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A MIXTURE THEORY FOR THE GENESIS OF RESIDUAL
STRESSES IN GROWING TISSUES I: A GENERAL FORMULATION∗

ROBYN P. ARAUJO† AND D. L. SEAN MCELWAIN†

Abstract. In this paper a theoretical framework for the study of residual stresses in growing
tissues is presented using the theory of mixtures. Such a formulation must necessarily be a solid-
multiphase model, comprising at least one phase with solid characteristics, owing to the fundamental
role played by the incompatibility of strains in generating residual stresses. Since biological growth
involves mass exchange between cellular and extracellular phases, field equations are presented for
individual phases and for the mixture as a whole which incorporate this phenomenon. Appropri-
ate constitutive equations are then deduced from first principles, appealing to the second law of
thermodynamics.

The analysis shows that the distinguishing feature of multiphase models involving mass exchange
is the necessity to propose an additional constitutive postulate between the variables in the mass-
balance equation in order to close the model. In particular, the defining characteristic of a solid-
multiphase model which describes biological growth is a constitutive postulate which relates the
process of interphase mass exchange (cell proliferation/cell death) with the expansion or contraction
of the solid phase. Thus, the framework presented here represents a new class of mathematical
models which extends the concepts of poroelasticity to accommodate continuous volumetric growth.
A set of modelling equations is then proposed for the simplest case of a solid-multiphase model, being
a biphasic mixture of a linear-elastic solid and an inviscid fluid.
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1. Introduction. The evolution and spatial distribution of tissue stresses is of
fundamental importance in a number of physiological phenomena. The experimentally
observed phenomenon of vascular collapse in tumors, for example, which has been
attributed to the elevated tissue stresses resulting from confined proliferation of tumor
cells [5, 9], represents a significant barrier to the delivery of blood-borne therapeutic
drugs. Such stresses are residual in nature, arising in the tissue when it is free of
external loads, and result from the incompatibility of growth strains [21, 38, 40].

Fung [20] further notes the existence of residual stresses in living organs and
highlights the importance of such stresses to physiological functions, asserting that
“in a living organism, the function of its organs depends on the levels of their internal
stress and strain.”

Hence continuum models of growing tissues would provide a theoretical framework
for a wide range of studies in biology, ranging from tumor biology and anticancer
therapies [23, 38] to studies in embryology [7, 34], developmental biology, and plant
physiology [18], in addition to providing tools for prediction and analysis for a wide
range of projects in the rapidly growing field of tissue engineering [31].

Nevertheless, the underlying phenomenological determinants of residual stresses,
as well as their purpose and implications in both normal tissue development and
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various pathological conditions, are poorly understood since there is a paucity of
mathematical models to elucidate these phenomena.

Gatenby [22] explains that “recent research in tumour biology, particularly that
using new techniques from molecular biology, has produced information at an explo-
sive pace. Yet a conceptual framework within which all these new (and old) data can
be fitted is lacking.” Gatenby and Maini [23] add that “clinical oncologists and tumour
biologists possess virtually no comprehensive theoretical model to serve as a frame-
work for understanding, organizing and applying these data,” noting the necessity to
“(develop) mechanistic models that provide real insights into critical parameters that
control system dynamics.” Murray [32] concurs, arguing that “the goal is to develop
models which capture the essence of various interactions allowing their outcome to be
more fully understood.”

Indeed, while experimental approaches may attest to the existence of residual
stresses and provide information about their distribution in tissues, the underlying
mechanisms governing their genesis cannot be fully elucidated in the absence of math-
ematical modeling owing to the fundamental role played by the incompatibility of
growth strains in their formation [40]. Mathematical analysis provides the key to
identifying incompatible growth and represents a tool for investigating the roles of
a variety of phenomenological aspects of growing tissues—distribution of nutrients,
growth-related density changes, stress modulated cell-proliferation and apoptosis, ge-
ometric effects—in promoting incompatibilities and the associated residual stresses.

An important consideration in the mathematical modelling of tissue growth is the
choice between single-phase mechanics and mixture theory [2]. The former, which ap-
peals to an analogy with thermal expansion, incorporates a source term in the balance
of mass, with the phase or phases responsible for the mass source remaining implicit
to the model. While Skalak [39] claims that volumetric growth is analogous to thermal
expansion—an analogy which forms the basis of the tissue growth models by Shannon
and Rubinsky [38], Jones et al. [26], and Araujo and McElwain [4]—it does not con-
sider all the processes which determine the stresses induced during biological tissue
growth. Indeed, Araujo and McElwain [4] note that the single-constituent framework
does not take into account the net fluid movement associated with the growth process
and the Darcy-like drag terms in the equilibrium of forces—a consideration which
may be significant when the elastic (residual) stresses are small.

Multiphase models, on the other hand, which are based on mixture theory, clarify
the nature of any mass sources, and consider the role of interstitial fluid in the growth
process. While several fluid multiphase models of growing tissues have been proposed
recently [15, 16, 28], it is essential to recognize that these models provide no basis for
examining the genesis of residual stresses in tissues, which requires a consideration of
the tissue’s solid characteristics.

Hence, a theoretical framework which enables the growth process and the associ-
ated development of tissue stresses to be modeled naturally, without recourse to an
analogy with thermal expansion, is lacking.

This paper is the first in a series of papers which elaborate a mixture theory for
the genesis of residual stresses in growing soft tissues, based on field equations which
incorporate interphase mass exchange. This paper presents a general formulation for
deducing thermodynamically appropriate constitutive equations relevant to the study
of biological growth. In section 2, the field equations are presented, being adapted
from the classical field theories developed by Truesdell and Toupin [42] and the theory
of mixtures developed by Bowen [12] and manipulated into the forms most useful
to further exploration of the problem at hand. In sections 3 and 4, these classical
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theories are used as a guide to developing a particular form of the second axiom of
thermodynamics from which the relevant constitutive equations may be deduced most
readily, neglecting the influence of possible density changes associated with a change
of phase. Constitutive assumptions for a general mixture of n phases are then outlined
in section 5, following the pioneering work on constitutive modeling by Coleman and
Noll [17], Ehlers [19], and Bowen [12].

In sections 6 through 8, a simple two-phase mixture of an elastic solid and an
inviscid fluid is considered in detail. Since this solid-biphasic mixture must be able to
exhibit continuous volumetric expansion to model the process of biological growth and
an associated evolution of residual stresses, this paper stands alone in the mathemat-
ical literature pertaining to solid tumor growth, enucleating the very essence of the
closure problem relevant to continuous growth of a tissue with solid characteristics.
The solutions to these biphasic equations will be presented in the next paper in the
series.

