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We consider a one-dimensional nearest-neighbour interacting particle system, which is a mixture of

the simple exclusion process and the voter model. The state space is taken to be the countable set of

the con®gurations that have a ®nite number of particles to the right of the origin and a ®nite number

of empty sites to the left of it. We obtain criteria for the ergodicity and some other properties of this

system using the method of Lyapunov functions.
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1. Introduction

In this paper we consider a process that is a mixture of two nearest-neighbour one-

dimensional interacting particle systems: the simple exclusion process and the voter model.

Let us ®rst de®ne these two processes.

De®nition 1.1. For ç 2 f0, 1gZ, denote

çx, y(z) �
ç(y), if z � x,

ç(x), if z � y,

ç(z), if z 6� x, y,

8<:
and

çx(z) � 1ÿ ç(z), if z � x,

ç(z), if z 6� x:

�
A Markov process çt 2 f0, 1gZ, t 2 [0, �1), is called

(a) a simple exclusion process with parameter 0 < p < 1, if its generator Ùe
p has the

form
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Ùe
p f (ç) �

X
x, y

p(x, y)ç(x)(1ÿ ç(y))[ f (çx, y)ÿ f (ç)],

where

p(x, y) �
p, if y � xÿ 1,

1ÿ p, if y � x� 1,

0, otherwise;

8<:
(b) a voter model, if its generator Ùv is de®ned by

Ùv f (ç) �
X

x

c(x, ç)[ f (çx)ÿ f (ç)],

where

c(x, ç) �
1

2
(ç(xÿ 1)� ç(x� 1)), if ç(x) � 0,

1

2
(2ÿ ç(xÿ 1)ÿ ç(x� 1)), if ç(x) � 1:

8>><>>: (1:1)

The construction of these processes from their generators may be found in Liggett

(1985); see the ®rst chapter and the beginning of the chapters on each proces. Harris

graphical construction (see Durrett 1988; 1995) is an alternative approach to de®ning the

processes. This will be brie¯y reviewed and used in Section 2.

Let us call ç 2 f0, 1gZ a con®guration of particles, and let us interpret ç(x) � 1 as the

presence of a particle at the site x 2 Z in the con®guration ç and ç(x) � 0 as the absence

of such a particle. The dynamics of both processes may be interpreted in terms of particles

that jump around Z (the case of the exclusion process) or appear and disappear at the sites

of Z (the case of the voter model).

In the exclusion process, there may be at most one particle at each site of Z. If there is a

particle at site x and no particle at site x� 1, then the particle at x jumps with rate 1ÿ p

to site x� 1; similarly, if there is a particle at x and no particle at xÿ 1, then the particle

at x jumps with rate p to xÿ 1. This is a conservative dynamics, in the sense that particles

neither are created nor disappear. Liggett (1976) described the set of invariant measures for

this process. If p � 1
2
, the invariant measures are convex combinations of the translation-

invariant product measures parametrized with the density of particles. If p . 1
2
, the set of

invariant measures also contains measures with support in the countable state space D ,

de®ned as the set of con®gurations with a ®nite number of empty sites to the left of the

origin and a ®nite number of particles to the right of it. These measures are called blocking

measures because, due to the exclusion rule and the accumulation of particles to the left of

the origin, the ¯ux of particles is null. Of course there are also blocking measures for p , 1
2
;

they are obtained by the re¯ection Z! ÿZ of those mentioned above. When an

asymmetric exclusion process ( p 6� 1
2
) is considered from a random position determined by

a so-called second-class particle, a new set of invariant measures arises. Each of these

measures is supported by con®gurations with different asymptotic densities to the right and
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left of the origin; for this reason, they are called shock measures. The existence of shock

measures was proved by Ferrari et al. (1991) and Ferrari (1992). See Ferrari (1994) and

Liggett (1999) for an account of properties of these measures and the asymptotic behaviour

of the second-class particle. Derrida et al. (1998) propose a nice alternative description of

shock measures for this process.

In the voter model, there may also be at most one particle per site, but now with is non-

conservative dynamics: a new particle is born at an empty site x at a rate proportional to

the number of nearest neighbours of x occupied by particles; and a particle that is present

at a site x disappears at a rate proportional to the number of empty neighbours of x. Since

only one site changes its value at any given time, this model is a particular case of the so-

called spin-¯ip models. There are only two invariant measures for the one-dimensional voter

model de®ned above: one has support on the con®guration `all zeros' and the other has

support on the con®guration `all ones'. The basic tool for proving those results is duality, a

technique that allows properties of the voter model to be expressed as properties of a dual

process, a process obtained when one `looks backwards in time'. There are two dual

processes for the voter model: coalescing random walks and annihilating random walks. See

Liggett (1985, Chapter V) and Durrett (1995) for accounts of these and many other

properties of the voter model.

If the voter model starts from the Heaviside con®guration ç0, de®ned by ç0(x) � 1fx<0g,
then at any future time it is a random translation of ç0. Indeed, the position of the rightmost

particle Xt � maxfx : çt(x) � 1g performs a nearest-neighbour symmetric random walk and

èX t
çt � ç0, where èx is translation by x. This example motivates the introduction of an

equivalence relation: we say that two con®gurations ç and ç9 are equivalent, and write

ç � ç9, if one of them is a translation of the other: there exists a y 2 Z such that

ç(x) � ç9(x� y) for all x 2 Z. Let ~D :� D = � denote the set of equivalence classes

induced by �. Let D 0 denote the set of the con®gurations in the equivalence class of ç0. In

the voter model, ç0 2 D 0 implies çt 2 D 0 for all t. Hence, writing ~ç t for the equivalence

class of çt, we have that ~ç0 � ~ç0 implies ~ç t � ~ç0 (nothing moves). The process ~ç t 2 ~D ,

just de®ned, is isomorphic to èX t
çt, the voter model as seen from its rightmost particle.

Cox and Durrett (1995) studied one-dimensional voter models on ~D with rate functionP
y q(jxÿ yj)jç(x)ÿ ç(y)j for some probability function q(x). They show that ifP
x jxj3q(x) ,1, then the process as seen from the rightmost particle ~ç t 2 ~D is positive

recurrent and hence admits a unique invariant (shock) measure. Calling Yt the leftmost hole,

this implies that under the invariant measure the size of the hybrid zone ± the region of

coexistence of zeros and ones ± Xt ÿ Yt is bigger than ÿ1 and ®nite with probability one;

and of course its distribution is independent of t. They also prove that the expected value of

X t ÿ Yt under the invariant measure is in®nite and that X t=
��
t
p

converges as t!1 to a

centred normal distribution with ®nite variance. The approach is based on a ®ne analysis of

the (dual) process coalescing random walks. It is also shown there that there are no `stable'

hybrid zones in dimension d � 2: if one starts with ones in the negative x half-plane and

zeros in the positive half-plane and paints 1s white and 0s black, then the normal

distribution with variance approximately t predicts the shade of grey we see at time t in the

horizontal direction.

Ferrari (1996) shows the existence of an invariant shock measure for the biased voter
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model as seen from the rightmost particle. In this model the rate function is given by

c2(x, ç) � (aç(x)� b(1ÿ ç(x)))c(x, ç), with c(x, ç) as de®ned in (1.1). The proof in this

case is more direct because it is based on straightforward domination by supermartigales.

The goal of this paper is to study the existence of shock measures in a mixture of the

exclusion process and the voter model.

