra charges, and

privacy breaches. Now, we provide more specific details of

our three design goals: time, coins, and privacy. Definitions of

the specific subgoals are listed below.

Time - Shorter waiting intervals Except for essential

transaction confirmation from the blockchain, users do not

need to wait for mixing services.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

3

Coins - No additional mixing fees The protocol should

not require additional fees for specific mixing services. But

transaction fees are allowed.

Privacy - Transaction security The security for trans-

actions requires non-linked input and output addresses, un-

predictable user identities, and untraceable initial transaction

details.

Privacy - Trustless third party environments Even if a

trusted third party is involved in the mixing procedure, it will

not have enough information to counterfeit transaction details

or even obtain the initial transaction details.

We explore a way in which each user can monitor the whole

mixing process without extra cost in time, coins, and privacy.

Secret sharing is used to prevent users from distributing

signatures to malicious nodes by placing all the group mem-

bers into an agreement using a secret. Secret sharing can split

a secret into different secret shares, or pieces, and distribute

them to each group member. If the available shares do not

equal the original amount, none of the group members can

recover the secret. Because transactions might be eliminated

if someone cheats the mixing process, we have added a

negotiation process that requires the participation of all users.

The validity of one transaction in the blockchain can be

verified through the signature, which is solely generated by

all related private keys.

Additionally, the ElGamal signature protocol [23] has been

proven to be secure because discrete logarithmic problems are

believed to be hard. The ElGamal signature protocol is suitable

for designing a shared secret, as ElGamal′is signature includes

a commitment, which makes it possible to prove every user′is
ownership of a private key.

IV. PROPOSED MIX SCHEME USING A DECENTRALIZED

SIGNATURE PROTOCOL

We propose a decentralized signature protocol that builds

on the ElGamal signature protocol, which defends against

malicious behavior by temporarily suspending assets.

However, before describing our approach, we first introduce

the basic model with a negotiation process. The basic model

somewhat mitigates the risk of a mixing server being compro-

mised because negotiation before mixing ensures that no one

else has direct access to anyone’s real transaction details. But

users still suffer from time waste in case that malicious nodes

refuse to sign their final transaction. Table I lists the notations

used in this protocol.

A. Basic Scheme

As mentioned a negotiation process reduces risks of a pri-

vacy leak, but this process is only required in a random-named

negotiation group to ensure users do not know each other. Our

scheme aims to create a new transaction, where links among

the original input and output addresses are randomly split. The

four steps are shown in Fig. 1.

1) Forming a random group

A node that needs to mix coins broadcasts a mixing

request, i.e., a MixRes on the bulletin board. No sensi-

tive details are included, such as output addresses, BTC

Fig. 1. Procedures of basic scheme

distributions, or private keys. Every node can choose to

create a new mixing group or join other node’s mixing

group.

For those who want to create a new mixing group

(Creator), Creator’s MixRes only includes creator’s

former transaction addresses, a mixing demand, a nonce,

a minimum number of group member, a end time, a

timestamp and a signature. Moreover, Creator’s sig-

nature signs all other information except itself in the

MixRes.

For those who want to join other node’s mixing

group (Participant), the MixRes includes participant’s

former transaction addresses, a mixing demand, the

nonce of creator’s MixRes, a timestamp and a signa-

ture, where participant’s signature also signs all other

information except itself in the MixRes.

Broadcasts with the same nonce before the creator’s

end time allow users to form a temporary mixing group.

Only if there exist no less than minimum number of

group members in creator’s MixRes will a mixing

group be created. Otherwise, the group shall be dis-

solved.

Suppose that there are m nodes in this group in

total(m ≥ 2), each node is denoted as Nodei (1 ≤
i ≤ m) in random order. Fig. 2 shows an example of

how the group is formed, which could be completed

on any social media platform allowing users to share

information (e.g., Wechat, a BBS, WhatsApp).

2) Negotiating a general transaction

As shown in Fig. 3 and Fig. 4, Nodei cre-

ates fresh accounts as output addresses and generates

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

4

TABLE I
NOTATIONS

Notation Description

MixRes A mixing request for mixing group members

m A sum of the nodes in the mixing group

Nodei A random temporary name of a user in a mixing group

NegResik A resolution request of Nodei’s initial mixing request

OutAddressik The output addresses in NegResik

Sumik The amount of BTC needed in NegResik

SatMessj A satisfaction message that Nodej can completely satisfy

PartSatMessj A satisfaction message that Nodej can partly satisfy

NegResik′ A new mixing transaction that Nodej can not satisfy

Sumik′ The amount of BTC needed in NegResik′

Assessmenti Node′is assessment of all broadcast messages

MixTran The final mixed transaction of this mixing group

p A random chosen prime number

g A primitive element in Z∗

p =< Z/pZ\{0}, ∗ >

xi A random integer number of Nodei

ki An integer number with (ki, p− 1) = 1(1 ≤ i ≤ m) of Nodei

ri, hi, ti, si Transmitted data from Nodei

SIGN Signatures of MixTran

Sign1, Sign2, Sign3 An element of SIGN

Fig. 2. Formation of a random group

several disparate negotiating requests NegResik(k ≥
1, 1 ≤ i ≤ m). NegResik includes all output address

OutAddressik and the number of coins Sumik. Nodei
randomly chooses different nodes to send each negoti-

ating request to. At the same time, it receives requests

from other nodes.

