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Abstract 

We address statistical classifier design given a mixed training set con

sisting of a small labelled feature set and a (generally larger) set of 
unlabelled features. This situation arises, e.g., for medical images, where 
although training features may be plentiful, expensive expertise is re
quired to extract their class labels. We propose a classifier structure 
and learning algorithm that make effective use of unlabelled data to im
prove performance. The learning is based on maximization of the total 
data likelihood, i.e. over both the labelled and unlabelled data sub
sets. Two distinct EM learning algorithms are proposed, differing in the 
EM formalism applied for unlabelled data. The classifier, based on a 
joint probability model for features and labels, is a "mixture of experts" 

structure that is equivalent to the radial basis function (RBF) classifier, 
but unlike RBFs, is amenable to likelihood-based training. The scope of 
application for the new method is greatly extended by the observation 
that test data, or any new data to classify, is in fact additional, unlabelled 

data - thus, a combined learning/classification operation - much akin to 
what is done in image segmentation - can be invoked whenever there 
is new data to classify. Experiments with data sets from the UC Irvine 
database demonstrate that the new learning algorithms and structure 
achieve substantial performance gains over alternative approaches. 

1 Introduction 

Statistical classifier design is fundamentally a supervised learning problem, wherein 

a decision function, mapping an input feature vector to an output class label, is 

learned based on representative (feature,class label) training pairs. While a variety 
of classifier structures and associated learning algorithms have been developed, a 

common element of nearly all approaches is the assumption that class labels are 
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known for each feature vector used for training. This is certainly true of neu
ral networks such as multilayer perceptrons and radial basis functions (RBFs), for 

which classification is usually viewed as function approximation, with the networks 
trained to minimize the squared distance to target class values. Knowledge of class 
labels is also required for parametric classifiers such as mixture of Gaussian clas

sifiers, for which learning typically involves dividing the training data into subsets 
by class and then using maximum likelihood estimation (MLE) to separately learn 

each class density. While labelled training data may be plentiful for some applica

tions, for others, such as remote sensing and medical imaging, the training set is in 

principle vast but the size of the labelled subset may be inadequate. The difficulty 

in obtaining class labels may arise due to limited knowledge or limited resources, 

as expensive expertise is often required to derive class labels for features. In this 

work, we address classifier design under these conditions, i.e. the training set X 

is assumed to consist of two subsets, X = {Xl, Xu}, where Xl = {(Xl, cd, (X2' C2), 
... ,(XNI,CNln is the labelled subset and Xu = {XNI+l, ... ,XN} is the unlabelled 

subset l. Here, Xi E R. k is the feature vector and Ci E I is the class label from the 

label set I = {I, 2, . ", N c }. 

The practical significance of this mixed training problem was recognized in (Lipp
mann 1989). However, despite this realization, there has been surprisingly little 
work done on this problem. One likely reason is that it does not appear possi

ble to incorporate unlabelled data directly within conventional supervised learning 

methods such as back propagation. For these methods, unlabelled features must 
either be discarded or preprocessed in a suboptimal, heuristic fashion to obtain class 

label estimates. We also note the existence of work which is less than optimistic 

concerning the value of unlabelled data for classification (Castelli and Cover 1994). 
However, (Shashahani and Landgrebe 1994) found that unlabelled data could be 

used effectively in label-deficient situations. While we build on their work, as well 

as on our own previous work (Miller and Uyar 1996), our approach differs from 
(Shashahani and Landgrebe 1994) in several important respects. First, we suggest 

a more powerful mixture-based probability model with an associated classifier struc
ture that has been shown to be equivalent to the RBF classifier (Miller 1996). The 
practical significance of this equivalence is that unlike RBFs, which are trained in 

a conventional supervised fashion, the RBF-equivalent mixture model is naturally 

suited for statistical training (MLE). The statistical framework is the key to incor
porating unlabelled data in the learning. A second departure from prior work is 

the choice of learning criterion. We maximize the joint data likelihood and suggest 

two di"tinct EM algorithms for this purpose, whereas the conditional likelihood was 
considered in (Shashahani and Landgrebe 1994). We have found that our approach 
achieves superior results. A final novel contribution is a considerable expansion of 

the range of situations for which the mixed training paradigm can be applied. This 

is made possible by the realization that test data or new data to classify can al"o be 

viewed as an unlabelled set, available for "training". This notion will be clarified 

in the sequel. 