De®nition 1.2. Let â 2 [0, 1]. A Markov process çt 2 f0, 1gZ, t 2 [0, �1), is called a

hybrid process with mixing parameter â and exclusion parameter p, if its generator is

Ùh
â, p :� (1ÿ â)Ùe

p � âÙv: (1:2)

The hybrid process ~ç t (the equivalence class of çt with initial con®guration in D ) is a

Markov process on ~D . This process is a particular case of a model of random grammars

considered by Malyshev (1998). Models consisting of a mixture of a spin-¯ip dynamics and

a symmetric exclusion dynamics are usually called in the literature `diffusion±reaction

processes'. When â� 0, an appropriate space-time rescaling with â produces hydro-

dynamic limits giving rise to the reaction±diffusion equation @u=@ t � @2u=@2x� f (u),

where the function f is related to the spin-¯ip dynamics and u � u(x, t) 2 [0, 1], x, t 2 R�
corresponds to the macroscopic density of particles (De Masi et al. 1986). In some cases

these equations accept travelling-wave solutions ± solutions of the type u(x, t) � u0(xÿ vt)

for some speed v with limx!1 u0(x) � 0, limx!ÿ1 u0(x) � 1. This motivates the question

about the existence of a microscopic counterpart of the macroscopic travelling-wave

solutions. A particular case of the reaction process is the growth model, a process with rate

function c(x, ç)(1ÿ ç(x)), where c(x, ç) is as de®ned in (1.1): 0 ¯ips to 1 at rate

proportional to the number of ones in the neighbourhood, but 1 never ¯ips to 0. Bramson et

al. (1986) showed the existence of an invariant (shock) measure for the process ~ç t, where çt

is any non-trivial mixture of the exclusion process and the growth model. Cammarota and

Ferrari (1991) proved the normal asymptotic behaviour of (Xt ÿ EX t)=
��
t
p

for this mixture.

Machado (1998) studied this process in a strip and in Zd .

Let ~ôc(~ç) be the ®rst time the process ~ç t starting with the con®guration ~ç 2 ~D hits ~ç0,

the Heaviside con®guration de®ned above. The subscript c refers to continuous time (a

discrete-time process is introduced below). Let us recall some classical de®nitions. We say

that the process ~ç t is transient if P(~ôc(~ç) ,1) , 1, and recurrent if P(~ôc(~ç) ,1) � 1. In

the latter case we say that the process is positive recurrent if E(~ôc(~ç)) ,1 and null

recurrent if this expectation is in®nity. An irreducible countable Markov chain is ergodic if

it has a unique invariant measure. Since, except for the pure voter model, ~ç t is irreducible,

positive recurrence is equivalent to ergodicity in our context. The following theorem

contains our results.

Theorem 1.1. Let çt be a process in D with generator Ùh
â, p. Let ~ç t be the corresponding

process in the space of equivalence classes ~D .

(i) Exclusion process. Assume â � 0. Then the process ~ç t is ergodic for p . 1
2

and

transient for p < 1
2
.
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(ii) Hybrid process. Assume 0 , â, 1. Then,

(a) there exists âc , 1 such that for any â. âc and any p 2 (0, 1) the process ~ç t is

ergodic;

(b) for any p > 1
2

and any â, the process is ergodic.

(iii) Voter model. Assume â � 1. Then the process ~çt is positive recurrent. Moreover, for

any initial con®guration ~ç 2 ~D and any å. 0,

E(~ôc(~ç))3=2ÿå ,1; E(~ôc(~ç))3=2�å � 1: (1:3)

The fact that the exclusion process ~ç t in ~D is ergodic for p . 1
2

follows immediately

from well-known results of Liggett (1976; 1985) who described the invariant measures for

çt in the irreducible classes of D . Since the system is conservative, ergodicity of çt on any

irreducible class of D is equivalent to ergodicity of ~ç t on ~D . Our alternative approach

does not use the knowledge of the invariant measure. When p < 1
2
, the results of Liggett

imply only that the process çt is not positive recurrent; our result says that it is transient.

For p , 1
2
, the transience holds immediately from laws of large numbers for the leftmost

hole and the rightmost particle. For p � 1
2
, the transience is a more delicate matter.

The bounds in (1.3) show the velocity of the convergence of the voter model to the

invariant measure, which is the singleton supported by D 0. It may be the case that these

bounds can be obtained from the duality of the voter model to the coalescing random

walks; however, we have not investigated this approach.

Our main results are the conditions for ergodicity for the hybrid model described in

Theorem 1.1(ii). This says that if either the voter-model proportion in the hybrid process is

large enough or the exclusion process has no drift to the right, then the hybrid process is

ergodic. Part (i) of the theorem says that exclusion is transient for p < 1
2
, while part (iii)

says that the voter model is always positive recurrent. Part (ii)(a) says that the voter model

`wins' if the voter-model proportion is suf®ciently large, uniformly on the exclusion

asymmetry; and part (ii)(b) says that for the symmetric exclusion, any voter-model

proportion guarantees ergodicity.

We are not totally satis®ed with this result because suf®cient conditions for transience are

missing. We would like to be able to show that if the asymmetry of the exclusion process

has a tendency to `escape' from D then the addition of a small proportion of the voter

model will not be able to prevent it from escaping. But for now, it is still very unclear to us

whether the process could be transient in this case. We now state a conjecture for the non-

ergodicity of the hybrid process. A heuristic argument supporting the conjecture is

presented in Section 7.

Conjecture 1.1. For any p , 1
2

there exists a â0( p) . 0 such that, for any â, â0( p), the

hybrid process ~ç t with parameters â and p is not ergodic.

The parameter space f( p, â) : p, â 2 [0, 1]g is partitioned into three regions: ergodicity,

transience and null-recurrence. Presumably the region of transience satis®es the property

that if the hybrid process with parameters ( p0, â0) is transient, then the one with parameters
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( p1, â1) will also be transient for p1 < p0 and â1 < â0. But we do not have any

monotonicity argument to hand to argue this. We know that the transience region is non-

empty because it contains the segment [0, 1
2
] 3 f0g, but we do not know how to prove that

it contains points in the interior of the parameter space.

How stable are our results under changes in the dynamics? Can we extend Theorem 1.1

to non-nearest-neighbour processes? When â � 1, so that only the voter model is present,

the answer is given by Cox and Durrett (1995), as described above. When â � 0, giving an

exclusion process, it is known that the process is not ergodic on D if p(x, y) is symmetric

(all invariant measures are translation-invariant in this case), but it is an open problem of

Liggett (1985, Section VIII.7, Problem 6) in the case when p(x, y) is asymmetric. The

conjecture is that if p(x, y) � q(yÿ x), for some q, then the system would be ergodic

under the condition
P

x xq(x) , 0. In Section 9 we explain where our approach fails to work

when extended to the non-nearest-neighbour case.

Motivating examples from real life, a description of shock measures in other one-

dimensional models and nice conjectures about the existence of shock measures in other

systems can be found in Cox and Durrett (1995, Section 1).

Theorem 1.1 is proven for the discrete-time version of ~ç t and then standard arguments

are used to prove the continuous counterpart. The discrete process is a Markov chain in ~D .

The basic tool is a set of theorems from Fayolle et al. (1995), which give conditions for

ergodicity, recurrence and transience of denumerable Markov chains using so-called

Lyapunov functions. The application of these functions to the processes of interest produces

sub- or supermartingales, which can be used straightforwardly to show the desired

properties. The problem is that these functions are frequently hard to ®nd. One of the

contributions of this paper is the exposition of Lyapunov functions that work for the

exclusion process, the voter model and mixtures thereof.

The paper is organized in the following manner. In Section 2 we introduce the discrete

version of the process ~ç t. In Section 3 we state the results we need from Fayolle et al.

