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Mixtures of symmetric distributions, in particular normal mixtures as a tool in statistical modeling, have been widely studied. In
recent years, mixtures of asymmetric distributions have emerged as a top contender for analyzing statistical data. Tukey’s � family
of generalized distributions depend on the parameters, namely, �, which controls the skewness.�is paper presents the probability
density function (pdf) associated with amixture of Tukey’s � family of generalized distributions.�emixture of this class of skewed
distributions is a generalization of Tukey’s � family of distributions. In this paper, we calculate a closed form expression for the
density and distribution of the mixture of two Tukey’s � families of generalized distributions, which allows us to easily compute
probabilities, moments, and related measures. �is class of distributions contains the mixture of Log-symmetric distributions as a
special case.

1. Introduction

�e main focus of interest in 	nancial economics is the dis-
tribution of stock market returns. Mandelbrot [1] suggested
the family of stable Paretian distributions for stock market
returns. Fama [2] established that the normality assumption
of the empirical data does not hold as the distribution is
fat tailed. Kon [3] and Tse [4] used a mixture of normal
distributions for stock return. Fielitz andRozelle [5] proposed
a mixture of nonnormal stable distributions for stock price.
Consequently, greater emphasis has been placed on using
distributions which have asymmetry and leptokurtic prop-
erties. Recently Jiménez et al. [6] proposed option pricing
based mixture of log-skew-normal distributions. If extreme
events tend to occur more frequently than normal events,
then skewness and kurtosis of nonnormal distributions play
an essential role for the volatility smile.

�e most important and useful characteristic of Tukey’s�-ℎ family of distributions introduced by Tukey [7] is that it
covers most of the Pearsonian family of distributions. It can
also generate several known distributions, for example, log-
normal, Cauchy, exponential, and Chi-squared (seeMart́ınez
and Iglewicz [8], page 363). From Tukey’s �-ℎ family of
distribution, we obtain � distribution, which is closely related

to lognormal distribution and possesses similar properties of
moments. Tukey’s �-ℎ family of distributions have been used
to study 	nancial markets. Badrinath and Chatterjee [9, 10]
and Mills [11] used �-ℎ to model the return on a stock index,
as well as the return on shares in several markets. Dutta and
Babbel [12] found that the skewness and leptokurtic behavior
of LIBOR were modeled e�ectively using �-ℎ distribution.
Dutta and Babbel [13] used �-ℎ to model interest rates and
options on interest rates, while Tang and Wu [14] proposed
a new method for the Decomposition of Portfolio VaR.
Dutta and Perry [15] and recently Jiménez and Arunachalam
[16] used �-ℎ distribution to study the operational risk for
heavy tailed severity models. Jiménez and Arunachalam [17]
provided explicit expressions for VaR and CVaR calculations
using the family of Tukey’s �-ℎ distributions. Currently
Jiménez et al. [18] studied generalization of Tukey’s�-ℎ family
of distributions, when the standard normal random variable
is replaced by a continuous random variable � with mean 0
and variance 1.

�e subfamily of � distributions exhibits skewness and
has great importance in the study of asymmetric distributions
for analyzing data. �is kind of distribution allows us to
obtain scaled Log-symmetric distributions. Vitiello and Poon
[19] considered a simple mixture of two � distributions
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for option pricing data. �e purpose of this paper is to
present a mixture of Tukey’s � distributions and derive
some statistical properties including the pdf and moment
generating function and its properties.

�e paper is organized as follows: Section 2 presents
Tukey’s �-ℎ family of generalized distributions and its pdf,
as well as the cumulative distribution function (cdf). In Sec-
tion 3, some theoretical results of the mixture of two Tukey’s� families of generalized distributions are presented and
Section 4 explains the methodology of calculating estimation
of parameters by themethod ofmoments. Section 5 discusses
the adjustment methodology of our proposed model to real
data of Heating-Degree-Days (HDD) indices and 	nally, in
Section 6, we conclude.