1.1. Differentiation conventions and index of symbols. The following con-
ventions will be adopted throughout this paper.

If α̂i and αi are scalar and vector/tensor properties of the ith constituent, respec-
tively, then ∇α̂i and ∇.αi denote the gradient and the divergence, respectively, with
respect to spatial coordinates. (Note that in many references and texts in continuum
mechanics these symbols are used to denote partial differentiation with respect to the
reference configuration.) The symbols Gradα̂i and Divαi will denote the gradient
and divergence, respectively, with respect to the reference configuration.

In addition, the symbol Di

Dt denotes the material derivative following the motion

defined by vi, the velocity of the ith constituent. The symbol D
Dt , on the other hand,

represents the material derivative following the motion defined by vm, the velocity of
the mixture as a whole.

Table 1.1 gives a summary of the nomenclature adopted in this paper, along
with the equation in which each symbol first appears. Each quantity is given a more
complete description when it is first introduced in the text.

2. Constituent field equations. The balances of mass, linear momentum, an-
gular momentum, and energy for the ith constituent of an n-phase mixture are sum-
marized below. The equations incorporate a mass exchange term, so that the mass of
the ith constituent may increase (or decrease) at the expense of other constituents.
All constituents are equipresent at each spatial point.

2.1. Balance of mass. The balance of mass for the ith constituent, or phase,
of an n-phase mixture is given by

Di(φiρi)

Dt
+ (φiρi)∇ · vi = Γi,(2.1)

or, equivalently,

∂(φiρi)

∂t
+ ∇.(φiρivi) = Γi,(2.2)

where φi and ρi are the volume fraction and density, respectively, of the ith phase
and Γi is the mass supplied to the ith phase per unit time per unit mixture volume.
Truesdell and Toupin’s [42] rule for differentiating a determinant gives the identity

Di

Dt
(detFi) = (detFi)∇ · vi,
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Table 1.1

Symbols.

Equation of
Symbol Description first occurrence

φ Volume fraction (2.1)
ρ True density (2.1)
Γ Mass supply (2.1)
F Deformation Gradient (2.3)
v Velocity (2.1)
σ Partial Cauchy stress tensor (2.7)
σI Inner mixture stress tensor (2.16)
g Acceleration due to gravity (2.7)
π Phase interaction force (2.7)
w Diffusion velocity (2.11)
m Angular momentum supply (2.13)
L Velocity gradient (2.18)
u Internal energy (2.18)
q Heat flux (2.18)
r Heat production rate (2.18)
ε Phase interaction energy supply (2.18)
η Entropy (3.1)
θ Absolute temperature (3.1)
ψ Helmholtz free energy (3.4)
K Chemical potential tensor (3.5)
ζ Lagrangian multiplier (4.4)
X Reference coordinates (8.2)
x Spatial coordinates (8.9)

µ, λ Lamé constants (8.22)

which enables (2.1) to be expressed by

Di

Dt

(
φiρidetFi

)
= ΓidetFi,(2.3)

where Fi is the deformation gradient of the ith phase with respect to the reference
configuration. The volume fractions, φi, are subject to the constraint

n∑
i=1

φi = 1,(2.4)

which implies that the mixture is saturated.
The balance of mass for the mixture is expressed by

Dρm
Dt

+ ρm∇ · vm = 0,(2.5)

where ρm and vm are the density and velocity, respectively, of the mixture as a whole.
A comparison of (2.5) with the summation of (2.2) over all n phases allows the mixture
density, ρm, to be defined by

ρm =

n∑
i=1

φiρi,

and the mixture velocity, vm, to be defined by

vm =
1

ρm

n∑
i=1

(φiρivi),
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while yielding the following expression for the conservation of mass:

n∑
i=1

Γi = 0.(2.6)

2.2. Balance of linear momentum. The balance of linear momentum for the
ith phase of an n-phase mixture is given by

φiρi
Divi

Dt
= ∇ · σi + φiρig + πi,(2.7)

or, equivalently,

∂

∂t
(φiρivi) + ∇.(φiρivi ⊗ vi) = ∇ · σi + φiρig + πi + Γivi,(2.8)

where σi is the partial Cauchy stress tensor for the ith phase, g is the acceleration
due to gravity, and πi is the locally produced force per unit volume on the ith phase
due to its interactions with the other phases. The symbol ⊗ denotes the dyadic vector
product.

The balance of linear momentum for the mixture is expressed by

ρm
Dvm

Dt
= ∇ · σm + ρmg,(2.9)

where σm is the Cauchy stress tensor of the mixture as a whole. A comparison of
(2.9) with the summation of (2.8) enables the mixture stress tensor to be defined by

σm =
∑
i

(σi − φiρiwi ⊗ wi),(2.10)

where wi denotes the diffusion velocity defined by

wi = vi − vm(2.11)

and gives rise to the following expression for the conservation of linear momentum:

n∑
i=1

(πi + Γivi) = 0.(2.12)

2.3. Balance of angular momentum. The balance of angular momentum for
the ith phase of an n-phase mixture is given by

∂

∂t

(
φiρix × vi

)
+∇ ·

(
φiρi(x × vi) ⊗ vi

)
= ∇ · (x × σi) + x × (φiρig + πi + Γivi) + mi,

(2.13)

where mi is a vector representing the supply of angular momentum to the ith phase.
The symbol × denotes a cross product, in which the quantity

(x × σi)e = x × (σie)

for all vectors e (see Bowen [12]). Appealing to the balance of linear momentum
produces

Mi = σi − σT
i(2.14)
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from (2.13), where Mi is a skew-symmetric tensor arising from the angular momentum
supply vector, mi. Since the sum of the momentum supplies over all phases must
vanish, then

n∑
i=1

Mi = 0.(2.15)

Thus, the summation of (2.14) over all phases implies that the inner part of the
mixture stress tensor, which is defined by Truesdell and Toupin [42] as

σI =

n∑
i=1

σi,(2.16)

is symmetric. Noting that the quantity

n∑
i=1

φiρiwi ⊗ wi

must also be symmetric implies that the mixture stress tensor is symmetric. Note,
however, that the partial Cauchy stress tensors are symmetric if and only if mi = 0
(and hence Mi = 0), that is, for nonpolar materials. In this particular study, it is
assumed that the components of the growing tissue do behave as nonpolar materials,
so that mi = 0 and that

σi = σT
i .(2.17)

A more general theory would have to be developed to consider tissues comprising
micropolar fluids.