(1995). In Section 4 we introduce the Lyapunov functions of the process that will be

relevant in the proofs. In Sections 5, 6 and 7 we state and prove the results for the discrete-

time versions of the exclusion process, the voter model and the hybrid process, respectively.

In Section 8 we show how to pass from discrete to continuous time and prove Theorem 1.1.

2. Discrete- and continuous-time processes

In this section we introduce discrete-time versions of the exclusion process, the voter model

and mixtures thereof, de®ned in the previous section, and establish their relations with the

continuous-time processes.

Let ç be a con®guration from f0, 1gZ. We say that a discrepancy of type 01 occurs in ç
at the site x if ç(xÿ 1) � 0, ç(x) � 1; similarly, a discrepancy of type 10 occurs in ç at x if

ç(x) � 1, ç(x� 1) � 0. The countable set D de®ned above is the set of those

con®gurations of f0, 1gZ in which there are only a ®nite number of discrepancies, and

the number of discrepancies of type 10 minus the number of discrepancies of type 01 is
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equal to 1. Then it is easy to see that D � fç 2 f0, 1gZ: there exist i0, j0 such that

ç(i) � 1 for i < i0 and ç( j) � 0 for j > j0g and that D is countable.

The discrete-time exclusion process with parameter p (which we will call EP( p)) is a

Markov process with state space D and the following dynamics: for every n > 0, if ç is

the state at time n then ç9, the state at time n� 1, is obtained by the following procedure:

(i) Choose one of the discrepancies of ç with uniform distribution; say, that at the site x.

(ii) If the discrepancy is 01 (10), then exchange 0 and 1 with probability 0 , p , 1

(0 , q :� 1ÿ p , 1), and charge nothing with probability q (1ÿ q).

The exclusion process is a countable Markov chain on D .

Let us now de®ne the discrete-time voter model (which we will call VM) and the

discrete-time hybrid process (HP(â, p), where â is the mixing parameter and p is the

exclusion parameter). For VM, step (i) is the same, and (ii) is substituted by the following:

(ii9) The chosen discrepancy is substituted by either 11 or 00, each with probability 1
2
.

To construct HP(â, p), we ®rst execute (i), and then with probability 1ÿ â execute (ii) (i.e.

make an exclusion-process step), and with probability â execute (ii9) (i.e. make a voter-model

step). We use the notation (în : n 2 N) for HP(â, p); în denotes the con®guration of the

system at time n.

In (2.2) below we shall present the relation between the discrete-time hybrid process

(în : n 2 N) and the continuous-time hybrid process (çt : t > 0) with mixing parameter â
and exclusion parameter p. To this end, we shall need the Harris graphical construction for

(çt : t > 0), which we now brie¯y recall. It is a `superposition' of the graphical construction

for the voter model (see Durrett 1995) with that for the exclusion process (see Ferrari 1992)

with respective weights â and 1ÿ â.

Let f(N x,x�1
t , t > 0)gx2Z, f(N x,xÿ1

t , t > 0)gx2Z, f(M x,x�1
t , t > 0)gx2Z, f(M x,xÿ1

t ,

t > 0)gx2Z be four independent families of Poisson point processes with respective rates

(1ÿ â) p, (1ÿ â)q, â=2 and â=2. Given the initial con®guration ç0, the dynamics of the

process çt, t > 0, is determined by those Poisson processes in the following manner. If there is

a Poisson event at time t in N x,x�1 (N x,xÿ1), which means N x,x�1
t ÿN x,x�1

tÿ � 1, and if x

has a particle while x� 1 is empty (xÿ 1 is empty) in ç tÿ , then the particle jumps from x to

x� 1 (to xÿ 1) at time t. If there is a Poisson event at time t in M x,x�1 (M x,xÿ1), then the site

x� 1 (the site xÿ 1) acquires the same state at time t as the state of x in ç tÿ .

Let ô0 � 0 and, for n > 1, set

ôn � inf t . ônÿ1 :
X

x, y:jxÿ yj�1

jç tÿ(x)ÿ ç tÿ(y)j(N x, y(ônÿ1, t]�M x, y(ônÿ1, t]) . 0

8<:
9=;,

(2:1)

where N (s, t] denotes the number of Poisson events in the time interval (s, t] for the process

N . We call ôn the instants of attempted jumps of the process çt. It follows from our

de®nitions that if ç0 � î0, then

(în : n > 0) � (çô n
: n > 0) in distribution: (2:2)
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3. Criteria for recurrence and transience of Markov chains

In this section we state the criteria for ergodicity, recurrence and transience of countable

Markov chains to be used later. The next four theorems are Theorems 2.2.3, 2.2.1, 2.2.2,

2.2.7, respectively, of Fayolle et al. (1995).

Theorem 3.1. Let î t, t � 0, 1, 2, . . . , be an irreducible Markov chain with countable state

space X. Suppose that there exist a positive function f (x) and a ®nite set A � X such that

E( f (î t�1)ÿ f (î t)jî t � x) < ÿå, (3:1)

for some å. 0 and all x 2 XnA, and that

E( f (î t�1)jî t � x) ,1, (3:2)

for x 2 A. Then the Markov chain is ergodic.

Theorem 3.2. Let î t, t � 0, 1, 2, . . . , be an irreducible Markov chain with countable state

space X. Suppose that there exist a positive function f (x), f (x)!1 as x!1, and a ®nite

set A � X such that

E( f (î t�1)ÿ f (î t)jî t � x) < 0, (3:3)

for all x 2 XnA. Then the Markov chain is recurrent.

Theorem 3.3. Let î t, t � 0, 1, 2, . . . , be an irreducible Markov chain with countable state

space X. Suppose that there exist a positive function f (x) and a set A � X such that (3.3)

holds for all x 2 XnA and

f (x0) , inf
x2A

f (x),

for some x0 =2 A. Then the Markov chain is transient.

Theorem 3.4. Let î t, t � 0, 1, 2, . . . , be an irreducible Markov chain with countable state

space X. Suppose that there exist a positive function f (x) and a constant C such that if

f (x) . C, then

E( f (î t�1)ÿ f (î t)jî t � x) > å, (3:4)

for some å. 0, and suppose that for some K . 0

j f (î t�1)ÿ f (î t)j < K a:s: (3:5)

Then the Markov chain is transient.

In addition to ergodicity, we shall study the existence of moments of the hitting time of

the set D 0. To do this, we shall need the following result of Aspandiiarov et al. (1996,

Theorem 1).
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Theorem 3.5. Let A be some positive real number. Suppose that we are given an fF ng-
adapted stochastic process X n, n > 0, taking values in an unbounded subset of R�. Denote

by ôA the moment when the process X n enters the set (0, A). Assume that there exist ë. 0,

p0 > 1 such that, for any n, X 2p 0
n is integrable and

E(X
2p 0

n�1 ÿ X 2p 0

n jF n) < ëX 2p 0ÿ2
n (3:6)

on fôA . ng. Then there exists a positive constant C � C(ë, p0) such that, for all x > 0,

whenever X 0 � x with probability 1

Eô p0

A < Cx2 p0 : (3:7)

4. Functions of the process

For the sake of brevity we will henceforth write `0-block' for the expression `block of zeros'

and `1-block' for `block of ones'.

