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Abstract The Erdös–Rényi model of a network is simple
and possesses many explicit expressions for average and as-
ymptotic properties, but it does not fit well to real-world
networks. The vertices of those networks are often struc-
tured in unknown classes (functionally related proteins or
social communities) with different connectivity properties.
The stochastic block structures model was proposed for this
purpose in the context of social sciences, using a Bayesian
approach. We consider the same model in a frequentest sta-
tistical framework. We give the degree distribution and the
clustering coefficient associated with this model, a varia-
tional method to estimate its parameters and a model selec-
tion criterion to select the number of classes. This estimation
procedure allows us to deal with large networks containing
thousands of vertices. The method is used to uncover the
modular structure of a network of enzymatic reactions.

Keywords Random graphs · Mixture models ·
Variational method

1 Introduction

The Erdös–Rényi model of a network is one of the oldest
and best studied model and possesses many explicit expres-
sions for average and asymptotic properties such as degree
distribution, connectedness and clustering coefficient. How-
ever this theoretical model does not fit well to real-world,
social, biological or Internet networks. For example the em-
pirical degree distribution may be very different from the
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Poisson distribution which is implied by this model. More-
over empirical clustering coefficients of real networks are
generally higher than the value given by this model. Other
models have been proposed to correct these shortcomings
(see Nowicki and Snijders 2001; Albert and Barabási 2002;
or Molloy and Reed 1995). A good review of random graph
models is given in Pattison and Robins (2007).

It appears that the available methods in the literature can
be divided into two categories: model-based versus algo-
rithmic methods. In the context of social sciences and us-
ing a Bayesian approach, the stochastic block structures
model (Nowicki and Snijders 2001) assumes that vertices
pertain to classes with different connectivity characteristics.
This model provides a proper probabilistic framework but
the proposed estimation method can not deal with networks
made of more than 200 vertices. However, a special atten-
tion has been recently paid to the study of biological net-
works which are generally much larger (see Alm and Arkin
2002; or Arita 2004). Other algorithms have been proposed:
assortative mixing or mixing patterns (Newman and Girvan
2003; Newman 2004). These methods are efficient on large
networks but the absence of model makes the interpretation
of the results more difficult.

The key element of those methods is the mixing matrix
which specifies the probability of connection between two
classes. The inference of the mixing parameters is quite easy
if the classes can be defined using external information such
as language, race or age. However the inference is more dif-
ficult when classes and mixing parameters have to be in-
ferred when the network topology is the only available in-
formation.

In this article we use the model-based framework pro-
posed by Nowicki and Snijders (2001) in a frequentist set-
ting. We derive some new theoretical properties of this
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model. We provide an estimation algorithm using a vari-
ational approach as well as a model selection criterion to
choose the number of classes. This framework allows us to
deal with thousands of vertices. Our method is illustrated on
a biological network.

Notation In this article, we consider an undirected graph
with n vertices and define the variable Xij which indicates
that vertices i and j are connected:

Xij = Xji = I{i ↔ j},
where I{A} equals to one if A is true, and to zero otherwise.
Furthermore, we assume that no vertex is connected to itself,
meaning that Xii = 0. However, the method we present be-
low can be generalized to directed graphs (Xij �= Xji ) with
self loops (Xii �= 0). In the following we note Ki the degree
of vertex i, i.e. the number of edges connecting it:

Ki =
∑

j �=i

Xij .

Erdös–Rényi model This model assumes that edges are in-
dependent and occur with the same probability p:

{Xij } i.i.d., Xij ∼ B(p).

In this model, the degree of each vertex has a Binomial dis-
tribution, which is approximately Poisson for large n and
small p. Noting λ = (n − 1)p we have

Ki ∼ B(n − 1,p) ≈ P(λ).