2.4. Balance of energy. The energy balance for the ith phase of an n-phase
mixture is given by

φiρi
Diui

Dt
= tr(Liσi) −∇ · qi + φiρiri + εi,(2.18)

or, equivalently,

∂

∂t
(φiρiui) + ∇ · (φiρiuivi) = tr(Liσi) −∇ · qi + φiρiri + εi + Γiui,(2.19)

where qi is a measure of the rate of heat flow across a unit area from the ith con-
stituent, ri is the rate of heat production per unit mass within the ith constituent,
εi is the energy supply per unit mass per unit time to the ith constituent due to
energy exchange between the constituents, ui is the internal energy per unit mass of
the ith constituent, and Li is the velocity gradient of the ith constituent with respect
to spatial coordinates.

Truesdell and Toupin [42] argue that for the overall conservation of energy in
the mixture, “the energy supplied by an excess internal energy rate, plus the energy
supplied by the work of the excess inertial forces against diffusion, plus the energy
supplied by the creation of mass, must add up to zero for the mixture.” This implies
the following expression for the conservation of energy:

n∑
i=1

[
εi + Γi

(
ui +

1

2
wi · wi

)
+ wi · πi

]
= 0,
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or, equivalently, by appealing to (2.12),

n∑
i=1

[
εi + Γi

(
ui +

1

2
vi · vi

)
+ vi · πi

]
= 0.(2.20)

3. The second law of thermodynamics. The second law of thermodynam-
ics, which may be expressed in the form of the Clausius–Duhem inequality, places
limitations on the admissible paths of thermodynamic processes, thereby placing re-
strictions on constitutive equations. The Clausius–Duhem inequality states that the
rate of entropy increase is greater than or equal to the entropy input rate.

Following Rajagopal and Tao [37], it is assumed that the second law of thermo-
dynamics holds for the mixture as a whole. In addition, a single, spatially uniform
temperature is assumed for all phases since growth involves exchanges of mass among
the phases and because the growth process itself is slow in comparison with the time
it would take for any possible temperature gradients to equilibrate. Indeed, it is un-
likely that stresses arising from a gradient of thermal expansion would be significant
in biological tissues. Therefore if ηi denotes the entropy per unit mass of the ith con-
stituent and θ denotes the absolute temperature of the mixture, then the inequality
may be expressed by

∑
i

[
Di

Dt
(φiρiηi) + φiρiηi∇.vi + ∇.

(qi

θ

)
− φiρiri

θ

]
≥ 0.(3.1)

The entropy inequality for the mixture is given by

ρm
Dηm
Dt

+
∑
i

∇.

(
hi

θ

)
−
∑
i

(
φiρiri

θ

)
≥ 0,(3.2)

where hi is an influx vector for the ith constituent—as yet unrelated to qi—and ηm
is the entropy density for the mixture defined by

ηm =
1

ρm

∑
i

φiρiηi.

Hence, reconciling (3.1) and (3.2) requires the constitutive postulate,

hi = qi + φiρiθηiwi.(3.3)

The second axiom of thermodynamics, as expressed by (3.1), may now be manipulated
further to obtain a form from which constitutive equations may be deduced readily.
To this end, the internal energies, ui, will be eliminated in favor of the Helmholtz free
energy densities, ψi, where

ψi = ui − θηi.(3.4)

Employing the Helmholtz free energy is particularly expedient when deducing con-
stitutive equations since it is the portion of the internal energy available for doing
mechanical work at constant temperature [30]. Further, the process of deducing con-
stitutive equations is facilitated by the introduction of the chemical potential for each
phase, which, for general mixtures, is given by the linear transformation

Ki = ψiI −
σi

φiρi
.
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The change of variables brought about by this transformation is common in the estab-
lished literature relating to thermodynamic theories of constitutive equations. (See
Bowen [11, 12] and Bowen and Wiese [14] for further details on the use of the chemical
potential tensor in the study of general mixtures.)

Now, incorporating the balance of mass (2.1) and the energy equation (2.18) and
introducing the variables ψi and Ki enable the second law of thermodynamics to be
expressed by the dissipation inequality

−tr

n∑
i=1

φiρiKi.Li − ρmηm
Dθ

Dt
−

n∑
i=1

DiΨi

Dt
−

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0,(3.5)

where

Ψi = φiρiψi(3.6)

represents the Helmholtz free energy of the ith constituent per unit mixture volume.
A full derivation of this inequality is given in the appendix.

4. The assumption of incompressibility. In the present paper it will be
assumed that each of the n phases is intrinsically incompressible, thereby placing an
added constraint on their motion and giving rise to an indeterminacy in the second
law of thermodynamics. The assumption of incompressibility is a common one in
mathematical models of biological tissues on account of the high water content of
the cells and interstitial fluid and the very low compressibility of other extracellular
constituents, such as the large macromolecules comprising the extracellular matrix [1].

The balance of mass for the ith phase may now be expressed by

∂φi

∂t
+ ∇.(φivi) =

Γi

ρi
,

the summation of which over the n phases gives

n∑
i=1

(∇φi.vi + φi∇.vi) =

n∑
i=1

Γi

ρi
� γ̂,(4.1)

employing the saturation constraint (2.4). At this point, the principle of material
frame-indifference (or objectivity) is considered, which requires that the response of
the material and its individual constituents (and hence its constitutive equations,
to be developed later from the present analysis) be independent of the observer [6].
Since relative velocities are objective, while individual velocities are not, (4.1) may
be expressed in terms of relative velocities by noting that

n∑
i=1

vi.∇φi =

n∑
i=1

(vi − v1).∇φi,

where one phase is nominated as the reference phase with the subscript 1. Assuming
that the densities of all phases are equal (so that ρi = ρm = ρ and γ̂ = 0) enables
(4.1) to reduce to

n∑
i=1

[
(vi − v1).∇φi + φitrLi

]
= 0.(4.2)
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From a mathematical standpoint, this assumption of equal phase densities allows the
model to isolate the growth-induced stresses arising from spatially nonuniform (in-
compatible) growth, without the potentially confounding effects of additional stresses
associated with density changes. In addition, the assumption of equal densities sim-
plifies the ensuing analysis considerably. Further, the argument may be justified from
a phenomenological point of view by noting that in a growing tissue, the growth
process itself arises from exchanges of mass among individual tissue constituents. In
particular, cells grow and proliferate by taking in interstitial fluid—water and pro-
teins (and other molecules contained in the interstitial fluid)—and relinquish these
substances on cell death. Thus, while different phases may exhibit fundamentally
different mechanical behavior, they are composed of similar substances.

