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ABSTRACT

Motivation: The clustering of gene profiles across some experimental

conditions of interest contributes significantly to the elucidation of

unknowngene function, the validationof genediscoveriesand the inter-

pretation of biological processes. However, this clustering problem is

not straightforward as the profiles of the genes are not all independently

distributed and the expression levels may have been obtained from an

experimental design involving replicated arrays. Ignoring the depend-

ence between the gene profiles and the structure of the replicated data

can result in important sources of variability in the experiments being

overlooked in theanalysis,with the consequentpossibility ofmisleading

inferences being made. We propose a random-effects model that pro-

vides a unified approach to the clustering of genes with correlated

expression levelsmeasured inawidevarietyof experimental situations.

Ourmodel isanextensionof thenormalmixturemodel toaccount for the

correlations between the gene profiles and to enable covariate informa-

tion to be incorporated into the clustering process. Hence the model is

applicable to longitudinal studieswithorwithout replication, forexample,

time-course experiments by using time as a covariate, and to cross-

sectional experiments by using categorical covariates to represent the

different experimental classes.

Results: We show that our random-effects model can be fitted by

maximum likelihood via the EM algorithm for which the E(expectation)

and M(maximization) steps can be implemented in closed form. Hence

our model can be fitted deterministically without the need for time-

consuming Monte Carlo approximations. The effectiveness of our

model-based procedure for the clustering of correlated gene profiles

is demonstrated on three real datasets, representing typical microarray

experimental designs, covering time-course, repeated-measurement

and cross-sectional data. In these examples, relevant clusters of the

genes are obtained, which are supported by existing gene-function

annotation. A synthetic dataset is considered too.

Availability: A Fortran program blue called EMMIX-WIRE (EM-based

MIXture analysisWIthRandomEffects) is available on request from the

corresponding author.

Contact: gjm@maths.uq.edu.au

Supplementary information: http://www.maths.uq.edu.au/~gjm/

bioinf0602_supp.pdf. Colour versions of Figures 1 and 2 are available

as Supplementary material on Bioinformatics online.

1 INTRODUCTION

In recent times, (mixture) model-based clustering has become very

popular in the cluster analysis of microarray data (Ghosh, and

Chinnaiyan, 2002; Yeung et al., 2001; McLachlan et al., 2002;
Medvedovic and Sivaganesan, 2002; among others), as it provides

a sound mathematical framework for clustering; see McLachlan,

and Basford (1988), Fraley and Raftery (1998), and McLachlan and

Peel (2000).With this approach to clustering, a common assumption

in practice is to take the component densities to be multivariate

normal, which is computationally tractable and ensures that the

implied clustering is invariant under changes in location and

scale, as well as rotation, of the data. However, in unmodified

form, this approach does not incorporate experimental design

information such as disease status of the tissue samples in which

the genes are measured in cross-sectional studies, covariate

information such as the time ordering of the gene measurements

in time-course studies or the structure of the replicated data as in

longitudinal studies.

Recently, Pan (2006) has proposed to incorporate known gene

functions as prior probabilities in model-based clustering. blue Pre-

viously, Cheng et al. (2004) had used the graph-based structure of

Gene Ontology (GO) for inferring the similarity between genes. But

there is a need to develop further clustering procedures that are

applicable to data from a wide variety of experimental designs

blue that can be applied without the aid of biological knowledge.

This is because present databases are necessarily incomplete and

evolving. It is hoped that the clustering of the genes will reveal new

biological knowledge that in time will be represented in the annota-

tion schemes (Clare and King, 2002; Gibbons and Roth, 2002).

There is also the need to develop further clustering procedures

that are applicable to data from a wide variety of experimental

designs. For example, microarray experiments are now being car-

ried out with replication for capturing either biological or technical

variability in expression levels to improve the quality of inferences

made from experimental studies (Lee et al., 2000; Pavlidis et al.,
2003). Replicated measurements from each tissue sample (subject)

are often interdependent and tend to be more alike in characteristics

than data chosen at random from the population as a whole. Sim-

ilarly, in time-course studies (Storey et al., 2005) where expression
levels are measured under various conditions or at different time

points, gene expressions obtained from the same condition (subject)�To whom correspondence should be addressed.
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are correlated. Ignoring the dependence between microarray data

can lead to misleading inferences being made (Luan and Li, 2003).

