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1 Introduction

The liberalization process of the European electricity markets experienced over
the last twenty years. Our goal in this paper is to measure dependence or co-
movement between European electricity markets from a new perspective by using
mixture C-vine copula based GARCH model. The copula based GARCH model
is a popular model to research dependence or (co-movement) in many fields, while
the vine copula began to be applied recently, and so, very few literature reviews
are available on vine copula as regards its applications. It was Joe [1] who first
proposed the pair-copula structure, and Bedford and Cooke [2,3] and Kurowicka
and Cooke [4] who further developed it. Aas et al. [5] first proposed that one pair-
copula construction can be mixed with bivariate copulas for any copula family.
Additionally, they developed the graphical representation for the C-vine and D-
vine copulas and the standard maximum likelihood estimation (MLE). Mendes et
al. [7] used the D-vine model with four different bivariate copula families on a six-
dimensional global portfolio in order to show how pair-copulas could be applied
on a daily basis for constructing efficient frontiers, besides discussing its use for
portfolio management. Brechmann and Czado [14] developed a regular vine copula
based factor model for asset returns, which is the so-called Regular Vine Market
Sector (RVMS) model and employed it to analyze the Euro Stoxx 50 index. This
paper shows that the RVMS model provides good fits of the data and accurate
VaR forecasts. Kim et al. [8] proposed a mixing of D-vine copulas for revealing
complex and hidden dependence structures in multivariate data. Low et al. [6]
used canonical vine copulas in the context of modern portfolio management. They
found that asymmetric copula models can be used to forecast returns for portfolios
ranging in assets from 3 to 12, and that they have better implementation benefits
than the traditional models.

This paper seeks to measure the dependence between various European elec-
tricity markets by employing the mixed canonical vine copula based GARCH
model. We pursue to analyze the spot prices of five major European electricity
markets, which are France, Germany, Spain, the Netherlands, and the UK. Addi-
tionally, the procedure for measuring the dependence between the different Euro-
pean electricity markets is divided into two stages. We first specify the marginal
model for each electricity price, followed by the joint model for the dependence.
The AR-Skew-t-GARCH models are used for the marginal models of the electricity
prices, which capture the most important features of price (e.g., heteroscedasticity
and volatility clustering). For the joint distribution, we use the mixed canonical
vine copula model to get the dependence structure. The following C-vine copu-
las with different dependence structures are considered: Gaussian and Frank BB8
copulas, which are symmetric with zero tail dependence; Student-t copula, which
is symmetric with non-zero tail dependence; Gumbel, Joe, and BB6 copulas, which
allow for asymmetric with upper tail dependence and zero lower tail dependence;
Clayton copulas, which allow for asymmetric with lower tail dependence and zero
upper tail dependence; and BB8, which is asymmetric with non-zero tail depen-
dence.
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This paper is organized as follows. Section 2 describes the Canonical Vine
Copula-GARCH model used in the paper. Section 3 discusses the data and their
properties, and Section 4 presents the empirical results with inference. The last
section provides some concluding remarks.

2 Canonical Vine Copula Based GARCH Model

2.1 Copula function

A copula is a multivariate cumulative distribution function (CDF) with uni-
form marginal distribution that captures the dependence structure between ran-
dom variables. Let X1, X2, ., Xn be random variables with the marginal distribu-
tion F1, F2, , Fn, and let their joint distribution be H. Then, there exists a copula
C : [0, 1]n → [0, 1] that satisfies the following:

F (x) = H (x1, x2, . . . , xn) = C (F1 (x1) , F2 (x2) , . . . , Fn (xn)) , (2.1)

and vice versa

C (u1, . . . , un) = F
(

F−1
1 (u1) , . . . , F

−1
n (un)

)

, (2.2)

where u1, . . . , un ∈ (0, 1)and F−1
1 (u1) , . . . , F

−1
n (un) are the inverse distribution

functions of the marginal. According to Sklar’s Theorem (Sklar, [11]), we know
that a joint distribution H can be separated into n univariate marginal distributions
F1, F2, , Fn and a copula C that could be used to measure the dependence structure
between the variables X1, X2, ., Xn.