Now, recognizing that

Li = F̀iF
−1
i

by the chain rule, where

F̀i =
DiFi

Dt
,

and that

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
=

n∑
i=1

[
πi +

1

2
Γi(vi − v1)

]
.(vi − v1)(4.3)

now enables the second axiom of thermodynamics to be expressed in the form

−tr

n∑
i=1

F−1
i (φiρKi − φiζI)F̀i − ρηm

Dθ

Dt
−

n∑
i=1

DiΨi

Dt

−
n∑

i=1

[
πi +

1

2
Γi(vi − v1) − ζ∇φi

]
.(vi − v1) ≥ 0,(4.4)

where ζ is a Lagrangian multiplier.

5. Constitutive assumptions for a general n-phase mixture. As expressed
by Coleman and Noll in [17], “a material is defined by a constitutive assumption,
which is a restriction on the processes that are admissible in a body consisting of the
material.”

In discussing the various principles governing constitutive equations, Passman
and Nunziato [33] describe the principle of equipresence as “too general,” claiming
that it is “difficult to accept as a universal axiom appropriate to all mixture theories.”
(According to this principle, “all dependent variables depend on all independent vari-
ables, unless the entropy inequality requires otherwise” [25, 41].) They proceed to
explain that “in multiphase mixtures (where) the individual constituents are clearly
separated physically, . . . it is plausible to think of the mixture as being ideal, or phase
separated. For such mixtures the Principle of Equipresence can reasonably be re-
placed by the Principle of Phase Separation.” By this principle, the material-specific
dependent variables of a given phase (such as the stress and the Helmholtz free en-
ergy density) depend only on the independent variables of that phase. The interaction
variables (such as the momentum transfer term, πi) depend on all the independent
variables. (See Passman and Nunziato [33] for a more detailed discussion of these
principles.)
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Much of the classical work in this field has relied on the former, more general
principle. Thus, in predicating the current study on these classical, well-established
approaches, this paper appeals to this general principle in deducing thermodynami-
cally appropriate constitutive equations in spite of the fact that the individual phases
of biological tissues are clearly separated and distinct. Nevertheless, the simpler prin-
ciple of phase separation is used to advantage in subsequent analysis, allowing the
constitutive equations to be manipulated into useable forms.

Furthermore, Ehlers [19] emphasises the fact that “the general constitutive frame-
work must be based on the assumption of second-grade materials . . . , thus making use
of the most natural framework in constitutive modelling for multiphase media, addi-
tionally avoiding so-called ‘simple’ results.” Thus, following Bowen [12], Bowen and
Weise [14], and Ehlers [19], and noting from (4.2) that the constitutive assumptions
for Ki and πi must reflect an indeterminacy consistent with the entropy inequality,
the following general constitutive postulate is proposed:(

Ψi, ηi,

(
πi +

1

2
Γi(vi − v1) − ζ∇φi

)
, (φiρKi − φiζI),q

)

= f(θ,Fj , F̀j ,Gj , φj ,nj , (vj − v1)),(5.1)

where f is a smooth function, with the following quantities being defined for clarity:

Gj = GradFj

and

nj = ∇φj .

As discussed by Bowen in [10] and [12], (5.1) describes a mixture which allows for
the combined effects of elasticity, heat conduction, diffusion, viscosity, buoyancy, im-
miscibility, and variable volume fractions. As noted by Bowen in [13], “an immiscible
mixture is one where locally one can distinguish between mixture volumes and con-
stituent volumes (and therefore) a model of an immiscible mixture would necessarily
allow the volume fractions to effect the mixture response.” Having established a gen-
eral framework, then, it remains for a particular constitutive postulate to be chosen to
carry the analysis through to completion, to arrive at a full set of modeling equations.

6. A biphasic mechanical model of tissue growth. In this section, the
general constitutive assumption (5.1) is applied to a two-phase model comprising an
elastic solid (indicated by the subscript s) and an inviscid fluid (indicated by the
subscript f), being the simplest case of a solid-multiphase model. In this case, the
constitutive equations reduce to

(
Ψi, ηi,

(
πf +

1

2
Γf (vf − vs) − ζ∇φf

)
, (φiρKi − φiζI),q

)
= f(θ,Fs,Gs, (vf − vs))

(6.1)

with i = f, s. Since the effect of viscosity is not being considered in this simplified
model, the derivatives of the deformation gradients do not appear among the inde-
pendent variables in (6.1). The volume fractions and their gradients are also omitted
from the set of independent variables since the specific Helmholtz free energy, ψi, is to
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be considered independent of volume fraction, with the volume-averaged Helmholtz
free energy, Ψi, being related to volume fraction via (3.6). Note that in a two-phase
model, only one of the mass exchange terms, Γi, or volume fraction terms, φi, need
be considered since the constraints (2.4) and (2.6) give the corresponding terms for
the other phase. Further, since one of the phases is a solid and the other a fluid, the
volume fractions φs and φf = 1−φs will henceforth be referred to as the solidity and
the porosity, respectively.

Using (6.1) the total derivative of the Helmholtz free energy for the solid is given
by

DsΨs

Dt
=

(
∂Ψs

∂θ

)(
Dθ

Dt

)
+ tr

(
∂Ψs

∂Fs

)T

F̀s + C

(
∂Ψs

∂Gs

)
⊗ G̀s

+

(
∂Ψs

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt
+ F̀fF

−1
f (vs − vf ) − F̀sF

−1
s (vs − vf )

]
,

while the total derivative of the Helmholtz free energy for the fluid is given by

DfΨf

Dt
=

(
∂Ψf

∂θ

)(
Dθ

Dt

)
+ tr

(
∂Ψf

∂Fs

)T [
F̀s + GsF

−1
s (vf − vs)

]
+ C

(
∂Ψf

∂Gs

)
⊗
[
G̀s + (GradGs)F

−1
s (vf − vs)

]
+

(
∂Ψf

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt

]
.

Therefore the entropy inequality becomes

−tr
∑
i=f,s

F−1
i (φiρKi − φiζI) F̀i − ρηm

dθ

dt

−
(

πf +
1

2
Γf (vf − vs) − ζ∇φf

)
.(vf − vs) −

(
∂ΨI

∂θ

)
Dθ

Dt

− trF−1
s

(
Fs

(
∂ΨI

∂Fs

)T

− (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

))
F̀s

− (vf − vs).