In this paper, we consider the extension of normal mixture models

to correlated and replicated data via the formulation of a (multi-

level) linear mixed-effects model (LMM) for the mixture compon-

ents in which covariate information can be incorporated. With this

LMM, subject effects are assumed to be random (random effects)

and shared among expression levels obtained from the same subject

(McCulloch and Searle, 2001). Our contribution is to create a gen-

eral framework for the mixture model-based clustering of correlated

genes, based on expression microarray data obtained from various

experimental designs such as repeated measurement data and time-

course data. The proposed general random-effects model frame-

work is formulated by incorporating both ‘gene’ effects and ‘tissue’

effects in the mixture modeling of the microarray data. This is in

contrast to the mixed-effects models approaches in Celeux et al.
(2005), Luan and Li (2003) and McLachlan et al. (2004) that

involve only gene-specific random effects. Their methods thus

require the independence assumption for the genes which, however,

will not hold in practice for all pairs of genes (McLachlan et al.,
2004; Klebanov et al., 2006). In the context of modeling somatic

cell counts in dairy cattle, Gianola et al. (2004) and Ødegård et al.
(2005) have proposed a finite mixture of mixed models for univari-

ate data, in which dependence among the observations is induced by

taking the covariance matrix in the distribution of the individual

random effects terms to be non-diagonal. However, it is taken to

be known (determined by the pedigree structure), whereas we infer

the correlations via estimation of the variances of the random effects

by fitting our postulated (multivariate) model to the data. And we

implement the EM algorithm exactly without the need to use Monte

Carlo methods to carry out the E-step as in Gianola et al. (2004).
The proposed framework of LMMs is not limited to the clustering

of genes, which is the focus of this paper. It can also be readily

adopted to detect differentially expressed genes in known classes

of tissue samples based on a normal mixture model approach

(Lee et al., 2000; Pan et al., 2002) and as a gene-reduction method

in the classification of tissue samples (McLachlan et al. 2002). The
mixture framework of LMMs approach is to be illustrated in the

clustering of three representative datasets in the microarray liter-

ature, namely the yeast cell-cycle data of Spellman et al. (1998), the
yeast galactose data of Ideker et al. (2001), and the colorectal

carcinoma data of Muro et al. (2003). A synthetic dataset is also

considered.

2 LINEAR MIXED-EFFECTS MODELS

Although biological experiments vary considerably in their

design, the data generated by microarray experiments can be viewed

as a matrix of expression levels. For m microarray experiments

(corresponding to various tissue samples, tissue types, repeated

measurements or time points), where we measure the expression

levels of n genes in each experiment, the microarray data can be

represented by an n · m matrix. A general framework of random-

effects model is formulated by incorporating both gene effects and

tissue effects in the mixture modeling of the microarray data. We let

yj ¼ ðy1j‚ . . . ‚ymjÞ
T
denote the measurement on the j-th gene, where

the superscript T denotes vector transpose. It is assumed that the

expression levels have been preprocessed with adjustment for array

effects.

With the mixture model-based clustering approach, the observed

m -dimensional vectors y1, . . . , yn are assumed to have come from a

mixture of a finite number, say g, of components in some unknown

proportions p1, . . . ,pg, which sum to one. Conditional on its

membership of the h-th component of the mixture, the vector yj
for the j-th gene follows the model

yj ¼ Xbh þ Ubhj þ Vch þ ehj‚ ð1Þ

where elements of bh (a p-dimensional vector) are fixed effects

(unknown constants) modeling the conditional mean of yj in

the h-th component, bhj (a qb-dimensional vector) and ch
(a qc-dimensional vector) represent the unobservable random

gene effects and tissue effects, respectively. The random effects

bhj and ch, and the measurement error vector ehj are assumed to

be mutually independent. In (1), X, U and V are known design

matrices of the corresponding fixed or random effects. The speci-

fication of (1) covers many general random-effects models for the

clustering of correlated gene expression data arisen from various

microarray experiments, including those with replications. For

example, let t be the number of distinct tissues in the experiment.