2 Mixture model for the degrees

In many practical situations, the Erdös–Rényi model turns
out to fit the data poorly, mainly because the distribution of
the degrees is far from the Poisson distribution. The scale-
free (or Zipf) distribution has been intensively used as an
alternative. The Zipf probability distribution function (pdf)
is

Pr{Ki = k} = c(ρ)k−(ρ+1), (1)

where k is any positive integer, ρ is positive, c(ρ) =∑
k≥1 k−(ρ+1) = 1/ζ(ρ +1) and ζ(ρ +1) is Riemann’s zeta

function. Nevertheless, we will show in Sect. 6 that this dis-
tribution may have a poor fit on real datasets. This lack of
fit has been already analyzed by Stumpf et al. (2005) and
Tanaka and Doyle (2005).

First of all, it is important to notice that the Zipf distri-
bution is used to model the tail of the degree distribution.
Therefore it is often best suited for the tail than for the
whole distribution. In particular this distribution has a null

probability for k = 0 whereas some vertices may be uncon-
nected in practice. Moreover the lack-of-fit of the Erdös–
Rényi model may be simply due to some heterogeneities
between vertices, some being more connected than others.
A simple way to model this phenomenon is to consider that
the degree distribution is a mixture of Poisson distributions.

In the mixture framework we suppose that vertices are
structured into Q classes, and that there exists a sequence
of independent hidden variables {Ziq} (with

∑
q Ziq = 1)

which indicate the label of vertices to classes. We note αq

the prior probability for vertex i to belong to class q , such
that:

αq = Pr{Ziq = 1} = Pr{i ∈ q}, with
∑

q

αq = 1.

Remark 1 In the following, we will use two equivalent no-
tations: {Ziq = 1} or {i ∈ q} to indicate that vertex i belongs
to class q .

We suppose that the conditional distribution of the de-
grees is a Poisson distribution

Ki | {i ∈ q} ∼ P(λq).

Then the distribution of the degrees is a mixture of Poisson
distributions such that

Pr{Ki = k} =
∑

q

αq

e−λq λk
q

k! . (2)

For a complete review and a careful statistical analysis
of the modeling of the degree distribution in networks, see
(Jones and Handcock 2004).

Remark 2 Because vertices are connected, degrees are not
independent. However, in the standard situation where n is
large and λq � n, the dependency between degrees is weak.

In Sect. 6 we show that this model fits well to real data.
Nevertheless, we claim that modeling the distribution of the
degrees provides little information about the topology of the
graph. Indeed, this model only deals with the degrees of ver-
tices, but not explicitly with the probability for two given
vertices to be connected. However, the observed number of
connections between vertices from different classes may re-
veal some interesting underlying structure, such as preferen-
tial connections between classes. The mixture model for de-
grees is not precise enough to describe such a phenomenon.
This motivates the definition of an explicit mixture model
for edges.
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3 Erdös–Rényi mixture for graphs

3.1 General model

We now describe the stochastic block structures model
(Nowicki and Snijders 2001), a mixture model which ex-
plicitly describes the way edges connect vertices, account-
ing for some heterogeneity among vertices. In the following
this model is called “mixture model for graphs”.

The mixture model for graphs supposes that vertices are
spread into Q classes with prior probabilities {α1, . . . , αQ}.
In the following, we use the indicator variables {Ziq} (with∑

q Ziq = 1) defined in Sect. 2.

αq = Pr{Ziq = 1} = Pr{i ∈ q}, with
∑

q

αq = 1.

Then we denote πq� the probability for a vertex from class q

to be connected with a vertex from class �. Because the
graph is undirected, these probabilities must be symmetric
such that

πq� = π�q.

We finally suppose that edges {Xij } are conditionally inde-
pendent given the classes of vertices i and j :

{
Xij | {i ∈ q, j ∈ �} ∼ B(πq�) for i �= j,

Xii = 0.

The main difference with Model (2) is that the mixture
model for graphs directly deals with edges. More than de-
scribing the clustered structure of vertices, our model de-
scribes the topology of the network using the connectivity
matrix π = (πq�).

3.2 Examples

In this section we aim at showing that the mixture model for
graphs can be used to generalize many particular structures
of random graphs. Table 1 presents some typical network
configurations. The first one is the Erdös–Rényi model. We
present here some more sophisticated ones.