Once a negotiating request NegResik is re-

ceived, Nodej (1 ≤ j ≤ m) in Fig. 5 judges

whether or not his/her former transaction address

has enough BTC to satisfy Sumik. If the answer

is yes, Nodej will generate a satisfaction message

SatMessj , and broadcast it among the mixing group.

SatMessj includes Node′js former transaction address,

OutAddressik and Sumik in NegRes′iks. Otherwise,

Nodej will firstly generate a part-satisfaction message

PartSatMessj and broadcast it among the mixing

group. Then, Nodej will generate a new negotiating

Fig. 3. Generating several disparate negotiating requests

Fig. 4. Sending several specific disparate negotiating requests

request NegResik′ and randomly choose another node

to send it to. PartSatMessj includes Node′js former

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

5

Fig. 5. Negotiating details separately

transaction address, the OutAddressik in NegRes′iks
and Node′js current amount of BTC. NegResik′ in-

cludes the OutAddressik in NegResik and the BTC

Sumik′ . Once a satisfaction message SatMessj or a

part-satisfaction message PartSatMessj is broadcast,

Node′js former transaction address will reduce its BTC

by an equal amount, to some extent.

Example (Here we take Node1 as an example to

illustrate the negotiating process):

(1)Suppose that Node1 generates three fresh address A,

B and C as his/her mixing output addresses. Node1’s

real mixing request are to send A 1 BTC, to send B

2BTC and to send C 3 BTC. Then Node1 chooses

a random number h between 1 and the size of group

member to divide his/her initial request NegRes1 into

several sub-request NegRes1i(where i = 1, 2, · · · , h).

Here we set h as 5. Therefore, Node1 can get that

NegRes11 is to send A 0.4 BTC and to send B 1 BTC,

NegRes12 is to send A 0.6 BTC, NegRes13 is to send

C 2.2 BTC, NegRes14 is to send B 1.8 BTC, NegRes15
is to send B 0.2 BTC and to send C 0.8 BTC.

(2)Node1 chooses 5 different nodes in mixing group to

send a sub-request secretly. At the same time, Node1
shall receive sub-requests from other nodes.

(3)Suppose that Node1 firstly receives a sub-request to

send H 3 BTC. Since Node1 has 6 BTC in total, he/she

can satisfy this sub-request and can have 3 BTC left.

Thus, he/she broadcasts a SatMess1 which includes

Node1’s former transaction hash, OutAddress1 = H
and Sum1 = 3.

(4)Suppose that Node1 then receives a sub-request

to send W 8 BTC. Since Node1 only has 3 BTC

left, he/she broadcast a PartSatMess1 which includes

Node1?s former transaction hash, OutAddress1 = W
and Sum1 = 3. Noted that there exist 5 BTC in this

received sub-request, Node1 regenerates a new sub-

request which aims at sending W 5 BTC and sends it to

another node.

Fig. 6. Verifications made before generating a final transaction

(5) Suppose that Node1 still receives sub-requests from

other nodes. But considering that he/she has no coins

left, Node1 directly sends his/her received sub-requests

to another node.

3) Generating the final transaction

Having finished step 2, each node verifies the

validity of these messages in two aspects. First, Nodei
(1 ≤ i ≤ m) judges whether or not its output

addresses OutAddressik(k ≥ 1) have received an

equal amount of BTC. This judgement aims to prevent

unsatisfactory requests. Then, by making comparisons

between the amount of coins in all satisfaction and part-

satisfaction messages and that in all mixing requests,

Nodei judges whether or not there any requests have

been omitted. As shown in Fig. 6, Nodei makes an

assessment Assessmenti based on both judgments and

then broadcasts it to the group. If, and only if, over

two-thirds of the group′is assessments have indicated

a verification will this group generate a final mixed

transaction MixTran. MixTran includes all input

addresses, all output addresses, new divisions of BTC

from step 2 and the hash values of MixTran (see

Fig. 7). Otherwise, this mixing group will be dissolved.