We are given for the j-th gene a feature vector yj ¼ ðyT1j‚ . . . ‚yTtjÞ
T
,

where ylj¼ (yl1j, . . . , ylrj)
T contains the r replications on the j-th gene

from the l-th tissue (l ¼ 1, . . . , t). With respect to (1), bh is a

p-dimensional vector (p ¼ t) modeling the conditional mean of

yj in the h-th component. Moreover, conditional on membership

of the h-th component, it is assumed that the random effects are

shared among the repeated measurements of expression on the same

gene from the same tissue [bhj in (1) with qb ¼ t], along with the

random effects that are shared among gene expressions from the

same tissue [ch in (1) with qc ¼ m ¼ tr]. The component-specific

effects ch for the tissues induce dependency among the gene-

expression levels of genes from the same component and from

the same tissue (correlated genes). By allowing the expression

levels of genes in the same cluster to be correlated, blue the

genes in a cluster to have their own and cluster-specific random-

effects terms, there can be greater individual and collective vari-

ation, respectively, exhibited by the genes in the same cluster than

otherwise possible under a fixed-effects model without gene- and

cluster-specific random effects.

With the LMM, the distributions of bhj and ch are taken to

be multivariate normal, Nqb
(0,�bh Iqb) and Nqc

(0,�ch Iqc),
respectively, where Iqb and Iqc are identity matrices with dimensions

being specified by blue their subscripts. The measurement error

vector ehj is also taken to be multivariate normal Nm(0, Ah),

where Ah ¼ diag (Wfh) is a diagonal matrix constructed

from the vector (Wfh) with fh ¼ ðs2
h1‚ . . . ‚s

2
hqe

ÞT and W a

known m · qe zero-one design matrix. That is, we allow the h-th
component-variance to be different among the m microarray

experiments.

Genes from the same component (i.e. within the same cluster)

have a common term (Vch in the case of the h-th cluster) in the linear
model (1) for their expression levels. As this term is a random rather

than a fixed effect one, it means that genes within the same cluster

are correlated.

3 ML ESTIMATION VIA THE EM ALGORITHM

We let C ¼ ðcT
1 ‚ . . . ‚c

T
g ‚p1‚ . . . ‚pg�1ÞT be the vector of all the

unknown parameters, where ch is the vector containing the

S.K.Ng et al.
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unknown parameters bh, �bh, �ch and fh of the h-th component

density (h ¼ 1, . . . , g). The estimation of C can be obtained by

maximum likelihood (ML) via the EM algorithm (Dempster et al.,
1977). The implementation of the E-step is straightforward for

mixture models provided that the data can be treated as being

independently distributed. In our model (1), the gene-profile vectors

yj are not all independently distributed as genes within the same

cluster (i.e. from the same component in the mixture model) are

allowed to be dependent due to the presence of the random-effects

term ch for the h-th component in (1). However, we can circumvent

this problem by proceeding conditionally on the random-cluster

effects ch, as given these terms, the gene profile vectors yj are all

conditionally independent. In this way, we can actually carry out the

E- and M-steps in closed form. In particular, we do not have to

approximate the E-step by carrying out time-consuming Monte

Carlo approximations.

Within the EM framework, each yj is conceptualized to have

arisen from one of the g components. We let z1, . . . , zn denote

the unobservable component-indicator vectors, where the h-th
element zhj of zj is taken to be one or zero according as yj does
or does not come from the h-th component given c, where

c ¼ ðcT1 ‚ . . . ‚cTg Þ
T
. We let y ¼ ðyT1 ‚ . . . ‚ yTn Þ

T
denote the observed

data and, correspondingly, put zT ¼ ðzT1 ‚ . . . ‚zTn Þ. The ML estima-

tion of the normal mixture of LMMs via the EM algorithm can be

formulated by treating the unobservable component-indicator vari-

ables z and the random effects, b ¼ ðbT1 ‚ . . . ‚bTg Þ
T
and c, as missing

data in the EM framework (Ng et al., 2004), where bh ¼
ðbTh1‚ . . . ‚bThnÞ

T
for h ¼ 1, . . . , g. By assuming that the random

effects are normally distributed, it follows from standard normal

theory that the joint distribution of the complete data (yT,zT,bT,cT)T

is also a normal mixture. Let eh ¼ ðeTh1‚ . . . ‚eThnÞ for h ¼ 1, . . . , g.
The complete data are then given by (yT,zT,bT,cT)T. As the observed
data y and the gene-specific random effects b are jointly normal,