Example 1 Random graphs with arbitrary degree distribu-
tions. The Erdös–Rényi random graph model is a poor ap-
proximation of real-world networks whose degree distribu-
tion is highly skewed. A random network having the same
degree distribution as the empirical one can be built as fol-
lows: n partial edges (with only one starting vertex and no
final vertex) are randomly chosen from the empirical de-
gree distribution. These partial edges are randomly joined by
pairs to form complete edges (see Molloy and Reed 1995).
A permutation algorithm is also proposed in Shen-Orr et al.
(2002). This model assumes that the connectivity between

two vertices is proportional to the degree of each vertex so
it coincides with the independent case of the mixture model
for graphs presented in Sect. 4.4.

The scale-free network proposed by Barabási and Albert
(1999) is a particular case of random graphs with arbitrary
distribution. To this extent, we can propose an analogous
model in the mixture model for graphs framework. Suppose
that the incoming vertices join the network in classes of re-
spective size nαq (q = 1, . . . ,Q, nα1 being the number of
original vertices). Assuming that the elements of a new class
connect preferentially the elements of the oldest classes:

πq,1 ≥ πq,2 ≥ · · · ≥ πq,q−1,

we get the same kind of structure as the scale-free model.

Example 2 Affiliation network. An affiliation network is a
social network in which actors are joined by a common par-
ticipation in social events, companies boards or scientists’
coauthorship of papers. All the vertices participating to the
same class are connected. This model has been studied by
Newman et al. (2002). This type of network may be mod-
eled by a mixture model for graphs with ones in the diagonal
of π .

Example 3 Star pattern. Many biological networks contain
star patterns, i.e. many vertices connected to the same vertex
and only to it, see interaction networks of S. Cerevisiae in
Zhang et al. (2005) for instance. This type of pattern may be
modeled by a mixture model for graphs with extra-diagonal
ones in π .

4 Some properties of the mixture model for graphs

4.1 Distribution of the degrees

Proposition 1 Given the label of a vertex, the conditional
distribution of the degree of this vertex is Binomial (approx-
imately Poisson):

Ki | {i ∈ q} ∼ B(n − 1,πq) ≈ P(λq),

where πq = ∑
� α�πq� and λq = (n − 1)πq .

Proof Conditionally to the belonging of vertices to classes,
edges connecting vertex i belonging to class q are indepen-
dent. The conditional connection probability is:

Pr{Xij = 1 | i ∈ q} =
∑

�

Pr{Xij = 1 | i ∈ q, j ∈ �}Pr{j ∈ �}

=
∑

�

α�πq� = πq.

The result follows. �
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Table 1 Some typical network configurations and their formulation in the framework of the mixture model for graphs. The node marks
(◦, �, �, �) refer to their class

Description Network Q π Clustering

coef.

Random 1 p p

Product
connectivity
(arbitrary
degree
distribution)

2 (
a2 ab

ab b2

)
(a2 + b2)2

(a + b)2

Stars 4
⎛

⎜⎜⎜⎜⎝

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

⎞

⎟⎟⎟⎟⎠

0

Clusters
(affiliation
networks)

2 (
1 ε

ε 1

)
1 + 3ε2

(1 + ε)2

4.2 Between-class connectivity

Definition 1 The connectivity between class q and � is the
number of edges connecting a vertex from class q to a vertex
from class �:

Aq� =
∑

i<j

ZiqZj�Xij .

Aqq is the within-connectivity of class q .

Proposition 2 The expected connectivity between class q

and � is:

E(Aq�) = n(n − 1)αqα�πq�/2.

Proof According to Definition 1, Aq� is the sum
over n(n − 1)/2 terms. Conditionally to {ZiqZj� = 1},
Xij is a Bernoulli variable with parameter πq�. Thus

E(ZiqZj�Xij ) = E(ZiqZj�)πq�. The Ziqs are independent,
so we have E(ZiqZj�) = αqα�. The result follows. �

4.3 Clustering coefficient

This coefficient is supposed to measure the aggregative trend
of a graph. Since no probabilistic modeling is usually avail-
able, this coefficient is empirically defined in most cases.
Albert and Barabási (2002) propose the following definition
of the empirical clustering coefficient for vertex i:

Ci = ∇i

/Ki(Ki − 1)

2
,

where ∇i is the number of edges between the neighbors of
vertex i: ∇i = ∑

j,k XijXjkXik/2, whose minimum value
is 0 and maximum value equals Ki(Ki − 1)/2 for a clique.
A first estimator of this empirical clustering coefficient is
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usually defined as the mean of the Ci ’s:

ĉ =
∑

i

Ci/n.

