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A Mixture-of-Experts Framework
for Adaptive Kalman Filtering

Wassim S. Chaer, Robert H. Bishddember, IEEE and Joydeep Ghosh

Abstract—This paper proposes a modular and flexible ap- lot of attention [19]-[23]. IMM provides an improvement over
pr_oach to adaptive Kalman filtering u_sing the framework of a Magi”’s scheme and genera| pseudo Bayes (GPB) methods
mixture-of-experts regulated by a gating network. Each expert [15]-[17]. The IMM algorithm assumes that i) the unknown
is a Kalman filter modeled with a different realization of the - .
unknown system parameters such as process and measuremenfarameter Vector.t.akes a f|n|.t(-3 numb(_ar of va!_ues aqcordlng
noise. The gating network performs on-line adaptation of the t0 @ known transition probability matrix, and ii) requires a
weights given to individual filter estimates based on performance. filter for the unknown parameter vector. Also, IMM is less

This scheme compares very faVOI’ably with the classical Maglll Computat|onally demand|ng than GPB but more than Maglll’s
filter bank, which is based on a Bayesian technique, in terms of scheme

i) estimation accuracy, ii) quicker response to changing environ- . . . . .
ments, and iii) numerical stability and computational demands. | NiS paper proposes an adaptive filter bank which can i)

The proposed filter bank is further enhanced by periodically Select “on-line” the best filter realization using a learning
using a search algorithm in a feedback loop. Two search al- network, ii) respond rapidly to changing environments by
gorighmtisc are Cr‘;'r‘:rigiﬁrei T:‘OZJ::SJV rﬁ?ﬁrgfﬁ;nﬁi a Lfgg;ﬁé‘&e being able to modify its selection based on the most recent
uaaral . L . . .
gwaximum FI)ikeglihood fSnctFi)cF))n to update the parameters of the data, iii) a_dapt |r1d|V|duaI _f||te_rs to _b_e_tter match '”CO”.””Q
best performing filter in the bank. This particular approach to  data, and iv) avoid numerical instabilities and computational
parameter adaptation allows a real-time implementation. The demands of current techniques for the Magill filter bank.
second algorithm uses a genetic algorithm to search for the Unlike the Magill scheme, the mixture-of-experts framework
parfﬁg‘;tig:ls"e%‘g v\f‘or‘rgirisssgri]tgd J\?V;rpgfsigos\f;;‘idﬁl;j;t%até’lfe does not assume that the optimal filter is included in the
ZES the suggested adaptgtion scﬁemes are illustrated byanumberbank' In practlc_e, this aIIovv_s the proposed schem(_a to produce
of examples. good results with smaller filter banks. Moreover, it does not
require the assumptions of IMM mentioned above, and is
computationally faster.

Fig. 1 illustrates the overall adaptive filtering structure con-
KALMAN filter requires an exact knowledge of thesisting of afilter bank and alearning networkin a forward
model parameters for optimal performance. A welloop, together with asearch algorithmin a feedback loop.

known problem in the implementation of the Kalman filtemhe forward loop can be viewed as a multiple hypothesis
is the process of selecting the filter parameters. Incorregdtimation algorithm, wherein different realizations of the
modeling in the filter can lead to larger estimation erroignknown (or uncertain) system parameters are coded into
or divergence [1], [2]. Many approaches to the problem @fach individual filter in the bank and the learning network
adaptive Kalman filtering (where the adaptation is with respegécides which realization provides the best estimate given the
to the filter parameters) have been considered in the literatug@ailable input data. The feedback loop, which contains the
Mehra [3] groups and discusses the main methods: correlatidhrch algorithm, is used to periodically update the various
[4], [5], covariance matching [6]-[8], Bayesian [9]-[11], andilters in the filter bank utilizing the information learned about
maximum likelihood [12]-[14]. Of particular interest in thisthe system in the forward loop. Note that the adaptive filtering
paper is the Kalman filter bank approach, first proposed Byproach suggested by Fig. 1 is a general structure that can
Magill [9] and subsequently categorized as a Bayesian met used for other filter models too.
by Mehra [3]. The filter bank is composed of a finite number of filters
In the past two decades, several algorithms have emergggning in parallel, each modeled with a different realization
to handle unknown parameters [15]-[18]. In particular, the iR the unknown parameters. In a general case, the unknown
teracting multiple model (IMM) algorithm [18] has received garameter vector can include different process models as well
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Fig. 1. Generalized adaptive filtering structure.