conditional on z and the cluster-specific random effects c, it

follows (see Supplementary information) that the complete-data

log likelihood is given, apart from an additive constant, by

log LcðCÞ ¼
Xg
h¼1

" Xn
j¼1

zhj logph

� 1

2

( Xn
j¼1

zhjqb log �bh þ qc log �ch

þ
Xn
j¼1

zhj log jAhj þ
bThbh
�bh

þ cTh ch
�ch

þ eThWheh

)#
‚ ð2Þ

where

eh ¼ ðeTh1‚ . . . ‚ eThnÞ
T
‚ ð3Þ

bThbh ¼
Xn
j¼1

zhjb
T
hjbhj‚ ð4Þ

and

Wh ¼ In � A�1
h ð5Þ

for h ¼ 1, . . . , g, and hence

eThWheh ¼
Xn
j¼1

zhje
T
hjA

�1
h ehj: ð6Þ

In the above, the sign � denotes the Kronecker product of two

matrices.

The EM algorithm proceeds by alternating the E- and M-steps

where, on the (k + 1)-th iteration, the E-step involves the calculation

of the Q-function which is the expectation of the complete-data

log likelihood over the joint distribution of the unobservable data

(zT,bT,cT)T given the observed data y, using the current estimateC(k)

for C. It follows from (2) that the E-step involves the calculation

of the following conditional expectations,

E
CðkÞ ðzhj j yÞ‚ E

CðkÞ ðbh j yÞ‚ E
CðkÞ ðbThbh j yÞ‚

E
CðkÞ ðch j yÞ‚ E

CðkÞ ðcThch j yÞ‚ E
CðkÞ ðeThWheh j yÞ:

These conditional expectations are directly obtainable as shown

in the Supplementary material.

The M-step provides the updated estimate C(k+1) that maximizes

theQ-function with respect toC. With reference to (2), the updating

formulae for C(k+1) exist in closed form. The detailed derivation is

provided in the Supplementary material. The E- and M-steps are

alternated repeatedly until convergence of the EM sequence of

iterates (Ng et al., 2004).
To effect a probabilistic or an outright clustering of the genes into

g components, we condition on the cluster random-effects vector ch.
As the latter is unobservable, we use its estimated conditional

expectation given the observed data,

ĉch ¼ E
ĈC
ðch j yÞ‚ ð7Þ

where E
ĈC
denotes taking expectation using the ML estimate ĈC for

the vectorC of unknown parameters. Since the genes within a cluster

are independently distributed given ch, it suffices to effect a clustering
with each gene considered individually in terms of its estimated

posterior probabilities of component membership given its profile

vector and ch, for h ¼ 1, . . . , g and j ¼ 1, . . . , n. Using Bayes’

theorem, the posterior probability that the j-th gene belongs to the

h-th component given yj and c‚thðyj‚c; CÞ, can be expressed as

thðyj‚c; CÞ ¼ prfZhj ¼ 1 j yj‚cg

¼
phf ðyj j zhj ¼ 1‚ch; chÞPg
i¼1 pif ðyj j zij ¼ 1‚ci; ciÞ

‚
ð8Þ

where f ðyj j zhj ¼ 1‚ch; chÞdenotes the h-th component density of

yj given the random effect ch. The log of this density is given, apart

from an additive constant, by

log f ðyj j zhj ¼ 1‚ch; chÞ

¼ � 1

2

(
log jBhj þ ðyj�Xbh�VchÞTB�1

h ðyj � Xbh � VchÞ
)
‚

ð9Þ

which apart from the additive constant is the log of the h-th com-

ponent density of yj conditional on ch, where Bh ¼ Ah + �bh UU
T.

Conditional on the cluster random-effects vector c, the posterior

probabilities (8) of component membership can be used to define the

optimal or Bayes rule of allocation for assigning the j-th gene with

profile vector yj to one of the g components of the mixture mdoel;

see, for example, McLachlan (1992, Chapter 1). The j-th gene is

assigned outright to the component for which th(yj,c;C) is greatest

Clustering gene-expression profiles
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for h ¼ 1, . . . , g; that is, the j-th gene is assigned outright to

component h�, where

h� ¼ arg max
h

thðyj‚c;CÞ: ð10Þ

Here we do not know c nor do we know the parameter vector C.

Thus we assign the genes on the basis of (10), using ĉch for ch and
ĈC for C.