2 Unlabelled Data and Classification 

Here we briefly provide some intuitive motivation for the use of unlabelled data. 

Suppose, not very restrictively, that the data is well-modelled by a mixture density, 

lThis problem can be viewed as a type of "missing data" problem, wherein the missing 

items are class labels. As such, it is related to , albeit distinct from supervised learning 

involving missing and/or noisy jeaturecomponents, addressed in (Ghahramani and Jordan 

1995),(Tresp et al. 1995). 
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in the following way. The feature vectors are generated according to the density 
L 

f(z/9) = 2: ad(z/9t), where f(z/Oc) is one of L component densities, with non-
1=1 

L 

negative mixing parameters 0.1, such that 2: 0.1 = 1. Here, 01 is the set of parameters 
1=1 

specifying the component density, with 9 = {Ol}. The class labels are also viewed 
as random quantities and are assumed chosen conditioned on the selected mixture 
component 7'7I.i E {I, 2, ... , L} and possibly on the feature value, i.e. according 
to the probabilities P[CdZi,7'7I.iJ 2. Thus, the data pairs are assumed generated 
by selecting, in order, the mixture component, the feature value, and the class 
label, with each selection depending in general on preceding ones. The optimal 
classification rule for this model is the maximum a posteriori rule: 

S(z) = arg max L P[c .. = k/7'7I.i = i, Zi]P[7'7I.i = i/Zi], 
k . 

(1) 

j 

where P[7'7I.i = i/Zi] = LajJ(~./6,) , and where S(z) is a selector function with 

2: atf(~i/61) 
1=1 

range in T. Since this rule is based on the a posteriori class probabilities, one can 
argue that learning should focus solely on estimating these probabilities. However, 

if the classifier truly implements (1), then implicitly it has been assumed that the 
estimated mixture density accurately models the feature vectors. If this is not true, 

then presumably estimates of the a posteriori probabilities will also be affected. This 
suggests that even in the ab8ence of cla88 label8, the feature vectors can be used to 
better learn a posteriori probabilities via improved estimation of the mixture-based 
feature density. A commonly used measure of mixture density accuracy is the data 
likelihood. 

3 Joint Likelihood Maximization for a Mixtures of Experts 

Classifier 

The previous section basically argues for a learning approach that uses labelled data 
to directly estimate a posteriori probabilities and unlabelled data to estimate the 
feature density. A criterion which essentially fulfills these objectives is the joint data 
likelihood, computed over both the labelled and unlabelled data subsets. Given our 
model, the joint data log-likelihood is written in the form 

L L 

log L = L log L ad(z,i/O,) + L log L aIP[cdzi, 7'7I.i = l]f(Zi/91). (2) 
1=1 1=1 

This objective function consists of a "supervised" term based on XI and an "unsu

pervised" term based on Xu. The joint data likelihood was previously considered 
in a learning context in (Xu et al. 1995). However, there the primary justification 
was simplification of the learning algorithm in order to allow parameter estimation 
based on fixed point iterations rather than gradient descent. Here, the joint likeli

hood allows the inclusion of unlabelled samples in the learning. We next consider 

two special cases of the probability model described until now. 

2The usual assumption made is that components are "hard-partitioned", in a deter

ministic fashion, to classes. Our random model includes the "partitioned" one as a special 

case. We have generally found this model to be more powerful than the "partitioned" one 

(Miller Uyar 1996). 
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The "partitioned" mixture (PM) model: This is the previously mentioned 
case where mixture components are "hard-partitioned" to classes (Shashahani and 

Landgrebe 1994). This is written Mj E C/e, where Mj denotes mixture component 
j and C/e is the subset of components owned by class k. The posterior probabilities 

have the form 
2: ajf(3!/Oj) 

P[Ci = k/3!] = )_·;_M_'L,-EC_,, ___ _ (3) 

2: azf(3!/Or) 
1=1 

The generalized mixture (G M) model: The form of the posterior for each 

mixture component is now P[c,:/1'7l.i, 3!il = P[c,:/1'7l.il == {3c,/m,, i.e., it is independent 
of the feature value. The overall posterior probability takes the form 

[ 1 '" ( ad(3!i/Oj) ) 
P C,:/3!i = ~ '2t azf(3!dOI ) {3c,lj. (4) 