he corresponding density is

f (x) =
∂nF (x)

∂x1 . . . ∂xn

= c(F1 (x1) , F2 (x2) , . . . , Fn (xn))

n
∏

i=1

fi (xi)

=c (u1, . . . , un)
n
∏

i=1

fi (xi) ,

(2.3)

Moreover, copulas have another feature which is that the tail dependence of the
variables measures the extreme co-movements between the variables. We express
the parameters of the upper and lower tail dependences in terms of the copula
between X1 and X2, with the marginal distribution functions F1 and F2 as

λU = limu→1Pr
[

X2 ≥ F−1
2 (x2)

∣

∣X1 ≥ F−1
1 (x1)

]

λL = limu→0Pr
[

X2 < F−1
2 (x2)

∣

∣X1 < F−1
1 (x1)

] (2.4)

where the values of both λU and λL lie between θ and 1. We call the tail depen-
dence between X1 and X2 symmetric if the upper tail dependence parameter, λU ,
is equal to the lower tail dependence, λL; otherwise, it is asymmetric.
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2.2 Pair-copula construction

Employing copula constructions to build flexible multivariate distributions is a
very useful method in which the modeling principle is based on the decomposition
of a multivariate density into a cascade of bivariate copulas (Emmanouil and Nikos,
[10]). By employing the general form of a conditional marginal density, given in
Equation (2.5), a d-dimensional multivariate density, given in Equation (2.3), can
be represented by a product of pair-copulas in an iterative manner under suitable
regularity conditions (Aas et al., [5]):

f (x |υ ) = cx,υ
−j |υ−j

(F (x |υ−j ) , F (x |υ−j )) f (x |υ−j ) , (2.5)

where υ is an n-dimensional vector, υj is any one component arbitrarily chosen
from υ, and υ−j is the vector excluding υj .

2.3 Canonical vines (C-vines)

This paper employs C-vines, which is a special case of the pair-copula. For
the n-dimensional C-vine, the pairs at level 1 are i, for i = 1, . . . , n, and for level
l(2 ≤ l < n), the (conditional) pairs are l, i|1, . . . , l − 1, for i = l + 1, . . . , n. That
is, for the C-vine copula, the conditional copulas are specified for variables i and l,
given those indexed as 1 to l− 1 (Nikoloulopoulos, Joe, and Li, [13]). The density
of n-dimensional C-vines is defined as follows (Aas et al., [5]):

f (x) =

n
∏

k=1

fk (xk)

n−1
∏

j=1

n−j
∏

i=1

ci,i+j|1:j−1 (F (xi |x1, . . . , xj−1 ) , F (xi+j |x1, . . . , xj−1 ))

(2.6)

where i runs over the edges in each tree and index j denotes the tree/level.

Figure 1 shows the specification of C-vines with five variables and four trees/levels.
It consists of four trees, Tj , j = 1, . . . , n − 1. Additionally, Tree Tj has n + 1 − j
nodes and n− j edges. The density of a five-dimensional canonical vine structure,
which is plotted in Figure 1, can be written as follows:

f =f1f2f3f4f5 × c12 (F1, F2) c12 (F1, F2) c13 (F1, F3) c14 (F1, F4) c15 (F1, F5)

× c23|1
(

F2|1 , F3|1

)

c24|1
(

F2|1 , F4|1

)

c25|1
(

F2|1 , F5|1

)

× c34|12
(

F3|12 , F4|12

)

c35|12
(

F3|12 , F5|12

)

× c45|123
(

F4|123 , F5|123

)

(2.7)

From Equation 2.6, we know that there are as many as (n!)/2 possible different C-
vine structures. Hence the whole decomposition has n(n−1)/2 pair-copula families
to be chosen from. Therefore, the crucial step is to select the C-vine decomposition
and an appropriate copula family for each edge in the C-vine model by using the
selection rules. These will be described in Section 2.5.
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Figure 1: Tree decomposition, showing the five-dimensional canonical vine
structure with four trees/levels

2.4 Inference for a C-vine copula model

This study uses two estimation procedures to estimate the C-vine parameters,
which are maximum (log) likelihood estimation (MLE) and sequential estimation
(SE). The log-likelihood of C-vine with parameter θMLE is defined as follows:

ℓ
(

x, θMLE
)

=

n−1
∑

i=1

n−j
∑

j=1

T
∑

t=1

log
[

ci,i+j|1,...,i−1

(

Fi|1,...,i−1 , Fi+j|1,...,i−1

∣

∣θi,i+j|1,...,i−1

)]

(2.8)
where Fj|i1,...,im = F (xt,j |xt,i1 , . . . , xt,im ) and the marginal distribution are uni-
form.