4 MODEL SELECTION

The specification of the random-effects components in model (1)

needs careful consideration. An identifiability problem could arise if

the random-effects model is so specified such that the design matrix

V for the random effect ch is the same as the X for the fixed effects

bh. As described in Section 1, many kinds of microarray data have a

hierarchical structure. Such data hierarchies may be present natur-

ally or may be due to the experimental design (Goldstein, 1995).

In this study, the emphasis is on the grouping of the genes rather

than on the number of clusters and their link with externally existing

groups. That is, we are interested primarily in which genes are put

together in the same cluster for plausible choices of the number of

components g in the mixture model. A guide to plausible values of g
can be obtained using BIC (the Bayesian information criterion) of

Schwarz (1978), whereby the number g of components in the

mixture model is taken to minimize � 2 log LðĈCÞ þ d log n, and
d denotes the number of parameters in the model. In the EM

framework, L(C) is the incomplete-data likelihood function for

C. However, as the gene-profile vectors yj are not all independently
distributed, we are unable to calculate this likelihood function L(C)

directly by taking the product of the (marginal) densities of the yj.
Here we approximate L(C) by forming it as if all the yj were

independent. Another approach would be to use resampling

methods (Efron and Tibshirani, 1993; McLachlan 1987; McLachlan

and Khan, 2004).

5 EXAMPLES

We illustrate our method by applying it to three representative

datasets, each arising from different kinds of microarray experi-

ments: time course data as in the yeast cell-cycle study of Spellman

et al. (1998), data with repeated measurements as in the yeast

galactose study of Ideker et al. (2001) and finally cross-sectional

data involving two groups of tissues (tumor and normal) as in the

study of human colorectal carcinomas of Muro et al. (2003). This
section thus demonstrates how the proposed method can be applied

to correlated gene-expression array data collected under various

experimental designs. We also consider a synthetic dataset with

a time-course structure based on our model as fitted to the afore-

mentioned yeast cell-cycle data of Spellman et al. (1998).

5.1 Clustering of time-course data

By analyzing cDNA microarrays from yeast cultures synchronized

by three independent methods over approximately two cell-cycle

periods, Spellman et al. (1998) identified 800 yeast genes that meet

an objective minimum criterion for cell cycle regulation. In our

study, we consider the 18 a-factor (pheromone) synchronization

where the yeast cells were sampled at 7 min intervals for 119 mins.

We worked with a subset of 612 genes that have no missing expres-

sion data across any of the 18 time points (Luan and Li, (2003).

Our aim here is to cluster the cell cycle-regulated genes based on

the microarray expression data matrix of n ¼ 612 rows (genes) and

m ¼ 18 columns (time points). We then analyzed the clusters so

formed for common regulatory elements, as described by Spellman

et al. (1998). With reference to (1), we take the design matrix X to

be an 18 · 2 matrix with the (l + 1)-th row (l ¼ 0, . . . , 17)

ðcosð2pð7lÞ/vþFÞ . . . sinð2pð7lÞ/vþFÞÞ‚ ð11Þ

where v is the period of the cell cycle and F is the phase offset

(Spellman et al., 1998). We adopted here the least squares estima-

tion approach considered by Booth et al. (2004) to obtain the cell

cycle periodv¼ 53 and the initial phaseF¼ 0 from the dataset. For

the design matrices of the random effects parts, we takeU¼ 118 and

V¼ I18. That is, we assume that there exists random gene effects bhj
with qb ¼ 1 and random temporal effects (ch1, . . . , chqc) with qc ¼ m
¼ 18. The latter introduce interdependency among expression levels

within the same cluster obtained from the same time point. Also, we

takeW¼ 118 and fh ¼ s2
h (qe ¼ 1) so that the component variances

are common among the m ¼ 18 experiments. The mixture model of

LMMs as described in Section 2 was fitted to the data with g ¼ 4 to

g ¼ 15 components. The number of components g was determined

using BIC for model selection. It indicated here that there are twelve

clusters. The clustering results for g ¼ 12 are given in Figure 1,

where the expression profiles for genes in each cluster are presented.

From Figure 1, it can be seen that the genes have very similar

expression patterns within each cluster, except in clusters 4 and

7, where there is greater individual variation by some of the

genes. This clustering result is different from Spellman’s clustering,

which was based on time of peak expression only (Spellman et al.,
1998). It can be seen from Figure 1 that the genes have very similar

expression patterns within each cluster, except in clusters 4 and 7,

where there is greater individual variation by some of the genes.

