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Abstract: Deep learning (DL) has emerged as a promising

tool for photonic inverse design. Nevertheless, despite the

initial success in retrieving spectra of modest complexity

with nearly instantaneous readout, DL-assisted design

methods often underperform in accuracy compared with

advanced optimization techniques and have not proven

competitive inhandling spectra of practical usefulness.Here,

we introduce a tandem optimization model that combines a

mixture density network (MDN) and a fully connected (FC)

network to inversely design practical thin-film high re-

flectors. The multimodal nature of the MDN gives access to

infinite candidate designs described by probability distri-

butions, which are iteratively sampled and evaluated by the

FC network to allow for rapid optimization.We show that the

proposed model can retrieve the reflectance spectra of

20-layer thin-film structures. More interestingly, it re-

produces with high precision the periodic structures of high

reflectors derived from physical principles, even though no

such information is included in the training data. Improved

designs with extended high-reflectance zones are also

demonstrated. Our approach combines the high-efficiency

advantage of DLwith the optimization-enabled performance

improvement, enabling efficient and on-demand inverse

design for practical applications.

Keywords: artificial neural networks; deep learning; inverse

design; nanophotonics; optimization; thin-film optics.

1 Introduction

Deep learning (DL) has emerged as a promising and

powerful tool for many tasks in optics and photonics, such

as image reconstruction and enhancement in microscopy

[1], feature recognition in spectroscopy [2], and inverse

design of photonic devices [3–8], to name a few. Concep-

tually, DL uses many-layered neural networks (NNs),

where a series of parameters are adjusted upon exposure to

a repository of training data, to learn an abstract and

generalizable mapping from the inputs to the outputs of

NNs. In the case of inverse design, the inputs are the

desired optical responses, and the outputs are the design

variables of a coinciding structure. Owing to their

remarkable ability to unearth unintuitive and hidden

relations within the data, DL-based methods have been

applied to designing various photonic structures,

including metasurfaces [9–11], metagratings [12, 13], and

multilayer nanoparticles and thin films [14–21], etc. The

choice of the assisting NNs also diversifies quickly from

fully connected (FC) networks to many advanced models

(discriminative or generative) and their ensembles [22–25].

While these efforts have shown encouraging ability to

reproduce spectra based on fully randomdesigns or simple

physical processes such as a Lorentzian resonance, little

has been reported at the level of solving practical prob-

lems, for which some rules of design have been derived

from physical principles. Thus, DL has yet to convincingly

show a capacity to match or replace traditional physics-

based design methods. In addition, in comparing with

optimization techniques for inverse design [26–28], DL of-

fers an unparalleled advantage of high speed after training

but is less favorable in accuracy, especiallywhen the target

optical responses contain steep features resulting from
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sophisticated physical processes. Recent works have

shown the potential of incorporating both DL and optimi-

zation in inverse design [10, 14, 29], which could combine

the advantages of high speed and scalability from DL with

the higher maximum performance afforded by optimiza-

tion techniques. This attempt raises the possibility that the

most fruitful avenue for application of DL to inverse design

may be in concert with existing approaches.

In this work, we report a tandem model that combines

two NNswith an optimization process to inversely design a

type of multilayer thin-film structure with wide applica-

tions, which are known as the high reflectors. Among the

structures to which DL-based design methods have been

applied, multilayer stacks are of particular interest [15–18,

30]. On one hand, thorough understanding of the proper-

ties of multilayer structures sets the basis of thin-film op-

tics. Albeit the seemingly simple geometry, multilayer thin

films can provide a variety of optical properties (see

Figure 1A), depending on the choice of materials and their

arrangements. The associated devices span beam splitters

[31], high reflectors [32], antireflection coatings [33], and

numerous optical filters [34]. In different application sce-

narios, the exact line shape of the desired spectra is case-

specific, each corresponding to a structure to be inversely

solved. Practical thin-film devices can have tens or

hundreds of layers, making the task challenging enough to

stimulate innovative design methods. On the other hand,

the development of thin-film optics has reaped many

classical designs based on physical principles or rules of

thumb [34]. Retrieving and outperforming these devices

can be good gauges to assess the performance of numerical

design methods.

Our two NNs include a mixture density network (MDN),

which solves the inverse problem to suggest probability

distributions of “raw” designs [35], and a standard FC

network as a forward simulator to instantly evaluate any

updated design during iterative optimization. The applica-

bility of the proposed model is beyond retrieval of random

thin-film structures. We show that the classical design of

high reflectors, derived from the principle of interference of

light, can be reconstructedwith highprecision, even though

no information about the periodicity or quarter-wavelength

layer thickness is introduced into the training data.