measure. When all input processing is completed, the highestibles one to have a smaller filter bank and still get good
weight factor will correspond to the best performing filterresults.
The weight information is also used by a search algorithm Two search algorithms are studied: recursive quadratic pro-
to updatethe filter bank. The filter bank update correspondgramming (RQP) [31] and genetic algorithms (GA’s) [32],
to intelligently speculating on different realizations of th¢33]. The first approach to parameter adaptation using RQP
unknown parameters. extremizes a constrained nonlinear program. Hence, by using
We introduce a new learning network to mediate amoraynonlinear programming optimization approach for the search
the competing Kalman filters. This network is akin to théunction, applying the updates periodically (whenever the best
gating network used in mixture of experts systems recengherforming filter is identified) and updating only the best
popularized in the neural network literature [24]-[26]. Theerforming filter in the bank, a real-time implementation can
different Kalman filters are the individual experts in oube achieved. This requires that the optimization computations
system. As measurements are processed, the gating netwamdur in parallel with the normal filter bank operations. On
adaptively assigns weights to the individual filters in propothe other hand, a GA uses the fitness of the high performance
tion to their performance. For comparison, the conventionfilters to direct the search for better filter model parameters.
Bayesian method proposed by Magill [9] is also implementad/hile the use of a GA increases the complexity of the adaptive
since it exists in actual systems today [27]-[30]. The Magifllitering problem by requiring a larger filter bank, the resulting
scheme is capable of converging to the correct hypothestheme becomes more natural to a nonreal time setting, such as
filter, or to the best performing hypothesis filter (when the barik a filter tuning procedure or when measurement data are post-
does not contain all the possible realizations). It is observpdocessed. This follows from the fact that the GA will update
that the gating network addresses several of the problems cahe entire filter bank at one time. Then, all the measurement
monly encountered with Magill's Bayesian scheme, namelgiata is processed again, and this process is repeated until
numerical underflows and relatively long switching times igertain convergence criteria are satisfied. Etteal. [34] used
the presence of changing parameters. a similar structure to adaptively update the coefficients of an
For filter banks that are not adaptive in the parameters, i.mfinite impulse response (IIR) filter.
if filters in the bank are fixed, a very large number of filters The remainder of the paper is organized as follows. Section
may be needed to cover all possible realizations. For exampledescribes the Magill filter bank and the modeling problem
if we have three unknown parameters each of which has &fAcountered in the Kalman filter. Section Il introduces our
possible realizations, a filter bank of size 1000 is requiregtoposed approach to adaptive Kalman filtering using the
We tackle this problem by making the bank adaptive in theoncept of a mixture-of-experts regulated by a gating net-
parameters. This is achieved by including a search algoritmork. Section IV includes the derivation of the constrained
in a feedback loop to periodically update the filter bank. Thisonlinear program whose solution is found by using a RQP
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approach. The solution is used to adapt a particular filter in e
. . . . srunning

the bank. Section V consists of a simple tracking example in parallc]

where a number of experiments are conducted to illustrate | & xF#1 - Xien Wi

. . . o= o -
the properties of the proposed scheme. Section VI considers ; ( T ZV L
a more realistic problem: processing satellite radar altimetry ‘ ‘ T kFwa | Xfep | 0N W
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! hot \ ~
t o .
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measurements. The obtained results for this problem show an_
improvement in estimate accuracy. Section VII describes an* ». ,
alternate approach for parameter adaptation using a GA. This f : : e
particular approach is suited for a nonreal time setting. In __» KE#L _ Xiow) wi,

Section VIII, we re-examine the simple example of Section
V. A GA is used to perform the parameter adaptation task by

post-processing a collected set of measurements. Concluding
remarks are made in Section IX. Fig. 2. The Maygill filter bank and weight function.

Il. THE MAGILL FILTER BANK Wi = HkP,jH}C + Ry

The performance of the suggested adaptive filter structureE

. tiaated b idering th dell bl in t quations (2)—(6) represent the standard recursive Kalman
IS iInvestigated by considering the modeling problém in hfﬁter. The optimal Kalman filter requires an accurate knowl-
Kalman filter. In particular, we examine the well-known

problem of determining the unknown system noise covarianecjge of the [Process hoise covarance ma@, the mea-
matrix and the measurement noise covariance matrix Sirement noise covariance matm, and the parameters of
Consider a physical system represented by ' H; and ®;41 4. In real ap_pllcatlonsQ_k and R;, are often
unknown or known approximately. This has prompted the use
Xpr1 = Pro1, kXn + Wi, qf a filter b_ank_, shown in Fig. 2, which con_sists_beaIman
1) filters running in parallel, each operating with different values
of the unknown parameters. The parameter vector is denoted
where x;, is the n-dimensional state vecto’,; is the by «; for the ith filter in the bank,%; (c;) represents the
state transition matrixg;, is the m-dimensional measurementoutput of theidth filter, and z; represents a sequence bf

z, = Hypxy + i,

vector, andH,, is the observation mapping matrix. The, INpUts z;,z,,...,2;. In our case, the parameter vectaf
and v, noise vectors are assumed to be zero-mean, whitensists of the unknown system parameters, which in this case
sequences with is composed of the elements 6f;, and Ry.
In general, ifa is the unknown parameter vector, then the
E[wpw!] = Quéri and E[vivi] = Ribp. optimal estimatex,,:, can be shown to be a weighted sum

. of Kalman filter estimates [9], [37]
We also assume that process and measurement noise are

uncorrelated. R Eo

In many cases(); andR; are unknown or known approx- Xopt = Zxk (i)p(ei | 2¢)
imately. Usually,Q; andR;, are modeled to be constant over =1
a sequence of measurements representing a local operatihgre L is the size of the Kalman filter bank. The weight
regime. The elements d); and R;, however can vary with factorsw; = p(«; | z}) are computed as the measurements
time across operating regimes. are processed.