2. Tukey’s � Family of Generalized
Distributions

Tukey [7] introduced the family �-ℎ distributions by means
of two nonlinear transformations given by

� = ��,ℎ (�) = 1� (exp {��} − 1) exp{ℎ�22 } (1)

with � ̸= 0, ℎ ∈ R, where the distribution of � is standard
normal. When these transformations are applied to a contin-
uous randomvariable�withmean 0 and variance 1 such that
its pdf ��(⋅) is symmetric about the origin and cdf ��(⋅), the
transformation ��,ℎ(�) is obtained, which henceforth will be
termed Tukey’s �-ℎ generalized distribution. If ℎ = 0, Tukey’s�-ℎ generalized distribution reduces to

��,0 (�) = 1� (exp {��} − 1) (2)

which is known as Tukey’s � generalized distribution.
In order to model an arbitrary random variable � using

the transformation given in (2), Hoaglin and Peters [20]
introduced two new parameters, � (location) and � (scale),
and proposed the following linear transformation:

� = � + �� with � = ��,0 (�) . (3)

�e following properties for pdf, cdf, and quantile functions
of Tukey’s � generalized distribution were established by
Jiménez et al. [18] in terms of the pdf and cdf of� as follows:

pdf: �� (�; �, �, �) = 1� (� − �)�� ( 1� ln(� − ��/� ))
if � (� − �) > 0,

cdf: �� (�; �, �, �) = �� (1� ln(� − ��/� ))
if � (� − �) > 0,

qf: �−1� (�) = �� = 1� ln(�� − �
�/� )
if � (�� − �) > 0,

(4)

where � = ln(�/|�|) and � = � − �/�. We say that the
random variable � has a Log-symmetric distribution (such
distributions are all asymmetric; see for reference Johnson
et al. [21] and Stuart and Ord [22]) with three parameters:
threshold (�), scale (�), and shape (�), denoted by � ∼
LS(�, �, �).

�e	rst expression of (4) allows us to obtain the following
pdf associated with Tukey’s � distribution. Table 1 shows the
parameters of the pdf of� that we obtain using a selected set
of well known symmetrical distributions (from Jiménez et al.
[18]).

�e "th moment of the random variable � = ��,0(�) is
given by

#�� (�) = 1��
�∑
	=0

(−1)	 ("
%)&� (�̃) , if � ̸= 0, (5)

where �̃ = (" − %)� and &�(*) is the moment generating
function of the random variable �, which are even function;
that is,&�(*) = &�(−*).Table 2 shows parameters of the pdf
and themoment generating function for a randomvariable�,
using a selected set of well known symmetrical distributions.

Expression (5) allows us to obtain themoments of Tukey’s� generalized distribution. �e "th moment of the random
variable� given by (3) can be obtained using the formula

E [(� − E [�])�] = #� (�)
= (��)� �∑

	=0
(−1)	 ("

%)&� (�̃)&	� (�) , (6)

where �/� = sgn(�)4
. Note that the above expression
of the "th moment does not depend on the parameter �.
Formulas for calculating the standardized skewness, 51(�),
and standardized excess kurtosis, 52(�), are given by

51 (�) = sgn (�)
⋅ (&� (3�) − &3� (�)) − 3 (&� (2�) − &2� (�))&� (�)

[&� (2�) − &2� (�)]3/2 ,

52 (�) = &� (4�) − 4&� (3�)&� (�) + 3&2� (2�)[&� (2�) − &2� (�)]2 − 3,
(7)

where sgn(⋅) denote the signum function. Note that these
expressions only depend on the parameter � and its sign,
respectively. Any LS distribution should satisfy the following
test given in Stuart and Ord [22]:

52 (�) − 521 (�) − 1 ≥ 0. (8)

3. The Mixture of Two � Distributions

Weassume that� follows a Log-SymmetricMixture (LSMIX)
distribution. Let us assume that ��(9) is the weighted sum of:-component LS densities; that is,

�� (9;Λ) = �∑
=1

<�� (9; �, �, �) . (9)
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Table 1: Parameters of the pdf of the random variable � = ln(�).
Distribution
of the r.v. � Parameters Distribution

of the r.v. � Parameters

#, ? @, A � ̸= 0 #, ? @, A
Laplace 0

√22 |�| < √2" Log-Laplace ln( �|�|) √22 |�|
Logistic 0 √3D |�| < D√3" Log-Logistic ln( �|�|) √3D |�|
Normal 0 1 � ∈ R Lognormal ln( �|�|) |�|
HyperSec 0 2D |�| < D2" LoghyperSec ln( �|�|) 2D |�|
HyperCsc 0 √2D |�| < D√2" LoghyperCsc ln( �|�|) √2D |�|