Denoting ∇ the “triangle” configuration (i ↔ j ↔
k ↔ i) and V the ‘V’ configuration (j ↔ i ↔ k) for any
(i, j, k) uniformly chosen in {1, . . . , n}, the definition of C

can be rephrased as c = Pr{∇ | V}. Because ∇ is a particular
case of V, we have

c = Pr{∇ ∩ V}/Pr{V} = Pr{∇}/Pr{V}. (3)

This property suggests another estimate of c proposed by
Newman et al. (2002):

ĉ′ = 3
∑

i

∇i

/∑

i

Vi,

where Vi is the number of Vs in i: Vi = ∑
j>k,(j,k) �=i XijXik .

In the following we propose a probabilistic definition of this
coefficient.

Definition 2 The clustering coefficient is the probability for
two vertices j and k connected to a third vertex i, to be
connected, with (i, j, k) uniformly chosen in {1, . . . , n}

c = Pr{XijXjkXki = 1 | XijXik = 1}.

Proposition 3 In the mixture model for graphs, the cluster-
ing coefficient is

c =
∑

q,�,m

αqα�αmπq�πqmπ�m

/ ∑

q,�,m

αqα�αmπq�πqm

Proof For any triplet (i, j, k), we have

Pr{∇} =
∑

q,l,m

αqα�αm

× Pr{XijXjkXki = 1 | i ∈ q, j ∈ �, k ∈ m},
=

∑

q,l,m

αqα�αmπq�πqmπ�m.

The same reasoning can be applied to Pr{V} recalling that
the event V in (i, j, k) means that the top of V is i. The result
is then an application of (3). �

4.4 Independent model

The model presented in Sect. 2 can be rephrased as an in-
dependent version of the mixture model for graphs. Indeed
the absence of preferential connection between classes cor-
responds to the case where

πq� = ηqη�. (4)

ηq is then the connection propensity of a vertex from class q ,
regardless the class of the other vertex. The properties of the
independent model are as follows.

Distribution of degrees The conditional distribution of the
degrees is Poisson with parameter λq such that

λq = (n − 1)ηqη, (5)

where η = ∑
� α�η�, so λq is directly proportional to ηq .

Between class connectivity We get

E(Aq�) = n(n − 1)(αqηq)(α�η�)/2,

so the rows and columns of matrix A = (Aq�)q,� must all
have the same profile. We will see in Sect. 6 that the ob-
served number of connections between classes may be quite
far from expected values.

Clustering coefficient

c = (
∑

q αqη2
q)2

η2
.

For the standard Erdös–Rényi model (Q = 1, α1 = 1, η =
η1 = √

p), we get the known result: c = η4
1/η

2
1 = p.

Considering the independent case presented in Table 1
with α1 = α2 = 1/2 and a = 0.9, b = 0.1, we get c =
(0.92 + 0.12)2 � 0.67. The corresponding Erdös–Rényi
model with p = (α1a + α2b)2 = 1/4 would lead to a strong
underestimation of c since c = p = 0.25.

4.5 Likelihoods

In order to define the likelihood of the model, we use
the incomplete-data framework defined by Dempster et al.
(1977). Let X denote the set of all edges: X =
{Xij }i,j=1,...,n, and Z the set of all indicator variables for

vertices: Z = {Ziq}q=1,Q

i=1,n .

Proposition 4 The complete-data log-likelihood is

logL(X ,Z) =
∑

i

∑

q

Ziq logαq

+ 1

2

∑

i �=j

∑

q,�

ZiqZj� logb(Xij ;πq�).