4) Sending the final transaction

Having completed Step 3, Nodei (1 ≤ i ≤ m)
will broadcast his/her Signi

MixTran among the

mixing group. Each node in this group is able

to collect everyone’s signature and broadcast

(MixTran, Sign1
MixTran, ..., Sign

m
MixTran) to

the internet. Therefore, even if malicious nodes refuse

to sign signatures to final transaction, other nodes in

this group will not suffer from BTC theft because the

final transaction is invalid.

This scheme uses a negotiation process to replace a third

party. Since messages, such as mixing requests and negotiating

requests, do not include the amount of BTC and the addresses

in the initial transaction, real identities cannot be predicted

using the final transactions.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

6

Fig. 7. Generating a MixTran

B. Advanced Scheme

The basic scheme introduces a negotiation process that

prevents nodes from knowing others’ initial transactions. And

it can be further extended to tackle shortcomings, such as

time wastes caused by malicious nodes not agreeing to sign

transactions, no substantial- finance punishments directing at

dishonest nodes even if their behaviors do not cause monetary

loss and so on.

The advanced scheme includes a decentralized signature

protocol based on basic scheme 8. Using this protocol, group

members combine to generate a new public address without

the participation of a mixing server. This group cannot recover

a signature if anyone is absent because it is solely generated

by all private keys. Moreover, unless a user accepts that his/her

BTC will be lost, no one is able to cheat because all BTC have

to be sent to their public address before negotiation.

1) Forming a random group

Considering that 1) Forming a random group in the

advanced scheme is the same as that of basic scheme,

we will simplify descriptions here.

2) Creating a public account

As shown in Fig. 9, the group chooses a prime

number p and a primitive element g ∈ Z∗

p =<
Z/pZ\{0}, ∗ >. Each Nodei(1 ≤ i ≤ m) chooses a

random integer number xi as its private key.

After all the group members of Nodei have chosen

xi, Node1 calculates the following equation:

y1 ≡ gx1 mod p (1)

and sends y1 to Node2. Having received yj−1 from

Fig. 8. Advanced scheme procedures

Fig. 9. Creating a public account

Nodej−1 (2 ≤ j ≤ m− 1), Nodej calculates

yj ≡ y
xj

j−1 mod p (2)

and sends yj to Nodej+1. Finally, Nodem calculates

ym ≡ yxm

m−1 mod p (3)

and broadcasts ym among the group as a public key. The

mixing group computes the hash value hash(ym) and

sets it as the public mixing address.

3) Aggregating all mixing bitcoins

All group members gather to generate a transac-

tion GaTrans. GaTrans includes all nodes’ former

transaction addresses of the nodes, the amount of BTC

and a public mixing address. Only when all of them

have attached their signatures Signi
GaTrans, will the

transaction GaTrans become valid. Every node is able

to broadcast GaTrans to the internet. If any malicious

node refuses to sign, group can be dissolved.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

7

Fig. 10. Generating a final transaction

4) Negotiating a general transaction

Considering that 4) Negotiating a general transac-

tion in the advanced scheme is the same as that of basic

scheme, we will simplify descriptions here.

5) Generating a final transaction

Having completed Step 4, each node verifies the

validity of these messages in two aspects. To prevent

unsatisfactory requests, Nodei (1 ≤ i ≤ m) judges

whether or not all its output addresses will receive an

equal amount of BTC. By comparing the amount of

BTC in all satisfaction and part-satisfaction messages

and the amount in all mixing requests, Nodei deter-

mines whether or not any requests have been omit-

ted. As shown in Fig. 6, Nodei makes an assessment

Assessmenti based on both judgements and broadcasts

it to the group. If, and only if, over two-thirds of the

group’s assessments have indicated a verification will

this group generate a final mixed transaction MixTran.

MixTran in Fig. 10 includes all input addresses, all

output addresses, new divisions of BTC from Step 4

and hash values of GaTrans. Otherwise, this group will

be dissolved.

6) Signing the final transaction

Each Nodei chooses an integer number ki with

(ki, p− 1) = 1(1 ≤ i ≤ m).
As is illustrated in Fig. 11, Node1 calculates

r1 ≡ gk1 mod p (4)

h1 ≡ x1 ∗ g
k1 mod p (5)

and sends (r1, h1) to Node2. After receiving

(rj−1, hj−1) from Nodej−1(2 ≤ j ≤ m − 1),

Fig. 11. The first step in signing a final transaction

Fig. 12. The second step in signing a final transaction

Nodej calculates

rj ≡ r
kj

j−1 mod p (6)

hj ≡ hj−1 ∗ xj ∗ g
kj mod p (7)

and sends (rj , hj) to Nodej+1. Then Nodem calculates

rm ≡ rkm

m−1 mod p (8)

hm ≡ hm−1 ∗ xm ∗ gkm mod p (9)

and sets rm as part of a signature Sign1.