Improved designs with extended high-reflectance regions,

which are not easily obtainable by physics-based design

rules, are also demonstrated. We emphasize that the use of

two NNs in this work differs from previous implementations

of a tandem architecture [15, 36], which feature the inverse

and forward networks directly connected to relieve non-

uniqueness. Here, the non-uniqueness is relieved by the

Figure 1: (A) Top: diagram of a 20-layer thin-film structure consisting of two alternating materials placed on a semi-infinite glass substrate.

Once thematerials are chosen, the thicknessesof layers t1– t20 constitute the designparameters for any requestedoptical responses. Bottom:

examples of optical spectra of the multilayer thin-film structure featuring selected line shapes for various applications, including broadband

high reflection, black body radiation, and narrow peaks from resonances. (B) Schematic of the tandem model with adjoining optimization

method. The requested or target spectrum R (navy curve) fed into the MDN (left column) produces probability distributions of the design

parameters (red curve), which are repeatedly sampled and evaluated with the forward model (right column) to optimize the designs until the

predicted optical response R0 (blue curve) is close enough to the target spectrum R.
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MDN alone, and the forward model is indirectly connected

via the optimization method to iteratively improve designs

after initial readout. The model is also different from recent

works that use NNs only to accelerate the adjoint simula-

tions in an optimization framework [30, 37]. In fact, apart

from resampling, our whole model is DL-based. The unique

ability of MDN to predict multiple optima of the objective

function can potentially aid in the search of a global opti-

mum rather than getting stuck at a local one. Therefore, our

approach combines the advantage of DL in high speed

with the optimization-enabled performance improvement,

enabling efficient and on-demand inverse design of struc-

tures and devices for practical applications.

2 Materials and methods

As illustrated in Figure 1B, we construct a tandemmodel consisting of

two independent deep neural networks. The first network is an MDN,

designated to solve the inverse problem, i.e., seeking a design thatwill

produce the desired optical properties. The unique feature of MDNs is

that the outputs are not deterministic discrete design variables but

their probability distributions over the possible ranges. These distri-

butions are built as a mixture of M (we take M = 16 in this work)

Gaussian distributions, each parametrized by a mean μ, variance σ

and a mixing weight π, with the mixing weights shared across all

design mixtures. These parameters are what the network outputs in

lieu of directly outputting design values. Candidate designs are then

generated by sampling the distributions of the individual variables. To

train the model, desired outputs are measured for goodness of fit with

the model-produced distributions using a metric such as log-

likelihood, and this allows for multiple correct outputs to be

modeled as different peaks in the distribution. This difference from

ordinary NNs alleviates the non-uniqueness problem in inverse

design, and more importantly, opens the opportunity of subsequent

optimization for performance improvement and better search of a

global optimum in the design space. The second network deals with

the forward problem, functioning as a simulator to predict the optical

response of a given structure. This task is relatively simple and can

thus be carried out by a standard FC network. A full description of the

model architectures, hyperparameters, and training curves is given in

Section 1 of the Supplementary materials. Upon completion of

training, both the suggestion of candidate designs for a given spec-

trum and the prediction of optical properties for a given design are

almost instantaneous.

To work jointly as a tandem, the two NNs are connected through

an optimization procedure, which essentially post-processes the

output of the MDN by iteratively evaluating and updating sampled

candidate designs with the assistance of the forward network. The full

model works as follows for a design task involvingN variables. First, a

desired optical spectrum R is fed into the MDN, which produces at the

output N probability distributions, each corresponding to one design

variable. Without complex sampling strategies, the initial guess of the

design is made by assigning every variable the value at the most

prominent peak of its own distribution. Next, the initial design sug-

gestion is sent to the forward network for a prediction of the optical

response, denoted byRM and also labeled asR0 to indicate that it is the

predicted response of the active candidate design. The performance of

this design is evaluated by comparing R0 with the ground truth R

based on some metrics, including root mean square error (RMSE).

Then, the optimization process starts. Of the N variables of the active

candidate design, a randomly chosen one is resampled for a specified

number of times based on its probability distribution for new guesses,

while the remaining N − 1 variables are fixed. Once the predicted

response of a new guess Ri is closer to R than R0, that guess becomes

the new active candidate design, and R0 is updated accordingly. The

resampling and evaluation repeat for all the N variables in a random

order, and the process of cycling through all the variables can also be

repeated for any number of times. A more detailed account on the

numbers chosen for optimization and their relation to improvement in

the design is provided in Section 2 of the Supplementary materials. If

the forward model is accurate enough, the prediction of the design

guesses’ error relative to the ground truth will closely approximate

the true error, and the design will improve over time. Lastly, after

the optimization is complete, the optical response of the finalized

design R′ is simulated by plugging the design variables in an elec-

tromagnetic solver, which computes the real properties of the final

design. It should be emphasized that through the entire design

process, simulation is only used once at the very end for verification.