Proof We have logL(X ,Z) = logL(Z) + logL(X | Z)

where

logL(Z) =
∑

i

∑

q

Ziq logαq,

logL(X | Z) = 1

2

∑

i �=j

∑

q,�

ZiqZj� logb(Xij ;πq�),

and b(x;π) = πx(1 − π)1−x . �
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The likelihood of the observed data L(X ) is obtained by
summing the complete-data likelihood over all the possible
values of the unobserved variables Z . Unfortunately, this
sum is not tractable and it seems that no simpler form can
be derived.

5 Estimation

In this section we propose a variational approach to perform
an approximate maximum likelihood inference on the para-
meters. We follow the general strategy described in Jordan
et al. (1999) or in the tutorial by Jaakkola (2000). A similar
strategy is used in the bi-clustering framework by Govaert
and Nadif (2005). The general statistical properties of the
resulting estimators have not been investigated yet. How-
ever, this approximation allows us to deal with large net-
works (several thousands of nodes) whereas the Bayesian
strategy adopted by Nowicki and Snijders (2001) restricts
the estimation to 200 nodes.

5.1 Dependency graph

The Xij s are independent conditionally to the Ziqs, but are
marginally dependent. For estimation purpose, it is impor-
tant to know if Pr{Ziq = 1 | X } is equal to Pr{Ziq = 1 | Xi},
where Xi is the set of all possible edges connecting i. Xi is
often called the set of neighbors of vertex i. In the following,
we give a counter example to show that the notion of neigh-
borhood can not be used in the mixture model for graphs
framework.

Assume that the vertices are divided in two classes,
whose connectivity matrix is diagonal with π11 = 1 and
π22 = a and 0 < a < 1. Let us consider 3 vertices i, j, k with
Xij = Xik = 1. The vertices i and j are in the same class
because no connection is possible between vertices pertain-
ing to two different classes. The same is true for vertices i

and k. Therefore the three vertices are in the same class and
we have Pr{Zi1 = 1 | Xi ,Xjk} > 0 if Xjk = 1 and Pr{Zi1 =
1 | Xi ,Xjk} = 0 if Xjk = 0. Therefore Pr{Ziq = 1 | X } de-
pends on all the network and not only on edges connecting
to the vertex i.

This counter example clearly shows that no neighbor-
hood can be considered in the framework of mixture model
for graphs, since unconnected vertices provide as much in-
formation as connected vertices. This is why the likelihood
can not be simplified for computation.

5.2 Variational approach

As often for incomplete data models, the likelihood of the
observed data L(X ) is not tractable. EM (Dempster et al.
1977) is the most popular algorithm for this kind of prob-

lem. Unfortunately, EM requires the computation of the con-
ditional distribution Pr(Z | X ) which is itself not tractable,
as explained above. Therefore, we choose a variational ap-
proach that aims at optimizing a lower bound of logL(X ),
denoted by

J (RX ) = logL(X ) − KL[RX (·),Pr(· | X )],
where KL denotes the Kullback–Leibler divergence,
Pr(Z | X ) is the true conditional distribution of the indica-
tor variables Z given the data X , and RX an approximation
of this conditional distribution. J (RX ) equals logL(X ) iff
RX (·) = Pr(· | X ). We emphasize that RX depends on the
data X .

As shown above, we are not able to calculate Pr(· | X ),
so we will look for the “best” (in terms of Kullback–Leibler
divergence) RX in a certain class of distributions. The es-
timation algorithm we propose will alternate the maximiza-
tion of J (RX ) (i) with respect to RX and (ii) with respect to
parameters α and π . Propositions 5 and 6 give the solutions
of the optimization problems (i) and (ii) respectively.

Approximate conditional distribution RX Denoting Zi =
{Zi1, . . .ZiQ}, we constraint RX to have the following form:

RX (Z) =
∏

i

h(Zi;τ i )

where τ i = (τi1, . . . , τiQ) and h(·;τ ) denotes the multino-
mial distribution with parameter τ . τiq can be interpreted
as an approximation of Pr{Ziq = 1 | X }. This corresponds
to the mean field approximation, as presented in Jaakkola
(2000).