This model was introduced in (Miller and Uyar 1996) and was shown there to lead 
to performance improvement over the PM model. Note that the probabilities have 
a "mixture of experts" structure, where the "gating units" are the probabilities 

P[1'7l.i = jl3!il (in parentheses), and with the "expert" for component j just the 

probability {3c,Ii' Elsewhere (Miller 1996), it has been shown that the associated 

classifier decision function is in fact equivalent to that of an RBF classifier (Moody 
and Darken 1989) . Thus, we suggest a probability model equivalent to a widely 
used neural network classifier, but with the advantage that, unlike the standard 

RBF, the RBF-equivalent probability model is amenable to statistical training, and 
hence to the incorporation of unlabelled data in the learning. Note that more pow

erful models P[cilTn.i, 3!i] that do condition on 3!i are also possible. However, such 

models will require many more parameters which will likely hurt generalization 
performance, especially in a label-deficient learning context. Interestingly, for the 

mixed training problem, there are two Expectation-Maximization (EM) (Dempster 

et al. 1977) formulations that can be applied to maximize the likelihood associated 
with a given probability model. These two formulations lead to di8tinct methods 

that take different learning "trajectories", although both ascend in the data like

lihood. The difference between the formulations lies in how the "incomplete" and 
"complete" data elements are defined within the EM framework. We will develop 

these two approaches for the suggested G M model. 

EM-I (No class labels assumed): Distinct data interpretations are given for 
XI and Xu' In this case, for Xu, the incomplete data consists of the features {3!o.} 
and the complete data consists of {(3!i' 1'7l.iH. For XI, the incomplete data consists 

of {(3!;, Ci)}, with the complete data now the triple {(3!o., Co., Tn.i)}. To clarify, in this 
case mizture labels are viewed as the sole missing data elements, for Xu as well as 

for XI' Thus, in effect class labels are not even postulated to exist for Xu' 

EM-II (Class labels assumed): The definitions for XI are the same as before. 

However, for Xu, the complete data now consists of the triple {( 3!o., Ci, 1'7l.i H, i.e. class 

labels are also assumed missing for Xu' 

For Gaussian components, we have 01 = {I-'I , EI}, with 1-'1 the mean vector and EI 
the covariance matrix. For EM-I, the resulting fixed point iterations for updating 

the parameters are: 
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+ L S};)P[ffli =j/Xi,O(t)]) 

z.EX" 

+ L P[ffli = j/Xi, ott)]) 
z.EX,. 

Vj 

I: P[ffli = j / Xi, Ci, ott)] 
.B(Hl) = ziEX,nCi=k 

kIJ I: P[ffli = j/Xi,Ci,O(t)] 
Vk,j (5) 

ziEX, 

Here, S~;) == (Xi - ~;t»)(Xi - ~;t»)T. New parameters are computed at iteration 

t+ 1 based on their values at iteration t. In these equations, P[ffli = j/Xi, Ci, ott)] = 
",(')p(') ·f(z )e('» ",(.) f(~ )e(") 

I:~("C\~) 'zJ e(.) andP[ffli=j/Xi,O(t)]= M J • J • For EM-II, it can be 
.... Pcil .... f ( .1 .... ) I: ",~., f(zile~") 

,",=1 

shown that the resulting re-estimation equations are identical to those in (5) except 

regarding the parameters {.Bk/}}' The updates for these parameters now take the 
form 

,q(t+l) _ 1 ( " P[. _ 'j . . il(t)l "P[· -' . _ k/ . il(t)]) fJklj - --(t-) ~ ffli -) X" C,,!7 J + ~ ffli - ), c, - X,,!7 
N a j z.EX,nCi=k ZiEX,. 

(t)~(.) ( le(") 
H 'd t'f P[ . k/ il(t)] "'J "Io/,f Zi J I h' J: l' ere, we 1 en 1 y ffli = ), Ci = Xi, !7 =" i.) (.). n t 1S !ormu atlOn, 

L. "'~ f(z.le .... ) ... 
joint probabilities for class and mixture labels are computed for data in Xu and used 

in the estimation of {.Bkfj}, whereas in the previous formulation {.Bklj} are updated 
solely on the basis of X,. While this does appear to be a significant qualitative 
difference between the two methods, both do ascend in log L, and in practice we 

have found that they achieve comparable performance. 