An equivalence class S 2 ~D can be identi®ed by a ®nite set of positive numbers in the

following form:

S � . . . 111 0000
z�}|�{n1

11111
z��}|��{m1

0000
z�}|�{n2

11111
z��}|��{m2

. . . 00000
z��}|��{n N

1111
z�}|�{m N

000 . . . , (4:1)

where ni � ni(S ) is the size of ith 0-block, mi � mi(S ) is the size of ith 1-block, and

N � N (S ) is the number of 1-blocks not including the leftmost in®nite 1-block. In what

follows, the word `con®guration' will usually mean `equivalence class'. So, for S 2 ~D we

can simply write S � (n1, m1, . . . , nN , mN ).

Denote r0 � 0, ri �
Pi

j�1(m j � n j), li �
Piÿ1

j�1(m j � n j)� ni � 1, i � 1, . . . , N . Let ç
be the con®guration from the equivalence class S such that ç(x) � 1 for x < 0 and

ç(1) � 0. De®ne the con®gurations ç!k , ç k , ç�r
k , ç� l

k , çÿr
k , çÿ l

k in the following way:

· ç!k (x) � ç(x) for x 6� rk, rk � 1, ç!k (rk) � 0, ç!k (rk � 1) � 1, k � 0, . . . , N ;

· ç k (x) � ç(x) for x 6� lk, lk ÿ 1, ç k (l k) � 0, ç 
k

(l k ÿ 1) � 1, k � 1, . . . , N ;

· ç�r
k (x) � ç(x) for x 6� rk � 1, ç�r

k (rk � 1) � 1, k � 0, . . . , N ;

· ç� l
k (x) � ç(x) for x 6� lk ÿ 1, ç� l

k (lk ÿ 1) � 1, k � 1, . . . , N ;

· çÿr
k (x) � ç(x) for x 6� rk, çÿr

k (rk) � 0, k � 0, . . . , N ;

· çÿ l
k (x) � ç(x) for x 6� lk, çÿ l

k (lk) � 0, k � 1, . . . , N .

and S!k , S k , S�r
k , S� l

k , Sÿr
k , Sÿ l

k are the corresponding classes of equivalence. Informally

speaking,

· S!k is the con®guration obtained from S by moving the rightmost 1 of the kth 1-block

by one unit to the right, k � 0, . . . , N ;

· S k is the con®guration obtained from S by moving the leftmost 1 of the kth 1-block

by one unit to the left, k � 1, . . . , N ;

· S�r
k is the con®guration obtained from S by adding an extra 1 to the right of the kth 1-

block, k � 0, . . . , N ;
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· S� l
k is the con®guration obtained from S by adding an extra 1 to the left of the kth 1-

block, k � 1, . . . , N ;

· Sÿr
k is the con®guration obtained from S by removing the rightmost 1 from the kth 1-

block, k � 0, . . . , N ;

· Sÿ l
k is the con®guration obtained from S by removing the leftmost 1 from the kth 1-

block, k � 1, . . . , N .

Clearly, EP can transform S to S!k or S k , while by using VM we can obtain S�r
k or S� l

k .

Denote also Ri �
Pi

j�1 n j, Ti �
PN

j�i m j, and let

jSj �
XN

j�1

(m j � n j) � RN � T1

stand for the length of the `non-trivial' part of con®guration S. We take R0 � T N�1 � 0.

We de®ne two functions f 1, f 2 : ~D 7! R, which will play the crucial role in our

arguments:

f 1(S ) � 1

2

X
k:S(k)�1

X
m , k

1fS(m)�0g

 !
�

X
k:S(k)�0

X
m . k

1fS(m)�1g

 ! !

� 1

2

XN

i�1

mi Ri �
XN

i�1

niTi

 !

�
XN

i�1

mi Ri �
XN

i�1

niTi

and

f 2(S ) � 1

2

X
k:S(k)�1

X
m , k

1fS(m)�0g

 !2

�
X

k:S(k)�0

X
m . k

1fS(m)�1g

 !2
0@ 1A

� 1

2

XN

i�1

mi R
2
i �

XN

i�1

niT
2
i

 !
,

for all S 2 ~D .

At this point some remarks about f 1, f 2 are in order. The value f 1(S ) is equal exactly to

the number of nearest-neighbour transpositions needed to pass from S to D 0, that is, f 1(S )

is in some sense the `distance' from S to the trivial con®guration. Unfortunately, as we will

see later, the function f 1 does not `work' well for some con®gurations S (namely, for S

such that N (S ) is small with respect to jSj). The function f 2 is the result of our attempts to

modify f 1 in order to eliminate this disadvantage; we cannot attach any intuitive meaning to

f 2(S ).

Let us obtain some relations between jSj, f 1(S ) and f2(S ).
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Lemma 4.1. For any S 2 D , the following hold:

(i) jSj=2 < f 1(S ) < jSj2=4;

(ii) jSj2=4 < f2(S ) < jSj3=8;

(iii) f 1(S ) < ( f 2(S ))3=4.

Proof. Parts (i) and (ii) are simple to prove. We have

f1(S ) � 1

2

XN

i�1

mi Ri �
XN

i�1

niTi

 !
>

1

2
(RN � T1) � jSj

2
,

f 1(S ) �
XN

i�1

mi Ri < RN

XN

i�1

mi � RN T1 <
(RN � T1)2

4
� jSj

2

4
;

and analogously,

f 2(S ) >
1

2
(R2

N � T2
1) >

1

4
(RN � T1)2 � jSj

2

4
,

f 2(S ) <
1

2
R2

N

XN

i�1

mi � T2
1

XN

i�1

ni

 !
� 1

2
RN T1(RN � T1) <

jSj3
8
:

Let us prove (iii). We shall make use of the following simple consequence of the Jensen

inequality: if we have n positive numbers ã1, . . . , ãn such that
Pn

i�1ãi � 1, then, for any

x1, . . . , xn,

ã1x1 � . . . � ãnxn < (ã1x2
1 � . . . � ãnx2

n)1=2: (4:2)

Denote ái � mi=jSj, âi � ni=jSj, so
PN

i�1(ái � âi) � 1. Using (4.2) and (ii), we obtain

f 1(S ) � 1

2

XN

i�1

(mi Ri � niTi) � jSj
2

XN

i�1

(ái Ri � âiTi)

<
jSj
2

XN

i�1

(ái R
2
i � âiT

2
i )

 !1=2

�
������jSjp ���
2
p ( f 2(S ))1=2

<

���
2
p

( f 2(S ))1=4���
2
p ( f 2(S ))1=2 � ( f2(S ))3=4,

thus completing the proof of Lemma 4.1. h

As usual, P and E stand for probability and expectation. If there is any possibility of

ambiguity, we use Ee
p (Pe

p) to denote expectation (probability) with respect to EP( p), Ev

(Pv) for expectation (probability) with respect to VM, and Eh
â, p (Ph

â, p) for expectation

(probability) with respect to HP(â, p).
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5. Exclusion process

In this section we shall study the EP using the method of Lyapunov functions.

Theorem 5.1. If p . q, then the exclusion process is ergodic.

Proof. As we noticed before, the EP can transform a con®guration S only to S!k or to S k
symbols (see Section 4). Then, it is easy to establish that

f 2(S!k )ÿ f 2(S ) � 1

2
((Rk � 1)2 ÿ R2

k � (Tk�1 � 1)2 ÿ T2
k�1)

� 1� Rk � Tk�1 (5:1)

and

f 2(S k )ÿ f 2(S ) � 1

2
((Rk ÿ 1)2 ÿ R2

k � (Tk ÿ 1)2 ÿ T 2
k)

� 1ÿ Rk ÿ Tk : (5:2)

Combining (5.1) and (5.2), we have that

E( f2(î t�1)ÿ f2(î t)jî t � S ) � N � q

2N � 1
ÿ pÿ q

2N � 1

XN

i�1

(Ri � Ti): (5:3)

Since RN � T1 � jSj, Ri > i and Ti > N ÿ i� 1, it is straightforward to obtain thatXN

i�1

(Ri � Ti) > maxfjSj, N (N � 1)g:

Using this fact, we obtain from (5.3) that, for any å. 0,

E( f 2(î t�1)ÿ f2(î t)jî t � S ) ,ÿå (5:4)

for all but ®nitely many S. So, by Theorem 3.1, EP( p) is ergodic when p . 1
2
. h

Theorem 5.2. When p < q the exclusion process is transient.