Additionally, Nodem in Fig. 12 calculates

tm ≡ gkm mod p (10)

and sends tm to Nodem−1. After receiving tj+1 from

Nodej+1(2 ≤ j ≤ m− 1), Nodej calculates

tj ≡ tj+1 ∗ g
kj mod p (11)

and sends it to Nodej−1. Then Node1 calculates

t1 ≡ t2 ∗ g
k1 mod p (12)

and sets t1 as part of a signature Sign2.

Finally, Node1 in Fig. 13 calculates

s1 ≡ (MixTrans− hm) ∗ k−1
1 mod (p− 1) (13)

and sends s1 to Node2. After receiving si−1 from

Nodei−1(2 ≤ i ≤ m− 1), Nodei calculates

si ≡ si−1 ∗ k
−1
i mod (p− 1) (14)

and sends si to Nodei+1. Then Nodem figures out

sm ≡ sm−1 ∗ k
−1
m−1 mod (p− 1) (15)

and sets sm as part of a signature Sign3.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

8

Fig. 13. The third step in signing a final transaction

Therefore, the final signature SIGN should be

(Sign1, Sign2, Sign3).
7) Broadcasting the final transaction

Each node in the mixing group can broadcast

(MixTran, SIGN) across the internet.

8) Verifying all signatures

To verify the validity of (MixTran, SIGN), each

node calculates

result = ySign2

m ∗ SignSign3

1 (16)

and judges whether result is equal to gHash(MixTrans)

or not. The miners will only put the final transaction

MixTran and signatures SIGN on the blockchain if

this judgement is true.

In our scheme, the decentralized signature protocol requires

aggregations of all mixed BTC to be aggregated and a new

public address. However, because every mixing group member

has to send his/her BTC to this public address, malicious

nodes are highly unlikely to fallaciously commit to sending

their BTC, which improves the security of the coin. Further,

since there is no one-to-one correspondence between input

addresses and output addresses, attackers can not analyze

transaction details to find real links through permutations and

combinations. This enhances the security of the information.

V. ANALYSES ON SECURITY AND PERFORMANCE

Our security analyses were conducted on the assumption of

three types of attacks: a key-only attack (KOA) where attackers

know public keys and signature verification functions, a known

message attack (KMA) where attackers possess messages and

related signatures, and a chosen message attack (CMA) where

attackers require users to sign some specific messages. We

conducted these security analyses to evaluate whether our sig-

nature protocol is safe or not. Before conducting these security

analyses, we first introduce a correctness proof to verify the

validity of proposed signature protocol. We also compared our

scheme’s mixing performance with other schemes to assess its

stability and the reliability of the processing environment.

A. Correctness Proof of Proposed Signature Protocol

In Sec IV, we proposed a decentralized signature protocol

to sign a final transaction. Suppose that the final transac-

tion shall be MixTran and the signature SIGN shall be

(Sign1, Sign2, Sign3), we can get

Sign1 = rm = gk1∗k2∗···∗km mod p (17)

Sign2 = t1 = gk1+k2+···+km mod p (18)

Sign3 = sm =(Hash(MixTran)− hm) ∗ k1
−1 ∗ · · · ∗ km

−1

mod (p− 1)

=(Hash(MixTran)− x1 ∗ x2 ∗ · · · ∗ xm

∗ gk1+k2+···+km) ∗ k1
−1 ∗ · · · ∗ km

−1

mod (p− 1)
(19)

Considering that

ySign2

m ∗ SignSign3

1 =gx1∗x2∗···∗xm∗Sign2 ∗ SignSign3

1

mod (p− 1)

=gx1∗x2∗···∗xm∗Sign2+k1∗k2∗···∗km∗Sign3

mod (p− 1)

=gx1∗x2∗···∗xm∗gk1+k2+···+km

∗

g(Hash(MixTran)÷

gx1∗x2∗···∗xm∗gk1+k2+···+km)

mod (p− 1)

=g(Hash(MixTran) mod (p− 1)
(20)

Our proposed signature protocol is thus proven secure.

B. Security Analyses for KMA

Various hypotheses associated with KMAs are outlined

below along with a corresponding security analysis given a

theoretical environment.

To start, we assume that attackers only possess the final sig-

nature (MixTran, SIGN), the prime number p, the primitive

element g and the public key ym. These goal of the attackers is

to forge a valid signature for a virtual transaction V irTrans.

Hence, all parameters in a valid signature should follow the

equation rule:

ySign2

m ∗ SignSign3

1 = gHash(V irTrans) (21)

1) If an attacker randomly chooses a new Sign1 and wants

to find its corresponding Sign2 and Sign3, they will not

be able to calculate Sign2 and Sign3 using the current

approaches.