The estimate of the state can be obtained sequentially within the classical approach of Magill [9], the unknown pa-
the Kalman filter [35], [36]. The state estimate and errammeter vector is assumed to have a finite number of possible
covariance matrix are propagated between measurements realizations. Hence, the conditional densities for each filter can
o ot be shown to be computed recursively via
Xk—l—l = @k+17 EXp s (2)
P = & kPO, + Qu @ p(a | w) = 1 hrwes p@y ) (@)

\/27T|Wk|

wn

where “” denotes estimated state" denotes after measure-
ment incorporation, and—" prior to measurement incorpo- Where

ration. The updated state estimate and error covariance are . o
Iy, =272 — Hka

given by
b e L is the measurement residual. Using Baye’s rule, the weight
X =%, + Kz — Hixy) 4 factorsp(as | z}) are computed as
P = (I- K Hy)P;, (5) .
where the Kalman gaiKj is plevi | 2k Sk (25 | o) p(ey)
= 4
Ki =P H{ W' (6)  where the distributiorp(c;) is assumed known. In general,

and p(e;) is unknown, hence a uniform distribution is assumed.
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Fig. 3. A modular “mixture-of-experts” network.

When using the filter bank and learning network as a hypoth- | K’Ff( Xioy)
esis tester, we are not interested in the optimal estimkgse ’7 =01 T o \
but rather in thea posteriori probabilitiesp(c; | z}) of each ‘ 7;/ | \
filter ‘ | KF#2  Xilop) |

The weight factorswy,ws,...,wr are scalar quantities. T e=op o i \
They are computed recursively whenever an input is processeds . - ' B \<\ Nopt
by the filter bank. A weight is maximized/minimized according ? oo
to performance over the entire sequence of inputs. That is, Wﬁkﬁ%‘ Sitew) /
the filter with the highest weight represents the filter with the ™ oe=oL - o
“best” parameter vector, while the smallest weight corresponds s T &L
to the filter with the “worst” parameter vector. Of course, L
unless the bank contains all the possible realizations of the — | Caling j
parameter vector, the best performing filter will not necessarily i
be the optimal filter. Fig. 5. Adaptive Kalman filter bank.

Ill. REGULATING MIXTURES-OFEXPERTS the weights can be interpreted agriori probabilities for the

The Magill filter bank can be viewed as a modular networgorresponding experts for the given input. A sound way of
[24]-[26] with a generic structure as shown in Fig. 3. Sucichieving (9) and (10) is by defining using [41]

a single-level network consists di modules called expert e (11)
networks, and an integrating unit called a gating network. gi = 29_1 ot

The input is them-dimensional vector. The output of the =

. ; ) ; where

ith expert is anmn-dimensional vectoly;. The output of the -

complete modular networlg;, is obtained as a weighted sum U =278 (12)

of the individual expert outputs, with the weight functionand a; is the weight vector of celk, representing theth
91,92, .., 91 supplied by the gating network. expert in the modular network. The transformation in (11) is

The use of modular networks has been particularly popalledsoftmax]42]. Fig. 4 illustrates the gating network used
ularized in recent neural literature, where their advantagesiimthis paper. While more powerful nonlinear maps such as a
speed, accuracy or robustness is well documented for problemgitilayered perceptron could have been used for this network,
involving nonlinear regression [38], [39] and classificatiothe simple structure of (11) simplifies the update equations of
[40]. A modular network typically combines supervised anthe synaptic weights, while still yielding an overall modular
unsupervised learning. Supervised learning is involved durisgructure of sufficient power.
training where the desired responsel§z(t)) are specified In this paper, each module or expert is a particular Kalman
with the input vectoe(t). The expert networks compete to obfilter realization, and different modules are in competition for
tain the desired response. The gating network arbitrates amdegng selected as the most likely model. With this key insight,
the different expert networks in an unsupervised fashion, Bgveral results available in the theory of “mixtures of experts”
assigning higher values of the weigltto networks that are networks can be gainfully applied. As shown in Fig. 5, in
expected to be closer to the desired response for a given inphis paper the gating network is used as a mediator among

In particular, if the weightsy;, g2, ..., g7, Satisfy the different Kalman filters rather than its original function of
0<g <1, Vi=12 L (9) being a mediator among the different expert (neural) networks.
- ’ ’ The Gaussian distribution of the measurement vezjoof
and ., the ith filter is given by
1 _
Y g=1 (10) Flon | @) = ——— e 3T Wi T (13)

i=1 vV 21 [Wy|
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The probability distribution of the bank can be treated asraaches a value close to unity. More remarkably, the gating
linear combination of thd. different distributions. Then, we network readily switches to another filter in the bank when

can write

L
Flz) =Y flza | ci)gi (14)
=1

Equation (14) can be viewed as a likelihood function. It

better to work with the natural logarithm gf(z;,) rather than
f(zy,) itself. We will define the log-likelihood function as

anf zr | u)g

and h;, the a posteriori probability associated with thé&h
Kalman filter, as

1 =1n f(z) (15)

performance of the current “best” filter degrades due to a
change in the operational regime. The switch occurs rather
fast due to the gating network property of geometrically
decreasing the impact of past measurements. In other words,
i%;e gating network has a fading memory. In contrast, the
agill filter bank never forgets. It gives as much weight for
early measurements as later ones. This is a direct result of
the way the conditional densities are computed. This will
lead to a longer time for the switching process to begin.
Another advantage when using the gating network is numerical
stability. In Magill's approach, a numerical underflow problem
is often encountered with the computation of the conditional
densities [37]. This results from multiplying exponential terms
repeatedly [see (7)]. This problem does not exist when using