We apply our model to inverse design based on the reflectance

from a stack of dielectric thin films of alternating high and low

refractive indices. The whole structure consists of 20 layers of mag-

nesium fluoride (MgF2) and tantalum pentoxide (Ta2O5) placed on a

glass substrate andwith an air cladding, as shown in Figure 1A. For the

sake of comparison to physics-based design rules, only normal inci-

dence is considered. This reduces the design variables to the thick-

nesses of each of the 20 layers, forming a 20-dimensional vector.

However, inclusion of the angle of incidence in the design variables

has no intrinsic difficulty [16]. The reflectance is calculated for the

wavelength interval of 400–1000 nm using analytical formulae based

on the Fresnel equations [38], and the spectrum is discretized into 300

points.We limit the ranges of possible physical thicknesses to between

50 and 150 nm for MgF2 and between 30 and 120 nm for Ta2O5, both of

which cover the optical thickness of quarter-wavelength for a large

portion of the wavelengths of interest. The dielectric functions of MgF2
and Ta2O5 are taken from Refs. [39, 40] unless otherwise specified. To

train the two separate models, we use the same dataset of 828,000

samples, split into 70% for training and the remaining 30% for testing.

In sample generation, 50% of the data uniformly samples the entire

thickness range for all design variables, 25% of the data uniformly

samples the upper half of the thickness range for each, and the last

25% uniformly samples the lower half. The uniform sampling means

all values within the chosen interval are equally likely to be chosen.

Other sampling techniques such as low-discrepancy sequences [41]

are also tested and produce qualitatively similar results, as discussed

in the Supplementary materials, Section 3. Compared with sampling

the full thickness ranges all at once, this strategy ensures that struc-

tures with relatively balanced thicknesses are less likely underrepre-

sented, given the enormous design space spanned by 20 independent

variables.

3 Results

Both models are trained via gradient descent for 500

epochs on the Stampede2 computer of Texas Advanced

R. Unni et al.: A mixture-density-based tandem network for inverse design 4059



Computing Center (TACC). A single compute node is used

for training, which takes a total of approximately 23 h to

complete, in addition to about 1 h for data generation. The

forwardmodel uses RMSE in the optical response as its loss

function and converges to a final RMSE of 0.02 for both the

training and test datasets. The MDN uses the negative log-

likelihood metric and converges to a value of −18 for both

datasets. The optimization process is set to run four cycles

of resampling and evaluation through all the 20 variables,

and each variable is sampled 50 times in one cycle. With

these settings, the optimization of a single design takes

approximately 1 min on the same TACC compute node or

6 min on a commercial laptop.

3.1 Retrieval of random stacks

We first examine the tandem optimization model on the

spectra produced by random structures in the test dataset.

The model can retrieve those designs fairly well even with

theMDN alone, and progressive improvements can be seen

during the optimization process. Figure 2A presents an

example randomly chosen from the test dataset. Three

spectra taken at different steps of the design, namely the

predicted response of MDN’s initial guess RM (black dash

curve), the predicted response of the final design R0 (green

dash curve), and the simulated response of the final design

R’ (blue curve), are compared with the desired spectrum as

ground truthR (red curve). Noticeably, despite the complex

line shape of the target spectrum, the initial guess that

simply takes the peak values of the outputs of MDN can

already resemble the ground truth design closely at most

wavelengths. The deviations between the initial guess and

the ground truth are diminished by optimization. Both the

predicted and simulated responses of the final design

overlap the target spectrum R almost perfectly, confirming

the effectiveness of the optimization procedure and the

accuracy of the forward network. To get a quantitative idea

of the performance of MDN and the improvement by opti-

mization, we conduct a statistical study over 500 samples

randomly chosen from the test dataset. Figure 2B shows the

histograms of RMSE between the requested spectra and the

responses of the initial guesses by MDN and final designs

after optimization. The initial designs, sampled at the most

prominent probability peaks predicted by theMDN, give an

average response RMSE of 0.09. In comparison, after

optimization, the model produces final designs with an

average RMSE of 0.04, improved by more than a factor of

two. This improvement highlights the unique benefits of

the probabilistic nature of the MDN. By resampling and

using the forward model to evaluate samples without

additional simulations, designs can be continuously opti-

mized after an initial sample. The optimization can run for

any arbitrary number of rounds and samples, with the

processing time scaling linearly with each factor, however

the improvements in response RMSE see diminishing

returns. A more detailed description is provided in Section

2 of the Supplementary materials.