Table 2: Parameters of the pdf andmoment generating functions of
the random variable �.
Distribution
of the r.v. � Parameters &� (�)#, ? @, A � ̸= 0
Laplace 0

√22 |�| < √2" 22 − �2
Logistic 0 √3D |�| < D√3" √3� csc (√3�)
Normal 0 1 � ∈ R exp {12�2}
HyperSec 0 2D |�| < D2" sec (�)
HyperCsc 0 √2D |�| < D√2" sec2 ( �√2)

We use the notation � ∼ LSMIX(Λ), where Λ = (�1, . . . , ��),
and each element � = (<, �, �, �) is the parameter vector
that de	nes the Gth component and probability weights, <,
satisfying the conditions

�∑
=1

< = 1, 0 < < < 1, for each G. (10)

According to Titterington et al. [23] the two-component
mixture of known distributions is set by two weights. Let

� = � + �� with � ∼ LSMIX (Λ) . (11)

�en we can assume that ��(�) is the weighted sum of two
Tukey’s �mixture densities such that �1�2 > 0. �us

�� (�)

=
{{{{{{{{{{{{{

0, if � ≤ �1,<1�1 (� − �1)�� (M1) , if �1 < � ≤ �2,
<1�1 (� − �1)�� (M1) +

1 − <1�2 (� − �2)�� (M2) , if � > �2,
(12)

where, without loss of generality, we let �1 < �2, 0 ≤ <1 ≤ 1
and for G = 1, 2

M = 1� ln(� − ��/� ) (13)

with � = � − (�/�), � = (�/|�|). We use the notation� ∼ GTMIX(�, �, �1, �2, <1). Vitiello and Poon [19] did not
provide the piecewise nature of the mixture density function
above in (12). In this case the cdf of� is given by

�� (�) =
{{{{{{{{{{{{{{{

0, if � ≤ �1,
<1��( ln (� − �1) − �1�1 ) , if �1 < � ≤ �2,
<1��( ln (� − �1) − �1�1 ) + <2��( ln (� − �2) − �2�2 ) , if � > �2,

(14)

where <2 = 1 − <1. Begin with the fact that the quartile
function is the inverse of the cdf. �us, replacing �� > �2 in
(14), we obtain

�� (��) = <1��( ln (�� − �1) − �1�1 )
+ <2��( ln (�� − �2) − �2�2 ) .

(15)

If we assume that � ∼ P(0, 1), (12) can be written as

�� (�)

=
{{{{{{{{{{{{{

0, if � ≤ �1,<1�1 (� − �1)Q (M1) , if �1 < � ≤ �2,
<1�1 (� − �1)Q (M1) + 1 − <1�2 (� − �2)Q (M2) , if � > �2,

(16)
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where Q(M) is the standard normal pdf. Note that the expres-
sion above matches the pdf of a mixture of three-parameter
lognormal distributions. Letting �1 = �2 = 0, the above
pdf reduces to that of a mixture of two-parameter lognormal
distributions.

Given that every normal pdf is a version of the standard

normal pdf then if � ∼ P(#, @2) we have
�� (�, #, @) = 1@Q(� − #@ ) , with # ∈ R, @ > 0, (17)

and (12) can be written as

�� (�)

=
{{{{{{{{{{{{{

0, if � ≤ �∗1 ,<1�∗1 (� − �∗1 )Q (M1) , if �∗1 < � ≤ �∗2 ,
<1�∗1 (� − �∗1 )Q (M1) + 1 − <1�∗2 (� − �∗2 )Q (M2) , if � > �∗2 .

(18)

If the parameters � are scaled by @, that is, �∗ = @�, then
M = ln (� − �∗ ) − �∗�∗ (19)

with �∗ = � − (�@/�∗ ), �∗ = ln(�@/|�∗ |) + (#/@)�∗ .
Note that the expression above matches the pdf of a mix-
ture of three-parameter lognormal distributions, which is
a generalization of the pdf given in (16), and we use the
notation� ∼ LSMIX(�∗1 , �∗2 , �∗1 , �∗2 , �∗1 , �∗2 , <1). Similarly, we
can obtain pdf of a mixture of distributions for the random
variables listed in Table 1.