= Lf(zkmi)gi . (16) a gating network. This is due to the different approach to
> =1 f(zrla)g, learning by the gating network.
Substituting (11) in (15), we obtain
IV. PARAMETER ADAPTATION USING RQP
IHZ \/? TR Wi IHZ e". (17)  Besides changing the weighting of different filters, it is also

desirable to adapt the parameters of at least one filter. In

To derive the update equations for the synaptic weights of tREr current implementation, an adaptation algorithm is applied
gating network, we start by computing the partial derivativieeriodically or whenever a certain threshold value is reached
of [ with respect toy;. This yields by one of the gating weightg, g2,..., 9. The adaptation
a1 scheme is applied only to the best performing filter in the
(18) bank. It changes the parameter vectowof that filter so as
to maximize (13) for the processed measurement set observed
The sensitivity vector of the log-likelihood function withsince the previous adaptation. Assuming the measurement set

- = hi — gi.

respect to the synaptic weight vector is found by applying composed ofp measurements, denoted by, zo, ..., z,,
the chain rule we have
ol al du;
Da, = D, 9a = (h; — gi)21 (29) max f(Zp,2p—1,...,21 | @)
Using an instantaneous gradient ascent procedure which seeks F(Zp:2p-1;. - 22 | 21,00 f(21 | @)
to maximize (15), the synaptic weight vectaris updated as = f(Zp:Zp—1,. .., 23 | 22,21, @) f(22]21, @) f(z1])
)
aj —a; +1o - =ai+ n(hi — 9:)2k (20)
A = f(zp | Zp—1,-..,21, a)f(zp—l | Zp—2,...,21, Oé), LERE
wheren is a learning-rate parameter. The update at every time f(zy | 21,0) f(z1 | @). (21)

step attempts to align thith weight vectora; with the input

vector z;. This justifies the earlier inner product definitiorRecognizing that we can maximize the natural logarithm of

of u,; in (12). Essentiallya; indicates the part of the input(21) and writing our optimization problem as a minimization,

space where théh filter assumes importance, since the innave obtain

product operation results in higher valuesgpffor inputs z;,

that are more aligned with,;. minJ =
Note that the gating network does not learn in a recursivé’

Zlnfzz|oc

Z {rIW; r;+1In 27| W;|}

=1

multiplicative manner like the Magill filter bank weighting (22)
function. In the Magill scheme, this is reflected in the compubject to
tation of the conditional densities for each filter as shown in
- ) i o < < Qi <C,
(7). This is due to the assumption that all possible realizations 0<Cq < Qs Cou,
of the unknown parameter vector (including the optimal) 0<Cr <Ry < Coos 23)

are in the bank. Such an assumption is not made when
using the gating network. Rather, the included realizations
are looked upon as candidates (not necessarily optimal). The
learning done by the gating network is achieved recursiveéljhe constraints given in (23) involve a parameter veetor
in an additive manner and at a learning-rate Typically, the consisting of various filter parameters. The constant matri-
gating network output for the best performing filter quickhcesCy, Cy., Cyi, Cruy Cpi, Cpu, Cry, and Cy,, are possible

Cpl < @k-l-l,k < Cpua
Cni £Hy < Cyue
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lower and upper bounds on the matri€®s, Ry, ®14+1 %, and Kalman filter bank of size 5 is used. The unknown parameter
H;. vector consists of the system noise covariance matrix and the
To solve the constrained nonlinear program, a number wfeasurement noise covariance matrix. Hence, the parameter
numerical methods can be used. The adaptation algoritiwector « is defined as
investigated here uses a RQP [31] approach to find the so- T
lution. Also, numerical derivatives are used because analytical a=[p @ n ], (26)
expressions  of the partial derivatives are quite compllcaterg]e initial conditions for the individual standard recursive
and hard to obtain. alman filters in the bank are
A similar optimization set-up was suggested by Mehra [Sf
Recognizing the difficulties that arise with the computation of 2= — [0} P- — [1000 0 }
the partial derivatives, Mehra makes a number of simplifying 0 0]’ 0 0 1000
assumptions. In particular, he assumes that the system is
time-invariant, and that the Kalman filter is in steady staté. Experiment 1