2) If an attacker randomly chooses a new Sign2 and wants

to find its corresponding Sign1 and Sign3, thet will not

be able to calculate SignSign3

1 . However, it is difficult

for this number to be spilt into a base number Sign1

and a exponent number Sign3. Even large quantities of

such numbers could not be broken down into two pieces.

3) If an attacker randomly chooses a new Sign3 and wants

to find its corresponding Sign1 and Sign2, they will

not be able to calculate Sign1 and Sign2 using current

approaches.

The examples above illustrate that this model has the ability

to defend against selective forgery.

Considering the equation

ySign2

m ∗ SignSign3

1 = gHash(MixTrans) (22)

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

9

The form of this equation can be changed to draw a new

conclusion

Hash(MixTrans) =(x1 ∗ x2 ∗ ... ∗ xm) ∗ Sign2

+ (k1 ∗ k2 ∗ ... ∗ km) ∗ Sign3 mod (p− 1)
(23)

Users can not change xi unless they break it down because

the public keys and a public address are solely generated

through xi. Therefore, we can assume that each node Nodei
does not choose a different nonce ki in both transactions and

that the attacker’s aim must be to falsify a valid signature.

Thus, in the advanced scheme, users will not change

Sign1 = rm = gk1∗k2∗···∗km mod (p− 1) (24)

Sign2 = t1 = gk1+k2+...+km mod (p− 1) (25)

hm = x1 ∗ x2 ∗ ... ∗ xm ∗ gk1+k2+...+km mod (p− 1) (26)

Hence, every two signatures will have the following relation-

ships [24]:

In the first transaction (MixTrans1, SIGN =
(Sign1, Sign2, Sign13)):

Hash(MixTrans1) =(x1 ∗ x2 ∗ ... ∗ xm) ∗ Sign2+

(k1 ∗ k2 ∗ ... ∗ km) ∗ Sign13 mod (p− 1)
(27)

In the second transaction (MixTrans2, SIGN =
(Sign1, Sign2, Sign23)):

Hash(MixTrans2) =(x1 ∗ x2 ∗ ... ∗ xm) ∗ Sign2+

(k1 ∗ k2 ∗ ... ∗ km) ∗ Sign23 mod (p− 1)
(28)

Then we have

Hash(MixTrans2)−Hash(MixTrans1) = (k1 ∗ k2 ∗ ...

∗ km) ∗ (Sign23 − Sign13) mod (p− 1)
(29)

In this case, MixTrans1,MixTrans2, Sign13 and

Sign23 are available to everyone. Given that

d = gcd(Sign23 − Sign13, p− 1) (30)

we have d|(Sign23 − Sign13) along with d|p− 1.

Using the definition

Hash(MixTrans)min = MixTrans2−MixTrans1
d

(31)

Signmin = Sign23−Sign13
d

(32)

pmin = p−1
d

(33)

we have

Hash(MixTrans)min = (k1∗k2∗...∗km)∗Signmin mod pmin

(34)

gcd(Signmin, pmin) = 1 (35)

Note that

(k1∗k2∗...∗km) = Hash(MixTrans)min∗(Sign
−1
min) mod pmin

(36)

Moreover, Sign1 is also public to everyone, which means that

attackers can derive k1 ∗ k2 ∗ ... ∗ km by testing

Sign1 = gk1∗k2∗...∗km mod p (37)

This example implies that the security of our scheme relies

on random nonce ki and the number of transactions. ki can

not be used for a second time. That is to say, once users need

to sign a different transaction, their ki must be changed.

C. Security Analysis for KOA

An attacker, who only has the prime number p, the primitive

element g, and the public key ym, may randomly choose a pair

of numbers (u, v), where 1 ≤ u, v ≤ p−1 and gcd(v, p−1) =
1. They will then be able to calculate

Sign1 = Sign2 = g−u ∗ yvm mod p (38)

Sign3 = −Sign1 ∗ v
−1 mod (p− 1)(39)

Hash(MixTrans) = −u ∗ Sign3 mod (p− 1) (40)

Subsequently, they can claim SIGN =
(Sign1, Sign2, Sign3) and Hash(MixTran) =
Hash(MixTrans) as the real final transaction parameters.

However, in reality even if Hash(MixTran) is available,

attackers can not recover valid MixTran due to residence

of Hash function. Moreover, this may require us to make an

extra value check on Sign1 and Sign2 in the verification

process, where there should be such a little possibility that

Sign1 = Sign2.

D. Security Analysis for CMA

Assume that one specific transaction MixTran1

and its corresponding valid signature SIGN1 =
(Sign11, Sign12, Sign13) is available to all attackers.

In this case, the attacker’s aim is to forge a different

transaction.