Proof. First we consider the case p , q. With S!k and S k as de®ned above, we have that

f1(S k )ÿ f1(S ) � ÿ1 (5:5)

and

f 1(S!k )ÿ f 1(S ) � 1, (5:6)

so that, for some å � å( p, q) . 0,

Ee
p( f 1(î t�1)ÿ f 1(î t)jî t � S ) � N (qÿ p)

2N � 1
� q

2N � 1
> å (5:7)
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and, clearly, j f 1(î t�1)ÿ f 1(î t)j < 1 almost surely. Then by Theorem 3.4, the process î t is

transient.

Let us turn now to the case p � q � 1
2
. Using the function f 1(S ) de®ned above and (5.5),

(5.6), we have that

Ee
1=2( f 1(î t�1)ÿ f 1(î t)jî t � S ) � 1

2(2N � 1)
, (5:8)

so Theorem 3.3 does not apply. Therefore, we need a different approach.

We ®x an arbitrary á. 0 and de®ne the function ø : D nD 0 7! R by

ø(S ) :� ( f 1(S ))ÿá:

Note that the de®nition is correct because f 1(S ) . 0 for S =2 D 0. (Actually, for the purposes

of this proof it is suf®cient to take á � 1, but, since we will need analogous calculations later

in this paper, at this point we prefer to do the calculations for arbitrary á. 0.) To study the

properties of the process ø(î t), we need the following lemma.

Lemma 5.1. For any C . 0 the set

AC � fS : f 1(S ) , CN (S )g (5:9)

is ®nite.

Proof. Clearly, Ri > i and mi > 1, so f 1(S ) > N (S )(N (S )� 1)=2. Thus, for a con®guration

S to belong to AC , it is necessary that the number of 1-blocks be less than 2C ÿ 1, so AC is a

subset of

fS : f 1(S ) , C(2C ÿ 1)g,

which is obviously ®nite. h

It follows from (5.5) and (5.6) that

Ee
1=2(( f 1(î t�1)ÿ f 1(î t))

2jî t � S ) � 1

2
: (5:10)

By elementary calculations, we obtain that for any á. 0 there exist two positive numbers

C1 � C1(á), C2 � C2(á) such that

(x� 1)ÿá ÿ 1 < ÿáx� C1x2, (5:11)

when jxj, C2.

Using (5.8), (5.10), (5.11) and Lemma 5.1, we obtain
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Ee
1=2(ø(î t�1)ÿ ø(î t)jî t � S )

� f ÿá1 (S )Ee
1=2

f 1(î t�1)

f 1(î t)

� �ÿá
ÿ1jî t � S

 !

� f ÿá1 (S )Ee
1=2

f 1(î t�1)ÿ f 1(î t)

f 1(î t)
� 1

� �ÿá
ÿ1jî t � S

 !

< f ÿá1 (S ) ÿ á

f 1(S )
.

1

2(2N � 1)
� C1

2 f 2
1(S )

 !

� f ÿáÿ2
1 (S ) ÿ á f 1(S )

2(2N � 1)
� C1

2

� �
, 0 (5:12)

on fS : f 1(S ) . maxf1=C2, C1(2N (S )� 1)=ágg, and hence for all but ®nitely many S.

Applying Theorem 3.4, we conclude the proof of Theorem 5.2. h

6. Voter model

The subject of this section is the discrete-time voter model. For a process starting from a

con®guration S, denote by ô(S ) the moment of hitting the set D 0. The main result of this

section is the following.

Theorem 6.1. The discrete-time voter model is positive recurrent. Moreover, for any initial

con®guration S0 and any å. 0,

E(ô(S0))3=2ÿå ,1 (6:1)

and

E(ô(S0))3=2�å � 1: (6:2)

Proof. Since positive recurrence means just the existence of Eô(S0), we shall turn directly to

the proof of (6.1). The idea is to apply Theorem 3.5 to the process f á2 (î t) for some á, 1.

First, we need the following important fact.

Lemma 6.1. We have

Ev( f 2(î t�1)ÿ f 2(î t)jî t � S ) � 0 (6:3)

for any S 2 D .

Proof. If S 2 D 0, then (6.3) is trivial. For S =2 D 0 a direct computation gives
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f 2(S�r
k )ÿ f 2(S ) � 1

2
(Rk � Tk�1 � R2

k ÿ T 2
k�1)ÿ

XN

i�k�1

mi Ri �
Xk

i�1

niTi, (6:4)

f 2(Sÿr
k )ÿ f 2(S ) � 1

2
(Rk � Tk�1 ÿ R2

k � T 2
k�1)�

XN

i�k�1

mi Ri ÿ
Xk

i�1

niTi, (6:5)

for k � 0, . . . , N, and

f 2(S� l
k )ÿ f 2(S ) � 1

2
(ÿRk ÿ Tk � R2

k ÿ T2
k)ÿ

XN

i�k

mi Ri �
Xk

i�1

niTi, (6:6)

f 2(Sÿ l
k )ÿ f 2(S ) � 1

2
(ÿRk ÿ Tk ÿ R2

k � T2
k)�

XN

i�k

mi Ri ÿ
Xk

i�1

niTi, (6:7)

for k � 1, . . . , N.

The right-hand sides of (6.4)±(6.7) sum to 0, thus concluding the proof of Lemma 6.1.

h

Then, from (6.5), we note that

j f 2(Sÿr
0 )ÿ f2(S )j > T2

1

2
; (6:8)

and from (6.4),

j f 2(S�r
N )ÿ f 2(S )j > R2

N

2
: (6:9)

These two inequalities give us that there exists a constant C . 0 such that

Ev(( f2(î t�1)ÿ f2(î t))
2jî t � S ) >

CjSj4
N

(6:10)

for all S. Now, a very important observation is that the VM does not increase the number of

blocks Nt � N (î t). So we have, for all S,

Ev(( f 2(î t�1)ÿ f 2(î t))
2jî t � S ) > C0jSj4 (6:11)

with C0 � C0(S0) � C=N (S0).

Elementary calculus gives us that, for 0 ,á, 1 and for jxj < 1, there exists a positive

constant C1 such that

(x� 1)á ÿ 1 < áxÿ C1x2: (6:12)

Employing considerations analogous to (5.12) and applying (6.12), Lemma 6.1 and

(6.11), we obtain

Ev(( f 2(î t�1))á ÿ ( f2(î t))
ájî t � S ) < ÿC0C1( f 2(S ))áÿ2jSj4: (6:13)

Applying Lemma 4.1(ii) to the last inequality gives
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Ev(( f 2(î t�1))á ÿ ( f 2(î t))
ájî t � S ) < ÿ16C0C1( f2(S ))áÿ2=3:

We apply Theorem 3.5 to the process Xt � ( f 2(î t))
1=3, taking á to be close to 1 to ®nish the

proof of (6.1).