Then, he solves only for the steady state Kalman gain bywe will first start by examining the ability of the gating
using a suboptimal maximum likelihood adaptive filter (Whosgetwork to partition the input spac&his is done by modeling
convergence is not guaranteed). Obviously, many systemsyQf third Kalman filter in the bank with the optimal parameter
interest are time-varying, and require the entire history of tRactor. Hence, the gating network should assign the optimal
Kalman gain. Hence, there is a need to avoid such simplifyifigier (j.e., KF 3) a weight close to unity as described earlier.
assumptions. This is accomplished by the proposed adaptatig various values of the parameter vector for the individual
algorithm which solves directly for the unknown parametef§ters are shown in Table I. Simulations were run for different

by using the RQP method. values of the learning parameterThe results for; = 0.1 and
1.0, shown in Fig. 6, illustrate the effect of the learning-rate
V. EXAMPLE | parameter on the gating weight history. As expected, we find

In this section, we consider a simple tracking example that increasing the value of the learning-rate parameter will

illustrate the performance of the adaptive Kalman filter banf€SUlt in a faster convergence to the optimal filter. However,
The target is traveling in a straight line at a constant velocity §f¢ Should note that the possibility of initially favoring a
100 m/s. Thus the linearized equations of motion are given Bgn-optimal filter increases if is made too large.

At

1 .
Xpt1 = [0 1 }xk + wy, (24) B. Experiment 2

Next, we are interested itlustrating the ability of the gating

where network to select the best performing filter when the optimal
filter is not in the filter bankThat is, the gating network should
L1k range K X R . .
= [3721&} = {velocity} learn which filter is showing better performance. The optimal

values of the parameter vector and the actual implemented
is the state vector of the target. It is assumed that range gratameters of the filter bank are shown in Table Il. Again,
velocity measurements are collected evexy = 1 s. The simulations were run for different values of the learning

measurement equation is then given by parameter;. The results for = 0.1 and 1.0, shown in Fig. 7,
illustrate the effect of the learning-rate parameter on the gating
z;, = {(1) ﬂ Xi, + Vi (25) weight history. We find that selection of the best performing
filter is quite rapid. In all cases, the gating network selected
where the third Kalman filter in the bank since its parameter vector

is “closest” to the optimal.
2 — {zlk} B { range measuremen}
a t

zor |~ |velocity measureme .
2k y C. Experiment 3

is the measurement vector. The. and vy vectors are zero-  \we recall that the adaptive filter bank should have the
mean, white sequences. The covariance matrices fomwihe apility to switch among Kalman filters when the need arides

and v;. vectors are given by illustrate this capability of the filter bank, we ran a compound
T @ 0 measurement sequence created by concatenating five sub-
E[wiw] | = Qubii = {0 quSki sequences of equal length, with the process and measurement

noise statistics of the first sub-sequence best matching KF

0 1, that of the second sub-sequence best matching KF 2,

E[vivl] = Ribpi = [01 , :|6kz and so on. That is, in each sub-sequence, the process and

2 measurement noise statistics were changed. The values of the

We also assume that process and measurement noise parameter vector used for these simulation are given in Table

uncorrelated. lll. In these simulations, the learning-rate 4s= 1.0. The

The following experiments illustrate the capabilities of theesults, shown in Fig. 8, illustrate the ability of the gating
proposed adaptive Kalman filter bank. In these simulationsnatwork to perform this task efficiently. The ability to process

and
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Fig. 6. Gating weight history for two values gfwith optimal Kalman filter Fig. 7. Gating weight history for two values gfwith optimal Kalman filter
(KF 3) included in the bank (Experiment 1). (a) Learning rate parametgpt included in the bank (Experiment 2). (a) Learning rate parameter0.1

n = 0.1 and (b) learning rate parametgr= 1.0. and (b) learning rate parametgr= 1.0.
TABLE | TABLE I
PARAMETER VECTORS IN A FILTER BANK CONTAINING THE OPTIMAL (KF 3) PARAMETER VECTORS IN AFILTER BANK NoT CONTAINING THE OPTIMAL (KF*)

a [KF1|KF2[KI3[KF4[KF5 a [KFF[KF 1 [KF2[RF3[KF4[KF5

) 1.0 9.0 16.0 | 25.0 5.0 ¢ {160 1.0 9.0 12.0 | 25.0 5.0

g} 1.0 9.0 16.0 | 25.0 | 20.0 ¢:116.0} 1.0 | 9.0 | 120 | 25.0 | 20.0

re ] 1.0 25.0 | 16.0 9.0 25.0 ry | 16.0 | 1.0 25.0 | 20.0 9.0 25.0

re | 1.0 250 | 160 9.0 10.0 T2 [ 16.0] 1.0 25.0 | 20.0 9.0 10.0

a larger number of measurements is shown in Fig. 8(Hilter is detected with the gating network which switches after
This demonstrates that the proposed approach is free fromasurement 103, as compared to the Magill scheme that
numerical underflow problems when processing large amoudtses so only after measurement 110. Also, Fig. 9(a) and (b)
of data. reveals that the Magill algorithm was able to assign a unity