We suppose that the i.i.d. data ut = (u1,t, . . . , un,t)
t
for t = 1, . . . , T are

available. According to the discussion given in Czado et al. [18], the steps for
sequential estimation (SE) are described thus: (1) first, estimate the parameters

θ̂SE
1,j+1 of the unconditional bivariate copulas of Tree 1 using the data (u1,t, uj+1,t)

for j = 1, . . . , n − 1; (2) given the estimated parameter vector θ̂SE in Tree 1,
we compute the transformed variables for the second tree using h-functions and
estimate the parameters θ̂SE

1,j+1 (j = 1, . . . , n − 2) of the conditional bivariate

copulas of Tree 2 according to c2,j+2|1
2, which can be defined as

v̂2|1,t = F
(

u2,t

∣

∣

∣
u1,t; θ̂

SE
1,1

)

= h
(

u2,t

∣

∣

∣
u1,t; θ̂

SE
1,1

)

v̂j+2|1,t = F
(

uj+2,t

∣

∣

∣
u1,t; θ̂

SE
1,1

)

= h
(

uj+2,t

∣

∣

∣
u1,t; θ̂

SE
1,1

)

and (3) by following the same identification procedure, we can sequentially esti-
mate the parameters of the bivariate copula for each nested set of trees in the
C-vine structure until all the parameters of the bivariate copula are estimated.

2Aas et al. [5] define h-functions as h (x, v; θ) = hθ = ∂Cθ(Fx(x),Fv(v))
∂Fv(v)

= ∂Cθ(x,v)
∂v

,

where x, v ∼ U [0, 1].
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2.5 C-vine decomposition and copula selection

In general, there are n!/2 possible different C-vine structures. Hence the whole
decomposition has n(n − 1)/2 pair-copula families to be chosen from. Therefore,
the crucial step is to select the C-vine decomposition and an appropriate copula
family for each edge in the C-vine model by using the selection rules. The empirical
selection rule for C-vine decomposition as discussed by Czado et al. [18] is followed
in this paper. The empirical selection rule works thus: (1) estimate all the possible
parameters of Kendall’s τ(i.j), and note them as τ (i.j); (2) find the variable i∗ that
maximizes

τ̂i,sum =

n
∑

j=1

|τ̂i.j | (2.9)

over i = 1, . . . , n. We select the most dependence with the other variables, i∗, and
reorder these variables to be the first variable for Tree 1. As we form the n − 1
transformed variables in the sequential estimation procedure. Follow the same
identification procedure and recorder the 2th, . . . , n− 1th variable for Tree 1.

v̂j+2|1,t = h(u1,t; θ
SE
1,j+1)j=0,...,n−2,t=1,...,T (2.10)

We estimate the parameters of all the pairwise Kendall’s τ based on n−1 variables
of size T and select those pilot variables i∗∗ of ree 2 which maximize (Equation
2.5). We continue this procedure until all the pilot variables for each tree are
determined.

Besides the steps described above, we should select an appropriate copula
family for each edge in the C-vine model. In the later application, we consider ten
kinds of copula families, namely, Gaussian, Student-t, Clayton, Gumbel, Frank,
Joe, BB1, BB6, BB7, and BB8 copulas. The summary of the properties of these
ten copulas and their statistical inference are reported in Table 1. We use AIC and
BIC as well as goodness-of-fit tests to select an appropriate bivariate copula-family
for every pair of variables. The AIC and BIC criteria correct the log-likelihood
of a copula for the number of parameters (Dimann et al., [12]). Manner[7] and
Brechmann ([9], Section 5.4) have conducted investigations on this previously, and
shown that AIC and BIC are quite reliable criteria. We compute the AIC and BIC
values for each family, and choose the copula family with the smallest AIC and BIC
values. Additionally, we also do the independence test in the selection procedure.
If this test indicates independence between variables, we need to take further steps
and choose the independence copula.