Figure 2: (A) Comparison of a requested spectrum R (red curve) with the simulated response R′ of the final design retrieved by themodel (blue

curve) for a random case from the test dataset. Forwardmodel predictions of the response of the initial MDN design RM (black dash curve) and

of thefinal designR0 (greendash curve) are also shown. (B) Histogramof RMSEmatchingbetween the requested spectrumand the responseof

the model-suggested design for 500 randomly chosen test dataset samples before optimization (initial design from the MDN) and after

optimization (final design by the tandem optimization model).
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3.2 Retrieval of classical high reflectors

Practical applications of the multilayer thin films usually

require optical responses that aremuchmore sophisticated

than a series of slowly varying peaks. Typical features like a

constant response over a certain wavelength range and

steep edges cannot be produced by randomly assembled

layers as building blocks. Therefore, the ability to retrieve

spectra from random structures is no guarantee of practical

applications. To prove that the proposed model can be a

competitive tool to tackle real-world applications, we

further test it with a classical type of thin-film high re-

flectors, the distributed Bragg reflectors (DBRs) [42, 43],

which feature a flat high-reflectance band and are origi-

nally accessed by physics-based approaches. The most

popular design of DBRs consists of a stack of quarter-wave

dielectric films with alternating high and low refractive

indices. In other words, a DBR has a periodic structure, and

with a given pair of materials, the thicknesses of neigh-

boring layers are determined by the central wavelength of

operation. We compute the reflectance of several DBRs

targeting at different wavelengths and feed the spectra into

the MDN as the desired optical properties. The proposed

model performs very well in retrieving these DBR designs,

as shown in Figure 3. In both cases at shorter and longer

wavelengths, the predicted and simulated responses of the

final designs are highly coincident with the ground truth

spectra. More impressively, the model manages to

“discover” periodicity in the appearance of two materials,

and the suggested thicknesses only deviate slightly from

the quarter-wavelengths. With a total of 20 independent

design variables, the size of our dataset gives an extremely

low chance of any individual training samples being peri-

odic to supply this knowledge to the model. Therefore, the

successful retrieval of DBRs, despite their significant

divergence from the random structures used for training,

Figure 3: Inverse design of DBRs consisting of alternating high- and low-index films of quarter-wavelength thicknesses stacked in a periodic

fashion.

(A) Comparisons of the requested spectrum R from a DBR (red curve) with the simulated response R′ of the final design retrieved by our model

(blue curve). Also shown is the predicted response R0 of the final design (green dash curve). Two examples are selected for shorter (top) and

longer (bottom) central wavelengths. (B) Visualization of the 20-layer thicknesses for the corresponding designs (top: shorter central

wavelength; bottom: longer central wavelength) retrieved by the tandem optimization model for both requested spectra. Green and red lines

mark the alternating thicknesses of MgF2 and Ta2O5, respectively, in the ground truth designs of DBRs.
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suggests that the model has a strong ability to intuit the

design-response mapping on a fundamental level.

The working principle of DBRs is the constructive

interference of light fields reflected from each interface of

the multilayer thin films, while a random arrangement of

thicknesses cannot lead to such an effect. We note two

interesting phenomena regarding this difference. One is

that DBRs are tolerant of small disturbances to the ideal

design. In Figure 3B, the deviations of the retrieved

thicknesses from ground truths are largely attributed to

this tolerance. The other is that (quasi-)periodic structures

may apply implicit constraints that suppress multi-

modality in the design. The final thicknesses after opti-

mization in Figure 3 are close to those taken from the

MDN’s initial suggestion. In contrast, randomly sampled

designs have amuch greater chance to contain at least one

layer that exhibits secondary peaks in the corresponding

probability distribution. A brief discussion of multi-

modality is presented in Section 3 of the Supplementary

materials.

Figure 4: On-demand inverse design of thin-film high reflectors with extended high-reflectance zones.