(
F−1T

s

(
∂Ψf

∂Fs
[Gs]

))

− C

(
∂ΨI

∂Gs

)
⊗ G̀s − (vf − vs).

(
F−1T

s

(
∂Ψf

∂Gs
[GradGs]

))

−
(

∂ΨI

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt

]

− trF−1
f

(
(vs − vf ) ⊗

(
∂Ψs

∂(vf − vs)

))
F̀f ≥ 0,

where

ΨI =
∑
i=f,s

Ψi =
∑
i=f,s

φiρiψi

denotes the inner part of the mixture Helmholtz free energy. Here, the notation X[Y],
where X is a tensor of rank p and Y is a tensor of rank p+1, denotes a vector defined
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in component form by

X[Y] = Xk1k2...kpY
k1k2...kpqeq.

where eq are basis vectors. (See, for example, (1.10) in Bowen and Weise [14] or
(1.1.58) in Bowen [12].) Now rearranging the inequality produces

−trF−1
s

(
φρsKs − φsζI + Fs

(
∂ΨI

∂Fs

)T

− (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

))
F̀s

− trF−1
f

(
φfρKf − φfζI + (vs − vf ) ⊗

(
∂Ψs

∂(vf − vs)

))
F̀f

−
(
ρηm +

∂ΨI

∂θ

)
Dθ

Dt
−
(
∂ΨI

∂g

)
.
Dg

Dt
− C

(
∂ΨI

∂Gs

)
⊗ G̀s

− (vf − vs).

(
F−1T

s

(
∂Ψf

∂Gs
[GradGs]

))
−
(

∂ΨI

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt

]

−
[
πf +

1

2
Γf (vf − vs) − ζ∇φf + F−1T

s

(
∂Ψf

∂Fs
[Gs]

)]
.(vf − vs) ≥ 0.

Following Coleman and Noll’s argument [17],

θ, Fs, Gs and (vf − vs)

are held fixed while varying the quantities

Dθ

Dt
, F̀s, G̀s, GradGs and

Df (vf − vs)

Dt
.

This yields the following necessary and sufficient conditions:

φsρKs − φsζI + Fs

(
∂ΨI

∂Fs

)T

− (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

)
= 0,(6.2)

φfρKf − φfζI + (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

)
= 0,(6.3)

ρηm = −∂ΨI

∂θ
,

∂ΨI

∂Gs
= 0,

∑
i=f,s

(vi − vs).

(
F−1T

s

(
∂Ψf

∂Gs
[GradGs]

))
= 0,

∂ΨI

∂(vf − vs)
= 0,

and

−f .(vf − vs) ≥ 0,(6.4)

where

f = πf +
1

2
Γf (vf − vs) − ζ∇φf + F−1T

s

(
∂Ψf

∂Fs
[Gs]

)
.
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7. Development of linearized constitutive equations. In this section, the
constitutive equations (6.2), (6.3), and (6.4) deduced in the previous section will
be linearized about the thermodynamic equilibrium using the method discussed by
Bowen [12], in order to express the equations in useable forms.

Let ξ̂ denote the complete set of independent variables

ξ̂ = (Fs,Gs, (vf − vs)),

noting that there is no longer any dependence on temperature or temperature gradi-
ents. Let ξ̂0E denote the subset of these variables,

ξ̂0E = (Fs,Gs,0).

Let ξ̂0R denote the reference state about which the constitutive equations for f and
σs will be linearized,

ξ̂0R = (I,0,0).

At the state ξ̂0E , where vs = vf , the quantity

−f .(vf − vs) ≥ 0

is a minimum, such that ξ̂0E defines the thermodynamic equilibrium. Now in the
vicinity of the thermodynamic equilibrium,

φsρKs = φsζI − Fs

(
∂ΨI

∂Fs

)T

,

φfρKf = φfζI,

and

f = −κ(vs − vf ),

where κ is a constant, sometimes referred to as the diffusive drag coefficient. There-
fore,

σs = φsρψsI − φsζI + Fs

(
∂ΨI

∂Fs

)T

,(7.1)

σf = φfρψfI − φfζI,(7.2)

and

πf = −κ(vs − vf ) − 1

2
Γf (vs − vf ) + ζ∇φf − F−1T

s

(
∂Ψf

∂Fs
[Gs]

)
.(7.3)

Now, appealing to the principle of phase separation,

σs = (φsρψs − φsζ)I + ρFs

(
∂(φsψs + φfψf )

∂Fs

)T

= −φs(ζ − ρψs)I + ρFs

(
∂φs

∂Fs
ψs + φs

∂ψs

∂Fs
− ∂φs

∂Fs
ψf

)T

.
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Hence,

σs = −φs(ζ − ρψs)I + φsρFs

(
∂ψs

∂Fs

)T

+ ρ(ψs − ψf )Fs

(
∂φs

∂Fs

)T

.(7.4)

Similarly, for the momentum transfer terms, the principle of phase separation gives

πf = −κ(vf − vs) −
1

2
Γf (vf − vs) + ζ∇φf + F−1T

s

(
ρψf

(
∂φs

∂Fs

)
[Gs]

)
.(7.5)

8. Modeling biological growth: Mass exchanges, solid deformation, and
fluid flow. To reduce (7.4) to a usable form, an expression for ∂φs

∂Fs
must be deduced

from the balance of mass for the solid phase, which is given by

Ds

Dt
(ρφsdetFs) = ΓsdetFs.(8.1)

Thus, in general

ρφsdetFs =

∫ t

0

Γs(Xs, τ)detFs(Xs, τ)dτ � Θ̂s,(8.2)

where

Θ̂s = Θ̂s(Xs, t),

and Xs denotes the reference coordinates. Hence, using Jacobi’s identity [42],

∂(detFs)

∂Fs
= (detFs)F

−1T
s ,

the derivative of the solidity with respect to the solid deformation gradient is given
by

∂φs

∂Fs
= −φsF

−1T
s +

1

ρdetFs

∂Θ̂s

∂Fs
.(8.3)

Therefore, (7.4) becomes

σs = −φs(ζ − ρψs)I + φsρFs

(
∂ψs

∂Fs

)T

− φsρ(ψs − ψf ) +
(ψs − ψf )

detFs
Fs

(
∂Θ̂s

∂Fs

)T

.