First, attackers can analyze the equation

ySign12 ∗ Sign1Sign13
1 = gHash(MixTrans1) (41)

Then they can square both sides to produce a new equation

(ySign12
m ∗ Sign1Sign13

1)2 = y2∗Sign12
m ∗ Sign12∗Sign13

1

= g2Hash(MixTrans1)

(42)

In this equation, attackers can forge an artificial but valid

transaction 2Hash(MixTrans1) and signature SIGN1
′

=
(Sign11, 2 ∗ Sign12, 2 ∗ Sign13).

Though these artificial messages may pass above signature

validation, everyone will recognize them as spurious because

it is impossible for one transaction hash 2hash(MixTran1)
to find its corresponding transaction MixTrans′1. So attackers

may hardly find such a specific transaction. This example

implies that our scheme can defend against a CMA.

E. Performance Analyses

In our scheme, users have to send their money to the public

address, thus reducing a malicious node′s dishonest behavior.

They cannot play tricks during the mixing process because

honest nodes will not agree to sign a fake transaction. This

punishment protocol is reflective of human nature, and typifies

our signature protocol′s security.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

10

TABLE II
COMPARISONS BETWEEN SEVERAL MIXING SCHEMES

Protocol
Transaction

Security

Trustless

third

party

environments

No

additional

mixing

fees

Shorter

waiting

hours

Mixcoin
√ × × ×

Coinjoin
√ × × ×

CoinShuffle
√ √ √ ×

Altcoin
√ × × ×

Blinded Token
√ × × √

Our scheme
√ √ √ √

Turning to the performance of existing mixing protocols,

Table. II provides a comparison of the basic characteristics of

each along with our proposed scheme.

The major difference between our scheme and others lies

in the use of a third party. In schemes like mixcoin, coinjoin,

coinshuffle, and blinded token, a third-party mixing server is

required to provide mixing services. However, our proposed

scheme merely requires a social media platform that enables

users to communicate with each other. No additional underly-

ing design is needed. Therefore, our background compatibility

is improved because users do not need to install a specific

application or software to build the environment.

Without extra mixing services, users in our scheme have

more choices for information transfer than in other solutions.

Neither a medium or an attacker will have an explicit object

to monitor or use to breach privacy because users have a

wide range of communication approaches to select from. This

differs from other schemes where attackers may have specific

targets like BitLaundry, Bitmixer, or Dark Wallet, which

increases security risks. In the real world, safe communication

applications are much more available to users, compared with

a trusted mixing server.

Moreover, a busy server is much more likely to break down

since it needs to handle huge amounts of transactions at a

time. Our scheme will always be reliable because separate

mixing groups can choose distinct mixing environments in-

dependently, which makes social media platform more stable.

Furthermore, users in our scheme do not need to pay addi-

tional charges for mixing services because most social media

platforms provide free chatting service.

Other schemes also have fixed long waiting periods to

confirm transactions because their mixing servers require users

to wait several hours for a safe transaction. For example,

a user who only needs to mix 1 BTC may have to spend

hours in waiting, not to mention that many users trade in

less than 1 BTC. Our scheme takes less time than current

schemes because even though the communication procedure

is somewhat lengthy, users do not have to wait several hours

for it to begin. Lastly, the scheme is based on smaller groups,

which increases flexibility.

In view of the P2P size involved in transactions, there exist

three negotiation process which includes forming a random

group, negotiating a general transaction and signing the final

transaction. First, since the random group is formed in a

billboard, every node merely require send one request. Thus,

the time complexity of this process is O(m). Second, in

process of negotiating a general transaction, we can suppose

that there exist a complete graph, where each node in graph

represents a user and each edge in graph represents the

interaction between two nodes. Therefore, the time complexity

of negotiation process is liner related to number of edges.

Noted that there are m nodes in one graph, its time complexity

here shall be O(m2) because there are
m(m−1)

2 edges in the

directed graph and m(m − 1) edges in the undirected graph.

Finally, since each node only transfer once in each round

where there are four rounds in total, time complexity in signing

process turns out to be O(m). To sum up, time complexity in

the whole transaction is O(m2).

F. Further Discussion on Extensive Designs

As with all proposals, this scheme has some limitations and

some areas for improvement.

First, significant loading times are tolerable because our

mixing scheme focuses more on security. However, users who

need mixing services urgently should be able to choose a

very small group over a large group to further improve speed.

Additionally, to reduce wasted time, each user must have a

stable network environment. Unstable network environments

create interruptions to the mixing processes. Suspensions may

waste even more time by forcing the mixing group to reform.