This individual variation is permissible under our model which,

from the perspective of parsimony, has gene- and cluster-specific

random-effects terms to allow for greater variation by the genes

from their cluster means than otherwise possible with fixed-effects

models.

For Clusters 1, 3, 10, 11 and 12 that show clear periodic expres-

sion patterns, we searched through the 700 bp upstream region of

the start codon of each gene for the presence of binding site

sequences for any known yeast cell cycle transcription factors

like MBF, SBF, Mcm1p-containing factors and Swi5p factors.

The results are summarized in Table 1. We found that the majority

of the genes in these clusters share common promoter elements,

and furthermore, they correspond to known cell-cycle transcription

factor binding sites relevant to the time of peak expression. For

example, genes in Clusters 1 and 10 show typical G1 peak expres-

sion and were the major members of the ‘CLN2’ cluster described

by Spellman et al. (1998). But there is a higher percentage (45%) of

genes in Cluster 10 that also contain a Swi5p site compared with the

28% of genes in Cluster 1. This supports our findings that the

‘CLN2’ gene cluster corresponds to two distinct groups and that

these may be under different regulatory control. Genes in Cluster

3 contain genes previously clustered in the ‘CLB2’ cluster of

Spellman’s work. These genes include CLB1, CDC5 and

CDC20, which are involved in mitosis and peak in the M phase.

Clusters 11 and 12 of our cluster analysis contain, respectively,

members of the ‘Y’ cluster and histone genes described by Spellman

et al. (1998). The expression of histone genes is tightly peaked in

S.K.Ng et al.
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the S phase, and there are very high peak-to-trough ratios. The

detailed description of the results of the analysis of common regu-

latory elements is given in the Supplementary information.

5.2 Clustering of genes with repeated measurements

This dataset has been used to study integrated genomic and

proteomic analyses of a systemically perturbed metabolic network

(Ideker et al., 2001) and is available from the online version

of Yeung et al. (2003). With this yeast galactose data, there are

four (r ¼ 4) replicate hybridizations for each cDNA array experi-

ment. However, �8% of the data are missing. A k-nearest neighbor
(k ¼ 12) method has been adopted to impute all the missing values

(Yeung et al., 2003). There are n ¼ 205 genes and t ¼ 20 tissues.

The expression patterns of these 205 genes reflect four functional

categories in the Gene Ontology (GO) listings (Ashburner et al.,
(2000); Yeung et al., (2003). In our study, we take m ¼ tr ¼ 80 and

X ¼ 14 � I20 (a 80 · 20 matrix). The design matrix U is taken to

be equal to X (qb ¼ 20) and V is taken to be I80 (qc ¼ m ¼ 80).

That is, we assumed that there exists random effects that are shared

among the repeated measurements of expression on the same

gene from the same tissue [bhj in (1)]. At the same time, there

exists random effects that are shared among gene expressions

from the same tissue [ch in (1)]. In this study, we allow the h-th
component-variance to be different between tissues by taking

W ¼ X and fh ¼ ðs2
h1‚ . . . ‚s

2
htÞ

T
with respect to the t ¼ 20 tissues.

We first applied our method to cluster the genes into g ¼ 4 groups.

The clusters so formed are then compared with the four categories

in the GO listings. The adjusted Rand index (Hubert and Arabie,

1985) is adopted to assess the degree of agreement between our

partition and the four functional categories. A larger adjusted Rand

index indicates a higher level of agreement (Yeung et al., 2003). In
our study, the adjusted Rand index was found to be 0.978, which is

the best match (the largest index) compared with several model-

based and hierarchical clustering algorithms considered in Yeung

et al. (2003).
We then fit the random-effects model with various number of

components g. Model selection via BIC indicated that there are

seven clusters. The distribution table of the seven clusters compared

with the four functional categories in the GO listings is given in

Table 2. From Table 2, it can be seen that our clusters 1 and 2 consist

mainly of those genes in Categories 2 and 4, respectively. Genes in

Category 1 are split into two clusters (4 and 7), while those in

Category 3 are separated into three clusters (3, 5 and 6). These

subdivisions of functional categories could be relevant to some

unknown gene functions in the GO listings.