2.6 Model for marginal distribution

We assume that the return of the electricity price rt follows an AR (k)-GARCH
(1,1) model with the standardized residual et satisfying the skewed-t distribution
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such that

rt = c0 +

k
∑

i=1

φirt−i + et,

et =
√

htzt, zt ∼ SkT (zt| ξ, λ) ,

ht = ω + αe2t−1 + βht−1

(2.11)

where rt is the daily return, et is the random error, ht is the conditional variance
of volatility of et at time t, and α and β are associated with the degree of innova-
tion and volatility spillover effect from the previous period. zt is the standardized
residual assumed to be distributed as the following skewed-t distribution (Fernan-
dez and Steel, [17]) in order to capture the possibly asymmetric and heavy-tailed
characteristic of electricity price with λ DoF:

f(zt) =







2
ξ+ 1

ξ

f (ξzt) , zt < 0

2
ξ+ 1

z

f
(

zt
ξ

)

, zt ≥ 0
, (2.12)

where ξ is the skewness parameter.

3 Data Description

This study focuses on the dependence between electricity prices by analyzing
the spot electricity prices of five European electricity markets, namely, the French,
German, Spanish, Dutch, and British markets. All the spot prices for the base
period have been obtained from DataStream. The dataset covers the period from
July 1, 2004, to June 30, 2013. DataStream does not provide weekend price data.
None of the price series contains weekend price data; therefore, there are 2,437
daily price observations for each series in the base period.
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Figure 2: The return of the baseload price for each series

This study, however, does not analyze the level of price directly, but, instead,
focuses on the returns of price. Returns are computed as the log-differences in
the daily prices, as rt = ln(pt/pt−1), where pt and pt−1 are the current and one-
period lagged daily electricity prices. These plots clearly show extreme price spikes
and volatility clustered for each return. Table 2 presents the descriptive statistics
of the daily price returns. The mean of each return is almost close to zero and
slightly positive for all the series considered in this paper. Skewness is slightly
negative for the German, Spanish, and Dutch returns, and slightly positive for the
French and British returns. All the returns are greater than 3 in kurtosis, which
denotes a fat-tailed distribution. All the skewness of returns values are not equal
to zero, which indicates an asymmetric distribution. The null hypotheses of the
normality distribution for all the returns are rejected at the 1% significance level,
which shows that normal distribution cannot approximate all the returns. Since
the returns are found to have extreme price spikes and are volatility clustered, the
unit root test for stationarity is essential. The augmented DickeyFuller (ADF) and
the KwiatkowskiPhillipsSchmidtShin (KPSS) unit root tests are used to test the
null hypothesis non-stationarity (or unit root) of returns. The ADF and KPSS
tests have the opposite null hypotheses: the former has the unit root process
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as the null hypothesis, whereas the latter has the stationary process as the null
hypothesis. The ADF statistics reject the null hypothesis at the 1% significant
level of returns. On the other hand, the KPSS statistics do not reject the null
hypothesis at the 1% significant level of returns. Therefore, it can be concluded
that all the returns are stationary.

Table 2: Descriptive Statistics of Returns from 1 July 2004 to 28 June 2013
France Germany Spain The Netherlands UK

Mean 0.0000 0.0001 0.0000 0.0002 0.0004
Maximum 2.3841 1.7356 2.3857 1.6892 1.4286
Minimum -2.2139 -1.8304 -3.1828 -1.5402 -0.8529
Std. Dev. 0.1869 0.1995 0.2003 0.1685 0.1596
Skewness 0.0544 -0.1577 -1.2271 -0.0012 0.3313
Kurtosis 29.0096 16.1410 67.8199 17.1020 9.1699

JB 66157.0000 16897.0400 411471.8000 19447.4400 3765.5840
Probability 0.0000 0.0000 0.0000 0.0000 0.0000