Further, the processes in our scheme require a discussion

platform for negotiation. For efficiency, a convenient social

media platform is needed to ensure that all users can com-

municate with each other. But this ignores various language

barriers. Additionally, users are required to retain their chat

records to avoid denials in the negotiation process until the

final transactions have been signed.

To improve our proposed signature protocol, we can extend

a verification process during each P2P interaction. One pos-

sible solution is to introduce the concept of zero knowledge

proof (which is short for ZK-Proof) in aims of keeping any

transaction detail as a secret. Only ciphertexts are available to

any other nodes. In this way, no one else except user itself

will have access to this user’s initial transaction details.

Moreover, for a better performance without a mixing third

party, nodes in a mixing group can conduct broadcast process-

es in a lightweight blockchain among themselves. Apart from

that, not only assessments but also verifications can be easily

completed through smart contracts.

VI. CONCLUSION

In this paper, we proposed a mixing scheme with a de-

centralized signature protocol for privacy protection in a

BTC blockchain. We not only designed a specific negotiation

process among mixing users to circumvent the need for a

third party but also introduced a distribution method to collect

private keys. Our scheme can reduce the risks of privacy

breaches in cryptocurrency mixing processes and, since it does

not require a mixing server, additional charges for mixing

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

11

services can also be avoided. Neither a fresh address nor two

users asking for the same amount of money is required.

However, there are still challenges to decrease mixing wait

times in blockchain technology (e.g., transaction confirmations

loads and proof of work). Therefore, our next work will ad-

dress higher efficiency environments and place more emphasis

on less negotiation time.

ACKNOWLEDGMENT

This research was financially supported by the Major Sci-

entific and Technological Special Project of Guizhou Province

(No. 20183001), the Open Funding of Guizhou Provincial

Key Laboratory of Public Big Data (No. 2018BDKFJJ009,

No. 2017BDKFJJ006), the National Science Foundation China

(No. 61502362), and the Open Funding of Hubei Provincial

Key Laboratory of Intelligent Geo-Information Processing

(No. KLIGIP2016A05).

REFERENCES

[1] D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi, E. Bursztein,
K. McRoberts, J. Levin, K. Levchenko, A. C. Snoeren, and D. McCoy,
“Tracking ransomware end-to-end,” in IEEE Symposium on Security and

Privacy. IEEE, 2018, pp. 618–631.
[2] K. Liao, Z. Zhao, A. Doupe, and G.-J. Ahn, “Behind closed doors:

measurement and analysis of cryptolocker ransoms in bitcoin,” in APWG

Symposium on Electronic Crime Research. IEEE, 2016, pp. 1–13.
[3] J. Herrera-Joancomartí, “Research and challenges on bitcoin anonymity,”

in Data Privacy Management, Autonomous Spontaneous Security, and

Security Assurance, J. Garcia-Alfaro, J. Herrera-Joancomartí, E. Lupu,
J. Posegga, A. Aldini, F. Martinelli, and N. Suri, Eds. Cham: Springer
International Publishing, 2015, pp. 3–16.

[4] J. Herrera-Joancomartí and C. Pérez-Solà, “Privacy in bitcoin trans-
actions: New challenges from blockchain scalability solutions,” in
Modeling Decisions for Artificial Intelligence, V. Torra, Y. Narukawa,
G. Navarro-Arribas, and C. Yañez, Eds. Cham: Springer International
Publishing, 2016, pp. 26–44.

[5] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in Financial Cryptography and

Data Security, A.-R. Sadeghi, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 34–51.

[6] F. Reid and M. Harrigan, An Analysis of Anonymity in the Bitcoin

System. New York, NY: Springer New York, 2013, pp. 197–223.
[7] L. Van Der Horst, K.-K. R. Choo, and N.-A. Le-Khac, “Process memory

investigation of the bitcoin clients electrum and bitcoin core,” IEEE

Access, vol. 5, pp. 22 385–22 398, 2017.
[8] T. Volety, S. Saini, T. McGhin, C. Z. Liu, and K.-K. R. Choo, “Cracking

bitcoin wallets: I want what you have in the wallets,” Future Generation

Computer Systems, vol. 91, pp. 136–143, 2019.
[9] S. Meiklejohn and C. Orlandi, “Privacy-enhancing overlays in bitcoin,”

in Financial Cryptography and Data Security, M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 127–141.

[10] T. Ruffing and P. Moreno-Sanchez, “Valueshuffle: Mixing confiden-
tial transactions for comprehensive transaction privacy in?bitcoin,” in
Financial Cryptography and Data Security, M. Brenner, K. Rohloff,
J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Bracciali, M. Sala,
F. Pintore, and M. Jakobsson, Eds. Cham: Springer International
Publishing, 2017, pp. 133–154.

[11] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in Computer Security - ESORICS

2014, M. Kutyłowski and J. Vaidya, Eds. Cham: Springer International
Publishing, 2014, pp. 345–364.