5.3 Clustering of genes on basis of

cross-sectional data

This dataset has been used to identify genes that are linked to

malignancy of human colorectal carcinoma and is available from

the online version of Muro et al. (2003). Strictly speaking, this does
not represent a microarray experiment as the gene-expression levels

are measured based on an adaptor-tagged competitive polymerase

chain reaction (PCR) system. We, however, include it here as an

example of clustering correlated genes based on measurements
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Fig. 1. Clustering results for the yeast cell-cycle data. For all the plots, the

X-axis is the time point and the Y-axis is the gene-expression level. A colour

version of this figure is available as Supplementary material.

Table 1. Promoter elements (Yeast cell-cycle data)

Cluster No. of genes Binding site Regulator Peak expression

1 35 ACGCGT MBF, SBF G1

3 40 MCM1 + SFF Mcm1p + SFF G2/M

10 11 ACGCGT MBF, SBF G1

11 48 Unknown Unknown G1

12 17 ATGCGAAR Unknown S
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from both tumor and normal tissues. The dataset consists of the

expression levels of 1536 genes (known to be associated with color-

ectal cancers) in 100 tumors and 11 normal tissues (m ¼ 111) from

which n ¼ 341 genes were selected after filtering out poor quality

data. Each column of the array data was standardized to have

mean zero and unit standard deviation and then each row of the

consequent array was standardized. With reference to (1), we take

p ¼ qe ¼ 2 corresponding to the above two tissue groups and take

X to be an 111 · 2 zero-one matrix where the first 100 rows are (1 0)

and the next 11 rows are (0 1). The design matrixU is set eqaul to X,

while V is set to I111(qc ¼ m¼ 111). In this study, we allow the h-th
component-variance to be different between tumor and normal

tissues by taking W ¼ X ¼ X and fh ¼ ðs2
h1‚s

2
h2Þ

T
with respect

to the two tissue types. Model selection via BIC indicated that there

are three clusters. Muro et al. (2003) adopted a parametric clustering

method within the variational Bayesian framework of Attias

(2000) to cluster the genes based on the first three principal com-

ponents of the data. Their analysis revealed also three clusters. In

Figure 2, the first two principal component scores of the clusters

obtained by both methods are displayed for comparison. It can be

seen that the clusters obtained by both methods are in general well

separated in the first two principal components. This is not

surprising though for the clusters obtained by Muro et al. (2003)
as they are formed on the basis of the first three principal

components.

As mentioned in Muro et al. (2003), their smallest cluster

(containing 27 genes) is the most relevant in that it contains

genes linked to malignancy. From Figure 2, it can be seen that

our method gives a different clustering result for this smallest

group (marked as triangles in the figure) to that obtained by

Muro et al. (2003). They selected a set of 17 representative

genes (out of that cluster of 27 genes) to form their tumor-classifier

(TCL) genes, which were used to separate the patients into good-

and poor-prognosis groups, where the latter group was associated

with distant metastases and over-expression of the TCL genes. In

our study, we identified a smaller cluster which was a subset of the

TCL genes listed in (Muro et al., 2003). But as it consisted of only

15 genes, there is no need to reduce it further (as done subjectively

in (Muro et al., 2003) before forming a classifier to assign the

tissue samples into good- and poor-prognosis groups (McLachlan

et al., 2002). The associations between the tissue groups so formed

and the clinical outcomes for the patients such as survival times and

the presence of distant metastases can be examined as described in

Ben-Tovim Jones et al. (2005).

5.4 Clustering of synthetic time-course data

To illustrate the application of our mixture model in the case where

we know the true clustering of the gene profiles, we considered a

synthetic time-course dataset. It is based on the yeast cell-cycle data

of Spellman et al. (1998) as analyzed above. We let bCC denote the

estimate of the vector C of unknown parameters obtained from our

analysis in Section 5.1. We generated n ¼ 600 observations from

our model (1) where, conditional on the cluster-specific random

effects, the data were generated from a mixture of g ¼ 12 com-

ponents in proportions p1, . . . , pg. The same fixed-effects structure

(11) was imposed on the component-means of the gene profiles as in

our original analysis. The values of the parameters in C, including

the mixing proportions pi, were taken to be equal to bCC. We per-

formed 10 simulation trials and on each trial we ran our program

EMMIX-WIRE with g ¼ 12 components to produce a clustering of

the 600 gene profiles into 12 clusters. We computed the adjusted

Rand Index for the clustering relative to the true grouping of the 600

(synthetic) genes for each simulation trial, which gave an average

value of �RR ¼ 0:87. We also ran k-means and some agglomerative

hierarchical algorithms on each trial for 12 clusters. On each trial,

we found that the agglomerative hierarchical clusterings produced

by the latter were inferior to k-means, regardless of their adopted

forms (single, complete and average linkage with the Euclidean or

the correlation coefficient metric). A similar conclusion was reached

in the much more extensive study of Gibbons and Roth (2002). For
our simulated trials, the average adjusted Rand index �RR was equal to