Let us turn now to the proof of (6.2). We let the process start from con®guration S0 such

that N (S0) � 1. Since this con®guration is reachable from any other con®guration, it is

suf®cient to prove (6.2) for this S0. As already mentioned, the voter model does not

increase the number of blocks N, so the process can be represented as î t � (nt, mt), which

clearly is a random walk in Z2
�, and we are interested in the moment of hitting the

boundary. Note that the transition probabilities of this random walk can be described like

this: from the state (n, m) a transition can occur to the states (n� 1, m), (nÿ 1, m),

(n, m� 1), (n, mÿ 1), (n� 1, mÿ 1) and (nÿ 1, m� 1), each with probabilities 1
6
.

Denote by ôn,m the moment of hitting D 0 (i.e. the boundary) provided that the starting

point was (n, m). To proceed, we need the following lemma.

Lemma 6.2. There exist two positive constants ä, C, such that, for any n, m,

Pfôn,m . än2g >
Cm

m� n
(6:14)

and

Pfôn,m . äm2g >
Cn

m� n
: (6:15)

Remark 6.1. It can be shown that Lemma 6.2 holds for any homogeneous random walk in

Z2
� with bounded jumps and zero drift in the interior of Z2

�.

Proof. Without loss of generality we can suppose that n < m. Then, to prove (6.14), we will

prove a stronger fact:

Pfôn,m . än2g > C0 (6:16)

for some C0. In fact, it is a classical result that a homogeneous random walk in Z2
� with

bounded jumps and zero drift in the interior with some uniformly positive probability cannot

deviate by the distance n from its initial position during the time n2. To show how this can be

formally proved, we denote by r((n1, m1), (n2, m2)) the Euclidean distance between the

points (n1, m1) and (n2, m2). Let the process start from (n, m), and denote Yt �
r(î t, (n, m)). Then, it is straightforward to show that the process Yt satis®es the hypothesis

of Lemma 2 from Aspandiiarov et al. (1996), so we apply the lemma and (6.14) is proved.

To prove (6.15), we need some additional notation. Denote
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W i(m) � f(n9, m9) : r((n9, m9), (m, m)) < m=2�
���
2
p
g,

V i(m) � f(n9, m9) : m=2 , r((n9, m9), (m, m)) < m=2�
���
2
p
g,

W e(m) � f(n9, m9) : m=2�
���
2
p

, r((n9, m9), (m, m)) < mg,

V e(m) � f(n9, m9) : mÿ
���
2
p

, r((n9, m9), (m, m)) < mg:

Clearly, the set V i(m) is the boundary of W i(m), and the set V e(m) is the external boundary

of W e(m).

We consider the two possible cases: (a) (n, m) 2 W i(m); and (b) (n, m) 2 W e(m).

Case (a). First, we denote Yt � r(î t, (m, m)). Then, we apply Lemma 2 from

Aspandiiarov et al. (1996) to obtain that Pfôn,m . än2g > C1 for some C1, and thus (6.15).

Case (b). We keep the notation Yt from the previous paragraph. Denote by pn,m the

probability of hitting the set V i(m) before the set V e(m), provided that the starting point is

(n, m). Our goal is to estimate this probability from below.

For C . 0, consider the process ZC
t , t � 0, 1, 2, . . . , de®ned in the following way:

ZC
t � exp C 1ÿ Yt

m

� �� �
� exp C 1ÿ r(î t, (m, m))

m

� �� �
,

ZC
0 � expfCn=mg. One can prove the following technical fact: there exists a constant C (not

depending on m) such that

E(ZC
t�1 ÿ ZC

t jî t � (n9, m9)) > 0, (6:17)

for any point (n9, m9) 2 W e(m) and if m is large enough. Indeed, using the fact that there

exist positive constants Ci, i � 1, 2, such that

eÿx ÿ 1 > ÿx� C1x2

on jxj, C2, we write

E(ZC
t�1 ÿ ZC

t jî t � (n9, m9))

� exp C 1ÿ jn9ÿ mj
m

� �� �
E exp ÿ C

m
(Yt�1 ÿ Yt)

� �
ÿ 1jî t � (n9, m9)

� �

>
C

m
exp C 1ÿ jn9ÿ mj

m

� �� �
E ÿ(Yt�1 ÿ Yt)� C1C

m
(Yt�1 ÿ Yt)

2jî t � (n9, m9)

� �
:

Then, using properties of the process Yt, one can complete the proof of (6.17).

Now, to estimate pn,m, we make the sets V i(m) and V e(m) absorbing. Using this

property, the process ZC
t converges as t!1 to ZC

1, so
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EZC
1 > pn,m exp

C

2

� �
� (1ÿ pn,m)

> EZC
0 � exp

Cn

m

� �
,

and thus

pn,m >
expfCn=mg ÿ 1

expfC=2g ÿ 1

>
C

expfC=2g ÿ 1
.

n

m
>

2C

expfC=2g ÿ 1
.

n

m� n
: (6:18)

So, starting from the point (n, m), with probability given by (6.18) the random walk hits the

set V i(m). Then, from the case (a) it follows that with uniformly positive probability it will

take at least äm steps to reach the external boundary V e(m), so we complete the proof of

(6.15), and thus of Lemma 6.2. h

Now, supposing that (6.2) does not hold, we have (denoting ô :� ô(S0) and a ^ b

:� minfa, bg)

Eô3=2�å > E(ô3=2�å1fô> tg) � E((t � ôî t)
3=2�å1fîs=2D 0 for all s< tg)

>
1

2
E (t � än2

t )
3=2�å Cmt

mt � nt

1fîs=2D 0 for all s< tg

� �

� 1

2
E (t � äm2

t )
3=2�å Cnt

mt � nt

1fîs=2D 0 for all s< tg

� �
> ä9C9E((n2�å9

t mt � m2�å9
t nt)1fîs=2D 0 for all s< tg)

� ä9C9E((n2�å9
t^ô mt^ô � m2�å9

t^ô nt^ô))

� C 0E( f 2(î t^ô))1�å 0: (6:19)

for some constants ä9, å9, C9, å 0 and C 0.
From (6.19) we obtain that the family f f 2(î t^ô)g is uniformly integrable as t!1, so

E f 2(î t)! E f 2(îô) � 0. But this obviously contradicts Lemma 6.1. h

7. Hybrid process

As already proved, EP( p) is transient when p < 1
2
, and VM is ergodic. Now, what happens if

we combine them? The following theorems give an (incomplete) answer to this question.
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Theorem 7.1. There exists â0 , 1 such that, for any p, the process HP(â, p) is ergodic for all

â. â0.

Theorem 7.2. For any â. 0 and p > 1
2

the process HP(â, 1
2
) is ergodic.

We also formulate the following plausible conjecture. Its not completely rigorous proof

will be presented in Section 7.3.

Conjecture 7.1. For any p , 1
2

there exists â0 � â0( p) . 0 such that the process HP(â, p) is

not ergodic for â, â0.

7.1. Proof of Theorem 7.1

We use the notation introduced in Section 4. Direct computations yield

f 1(S� l
k )ÿ f 1(S ) � Rk ÿ Tk ÿ 1,

f 1(Sÿ l
k )ÿ f 1(S ) � ÿRk � Tk ÿ 1,

f1(S�r
k )ÿ f 1(S ) � Rk ÿ Tk�1,

f1(S�r
k )ÿ f 1(S ) � ÿRk � Tk�1,

so

Ev( f 1(î t�1)ÿ f 1(î t)jî t � S ) � ÿ N

2N � 1
: (7:1)

Combining this with (5.7), we obtain that there exists a positive number C � C(â) such

that

Eh
â, p( f 1(î t�1)ÿ f 1(î t)jî t � S ) � ÿ 1

2N � 1
(âN ÿ (1ÿ â)((qÿ p)N � q))

,ÿC(â) (7:2)

for â. 2
3
. Applying Theorem 3.1, we ®nish the proof.