ADF -32.1533** -20.5245** -18.5637** -20.2878** -29.9868**
KPSS 0.0497 0.0676 0.0514 0.0481 0.0479

Observations 2347 2347 2347 2347 2347

4 Empirical Results

4.1 Results for marginal model

First, estimate the AR (k)-Skew-t-GJRGARCH (1,1) models for each return
series. p and q are set from zero to a maximum of six lags, and the insignifi-
cant (with significant level 5%) autoregressive terms are deleted. AIC and BIC
statistics are adopted to select the most suitable models. The estimated values of
the marginal models are presented in Table 3. It can be noted that the ARCH
parameter α and the GARCH parameter β are statistically significant, implying
that conditional heteroskedasticity effects exist for all the return series. Moreover,
the return series for the German, Spanish, and British electricity price markets
exhibit significant leverage effect, which is drawn by the element η. The p-values
of ARCH(10) are more than 10%, which indicates the successful removal of all
ARCH-effects from the residual series. The skewness parameter ξ and the degrees
of freedom λ of the skewed-t distribution for each return series are significant. Ad-
ditionally, the degrees of freedom λ of the skewed-t distribution are small, ranging
from 2 to 5. These results indicate that the error terms are not normal distribution
and that the skewed-t distribution works reasonably well for all the return series.

4.2 Goodness-of-fit for marginal distribution

After filtering the original return series with the appropriate AR-GARCHmod-
els, we transformed non-parametrically the resulting standardized residual series
to copula data uit using the ECDF. Each copula data uitt should be uniform (0, 1);
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Table 3: Estimated Coefficients for Marginal Model
France Germany Spain The Netherlands UK

C0
-0.0003 -0.0006 -0.0015* 0 0.0014*
-0.006 -0.0004 -0.0007 -0.0004 -0.0006

φ1
0.6434** 0.5576*** 0.3255** 0.6383** 0.3523**
-0.0247 -0.0253 -0.061 -0.023 -0.0279

φ2
0.1063** 0.0678** -0.0748* - 0.0486*
-0.0238 -0.0231 -0.031 -0.0235

φ3
0.0831** 0.0677** - 0.0877** 0.0449*
-0.0202 -0.0213 -0.02198 -0.0225

φ4
- 0.0727** - - 0.0453*

-0.0207 -0.0206

φ5

- 0.0330* - 0.0392* -
-0.0175 -0.019

-0.9631** -0.9683** -0.6403** -0.9641** -0.8817**
-0.0112 -0.0063 -0.06 -0.0085 -0.0194

ω
0.0031** 0.0058** 0.0006** 0.0014* 0.0008**
-0.0009 -0.0011 -0.0001 -0.0006 -0.0001

α
0.2836** 0.3643** 0.1665** 0.3014** 0.2482**
-0.0632 -0.0682 -0.0326 -0.0774 -0.0394

β
0.6483** 0.4788** 0.7046** 0.7139** 0.8145**
-0.0584 -0.053 -0.0289 -0.0763 -0.0222

η
0.1412 0.2222* 0.2785** -0.0334 -0.1614**
-0.093 -0.0028 -0.0613 -0.0544 -0.04111

ξ
0.9232 0.8374** 0.8316** 0.9602** 1.3747**
-0.0268 -0.0243 -0.0232 -0.0259 -0.0393

λ
2.9194 3.3211** 4.3213** 3.347688 4.6055**
-0.1997 -0.2492 -0.3626 -0.2409 -0.4765

LL 1562.997 1341.973 2255.174 1734.633 1720.303
AIC -1.3225 -1.1325 -1.9132 -1.4671 -1.4557
BIC -1.2955 -1.1006 -1.8887 -1.4352 -1.4263