(8.4)

Thus the constitutive equations are

σs = −φsP I + φsρFs

(
∂ψs

∂Fs

)T

+
(ψs − ψf )

detFs
Fs

(
∂Θ̂s

∂Fs

)T

(8.5)

and

σf = −φfP I,(8.6)

where

P = ζ − ρψf .(8.7)

In addition,

∂φs

∂Xs
=

∂φs

∂Fs

[
∂Fs

∂Xs

]
=

(
−φsF

−1T
s +

1

ρdetFs

∂Θ̂s

∂Fs

)
[Gs] .(8.8)
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Now

∇φs =
∂φs

∂xs
= F−1T

s

∂φs

∂Xs
,(8.9)

where xs denotes spatial coordinates. Hence

∇φs = F−1T
s

(
∂φs

∂Fs

)
[Gs] = F−1T

s

(
−φsF

−1T
s +

1

ρdetFs

∂Θ̂s

∂Fs

)
[Gs] .

Thus, (7.5) for the momentum transfer term for the fluid phase, πf , now becomes

πf = −κ(vf − vs) −
1

2
Γf (vf − vs) + ζ∇φf + ρψf∇φs

= P∇φf − κ(vf − vs) −
1

2
Γf (vf − vs).(8.10)

Noting the conservation of linear momentum,

πf + Γfvf + πs + Γsvs = 0

then gives the momentum transfer term for the solid phase, πs, being

πs = P∇φs + κ(vf − vs) −
1

2
Γf (vf − vs).(8.11)

In a detailed analysis of Darcy’s law for growing porous media, Preziosi and Farina [36]
have shown that the process of interphase mass exchange plays a negligible role in
momentum transfer. Thus, the final term in each of (8.10) and (8.11) may be neglected
in practice.

Returning to the constitutive equation for the stress in the solid (8.5), note
that the quantity Θ̂s depends on both the mass exchange term, Γs, and the solid
phase deformation, Fs. Clearly, then, manipulation of this equation into a useable
form requires a phenomenological assumption about the functional form of the mass
exchange term. Furthermore, the distinguishing feature of a mass-exchange model
which describes biological growth, as opposed to, say, models which describe solidifi-
cation/melting or some other phase change, is the fact that the mass-exchange term,
Γs, and the expansion/contraction of the solid matrix, detFs, are not independent.
Indeed, such is the very essence of the unique closure problem peculiar to the study of
biological growth, and it is a novel feature of the present work that such phenomeno-
logical aspects of growing tissues may be incorporated into the modeling framework.

Consider that the balance of mass for the solid phase may also be expressed in
the form

ρ
Dsφs

Dt
+ φsρ

1

detFs

Ds(detFs)

Dt
= Γs.(8.12)

Note that

ρ
Dsφs

Dt
=

Ds

Dt

(
ms

Vm

)
,

where ms is the mass of the solid phase in Vm, the volume of the mixture. Now

Ds

Dt

(
ms

Vm

)
=

Dsms

Dt

(
1

Vm

)
− φsρ

Vm

DsVm

Dt
.
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Since

Dsms

Dt

(
1

Vm

)
= Γs,

the quantity

−φsρ

Vm

DsVm

Dt

reflects the time rate of change of the solidity which results from the flow of fluid into,
or out of, the deformed solid matrix. Now since

Γs =
Ds

Dt

(
ms

Vm

)
︸ ︷︷ ︸

total

−
(
−φsρ

Vm

DsVm

Dt

)
︸ ︷︷ ︸
flow/deformation

,

then

Ds(φsρ)

Dt︸ ︷︷ ︸
total

+φsρ
1

detFs

Ds(detFs)

Dt︸ ︷︷ ︸
flow/deformation

=
Ds

Dt

(
ms

Vm

)
︸ ︷︷ ︸

total

+

(
φsρ

Vm

DsVm

Dt

)
︸ ︷︷ ︸
flow/deformation

= Γs

describes the mass balance for the solid phase.
Therefore, since the solidity is regulated by two separate processes—mass ex-

change and solid matrix deformation/fluid flow—a further constitutive postulate is
required to relate any two of the three quantities φs, Γs, and detFs to decompose the
balance of mass into two independent equations.

Suppose, for example, that the mass exchange and solid matrix deformation are
related in such a way as to keep the volume fractions constant, reflecting a tissue
which tends to exhibit a “natural” ratio of cells to extracellular fluid. (Note that this
particular choice of constitutive postulate would be insufficient to model a growing
tumor tissue which contains regions of coagulative necrosis, since these regions consist
predominantly of fluid and cellular debris and are therefore characterized by signifi-
cantly higher proportions of fluid than the rest of the tissue.) In this case, the balance
of mass would be represented by

ρ
Dsφs

Dt
= 0(8.13)

and

ρφs
1

detFs

Ds(detFs)

Dt
= ρφs∇ · vs = Γs.(8.14)

Now that the constitutive postulate (8.14) has been proposed, the phenomenological
assumption for Γs is no longer required to be a function of detFs.

Assuming, for example, that Γs is proportional to the effective cell density, ρφs,
and to some regulating factor such as nutrient concentration, c, implies that

Γs = αρφsc,(8.15)

where α is a constant of proportionality and where the functional form for c will also be
determined by a phenomenological assumption (appealing to a diffusion model, say).
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Now (8.1) becomes

1

ρφsdetFs

Ds

Dt
(ρφsdetFs) = αc,

so that

ρφsdetFs = e
∫ t
0
αc(Xs,τ)dτ ,

which gives

∂φs

∂Fs
= −φsF

−1T
s .(8.16)

Now the constitutive equations reduce to

σs = −φsP I + φsρFs

(
∂ψs

∂Fs

)T

(8.17)

and

σf = −φfP I,(8.18)

with P being given by (8.7). Substitution of the new definition for ∂φs

∂Fs
into (8.8) and

(8.9) then produces (8.10) and (8.11), illustrating that the momentum equations are
unaffected by the simplified definition for ∂φs

∂Fs
.

8.1. Linear elasticity. If the solid phase is assumed to be elastically isotropic,
the Helmholtz free energy density is a function of the solid deformation gradient, Fs,
through the left Cauchy–Green strain tensor defined by Bs = FsF

T
s , so that

Fs

(
∂ψs

∂Fs

)T

= 2Bs
∂ψs

∂Bs
.(8.19)

To formulate a linearized constitutive equation, an approximate expression is required
for the right-hand side of (8.19) which is valid in the vicinity of the reference state

ξ̂0R. Departures from ξ̂0R may be measured by the quantity ε defined by

ε2 = trHsH
T
s + C (GradHs ⊗ GradHs) + (vf − vs) · (vf − vs),

where Hs = Fs − I is the displacement gradient of the solid phase. Thus, departure
from the reference state, ξ̂0R, is small when ε < 1.