Proposition 5 Given parameters α and π , the optimal vari-
ational parameters {̂τ i} = arg max{τ i } J (RX ) satisfy the
following fixed point relation:

τ̂iq ∝ αq

∏

j �=i

∏

�

b(Xij ;πq�)
τ̂j� .

Proof Based on the definition of the Kullback–Leibler di-
vergence, we first rewrite J (RX ) as

J (RX ) =
∑

Z
RX (Z) log Pr{Z,X }

−
∑

Z
RX (Z) logRX (Z)

=
∑

i

∑

q

τiq logαq

+ 1

2

∑

i �=j

∑

q,�

τiqτj� logb(Xij ;πq�)

−
∑

i

∑

q

τiq log τiq .
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We now have to maximize J (RX ) with respect to the τiq ’s,
subject to

∑
q τiq = 1, for all i, i.e. to maximize J (RX ) +∑

i[λi(
∑

q τiq − 1)] where λi is the Lagrange multiplier.
The derivative with respect to τiq is

logαq +
∑

j �=i

∑

�

τj� logb(Xij ;πq�) − log τiq + 1 + λi.

This derivative is null iff τ̂iq ’s satisfy the relation given in the
proposition, exp(1 + λi) being the normalizing constant. �

From a practical point of view, the {̂τ i} are updated us-
ing a fixed point algorithm. At this time, we have no guar-
anty about the convergence toward a unique solution. In all
situations we experienced, the algorithm converged rapidly.

Parameter estimates To complete the estimation proce-
dure, we need to maximize J (RX ) with respect to para-
meters α and π .

Proposition 6 Given the variational parameters {τ i}, the
values of parameters α and π that maximize J (RX ) are

α̂q = 1

n

∑

i

τ̂iq , π̂q� =
∑

i �=j

τ̂iq τ̂j�Xij

/∑

i �=j

τ̂iq τ̂j�.

Proof Due to the constraint on α, we have to maximize
J (RX ) + λ(

∑
q αq − 1). The calculation of the derivatives

is straightforward and the result follows. �

Estimation algorithm The algorithm we propose is the fol-
lowing. Starting with some initial values {τ (0)

i } for the vari-
ational parameters, we iteratively update parameters τ i , α

and π as follows:

(
α(h+1),π (h+1)

) = arg max
(α,π)

J
(
RX ; {τ (h)

i },α,π
)
,

{
τ

(h+1)
i

} = arg max
{τ i }

J
(
RX ; {τ i},α(h+1),π (h+1)

)
.

These updates are performed according to Propositions 5
and 6.

Proposition 7 For a given number of classes Q, this algo-
rithm generates a sequence {{τ (h)

i },α(h),π (h)}h≥0 which in-
creases J (RX ) such that

J
(
RX ;{τ (h+1)

i

}
,α(h+1),π (h+1)

)

≥ J
(
RX ;{τ (h)

i

}
,α(h),π (h)

)
.

Proof This is a direct consequence of Propositions 5 and 6,
which both guaranty that J (RX ) increases. �

5.3 Choice of the number of classes

In practice the number of classes is unknown and should
be estimated. We derive a Bayesian model selection crite-
rion for this purpose which is based in the Integrated Classi-
fication Likelihood (ICL) criterion developed by Biernacki
et al. (2000). We denote by θ = (α,π) the entire set of the
mixture parameters which lies in � = A × , with A the
Q-dimensional simplex and  =]0,1[Q(Q+1)/2. Then we
denote by g1(α | mQ) and g2(π | mQ) the prior distributions
of the parameters for a model mQ with Q classes. The ICL
criterion is an approximation of the complete-data integrated
likelihood defined such that:

L(X ,Z | mQ) =
∫

�

L(X ,Z | θ,mQ)g(θ | mQ)dθ ,

where L(X ,Z | θ ,mQ) is the complete-data likelihood of
model mQ with Q classes.

Proposition 8 For a model mQ with Q classes, the ICL cri-
terion is:

ICL(mQ) = max
θ

logL(X , Z̃ | θ ,mQ)

− 1

2
× Q(Q + 1)

2
log

n(n − 1)

2
− Q − 1

2
log(n).