7.2. Proof of Theorem 7.2

To prove the desired result, we apply Theorem 3.1 to the function j(S ) :� ( f2(S ))á for some

á, 1.

First, we prove the theorem for the case p � 1
2
. Inserting p � q � 1

2
into (5.3), we obtain

for the EP(1
2
) step

Ee
1=2( f 2(î t�1)ÿ f 2(î t)jî t � S ) � 1

2
: (7:3)
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It is elementary that, for á 2 (0, 1),

(x� 1)á ÿ 1 < áx, (7:4)

for all x > ÿ1. Using (7.3), (7.4) and (6.12), we obtain

Ee
1=2(( f 2(î t�1))á ÿ ( f2(î t))

ájî t � S ) <
á( f 2(S ))áÿ1

2
: (7:5)

Now let us make the necessary estimate for the VM step. Here we will need a bound

which is more accurate than (6.10).

Lemma 7.1. There exists C9 . 0 such that

Ev(( f 2(î t�1)ÿ f 2(î t))
2jî t � S ) > C9jSj16=5: (7:6)

Proof. To calculate exactly the left-hand side of (7.6), one has to square (6.4)±(6.5), sum

them and divide by 4N � 2. But this calculation appears to be too dif®cult; so we will only

obtain a lower bound. Denote Äk � f 2(S�r
k )ÿ f 2(S ), so that

Ev(( f 2(î t�1)ÿ f2(î t))
2jî t � S ) >

1

4N � 2

XN

i�1

Ä2
i : (7:7)

Simple algebraic calculations using (6.4) give that

Äi�1 ÿ Äi > N , (7:8)

for i � 0, . . . , N ÿ 1. From (6.4) one also obtains Ä0 , 0 and ÄN . 0, so denote

L � minfk : Äkÿ1 , 0, Äk > 0g. Using (7.8) givesXN

i�1

Ä2
i >

XLÿ1

i�0

(N (Lÿ iÿ 1))2 �
XN

i�L

(N (iÿ L))2

> N2
XN=2

i�1

i2 > C1 N 5,

for some C1, so by (7.7) we obtain that

Ev(( f 2(î t�1)ÿ f 2(î t))
2jî t � S ) > C2 N4,

for some C2. Combining this with (6.10) gives

Ev(( f 2(î t�1)ÿ f 2(î t))
2jî t � S ) > max C2 N 4,

CjSj4
N

� �
> C4=5C

1=5
2 jSj16=5,

thus proving Lemma 7.1. h

Remark 7.1. The exponent 16=5 in Lemma 7.1 is the best possible; to see this, one may take

a con®guration S with n1 � mN � N 5=4 and n2 � . . . � nN � m1 � . . . � mNÿ1 � 1 and

compute the left-hand side of (7.6).
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We now resume our proof of Theorem 7.2. Analogously to (5.12), using (6.12) together

with Lemmas 6.1 and 7.1, we obtain, for some positive constant C2,

Ev(( f2(î t�1))á ÿ ( f 2(î t))
ájî t � S ) < ÿC2( f 2(S ))áÿ2jSj16=5: (7:9)

So, for HP(â, 1
2
), combining (7.5) with (7.9) and using the fact that jSj16=5 > 216=5( f 2(S ))16=15

by virtue of Lemma 4.1(ii), we obtain, for 14=15 ,á, 1

Eh
â,1=2(j(î t�1)ÿ j(î t)jî t � S )

� Eh
â,1=2(( f 2(î t�1))á ÿ ( f 2(î t))

ájî t � S )

< (1ÿ â)
á( f 2(S ))áÿ1

2
ÿ âC2( f 2(S ))áÿ2jSj16=5

< (1ÿ â)
á( f 2(S ))áÿ1

2
ÿ 216=5âC2( f2(S ))áÿ14=15

� ÿ( f 2(S ))áÿ14=15 216=5âC2 ÿ (1ÿ â)á

2
( f 2(S ))ÿ1=15

� �
,ÿ1 (7:10)

for all but a ®nite number of Ss (indeed, the expression in the square brackets is positive for

all but ®nitely many S, and the fact that á. 14=15 guarantees that the absolute value of the

left-hand side of (7.10) is large enough for all but a ®nite number of Ss). Applying Theorem

3.1, we conclude the proof of Theorem 7.2 for p � 1
2
.

When p . 1
2
, using (5.4) and Lemma 6.1 gives that, for any å. 0,

Eh
â, p( f 2(î t�1)ÿ f 2(î t)jî t � S ) � (1ÿ â)Ee

p( f 2(î t�1)ÿ f 2(î t)jî t � S ) ,ÿ(1ÿ â)å

for all but ®nite number of S, and we apply Theorem 3.1 again. h

Remark 7.2. Using the technique of Section 6, it is possible to establish that there exists

some p0 � p0(â) . 1 such that for the process HP(â, 1
2
) we have that E(ô(S0)) p ,1 for all

p , p0. By using the technique of Menshikov and Popov (1995), one can obtain polynomial

bounds on the decay of the stationary measure.

7.3. Nonergodicity

Here we will present an argument in favour of the validity of Conjecture 7.1.

We rewrite (7.2) as

Eh
â, p( f1(î t�1)ÿ f 1(î t)jî t � S ) � 1

2N � 1
(ÿâN � (1ÿ â)((qÿ p)N � q))

>
N

2N � 1
((1ÿ â)(qÿ p)ÿ â) . 0 (7:11)

when â,(qÿ p)=2q. Unfortunately, because VM does not possess property (3.5), we cannot
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apply Theorem 3.4. Moreover, it is still very unclear whether the process is transient in this

case. So instead we shall explain why we believe it is not ergodic. We need the following

three lemmas.

Lemma 7.2. Let î t, t � 0, 1, 2, . . . , be a Markov chain on a countable state space X , let

0 2 X be an absorbing state, and de®ne ô :� minft : î t � 0g to be the hitting time of 0.

Suppose that for any starting point x we have f (x) :� Exô,1. Then

E f (î t)! 0, (7:12)

as t!1.

Proof. Let x0 be the starting position of the Markov chain. It is straightforward to see that

E( f (î t�1)ÿ f (î t)jî t � x) � ÿ1fx 6�0g, (7:13)

so, taking expectations in (7.13), we obtain

Ex 0
f (î t�1)ÿ Ex 0

f (î t) � ÿPx 0
fô. tg: (7:14)

Summing with respect to t in (7.14), we obtain

Ex 0
f (î t�1) � f (x0)ÿ

Xt

i�0

Px 0
fô. ig ! 0

as t!1, thus completing the proof. h

Lemma 7.3. Let î t, t � 0, 1, 2, . . . , be a Markov chain on a countable state space X , and

let 0 2 X be an absorbing state. Let x0 be the starting position of the Markov chain, ô be the

moment of hitting 0, and suppose that Ex 0
ô,1 for all x0. Let f (x) be some non-negative

function on X such that, for some constant K,

E( f (î t�1)ÿ f (î t)jî t � x) < K, (7:15)

for all x 6� 0. Then there exists a constant M such that E f (î t) , M for all t.