Moreover,

Bs = I + 2Es + HsH
T
s

= I + 2Es + O(ε2),

where Es is the classical infinitesimal strain tensor defined by

Es =
1

2

(
Hs + HT

s

)
.(8.20)

Thus,

Fs

(
∂ψs

∂Fs

)T

=
∂ψs

∂Es
+ 2Es

(
∂ψs

∂Es
(ξ̂0R)

)
(8.21)
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in the linear theory. The Helmholtz free energy density for the solid phase, ψs, is now
to be expanded into a polynomial about ξ̂0R, including terms up to second order since
ψs must be differentiated to obtain the stress. Furthermore, since the Helmholtz free
energy is, by definition, the energy available to do mechanical work, it is a function
only of the component of the strain tensor associated with a stress response. Indeed,
the strain tensor Es may be decomposed into the contribution due to growth EG

s and
the contribution due to stress ES

s , i.e.,

Es = EG
s + ES

s .

Now,

ψs (Bs) = ψs (I) + σ0

(
trES

s

)
+

1

2
λ0

(
trES

s

)2
+ µ0tr

(
ES

s ES
s

)
+ O(ε3).(8.22)

Thus, substituting (8.22) into (8.21) yields

σs = −φsP I + λ
(
trES

s

)
I + 2µES

s ,

where

λ = λ(ρs, φs) = λ0

and

µ = µ(ρs, φs) = µ0 + σ0,

where σ0, the so-called prestress, will be assumed zero. Now, the portion of the strain
tensor due to growth may be expressed by

EG
s = gΩ,

where g is the increase in volume per unit volume of the solid matrix due to growth
(as yet unrelated to Γs), and

Ω �

⎡
⎣γ1 0 0

0 γ2 0
0 0 γ3

⎤
⎦(8.23)

defines the anisotropy tensor, where γ1, γ2, and γ3 are the anisotropic growth mul-
tipliers defined by Araujo and McElwain [4, 3] with γ1 + γ2 + γ3 = 1. Hence,
isotropic growth corresponds to γ1 = γ2 = γ3 = 1

3 . By allowing the tissue to grow
anisotropically in response to the prevailing stress field, so that the expansion oc-
curs preferentially in directions of least stress, the constitutive law is able to exhibit
stress-relaxation in the absence of viscous dissipation. The mathematical theory of
anisotropic growth has been developed by Araujo and McElwain [4, 3], while the
phenomenon has been demonstrated experimentally by Helmlinger et al. [24]. Thus,
in regularizing the elasticity by incorporating stress-relaxation into the growth com-
ponent of the constitutive equation rather than in the stress-response component,
anisotropic growth may be said to impart a pseudo-viscoelasticity to growing tissues.
Appropriate functional forms for the anisotropic growth multipliers will be considered
in the next paper in this series.
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Now the constitutive equation for the solid phase becomes

σs = −φsP I + λ (trEs − g) I + 2µ (Es − gΩ)

= −φsP I + λtrEsI + 2µEs − g (3λ + 2µ)Ω.(8.24)

Note that (8.24) was derived based on the two key assumptions of the intrinsic incom-
pressibility of the phases and constant volume fractions, which together imply that
λ → ∞. While this may generally be introduced to the model by initially permitting
compressibility and then allowing λ to tend to infinity in the solution of the boundary
value problem, a more convenient approach in this case is to make the strain tensor
the subject of the equation by noting that the trace of (8.24) is

trEs =
trσs + 3φsP

3λ + 2µ
+ g,

which gives

Es =
1

2µ
σs −

λ

2µ(3λ + 2µ)
(trσs + 3φsP )I + gΩ.(8.25)

Now, in the limit as λ → ∞, (8.25) becomes

Es =
1

2µ
σs −

(
trσs + 3φsP

6µ

)
I + gΩ.(8.26)

Note that while (8.26) represents a correct statement of the relationship between stress
and strain when growth occurs, it must be able to reflect the fact that growth is a
continuous process which creates movement. Thus, to accommodate the continuous
expansion of the solid matrix due to the growth process, (8.25) must be differentiated
with respect to time using an objective convected tensorial derivative such as the
corotational (Jaumann) derivative (see, for example, [8] or [27]). Thus, (8.26) becomes

DEs

Dt
=

1

2µ

Dσs

Dt
− 1

6µ

D
Dt

(trσs + 3φsP ) I +
Dg

Dt
Ω,

where the notation D
Dt denotes an appropriate convected derivative. Taking the trace

of this new equation now gives1

Dg

Dt
= ∇ · vs +

3φs

2µ

DP

Dt
,

which identifies the relationship between g and Γs via (8.14), being

Γs = φsρ
Dg

Dt
− 3φ2

sρ

2µ

DP

Dt
.(8.27)

This enables the constitutive equation to be expressed in the form

DEs

Dt
=

1

2µ

Dσs

Dt
− 1

6µ

D
Dt

(trσs + 3φsP ) I +

(
∇ · vs +

3φs

2µ

DP

Dt

)
Ω

1Strictly, the trace of the convected derivative of the infinitesimal strain tensor should be the
divergence of the velocity vector with respect to the reference coordinates, i.e., Div(vs) rather than
∇ · vs, based on the definition of the infinitesimal strain tensor given in (8.20). Nevertheless, if the
strains required to ensure compatibility are small, as appropriate to the use of linearized constitutive
equations, then Div(vs) and ∇ · vs may be used interchangeably here.
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or

DEs

Dt
= ∇ · vsΩ +

1

2µ

D
Dt

(
σs +

1

3
trσs

)
+

φs

2µ

DP

Dt
(3Ω − I) ,(8.28)

which reduces to

DEs

Dt
=

1

3
∇ · vsI +

1

2µ

D
Dt

(
σs +

1

3
trσs

)
(8.29)

in the special case of isotropic growth.

9. Summary of biphasic equations and comparison with single phase
equations. Table 9.1 gives a summary of the suite of equations for the biphasic
model of a growing tissue developed in this paper. Intriguingly, only the special case
of isotropic growth gives rise to a solid phase constitutive equation identical to that
used in single phase models, which consider growth as an analogy to thermal expan-
sion. Nevertheless, it is essential to recognize that this combination of elasticity and
isotropic growth does not incorporate the crucial aspect of stress-relaxation into the
constitutive law. Indeed Lubkin and Jackson [29] explain that “the fatal mathematical
combination of multiple phases, elasticity, and contractility renders the contractile-
poroelastic model ill-posed. . . . The elasticity must then be regularized by a viscous
term in order for solutions to exist.” Araujo and McElwain [4] have shown that the
elasticity may be regularized by considering anisotropic growth, thereby obviating the
necessity to appeal to more complicated viscoelastic principles in many situations.