4. Estimation of the Mixtures of
Two Tukey’s � Distributions

In this section, we explain the estimation of the mixture of
two Tukey’s � distributions. �e expected value of� is given
by

E [�] = #�1 =
2∑
=1

< (� + ��&� (�)) . (20)

�e "th raw moment of the random variable� is given by

E [��] = 2∑
=1

< �∑
	=0

("
%)( ��)

�−	 �	&� (�̃) , (21)

where �1�2 ̸= 0, �̃ = (" − %)� and &�(*) is the moment
generating function of the random variable �. �e central
moments #� of the random variable� are given by

E [(� − #�1)�] = #� (�)
= 2∑
=1

< �∑
	=0

("
%)( ��)

�−	 (� − #�1)	&� (�̃) .
(22)

�e 	rst 	ve central moments are as follows:

#1 = <1W1 + <2W2 = 0,
#2 = <1 (@21 + W21) + <2 (@22 + W22) ,
#3 = <1 (3@21 + W21) W1 + <2 (3@22 + W22) W2,
#4 = <1 (3@41 + 6W21@21 + W41)

+ <2 (3@42 + 6W22@22 + W42) ,
#5 = <1 (15@41 + 10W21@21 + W41) W1

+ <2 (15@42 + 10W22@22 + W42) W2,

(23)

where for G = 1, 2
W = ��&� (�) + � − #�1,

@2 = ( ��)
2 [&� (2�) − &2� (�)] .

(24)

Because �1 < �2, upon equating population moments to the
corresponding sample moments, it follows from (23) that

<1 ( ��1&� (�1) + �1 − :1)
+ <2 ( ��2&� (�2) + �2 − :1) = 0.

(25)

Le�-hand side of system (23) is multiplied by <1+<2 = 1; the
equations take the following form:

<1W1 + <2W2 = 0,
<1 (@21 + W21 − :2) + <2 (@22 + W22 − :2) = 0,
<1 (3W1@21 + W31 − :3) + <2 (3W2@22 + W32 − :3) = 0,
<1 (3@41 + 6W21@21 + W41 − :4)

+ <2 (3@42 + 6W22@22 + W42 − :4) = 0,
<1 (15W1@41 + 10W31@21 + W51 − :5)

+ <2 (15W2@42 + 10W32@22 + W52 − :5) = 0,

(26)

where :� (Z = 1, 2, . . .) denote the Zth central moment of the
sample. Equations (26) accordingly constitute a system of 	ve
equations to be solved simultaneously for the estimates of the
	ve parameters �, �, �1, �2, and <1.
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Note that, from the 	rst equation of system of (26), it
follows that

<1 = W2W2 − W1 . (27)

We eliminate <1 between the 	rst and the subsequent equa-
tions of (26) in turn and thereby reduce the system to the
following four equations in four unknowns �, �, �1, and �2:

W−11 (@21 + W21 − :2) = W−12 (@22 + W22 − :2) ,
W−11 (3W1@21 + W31 − :3) = W−12 (3W2@22 + W32 − :3) ,
W−11 (3@41 + 6W21@21 + W41 − :4)

= W−12 (3@42 + 6W22@22 + W42 − :4) ,
W−11 (15W1@41 + 10W31@21 + W51 − :5)

= W−12 (15W2@42 + 10W32@22 + W52 − :5) .

(28)

�ese systems of equations are solved computationally by
using scienti	c so�ware package andwe do not need to verify
the unique solution of the system as the parameter estimates.
We skip further details and numerical illustration owing to
space constraint.

5. Illustration

In this section we discuss some examples and applications of
the results derived in Section 3 with two examples. In the
	rst example, we discuss the pricing of a call option using
a mixture of two Tukey’s �-generalized distributions as an
example to illustrate the results of Section 3. In the second
example, we examine the empirical real data of Heating-
Degree-Day to demonstrate usefulness of our approach of
mixture of LS distributions.