Proof. The proof is analogous to that of Lemma 7.2: ®rst, we rewrite (7.15) as

E( f (î t�1)ÿ f (î t)jî t � x) < K1fô. tg, (7:16)

for all x. So

Ex 0
f (î t�1)ÿ Ex 0

f (î t) < KPx 0
fô. tg, (7:17)

and, summing with respect to t in (7.17), we get

Ex 0
f (î t�1) < f (x0)� K

Xt

i�0

Px 0
fô. ig < f (x0)� K Ex 0

ô:

De®ning M :� f (x0)� K Ex 0
ô, we conclude the proof. h
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Analogously to Lemmas 7.2 and 7.3, we can prove the following lemma, which is, in

fact, an adaptation of Lemma 2.2 from Menshikov and Popov (1995) to our situation.

Lemma 7.4. Let î t, t � 0, 1, 2, . . . , be a Markov chain on a countable state space X, let

0 2 X be an absorbing state, x0 be the starting point, and ô be the moment of hitting 0, and

suppose that Ex 0
ô,1 for all x0. Let f (x) be some non-negative function on X such that

Ex 0
f (î t)! 0 as t!1, and, for some positive constant K,

E( f (î t�1)ÿ f (î t)jî t � x) > ÿK, (7:18)

for all x. Then Ex 0
ô > f (x0)=K.

So let us take a hybrid process HP(â, p) which satis®es (7.11). We suppose that it is

ergodic and try to obtain a contradiction. De®ne jâ, p(S ) to be the mean hitting time of D 0

starting from S, i.e. jâ, p(S ) � Eh
â, pô(S ). We will prove the following lemma.

Lemma 7.5. For any p . 1
2
, â, there exists a positive constant C � C(â, p) such that

jâ, p(S ) > Cf 1(S ): (7:19)

Proof. From (5.3) and Lemma 6.1 we obtain that, for p . 1
2

and any â,

Eh
â, p( f 2(î t�1)ÿ f 2(î t)jî t � S ) <

1

2
: (7:20)

Applying Lemma 7.3 gives that there exists a constant M such that Eh
â, p f 2(î t) , M for all t.

Using Lemma 4.1(iii), we see that Eh
â, p f 1(î t)! 0 as t!1. An application of Lemma 7.4

completes the proof. h

Conjecture 7.2. Lemma 7.5 holds for any p.

We have been unable to prove the above conjecture. Intuitively, jâ, p(S ) grows when p

decreases and the monotonicity argument might be applicable to prove this fact. For the

pure exclusion process, this argument follows from the basic coupling (see Liggett 1985,

Section VIII.2). When the voter model is added, this coupling does not work.

Now, if we suppose this to be true, the rest of the proof is straightforward. If the process

HP(â, p) is ergodic, then the function jâ, p(S ) is well de®ned, so, by Lemma 7.2,

Eh
â, pjâ, p(î t)! 0 as t!1. Thus, using (7.19), we obtain that Eh

â, p f1(î t)! 0. But this

obviously contradicts (7.11). h

8. Continuous time

In this section we show how Theorem 1.1 follows from the theorems proved in the previous

three sections.

Observe ®rst that the transience is a property of the skeleton of a Markov process. In our
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case the skeleton is the process în � çôn
, as de®ned in Section 2. Notice that according to

this de®nition, în�1 may be the same as în; this deviates slightly from the usual notion of

the skeleton. In our version of the skeleton the exit time of a con®guration is a geometric

random variable with parameter greater than â� (1ÿ â) minfp, qg. This implies that the

skeleton cannot get stacked. Hence Theorem 5.2, which states the transience for the

discrete-time exclusion process with p < 1
2
, implies the same for the continuous-time

process. This shows the transient part of Theorem 1.1(i).

To prove that ergodicity for the discrete-time process implies ergodicity for the

continuous-time one, let ç 2 D 0, let S be the equivalence class of ç and write

ôc(ç) �
Xô(S )

n�1

(ôn ÿ ônÿ1) (8:1)

where we recall that ôc(ç) and ô(S ) are the hitting times of D 0 for the continuous- and

discrete-time processes starting from ç and S respectively, and ôn is the instant of the nth

attempted jump of the continuous process çt, as de®ned in (2.1). Given the past up to ôn,

ôn�1 ÿ ôn is an exponential random variable with rate greater than 1 ± the worst case

obtained when the con®gurations belong to D 0. Hence, ôn�1 ÿ ôn is stochastically bounded

below by an exponential random variable of rate 1 independent of everything. This implies

that

Eôc(ç) < Eô(ç): (8:2)

Since the ergodicity is equivalent to the ®niteness of the expected return time for any given

con®guration, ergodicity for the discrete-time process implies the same for the continuous-

time one. With this argument Theorem 5.1 implies the ergodic part of Theorem 1.1(i) and

Theorems 7.1 and 7.2 imply Theorem 1.1(ii).

The argument above implies a stronger statement for the pure voter model. Let â � 0

and observe that, for any ç =2 D 0, there are at least three discrepancies. Hence, for the voter

model,

ôc(ç) <
Xô(S )

n�1

(ô9n ÿ ô9nÿ1), (8:3)

where (ô9n ÿ ô9nÿ1) are independently exponentially distributed with parameter 3 and

independent of ô(S ). This, together with Lemma 8.1 below, shows that the ®rst part of

(1.3) follows from (6.1).

We now show how to obtain the second part of (1.3) from (6.2). Let D 1 be the set of

con®gurations on D having exactly three discrepancies (that is, 10, 01 and 10). This means

that in the representation (4.1) the con®gurations belonging to D 1 have N � 1, that is only

one ®nite 0-block and one ®nite 1-block. The transition rate for con®gurations in D 1 in the

voter model is exactly 3. If the process is in D 1 then it can only either stay in D 1 or jump

to D 0. Hence, for ç 2 D 1,

ôc(ç) �
Xô(S )

n�1

(ô9n ÿ ô9nÿ1): (8:4)
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Lemma 8.1 below shows that (6.2) implies that the left-hand side of (8.4) is in®nite for any

ç 2 D 1. As argued before, any con®guration in D 1 is reachable from any other, hence the

same is valid for any ç 2 D nD 0. This shows the second part of (1.3).

Lemma 8.1. Let ô be a positive integer random variable and ôi be non-negative independent

random variables with the exponential distribution and independent of ô. Then, for any p . 0,

E
Xô
n�1

ôn

 ! p

,1 if and only if Eô p ,1: (8:5)

Proof. By independence,

E
Xô
n�1

ôn

 ! p

�
X

n

E
Xn

i�1

ôi

 ! p

P(ô � n): (8:6)

But

E
Xn

i�1

ôi

 ! p

� Ã(n� p)

Ã(n)
(8:7)

which is of the order of np. h

9. Final remarks

Let us make several remarks with respect to extensions of our results to the non-nearest-

neighbor case. For a non-nearest-neighbor voter model, we failed to ®nd an analogue of

Lemma 6.1. To be precise, in this case, Lemma 6.1 is incorrect for f2 as stated, and we could

not ®nd a substitute for f 2 that would provide relevant information both for this voter model

and for the hybrid process constructed by mixing this voter model with an exclusion process

of any range. When the hybrid process consists of a nearest-neighbor voter model and a

®nite-range exclusion process, an analogue of Theorem 1.1(ii)(a) may be obtained by an

appropriate, straightforward, modi®cation of our arguments. Anything beyond this result was

not possible. A reason for this was again our failure to ®nd substitutes for f 1 and f 2 that

would work for this case as well as f 1 and f 2 have worked for the nearest-neighbour system.

The results presented above show that, to a certain extent, the success of our methods

depends on the correct choice of Lyapunov function.
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