Table 9.1

Comparison of biphasic equations with single phase equivalents.

Equation type Biphasic equations Single phase equation

Balance of mass φsρ∇ · vs = Γs ρ∇ · v = Γ

ρDsφs
Dt

= 0

∇ · (φsvs + φfvf ) = 0

Constitutive equations:

Isotropic growth DEs
Dt

= 1
3
∇ · vsI

DEs
Dt

= 1
3
∇ · vsI

+ 1
2µ

D
Dt

(
σs + 1

3
trσs

)
+ 1

2µ
D
Dt

(
σs + 1

3
trσs

)
σf = −φfP I

Anisotropic growth DEs
Dt

= ∇ · vsΩ
DEs
Dt

= ∇ · vsΩ

+ 1
2µ

D
Dt

(
σs + 1

3
trσs

)
+ 1

2µ
D
Dt

(
σs + 1

3
trσs

)
+φs

2µ
DP
Dt

(3Ω − I)

σf = −φfP I

Momentum equations2 ∇ · σs + κ(vf − vs) = 0 ∇ · σ = 0

φf∇P = −κ(vf − vs)

2Note that, in keeping with other published models of growing tissues [26, 36], inertial and body
forces, as well as mass-exchange effects, are neglected in the momentum equations presented here.
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10. Concluding remarks. In this paper, a theoretical framework for a solid-
multiphase model of a growing tissue has been presented which extends the concepts
of poroelasticity to accommodate continuous volumetric growth. Moreover, in incor-
porating a solid phase, the model provides a basis for the study of residual stresses,
which is of fundamental importance in a wide range of studies in biology, physiology,
and tissue engineering.

The general equations developed in sections 2 through 6 have been applied to
a two-phase model of an elastic solid and an inviscid fluid in sections 7 through 9.
The analysis points to a crucial phenomenological aspect of tissue growth, illustrating
that such a process must consist of a coordinated combination of the “swelling” of the
solid (cellular) phase due to the influx of extracellular fluid—which is, in essence,
the inverse of the consolidation concept of poroelasticity—and the exchange of mass
whereby extracellular fluid is incorporated into the cellular phase. This combination of
processes necessitates the inclusion of an additional constitutive postulate—in which
the mass-exchange term is related to the solid phase expansion—among the modeling
equations to close the model.

In the present paper, a particular constitutive postulate has been chosen which
reflects a tissue whose ratio of cells to extracellular fluid is constant throughout its
volume. The assumption of linear-elasticity and mechanical isotropy (cf. isotropic
growth) for the solid phase then enables simple constitutive equations between stress
and strain to be specified for both the solid and fluid phases. Solutions to these
biphasic equations will be presented in the next paper in this series.

This work may be extended in a number of ways. More complicated relation-
ships between interphase mass exchange and solid phase expansion may be proposed,
enabling the model to consider the formation of necrotic regions. Additionally, the
equations could be rederived by incorporating a dependence of the Helmholtz free
energy of the solid phase, Ψs, on both the solid deformation gradient, Fs, and its
convected derivative, F̀s (see sections 6 and 7 of the present paper) to produce a vis-
coelastic constitutive law (see, for example, Pioletti et al. [35]). This would enable the
elasticity of the solid phase to be regularized in situations where anisotropic growth
provides insufficient stress-relaxation [3].

Appendix. Development of the dissipation inequality. In this section, the
second axiom of thermodynamics as expressed by (3.1) will be manipulated further
to obtain a form from which constitutive equations may be deduced readily. Incorpo-
rating the balance of mass as expressed by (2.1) enables (3.1) to be expressed in the
form

n∑
i=1

1

θ

[
Γiηiθ + φiρiθ

diηi
dt

+ θ∇.
(qi

θ

)
− φiρiri

]
≥ 0.(A.1)

Further, incorporating the energy equation (2.18) enables (A.1) to be expressed in a
form which does not include the rate of heat production per unit mass within the ith
constituent, ri, explicitly, being

n∑
i=1

1

θ

[
Γiηiθ + φiρiθ

diηi
dt

+ θ∇.
(qi

θ

)
− φiρi

diui

dt
+ tr(Liσi) −∇.qi + εi

]
≥ 0.

Introducing the relation

ε̂i � εi + Γi

(
ui +

1

2
vi.vi

)
+ vi.πi



1282 ROBYN P. ARAUJO AND D. L. SEAN MCELWAIN

now enables the inequality to be expressed in the form

n∑
i=1

[
φiρi

(
θ
diηi
dt

− diui

dt

)
+tr(Liσi) + ε̂i − Γi

(
ui +

1

2
vi.vi − ηiθ

)
−vi.πi

]
≥ 0.

The internal energies, ui, will be eliminated at this point in favor of the Helmholtz
free energy densities, ψi, where

ψi = ui − θηi.(A.2)

Hence, the inequality becomes

−
n∑

i=1

φiρi
diψi

dt
− ρmηm

dθ

dt
+ tr

n∑
i=1

(Liσi) −
n∑

i=1

Γi

(
ψi +

1

2
vi.vi

)
−

n∑
i=1

vi.πi ≥ 0.

At this stage, the chemical potential is introduced, being the linear transformation
defined by

Ki = ψiI −
σi

φiρi
;

see Bowen and Wiese [14], noting that in the present paper it is assumed that σi = σT
i

(see section 2.3). Therefore,

−
n∑

i=1

φiρi
diψi

dt
− ρmηm

dθ

dt
− tr

n∑
i=1

φiρiKi.Li + tr

n∑
i=1

φiρiψiLi

−
n∑

i=1

Γiψi −
n∑

i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0,

which further reduces to

−tr
n∑

i=1

φiρiKi.Li − ρmηm
dθ

dt
−

n∑
i=1

di

dt
(φiρiψi) −

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0(A.3)

by appealing to the balance of mass. Some authors (see, for example, Bowen [12])
define the quantity

Ψi = φiρiψi

which represents the Helmholtz free energy of the ith constituent per unit mixture
volume. Rewriting (A.3) in terms of Ψi gives

−tr

n∑
i=1

φiρiKi.Li − ρmηm
dθ

dt
−

n∑
i=1

diΨi

dt
−

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0.(A.4)
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