[12] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
bitcoin,” in Financial Cryptography and Data Security, M. Brenner,
N. Christin, B. Johnson, and K. Rohloff, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 112–126.

[13] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed contracts:
Anonymous on-blockchain and off-blockchain bitcoin transactions,” in
Financial Cryptography and Data Security, J. Clark, S. Meiklejohn, P. Y.
Ryan, D. Wallach, M. Brenner, and K. Rohloff, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 43–60.

[14] C. Garman, M. Green, I. Miers, and A. D. Rubin, “Rational zero: Eco-
nomic security for zerocoin with everlasting anonymity,” in Financial

Cryptography and Data Security, R. Böhme, M. Brenner, T. Moore, and
M. Smith, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 140–155.

[15] “Bitcoin fog,” http://bitcoinfog.org.
[16] “Bitlaundry,” http://app.bitlaundry.com.
[17] “Dark wallet,” http://www.darkwallet.is.
[18] “Bitmixer,” https://bitmixer.io/.
[19] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.

Felten, “Mixcoin: Anonymity for bitcoin with accountable mixes,” in
Financial Cryptography and Data Security, N. Christin and R. Safavi-
Naini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
486–504.

[20] L. Harn and J. Ren, “Efficient identity-based r-
sa multisignatures,” Computers and Security, vol. 27,
no. 1, pp. 12 – 15, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404808000059

[21] K. Itakura and K. Nakamura, “A public key cryptosystem suitable for
digital multisignatures,” NEC Research and Development, vol. 71, pp.
1 – 8, 1983.

[22] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup
multisignatures: Extended abstract,” in Proceedings of the 8th

ACM Conference on Computer and Communications Security, ser.
CCS ’01. New York, NY, USA: ACM, 2001, pp. 245–254. [Online].
Available: http://doi.acm.org/10.1145/501983.502017

[23] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469–472, Jul 1985.

[24] W. Ren, Digital signature and security protocol. Tsinghua university
press, 2015, pp. 15–18.

Ruiyang Xiao is a student at the School of Com-
puter Science and the School of Mathematics and
Physics, China University of Geosciences (Wuhan),
China. She has been pre-admitted by University
of Science and Technology of China (USTC). Her
research interests include blockchain and privacy
protection.

Wei Ren currently is a Professor at the School of
Computer Science, China University of Geosciences
(Wuhan), China. He was with the Department of
Electrical and Computer Engineering, Illinois Insti-
tute of Technology, USA in 2007 and 2008, the
School of Computer Science, University of Neva-
da Las Vegas, USA in 2006 and 2007, and the
Department of Computer Science, The Hong Kong
University of Science and Technology, in 2004 and
2005. He obtained his Ph.D. degree in Computer
Science from Huazhong University of Science and

Technology, China. He has published more than 70 refereed papers, 1
monograph, and 4 textbooks. He has obtained 10 patents and 5 innovation
awards. He is a senior member of the China Computer Federation and a
member of IEEE.

Tianqing Zhu received her BEng and MEng de-
grees from Wuhan University, China, in 2000 and
2004, respectively, and a Ph.D degree from Deakin
University in Computer Science, Australia, in 2014.
Dr Tianqing Zhu is currently a senior lecturer at
the School of Software in University of Technology
Sydney, Australia. Before that, she was a lecturer at
the School of Information Technology, Deakin Uni-
versity, Australia, from 2014 to 2018. Her research
interests include privacy preservation, data mining,
and network security.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE

Transactions on Dependable and Secure Computing

12

Kim-Kwang Raymond Choo (SM’15) received
his Ph.D. in Information Security in 2006 from
the Queensland University of Technology, Australia.
He currently holds the Cloud Technology Endowed
Professorship at The University of Texas at San
Antonio (UTSA). In 2016, he was named the Cyber-
security Educator of the Year - APAC (Cybersecurity
Excellence Awards are produced in cooperation with
the Information Security Community on LinkedIn),
and in 2015 he and his team won the Digital Foren-
sics Research Challenge organized by Germany’s

University of Erlangen-Nuremberg. He is the recipient of the 2018 UTSA
College of Business Col. Jean Piccione and Lt. Col. Philip Piccione Endowed
Research Award for Tenured Faculty, IEEE TrustCom 2018 Best Paper Award,
ESORICS 2015 Best Research Paper Award, 2014 Highly Commended
Award by the Australia New Zealand Policing Advisory Agency, Fulbright
Scholarship in 2009, 2008 Australia Day Achievement Medallion, and British
Computer Society’s Wilkes Award in 2008. He is also a Fellow of the
Australian Computer Society, and an IEEE Senior Member.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