4 Combined Learning and Classification 

The range of application for mixed training is greatly extended by the following 
observation: te~t data (with label~ withheld), or for that matter, any new batch of 

data to be cla~~ified, can be viewed ~ a new, unlabelled data ~et, Hence, this new 

data can be taken to be Xu and used for learning (based on EM-I or EM-II) prior 

to its classification, What we are suggesting is a combined learning/classification 
operation that can be applied whenever there is a new batch of data to classify. In 

the usual supervised learning setting, there is a clear division between the learning 

and classification (use) phases, In this setting, modification of the classifier for new 

data is not possible (because the data is unlabelled), while for test data such mod
ification is a form of "cheating". However, in our suggested scheme, this learning 
for unlabelled data is viewed simply as part of the classification operation. This 
is analogous to image segmentation, wherein we have a common energy function 
that is minimized for each new image to be segmented. Each such minimization 
determines a model local to the image and a segmentation for the image, Our "seg
mentation" is just classification, with log L playing the role of the energy function. 

It may consist of one term which is always fixed (based on a given labelled training 
set) and one term which is modified based on each new batch of unlabelled data to 

classify. We can envision several distinct learning contexts where this scheme can 
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be used, as well as different ways of realizing the combined learning/classification 

operation3 One use is in classification of an image/speech archive, where each im

age/speaker segment is a separate data "batch". Each batch to classify can be used 
as an unlabelled "training" set, either in concert with a representative labelled data 
set, or to modify a design based on such a set4 . Effectively, this scheme would 

adapt the classifier to each new data batch. A second application is supervised 
learning wherein the total amount of data is fixed. Here, we need to divide the data 
into training and test sets with the conflicting goals of i) achieving a good design 

and ii) accurately measuring generalization performance. Combined learning and 
classification can be used here to mitigate the loss in performance associated with 

the choice of a large test set. More generally, our scheme can be used effectively 

in any setting where the new data to classify is either a) sizable or b) innovative 
relative to the existing training set. 

5 Experimental Results 

Figure 1a shows results for the 40-dimensional, 3-class wa.veform- +noise data set 
from the UC Irvine database. The 5000 data pairs were split into equal-size training 

and test sets. Performance curves were obtained by varying the amount of labelled 
training data. For each choice of N/, various learning approaches produced 6 so
lutions based on random parameter initialization, for each of 7 different labelled 

subset realizations. The test set performance was then averaged over these 42 "tri

als". All schemes used L = 12 components. DA-RBF (Miller et at. 1996) is a 
deterministic annealing method for RBF classifiers that has been found to achieve 
very good results, when given adequate training datas . However, this supervised 

learning method is forced to discard unlabelled data, which severely handicaps its 
performance relative to EM-I, especially for small N I , where the difference is sub
stantial. TEM-I and TEM-II are results for the EM methods (both I and II) in 

combined learning and classification mode, i.e., where the 2500 test vectors were 

also used as part of Xu. As seen in the figure, this leads to additional, significant 

performance gains for small N/. ~ ote also that performance of the two EM methods 

is comparable. Figure 1b shows results of similar experiments performed on 6-class 

satellite imagery data ("at), also from the UC Irvine database. For this set, the 

feature dimension is 36, and we chose L = 18 components. Here we compared EM-I 
with the method suggested in (Shashahani and Landgrebe 1994) (SL), based on the 
PM model. EM-I is seen to achieve substantial performance gains over this alter
native learning approach. Note also that the EM-I performance is nearly constant, 
over the entire range of N/. 

Future work will investigate practical applications of combined learning and classi

fication, as well as variations on this scheme which we have only briefly outlined. 
Moreover, we will investigate possible extensions of the methods described here for 

the regression problem. 

3The image segmentation analogy in fact suggests an alternative scheme where we 

perform joint likelihood maximization over both the model parameters and the "hard", 
missing class labels. This approach, which is analogous to segmentation methods such as 

ICM, would encapsulate the classification operation directly within the learning. Such a 
scheme will be investigated in future work. 

~Note that if the classifier is simply modified based on Xu, EM-I will not need to update 

{,8kl;}, while EM-II must update the entire model. 

5 We assumed the same number of basis functions as mixture components. Also, for the 

DA design, there was only one initialization, since DA is roughly insensitive to this choice. 
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