Jiménez et al. [24] derived the option price of anEuropean
option assuming that the terminal price distribution follows a�-generalized distribution. Instead if we use a mixture of two
Tukey’s classes of �-generalized distributions, then the price
of the call option denoted by \(*, ^; _) with a strike price _
and maturity date � = * + ^ can be expressed as follows:

\ (*, ^; _) = 2∑
=1

<4−��

⋅ [∫∞
−��

4
�+����� (�) b� − (_ − �) �� (c)] ,
(29)

where_ > �2 and

c = � − ln (_ − �)� for G = 1, 2. (30)

When � ∼ P(0, 1), (29) reduces to
\ (*, ^; _) = 2∑

=1
<4−��

⋅ [4
�+(1/2)�2�Φ(c − �) − (_ − �)Φ (c)] ,
(31)

where Φ(⋅) denotes the cdf of a standard univariate normal
variable. If we assume that �1 = �2 = 0, then (31) reduces to

\ (*, ^; _)
= 2∑
=1

<4−�� [4
�+(1/2)�2�Φ(c − �) − _Φ(c)] . (32)

Note that when � = @√^, these expressions coincide with
the option pricing formula given in Bahra [25]. �e authors
also established closed form formula for the calculation of the
sensitives measures of option pricing (Greek parameters of
the option). Here we wish to observe that our mixture model
uses less unknown parameters for calculating the option
pricing, whereas Vitiello and Poon [19] used nine unknown
parameters to obtain the same for the mixture of two �-
distributions. It has been known that when we increase the
number of parameters, we lose degrees of freedom and it
is no longer acceptable for the best 	t of data. �is gives
an advantage of our approach for the mixture of two �-
generalized distributions.

We now present, as an example, the use of Heating-
Degree-Days (HDD) in relation to winter temperature risk as
a substitute for gas demand. HDD based contracts are listed
on the ChicagoMercantile Exchange (CME). We consider an
example that consists of monthly aggregate Heating-Degree-
Day (HDD) data values at the Chicago O’Hare International
Airport from December 1979 to December 2000 given in
Wang [26] and explored also by Vitiello and Poon [19]. We
describe 	rst a LS distribution with three parameters based
method to infer the implied risk-neutral probability density
(RND). In Table 3, we present the estimated values of the
three parameters of lognormal and Log-Logistic distribu-
tions; our interest is to compare with Vitiello and Poon [19]
risk-neutral densities with our proposed mixture model.

�e smaller value of the Kolmogorov-Smirnov (KS) test
con	rms that the data obeys the LS distributions with three
parameters.We wish to observe that Anderson-Darling (AD)
test is more sensitive to the tails of the LS distributions in
comparison with KS test. In this case, we choose the Log-
Logistic distribution as the best 	t for the HDD data.

�e implicit risk-neutral densities (RND) of LS distri-
butions are shown in Figure 1 and compared with Figure 6
of Vitiello and Poon [19]. We have obtained a similar plot
by our method with less unknown parameters than method
given by Vitiello and Poon [19]. Furthermore, their KS test
value of 13.6326% which is higher than the KS test values
of Table 3 favors the best 	t for the frequency of the LS
distributions. �erefore, 	nite mixtures are attractive from
the application viewpoint because of its �exibility and permit
us to model various kinds of shaped distributions. In Table 4,
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Table 3: Estimates for adjusting the LS(Λ).
Distribution of three parameters

Parameters Test of adjusted� � � AD (%) KS (%)
Lognormal 5.7407 0.5265 798.2540 37.53 12.3041

Log-Logistic 3.0225 283.8185 824.1814 32.68 11.1367

Table 4: Estimates for adjusting the mixture of LS(Λ).
Mixture of distributions

Parameters
KS (%) test(�1; �2) (�1; �2) (�1; �2) <

Lognormal
6.5749
11.0933

−0.1268
5.7574 × 10−4

1797.9995
−64213.6284 0.8188 8.0866

Log-Logistic
10.1338
303.7429

−538.2433
6818.2894

1620.7711
−5309.4256 0.8182 8.5928

x
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Figure 1: Empirical and LS(Λ) densities estimated from HDD.

we give the estimate values of the parameters of the mixture
LS distributions. �ese parameters are estimated using (28).
�e estimated two �-densities and the implied risk-neutral
densities (RND) are shown in Figure 2.

We observe that the bimodal LS mixture distribution
has same 	tting performance of the empirical distribution
function (EDF) and lognormal mixture distribution gives
best goodness of 	t using the KS test.

6. Conclusions

�is paper presents a mixture of Tukey’s �-generalized distri-
butions and its properties.�emethodology of estimating the
unknown parameters by the method of moments is also pre-
sented.�eproposedmodel has the advantage that it provides
�exibility, when skewness, kurtosis, or other moments of the
underlying distribution do not follow a normal distribution.
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Figure 2: Empirical and two-� densities estimated from HDD.

Some special cases of well known distributions are obtained
from the proposed model.
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