For comparison purposes, the gating network is replaceeight to the appropriate filter before and after the switch
with the Magill weighting scheme. We ran the 5 measuremeint a relatively shorter time when compared to the gating
sub-sequences of length 100 each, using the original weightimgtwork. To obtain a faster convergence of the weight with
scheme. The obtained weight history is shown in Fig. 9(a). Thige gating network, the learning-rate parameter which controls
scheme experiences a numerical underflow after processing speed of convergence can be increased (as shown earlier in
168 measurements. Fig. 9(b) is a plot of the weight histoBxperiments 1 and 2). For example, whee= 7.0, the gating
obtained using the gating network. To compare with the Magitletwork converges as fast as the Magill algorithm. Because
scheme, the plot is shown only for the first 168 measuremern$.the underflow problem, comparison could not be made for
We observe that the need to switch to the second Kalmanb-sequence of length 1000.
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Fig. 8. Switching capability of the adaptive Kalman filter bank (Experimerftig. 9. Comparison of approaches: (a) Magill's weighting scheme and (b)
3) with » = 1.0. gating network withy = 1.0.
TABLE Il of measurements, the parameter vector obtained by solving the
PARAMETER VECTORS FOR THESWITCH EXPERIMENT . X ! . X ; . .
_ optimization problem (described earlier in Section V) is
a [KF1|KF2]KF3[KF4|Rr5
q| 1.0 [ 100 [ 100 | 50 | 1.0 a=[470 20.69 22.83 14.54]"
g2 | 1.0 | 250 [ 100 | 250 | 1.0
ri| 1.0 | 1.0 | 160 | 20 | 2.0 which is close to the actual solution
2| LO | 1.0 [16.0 | 25.0 | 50.0
o =[4.31 2245 24.01 11.42]%.
D. Experiment 4 Since the obtained solution is quite different than the current

Finally, we will illustrate theadaptation of a particular parameter vector of the best filter (i.e., KF 1), filter adaptation
parameter vector of a filter in the bank by using a RQP seardh Performed. In other words, the update would not be neces-
approach We start by initializing every Kalman filter in the S&7Y if the obtained vector is close to the one currently used.
bank with a different realization of the unknown parametétdaptation proceeds as follows:
vector . The learning-rate parameter usednis= 1.0. The 1) Solution is provided to the Kalman filter which has the
initial bank parameters values are shown in Table IV. We will best performance;
apply the adaptation algorithm periodically every 200 s. As 2) Covariance matrices of all filters in the bank are re-
indicated in Fig. 10, the gating network clearly prefers the first  initialized; and
Kalman filter. This is an indication that the parameters of this 3) Estimates of all filters are re-initialized with the estimate
filter are the best candidate. A= 200 s, using the parameter of the best Kalman filter prior to the update procedure.
vector of the best filter as an initial search point, the RQP Fig. 10 shows the gating weight history of the filter bank
search is initiated to look for the optimal parameter vector firefore and after the filter update procedure is performed. As
the measurements processed in the last 200 s. For this firstesgtected, the first filter rapidly attains a high weight. As
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Gating weights before and after update TABLE IV
1 : — r’l PARAMETER VECTORS FORINDIVIDUAL FILTERS BEFORE THEFIRST ADAPTATION
0.9} M ] a | KFI[KF2[KF3[KI4[KF5
08 \f g | 20.0 | 0.0 10.0 | 5.0 | 500
‘ g; | 20.0 | 0.0 10,0 | 5.0 | 50.0
0.7 <«-KF1 f‘f < KF1 1 r ] 200 | 50 | 1.0 | 5.0 { 50.0
0.6- / | 2| 200 | 5.0 [ 1.0 | 5.0 [ 500

where z;, is the observed value of at time ¢;,. The mea-
surement noiseyy, is a zero-mean white sequence of known
variance satisfying

History of gating weights
=)
tn

Adaptation -->
E[vkvi] = 0’2(5}”‘. (30)

The filtering approach to this nonlinear system is to use the
continuous-discrete extended Kalman filter (EKF) [46]. The
derivation of the filter algorithm for this particular system
Fig. 10. Summary of gating weight history before and after adaptatiomodel is detailed in [47]. For the satellite altimeter problem,
(Experiment 4). filter performance is improved if the system noise parameters
are adjusted to fit the data sample [48]. This is justified by
indicated earlier, only the parameters of the best filter ate fact thats(¢) varies at a fixed location with time and
updated. The other filters are not changed to keep a diverg§ographically with latitude and longitude. Filter performance
of models covering the unknown parameter search space. iserified by computing the root mean square (RMS) defined
drastic change in parameters occurs then a switch to anotfg&r
filter will happen as shown in the previous experiment. Hence, 1< 9
it is desirable to keep the filter parameters models apart to RMS = EZ (Zi - 3?) (31)
rapidly respond to such changes. These models serve as initial =1
search points in the parameter search space. In essencewherep is the size of the measurement set &fdis the state
adaptation procedure is a periodic filter tuning procedurestimate of the power of reflected signal after incorporating
wherein the parameter vector of the best filter is moved clos@easurement; (i.e., the updated state estimate). The unknown
to the optimal one. parameter vectos: for this problem is defined as

a=[gn @ ]T- (32)