ARCH(10) 0.9947 0.9323 0.8238 0.6752 0.8541

Notes: The table shows the estimates and their standard errors (in parentheses) for the
parameters of the marginal distribution model defined in Equation (3) and Equation (4). **
and * denote rejection of the null hypothesis at the 1% and 5% significance levels, respectively.
ARCH(10) is the Engel’s LM test for the ARCH effect in the residuals up to the 10th order.
The total number of observations for each series is 2,347.
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otherwise, the copula model could be mis-specified. By following the procedures
discussed in Patton [15] and Reboredo [16], this paper used two steps to test uit.
First, a LjungBox (LB) test was used to examine the serial correlation under the
null hypothesis of serial independence. To do so, (uit−ūi)

k is regressed on the first
10 lags of the variables. Second, the KolmogorowSmirnov (KS) test is used to test
the null hypothesis that the uit are uniform (0,1). Table 4 reports the p-values of
these tests. At the 5% significant level, all the null hypotheses are rejected, which
implies that the marginal distribution model can demonstrate quite capably that
these are not mis-specified. Hence, it can be safely concluded that the copula
model can correctly capture the dependence between the six electricity markets.

Table 4: Goodness-of-fit Test for Marginal Distributions
First

moment
LB test

Second
moment
LB test

Third
moment
LB test

Fourth
moment
LB test

KS test

France 0.1364 0.2603 0.1572 0.1673 1.0000
Germany 0.1904 0.0500 0.2314 0.1852 0.9991
Spain 0.1935 0.2027 0.7339 0.3195 0.9991

The Netherlands 0.2527 0.2186 0.8718 0.2272 0.9762
UK 0.8071 0.0592 0.9351 0.0563 1.0000

Notes: This table reports the p-values from the LjungBox (LB) tests for the serial
independence of the first four moments of the variablesui,t. We regress (ui,t − ūi)

k on the first
10 lags of the variables fork = 1, 2, 3, 4. In addition, we present the p-values of the
KolmogorowSmirnov (KS) test for the adequacy of the distribution model.

Table 5: Empirical Kendall’s Matrix and Sum of Absolute Entries of Each
Row for European Electricity Copula Data

France Germany Spain The Netherlands UK τ̂sum
France 1.0000 0.4110 0.1410 0.4970 0.1940 2.2430

Germany 0.4110 1.0000 0.0961 0.4430 0.1700 2.1201
Spain 0.1410 0.0961 1.0000 0.0795 0.0310 1.3476

The Netherlands 0.4970 0.4430 0.0795 1.0000 0.1900 2.2095
UK 0.1940 0.1700 0.0310 0.1900 1.0000 1.5850

4.3 Selection and estimation of vine models

Figure 2 displays the scatter plots of the transformed standardized residual se-
ries, and it highlights the positive dependence within the transformed standardized
residual series. This paper used the C-vine structure selection criterion described
by Czado et al. [18] to select an appropriate C-vine copula model for the European
electricity copula data. Table 5 describes the empirical Kendall’s correlation ma-
trix of the copula data and the sum of their values, denoted by τ̂sum and defined in
the equation. Table 4 demonstrates that the France series has the maximum sum
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Figure 3: The scatter plots of the European electricity prices with standard
normal margins

of the absolute values, τ̂sum, and hence it is placed as the pilot variable in level 1 of
the vine structure. Table 5 describes the empirical Kendall’s matrix of the series,
conditioned on France, and denoted by i∗, and the sum of the absolute entries of
each row. In Table 6, we observe that the Germany series has the maximum sum
of the absolute values, τ̂sum, and hence it is placed as the pilot variable in level 2 of
the vine structure. Following the same identification procedure, the permutation
of the electricity copula data for the mixed C-vine structure is specified as (France,
Germany, the Netherlands, UK, Spain) = (1, 2, 3, 4, 5).

Table 6: Goodness-of-fit Test for Marginal Distributions
Germany|i∗ Spain|i∗ The Netherlands|i∗ UK|i∗ τ̂sum

Germany|i∗ 1.0000 0.3815 0.1137 0.0201 1.5153
Spain|i∗ 0.2492 1.0000 0.0777 -0.0107 1.3375

The Netherlands|i∗ 0.0725 0.0777 1.0000 -0.0100 1.1602
UK|i∗ 0.0128 -0.0107 -0.0100 1.0000 1.0335

The resulting C-vine copula model and the sequential and maximum likelihood
estimates are presented in Table 7. Regarding the copula selection, we used 10
different copula types to select the 10 in the total number of different pair-copulas
in the C-vine model, and the selection of the appropriate copula types was based
on the AIC and BIC criteria. The copula type with the smallest AIC/BIC value
is chosen. Additionally, we also carried out the independence test for the C-
vine model. The independence copula is selected for pair-copulas that cannot
reject the null hypothesis of independence. From Table 7, it is evident that the
sequential estimates are extremely close to the maximum likelihood estimates for
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all the estimated models, which is an indication that the employment of sequential
estimation as the preferred optimization method is appropriate.