Proof The derivation of ICL is based on the following
lemma by Biernacki et al. (2000) which can be applied to
our case: if g(θ | mQ) = g1(α | mQ) × g2(π | mQ) then
logL(X ,Z | mQ) = logL(Z | mQ) + logL(X | Z,mQ).
The derivation of the first term can be done directly, using a
Dirichlet prior, D(δ) on proportions, which gives:

logL(Z | mQ)

= log
∫

α
n1
1 . . . α

nQ

Q

�(Qδ)

�(δ)Q
I

(∑

q

αq = 1

)
dα,

= log�(Qδ) +
∑

q

log�(nq + δ) − Q log�(δ)

− log�(n + Qδ),

where nq is the number of nodes in class q . Since nqs are
unknown, we replace the missing data Z by their predic-
tion Z̃ . Then we consider a non informative Jeffreys prior
distribution which corresponds to δ = 1/2. This gives:

logL(Z̃ | mQ) = log�(Q/2) +
∑

q

log�(ñq + 1/2)

− Q log�(1/2) − log�(n + Q/2),

with n the total number of nodes. Then we take the limit of
this quantity for large n, and using the Stirling formula to
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approximate the Gamma function we obtain

logL(Z̃ | mQ) =
∑

q

ñq log(ñq) − n log(n) − Q − 1

2
log(n)

= max
α

logL(Z̃ | α,mQ) − Q − 1

2
log(n).

As for the second term, we have n(n − 1)/2 Bernoulli ran-
dom variables with fixed labels and logL(X | Z,mQ) can
be calculated using a BIC approximation:

logL(X | Z,mQ) � max
π

logL(X | Z,π ,mQ)

− 1

2
× Q(Q + 1)

2
log

n(n − 1)

2
.

Finally, the sum of these two separate terms completes the
proof. �

6 Application to biological networks

We apply the methodology developed in this paper to an
metabolic network of bacteria Escherichia coli: the small
molecule interaction metabolism network. In this network,
vertices are chemical reactions. Two reactions are connected
if a compound produced by the first one is a part of the sec-
ond one (or vice-versa). The original data are issued from
http://biocyc.org/. They have been curated to remove some
of the secondary compounds. The network we analyzed is
available at http://pbil.univ-lyon1.fr/software/motus/; it is
made up of n = 605 vertices and the total number of edges
is 1782. We emphasize that the algorithm we propose is cur-
rently the only inferential method which can handle such a
large network.

We first show that the Poisson mixture defined in Sect. 2
better fits the observed degree distribution than the scale free
distribution. Then we apply the mixture model for graphs to
uncover the structure of this metabolic network.

6.1 Fit of the empirical distribution of the degrees

Many papers claim that the Zipf pdf (defined in (1)) fits well
the empirical degree distribution of real networks, but these
claims are rarely based on statistical criteria. Moreover, the
Zipf distribution is not defined for degree zero, so a thresh-
old (minimal degree) must be defined arbitrarily. In order to
assess the quality of fit of the Zipf pdf to the tail of the empir-
ical distribution, we compute the usual chi-square statistics
for different thresholds. The minimum chi-square estimate
of ρ are computed for each threshold. Table 2 shows that
the fit is not good even for the tail distribution with a high
value of the threshold. Consequently, the Zipf pdf is only a
rough approximation of the true one. It is often better suited
for the tail than for the whole distribution.

The fit of the mixture of Poisson distributions is presented
in Fig. 1. The BIC criterion selects three classes. Parameter
estimates are given in Table 3, and Table 2 shows that the
fit of the Poisson mixture is better than the fit of the Zipf
distribution. The lack of fit for the two first lines is due to an
unexpectedly high number of vertices with two connections:
12 vertices have no connection, 44 have one connection and
150 have two connections. This particular structure is due to
a large number of chain reactions which constitute interme-
diates between two others.