0.54 for k-means and 0.24 for the agglomerative hierarchical

method using complete linkage with the correlation metric.

We also considered the (non-parametric) clustering algorithm

CAST proposed by Ben-Dor (1999), using Euclidean distance

with the tuning parameter set so as to give the number of clusters

as close as possible to 12 as with EMMIX-WIRE. However,

it tended to put the majority of the genes into one cluster. For

example, for the dataset on the first trial, CAST with the tuning

parameter set equal to 0.45, which gave 10 clusters, put 589 of the

600 genes in one cluster with 7 singleton clusters, and 2 other

clusters consisting of 2 genes each. We observed a similar result

with CAST when applied to the actual yeast cell-cycle data of

Spellman et al. (1998). The threshold 0.7 was chosen as it gave

the closest number of clusters (11) to 12 as with EMMIX-WIRE.

We found that CAST put a majority (557) of the 600 genes into 1

cluster with 4 singleton clusters; the other 6 clusters contained 13,

12, 11, 6, 5 and 4 genes.

Table 2. Distribution of four functional categories over seven clusters

obtained (Yeast galactose data)

Cluster Category 1 Category 2 Category 3 Category 4

1 0 13 0 0

2 0 0 0 14

3 0 2 44 0

4 38 0 0 0

5 0 0 17 0

6 0 0 32 0

7 45 0 0 0
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Fig. 2. The first two principal scores (colorectal carcinoma data). (a)Clusters

based on the proposed random-effects model; (b) clusters obtained by Muro

et al. (2003). A colour version of this figure is available as Supplementary

material.
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Finally, we also fitted the standard mixture model with g ¼ 12

components with equal covariance matrices to these synthetic

datasets. We used the EMMIX program of McLachlan et al.
(1999) for the fitting of the normal mixture model without structure

on the component means and covariance matrices (using 25 random

and 25 k-means-based starts). It gave an average value of �RR ¼ 0:32
for the adjusted Rand index. When we used EMMIX to fit the

standard normal mixture model with g ¼ 12 components with

equal covariance matrices to the actual yeast-cell cycle data of

Spellman et al. (1998), it gave a clustering that is quite different

to that produced by EMMIX-WIRE. The adjusted Rand index of the

EMMIX clustering relative to that produced by EMMIX-WIRE is

only 0.15.

6 DISCUSSION

As an increasing number and a variety of high-throughput datasets

become available, cluster analysis is playing an ever increasing role

in the analysis of these biological data. The aim of clustering the

profile vectors of a very large number of genes is to study the

changes in gene expression of entire groups of genes as a means

to finding possible functional relationships among them, the iden-

tification of transcription factor binding sites and the elucidation of

biological pathways. The biological rationale underlying the clus-

tering of the gene profiles is the fact that often many coexpressed

genes are also coregulated, which is supported both by an immense

body of empirical observations and by detailed mechanistic

explanation (Boutros and Okey 2005).

With the analysis of microarray data, there is a need for clustering

procedures that can handle data that are both replicated and cor-

related. We formulate a random-effects model that extends the

application of normal mixture models to data arising from a

wide variety of experimental designs. Moreover, the model allows

for correlations among the gene profile vectors by taking genes

within the same cluster to be correlated. We show that this

model is able blue provide the program EMMIX-WIRE that enables

this model to be fitted very quickly by maximum likelihood via the

EM algorithm with the E- and M-steps able to be carried out in

closed form.

The proposed method is demonstrated on three representative

datasets in the microarray literature blue and also a synthetic data-

set. The aim here is not to provide a detailed analysis of these sets,

but rather to highlight the potential role and usefulness of our

random-effects model for mixture model-based clustering of cor-

related gene-expression data arising from various biological

microarray experiments.
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