This section examines the problem of processing satellitecurremly’ the system noise parameters for a particular data

radar altimetry measurements. One important use of spgc% are selected by a (generals hocprocedure of making

borne radar altimetry data is in the determination of shoffrany computer simulations with various realizations of the

wavelength features of the ocean and ice surface topograp'f’]nl.(nOWn parameters unt!l an acceptable RMS threshold is
ached. The use of the mixture-of-experts approach to process

Earth-orbiting satellites (carrying altimeters) have evolved in . . .
an important source of data for monitoring global ocea Satelllte radar altimetry data sets represent a methodical way

and ice glaciers. The data collected has allowed the study adjusting the system noise parameters. In fact, a small

of the physical characteristics of the oceans [43]-[45]. Th|nse'/rnber of EKF's each operating with a different set of the

. s known parameter v rar nsidered. The learnin in
real world problem is an application where measurements jganown para eter vector are considered. The learning gating

post-processed. It allows a realistic testing of the sugges{é work is used t_o identify the filter with the best paramete_r
mixture-of-experts approach. vector for a particular measurement set. Using the selection

The return signal strength of the radar altimetl,), can -ma}d.e. by the gating network as a starting point, a RQP search
is initiated to find a more suitable parameter vector for the
be modeled as . .
processed measurement set. This recursive procedure can be

0TS0 100 150 2000 250 300 350 400

Time (sec)

VI. EXAMPLE Il

5(t) = pt)s(t) + un (27) repeated for every processed data set.
An EKF bank of size 5 was used to process real altimeter
/3(t) = wy waveform datd shown in Fig. 11, the noise variance of which

is o2 = 0.25. The 64 data points (known as gates) are collected
wherew; andw; are zero-mean Gaussian processes satisfyiagequal time intervals. They form a typical profile obtained

_ _ over open ocean or large body of water. The initial conditions
Blws(Hwi(n)] = a(®)o(t = 7), for the individual EKF’s in the bank are
Elws(t)ws(r)] = e2(H6(t - 7). (28) ) i Lo
0 | __ 9 P, =
Elwy (t)wa(7)] = 0. {/30} - {—0.05}’ 0= {0 1}'
The measurement equation is given by 1TOPEX data and initial filter conditions were provided by Dr. P. A. M.

Abusali, Center for Space Research, University of Texas, Austin, TX 78712
2k = Sk + Uk (29) uUsA.
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Fig. 11. Profile of real altimeter data over open ocean.
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TABLE V 0.9r
PARAMETER VECTORS FORINDIVIDUAL FILTERS 08l { <-KF3
o [EKF [ | EKF 2 | EKF 3 | EKF 4 [ ERF 5 2 0.7 ,
7 - = B e H 1
¢ | 102 10 [T [ 107% [ 107 E
@| 100 [ 1075 | 10 | 167 | 1077 oo
L E
=] ]
0]
)
[o]
A. Step 1 z
S
The initial filter parameters of the various EKF's are shown &
in Table V. The values of; and ¢, are chosen to be less
than unity to ensure that the uncertainty in our estimates
reflected by the covariance) will decrease as we process the - : ‘ .
( y ) P 20 30 40 50 60

measurement set. Simulations were run for different values of

the learning-rate parameter The results forp = 0.1 and Gate number

1.0, shown in Fig. 12, suggest that the third EKF has the best ()
parameter vector for the processed data set. Fig. 12. History of gating weights for two values gqf (a) Learning rate
parametem = 0.1 and (b) learning rate parametgr= 1.0.
B. Step 2
. ) TABLE VI
Now that the mixture of EKF's regulated by the gating PERFORMANCE OF VARIOUS FILTERS
network has been used to identify the “best” parameter vector, ERF 1T EKF 2 [EKF 3 [ERF 4 | ERF 5 | LRF-

the RQP search approach is used to obtain a more suitable RMS| 43575 | 25.6593 | 0.2937 | 0.3923 | 0.3908 | 0.010]
solution. This is done by solving the optimization problem of
Section IV for the processed measurement set. The obtained

solution for the constrained nonlinear program using RQP i 0 mode!s |s_shown in Fig. 13 to illustrate the improvement
In the estimation error.

o =[0.1985 0.0548]"
VIl. PARAMETER ADAPTATION WITH GENETIC ALGORITHMS
which suggests a; ~ 107! andg, ~ 102 for this particular

. GA'’s are search algorithms based on the ideas and principles
altimeter waveform data.