From the sequential selection, we note that the dependence between the French
market and the other markets is the strongest and that the dependence between
the Spanish market and the other markets is the weakest. From Table 7, we
also understand that the French market co-movements are affected, to a large
extent, by the neighboring German market. Between the French, German, and
Dutch markets, especially, exist extreme co-movement. However, the relationship
between the various markets becomes smaller, and it even becomes independent,
when the conditions increase. For example, the relationship between Germany and
Spain is independent under the condition of France. Additionally, the Dutch and
Spanish markets do not have co-movement upon the condition of the French and
German markets. Furthermore, the British and Spanish markets are independent
upon the condition of the French, German, and Dutch markets. The Dutch and
British markets are still dependent upon the condition of the German and French
markets.

Table 7: Estimated Parameters of C-vine Copula

Level Block Family
Para-
meter

ˆθSE std. error ˆθMLE λL λU

C1,2 Student-t ρ̂ 0.5955 0.0139 0.6026 0.2786 0.2786
ν̂ 4.7606 0.5527 4.7668

C1,3 Student-t ρ̂ 0.7085 0.0117 0.7144 0.4823 0.4823
1 ν̂ 2.5390 0.1890 2.6530

C1,4 Frank θ̂ 1.8124 0.1281 1.8190 0.0000 0.0000
C1,5 Student-t ρ̂ 0.2269 0.0206 0.2282 0.0117 0.0117

ν̂ 12.4931 3.9000 12.4929
2 C2,4|1 Student-t ρ̂ 0.3815 0.019 0.3796 0.1173 0.1173

ν̂ 6.0683 0.7755 6.0714
C2,3|1 Student-t ρ̂ 0.1173 0.0212 0.1205 0.0012 0.0012

ν̂ 17.5849 6.3332 17.5851

C2,5|1
Indepen-
dence

ρ̂ 0.0000 0.0000 0.0000 0.0000 0.0000

C3,4|1,2 BB8 θ̂ 1.1890 0.1380 1.1886 0.0000 0.0000

3 δ̂ 0.8700 0.1511 0.8695

C3,5|1,2
Indepen-
dence

ρ̂ 0.0000 0.0000 0.0000 0.0000 0.0000

4 C4,5|1,2,3
Indepen-
dence

ρ̂ 0.0000 0.0000 0.0000 0.0000 0.0000

Note: (France, Germany, Netherlands, UK, Spain) = (1, 2, 3, 4, 5).

5 Conclusion

This paper employed a combination canonical copula based GARCH model
for modeling the dependence structures of European electricity markets. The five
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European power markets are France, Germany, Spain, the Netherlands, and UK.
The data consist of daily spot electricity prices for the base period, which is from
1 July 2004 to 28 June 2013. We used the mixed canonical copula based GARCH
model approach and provided ten kinds of bivariate copula models for the selection.

Conditional dependence is used to measure spillover effects, that is, how the
volatility of one market affects another market, conditional on the event. The con-
ditional tail dependence is applied to investigate a particular market experiencing
spikes and drops, conditional on the event that another market is also experienc-
ing spikes and drops. The empirical results show that there is positive spillover
effect between the French and the other four markets. Second, strong symmet-
ric tail dependence exists between France, Germany, and the Netherlands. This
suggests one market (one from among the French, German, and Dutch markets)
experiencing spikes or drops, conditional on the event that the other two markets
are also experiencing spikes or drops. When adding the condition of under one or
more markets, relationships of some pairs are still found to have dependence, while
correlations of some pairs are observed to become independent. For example, the
relationship between Germany and Spain has independence under the condition of
France. Additionally, the Dutch and Spanish markets do not have co-movement
upon the condition of the French and German markets. The Dutch and British
markets are still found to have dependence upon the condition of the German and
French markets.
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