(A) Comparison of a requested spectrum R and the simulated response R′ of the design retrieved by themodel. The target design is composed

of two 9-layer periodic sub-stacks with a spacer layer in the middle and a cladding layer on the top, obtained with a known optimization

strategy based on the principle of interference. (B) Comparison of design variables between the ground truth design and model-produced

design. (C) Inverse design of a high reflector with ultrabroad high-reflectance zone. The requested spectrum R (red curve) is fictitious, taken

froma20-layer DBRandartificially extended in the high-reflectance region for a bandwidth not achievable by knowndesignmethods basedon

physical principles. The blue curve shows the simulated response R′ of the design suggested by the tandem optimization model. Note that in

this case, optimization is applied to the high-reflectance region only, as highlighted by the shaded area.
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3.3 Inverse design of reflectors with

extended high-reflectance zones

Our next task is set to be more ambitious. Standard DBRs

have a limited bandwidth, determined by the choice of

materials. In the frequency domain, the width of the high-

reflectance zone ∆f is given by [34]

Δf

f0
=

4

π
arcsin(nH − nL

nH + nL
), (1)

where f0 is the central frequency, and nH and nL are the

refractive indices of the high and low index layers, respec-

tively. Extending the width of the high-reflectance zone is a

task of practical concern, and different attempts have been

made based on physical considerations or optimization

algorithms [34]. We first challenge our model with a design

manually optimized with the guidance of interference con-

ditions, which requests stacking two 9-layer periodic

structures covering different wavelengths with a spacing

layer in the middle and a cladding layer on the top. Again,

the model retrieves the design with high precision. To

minimize the influence of the dielectric loss, we train the

model with a different dataset generated using the dielectric

function of Ta2O5 measured by Gao et al. [44]. Figure 4A

compares the performance of the final design and the

ground truth, showing an excellent agreement. The small

dips in the extended high-reflectance zone are unavoidable

mainly because of the limited number of layers. Figure 4B

shows the comparison of design variables. The two distinct

sub-stacks can be clearly recognized, despite that no such

information is provided in the training data. With only nine

layers in each sub-stack, the extractionof strict periodicity is

more difficult than in the standard DBRs.

Finally, we solve the ultimate task to search for high-

reflector designs that can outperform the examples derived

from known principles. Although any fictious spectra can

be used as the input to the model, we choose to artificially

extend the high-reflectance zone of a DBR to be wider than

what is achievable by the previous optimization method

[34]. This manipulation creates a spectrum in Figure 4C

(red curve), which does not coincide with any known

structure and may not be physically possible with the

constraints of the design space. However, the model suc-

cessfully finds a design with consistent high reflectance

across the desired wavelength range (blue curve). In this

specific task, the optimization process is customized to

evaluate the candidate designs only in the target high-

reflectance zone. The flexibility of tuning the objective

function of optimization further enhances the search for

the closest possible matching design to any input spectra.

4 Conclusions and future study

We propose a framework for inverse design based on two

NNs combined through an optimization process and

demonstrate its ability to outperformphysics-basedmethods

in designing thin-filmhigh reflectors. The first NN solving the

inverse problem is the MDN. Its unique probabilistic nature

allows generation of candidate designs with information

of uncertainty, which enables progressive performance

improvement through iterative evaluation and resampling

during the optimization process. The second NN has a

standard FC architecture to solve the forward problem. It

serves as a simulator to make instant and accurate pre-

dictions of the response of candidate designs from the MDN.

We apply this tandem optimization model to on-demand

inverse design of high reflectors based on 20-layer thin films.

In addition to passing the ordinary test of reproducing the

reflectance spectra of random structures, the model suc-

cessfully retrieves a series of high reflector designs that are

derived by physics-based methods. In particular, DBRs with

periodic quarter-wave layers are obtained with high accu-

racy, even though no prior knowledge of periodicity is in the

training data.We further demonstrate designswith extended

high-reflectance zones, originally accessible only byphysical

principles or other optimization techniques. Lastly, the

model showsa strongability to search for the closest possible

solution to unrealistic reflectors with an artificially widened

high-reflectance zone. The proposedmodel can both quickly

and repeatedly produce high-performance designs that are

competitive with those obtained by other time-consuming

inverse design approaches,making it a promising tool for on-

demand industrial applications.

It is worth mentioning that the individual compo-

nents of the proposed model are highly adaptable. For

example, the MDN can be replaced by generative NNs to

tackle pattern-based designs, and the optimization would

then take samples in the latent space instead of the

probability distributions [10]. The success in retrieving

periodic structures of DBRs is also encouraging for other

uses beyond inverse design, such as knowledge discovery

[45–49]. We envision that the combination of DL algo-

rithms and optimization techniques will provide new

opportunities for advancing both optical physics and

engineering applications.
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