of biological evolution [32], [33]. These algorithms differ from
the usual search algorithms in many ways. GA’s consider
C. Step 3 many points in the search rather than a single point. This
We examine the filter performance of the various modeteduces the possibility of converging to a local extrema.
by computing the RMS defined earlier in (31). The results afdso, GA’s do not work with the parameters themselves but
shown in Table VI for the EKF’s using the initial parameterather with their coding (binary string), and use probabilistic
sets and for an EKF using the parameter set found in stegir@nsition rules in their search.
(denoted EKF). The obtained system noise parameters yield The properties of GA’s lend themselves naturally to the
an RMS which is smaller by an order of magnitude whemodular structure of the filter bank. Generally, a larger number
compared with the resulting RMS of the best model beford filters are needed in the bank. This is due to the necessity
initiating the search (i.e., EKF 3). This improvement in filteof having apopulation of parameter vectors so that a GA
performance is significant. Also, a plotef= »,—3; for these use becomes possible. This approach to adaptation is not
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0.6} 1 the components aof. The mapping function is given by
| i b—a
5 O i M=_—1I+a. (33)
E 04l i | 28 -1
o - h . . . . . .
£ 03 The binary string representing a filter is a concatenation
g e of the individual strings representing each of the unknown
& 023 P 1 components of that filter. Since the parameter vector of this
' example contains four components, as shown in (26), the
5 , length of the string representing a particular filter parameters
0al 6 g °| model has a length o = 40. The measurement set is
' b8 i processed by the filter bank. A gating network which has a
025 i0 20 30 En) 50 60 unity learning-rate parameter is used to assess the performance
Gate number of the various filter models. The bank adaptation procedure
() consists of supplying the weight values after processing the

Fig. 13. Comparison of estimation errors: (a) EKF 3 (best among curren . . .
angd (b) EKP (?evised from RQP). @ ( g current bank parameters. At this point, the GA will generate

a new set of binary strings by 1) selecting two strings based
naturally implementable in real-time applications. Rather, @n fitness, 2) choosing crossover positions (at the boundaries
is a scenario which can be used for applications where thetween the binary representations of each parameter value),
filter bank parameters need to be found after collection afd 3) using mutation after crossover. A common practice in
the measurement set. The advantages of using a GA is fh@’s is to include the best performing string of the current
simplification of the adaptation procedure. In essence, a (@&neration in the new generation. This will serve two purposes.
will only need thefitnessof the current filter parameter modelg” 900d string would not be lost due to the probabilistic nature
to start a search. This is readily available since it is just ti GA'S and convergence to the optimal solution is faster. The
gating weight provided by the network. Fig. 14 illustrates thi@t€ger values represented by these strings are decoded and

operation of the adaptive filter bank with a GA in the feedbadR@pPped to real numbers by using (33). This results in a new
set of vectorsyy, as, . . ., aag. These are passed to the Kalman

filter bank and the measurement set is processed again. This is

VII. ExampPLE I repeated until the scheme converges or the maximum allowed

. . . . . .number of iterations, 30, is reached. Convergence is checked
We.W'" consider the same |II.ustrat|veT example of.Sectlon y comparing the unknown parameter vector for all filters with
We will also assume that the interest is to determine both thnon-negligible weight. This is accomplished by checking

process noise covariance and measurement noise covariglgegifference among the corresponding components for these
matrices for the same set of 200 measurements of Experimgfidys. If the difference is within our specified toleranees 2,

4 in Section V. A Kalman filter bank of size 20 is usedihen the iterations cease.

We start by initializing every filter of the bank byandomly  As seen in Fig. 15 (top left and top right), initially each filter
generating a binary string of length= 10 for each component s modeled around different value of the unknown parameter
of the unknown parameter vector. The integeepresented by vector. These are generated randomly in the intefvai0].

that string is then mapped to a real numbéiin the parameter The optimal components af* are both indicated by “*” for
search space which was assumed tddé] = [1,50] for all (g1, ¢2) and(r1,72) which represent the diagonal components

I?Lst measurement to the GA which has the binary coding of the
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parameters need not be specified. The learning mechanism

Q models for 1st iteration R models for st iteration

30 X x X also does not assume that the optimal filter is in the bank.
45 ) : 40} ] This feature, together with the periodic application of a search
a0l . ] 35| x | algorithm in the feedback loop, enables the system to provide
351 i 1 x good estimation accuracy even with small filter banks. The
ol * | 30r " additive nature of the weight update procedure enables quicker
x 250 1 response to changing environments and better numerical sta-
S 2y 1@ x bility.
20} 1 y
20»@ 1 . XX L The thrust of the paper is on real-time applications. The RQP
15} ] 15 x ox T 1 search algorithm can be applied concurrently while the filter
10t X w0 @ ] bank and gating network are in operation. The GA alternative
o x sl L | however is realistic only for non real-time applications where
X x | X one may be willing to use much more compute power to obtain
% 30 % sy more accurate solutions.
ql - The overall scheme is quite general and not restricted to
using linear or extended Kalman filters as the individual ex-
% Q models for 18th iteration % R models for 18th iteration per_ts. I_t can also b(_a readily extendgd to hierarchical filter banks
; which involve multiple levels of gating [25]. The fundamental
45y x 1 45¢ i tradeoff between estimation accuracy and computational time
40t 1 40t § involved in choosing i) the size of the filter bank and ii)
35| | 350 % x | when and how often to use the search algorithm, is problem
30l | 30l | dependent. Further experimentation on diverse data sets will
help in better understanding such practical issues.
25t 1 @ 25: 1
20~@ x | 20l | ACKNOWLEDGMENT
150 | sk ] The authors wish to thank P. A. M. Abusali for providing
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