6.2 Mixture modeling of the network

The ICL criterion selects a model with Q = 21 classes
whose parameter estimates are given in Table 4. Figure 2
presents the graph as a dot-plot where a dot at row i and col-
umn j indicates that the edge i → j is present. To empha-
size the connections between the different classes, vertices
are reordered within classes. Limits between classes are ob-
tained using a maximum a posteriori classification rule: ver-
tex i is classified into the class for which τ̂iq is maximal.

Among the first 20 classes, eight are cliques (πqq = 1)
and six have within probability connectivity greater than 0.5.
It turns out that all those cliques or pseudo-cliques gather

Table 2 Fit of the power law and Poisson mixture to the degree distribution: Chi-square (χ2) statistics, degree of freedom and ratio χ2/df for
several thresholds. The same values of the parameters of the Poisson mixture have been used for all thresholds

Threshold n ρ + 1 Power law Poisson mixture

χ2 stat. df χ2/df χ2 stat. df χ2/df

0 593 – – – – 67.25 29 2.32

1 549 1.79 96.22 32 3.01 58.5 28 2.09

2 399 1.93 75.83 31 2.45 32.3 27 1.20

3 315 2.08 59.7 30 1.99 30.6 26 1.18

4 252 2.19 53.07 29 1.83 27 25 1.08

5 200 2.24 52.37 28 1.87 27 24 1.13

6 172 2.37 45.44 27 1.68 25 23 1.09
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Fig. 1 Fit of the Zipf (top) and Poisson mixture (bottom) pdf on the E. Coli data. Left: histogram of degrees with adjusted distributions (Zipf:
threshold 1 −◦− and 6 −�−, Poisson mixture: 3 classes −�− and 6 classes −◦−). Right: PP plots

Table 3 Parameter estimates for the Poisson mixture model on de-
grees with 3 classes

Class 1 2 3

α (%) 8.9 19.7 71.3

λ 21.5 9.1 3.0

reactions involving a same compound. Examples of com-
pounds responsible for cliques include chorismate, pyruvate,
L-aspartate, L-glutamate, D-glyceraldehyde-3-phosphate
and ATP. That set of metabolites can be viewed as the back-
bone of the network.

Since the connection probability between classes 1 and
16 is 1, they constitute a clique which is associated with
a single compound: pyruvate. However, that clique is split
in two sub-cliques because of their different connectivities
with reactions of classes 7 and 10. This distinction is due to
the use of CO2 in class 7 and acetylCoA in class 10, which

are secondary compounds involved in reactions of class 1
but not in those of class 16.

Remark 3 Table 4 also shows that the clique structure
strongly increases the mean degree λq of its elements.

Remark 4 In this example, it turns out that the within con-
nection probabilities πqq are always maximal. A simula-
tion study (not shown) prove that it is not an artifact of the
method, which can detect classes without intra-connection
(πqq = 0).

To end, we also compare the expected clustering coeffi-
cient c given in Proposition 3 with the empirical one. The
expected value for Q = 21 classes is 0.544, while the ob-
served one is 0.626. The mixture model for graphs therefore
slightly underestimates this coefficient. On the same dataset,
the Erdös–Rényi model would give ĉ = π̂ = 0.0098.
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Fig. 2 Top: Dot-plot
representation of the adjacency
matrix of the graph after
classification of the vertices into
the 21 classes

Table 4 Parameter estimates of the mixture model for graphs with Q = 21 classes: α, π and λq s. Values smaller than 0.5% are hidden for
readability

α (%) 0.7 1.0 1.2 1.3 1.3 1.5 1.5 1.6 1.8 1.8 2.0 2.1 2.3 2.6 2.7 2.8 3.0 3.0 3.3 5.8 56.8

100 64 11 43 2 100

100

100 4 7 1 1

71

100 28 1 18 16

28 100 6

64 58 10 4 7 5 5

63 5 3

11 10 65 1 2 2

43 1 4 67 1

π 62 7 4

(%) 4 7 5 28 5 5

2 7 5 1 5 100 1

6 7 25

1 40

100 18 5 1 5 1 100

2 4 100 6

1 3 2 21

16 19

6 11

1

λq 33 7 9 6 17 13 12 7 10 10 10 8 17 6 7 25 21 5 6 5 3
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