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The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many

applications, e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling

and computational challenges. In a previous paper, we derived simplified electro-neutral (EN) models in

one-dimensional space where the thin boundary layers are replaced by effective boundary conditions. In

this paper, we extend our analysis to the multidimensional case where the EN model enjoys even greater

advantages. First, it is much cheaper to solve the EN models numerically. Second, EN models are easier to

deal with compared with the original PNP system, therefore it is also easier to derive macroscopic models

for cellular structures using EN models. The multi-ion case with a general boundary is considered for

a variety of boundary conditions including either Dirichlet or flux boundary conditions. Using systematic

asymptotic analysis, we derive a variety of effective boundary conditions directly applicable to the EN

system for the bulk region. To validate the EN models, numerical computations are carried out for both the

EN and original PNP system, including the propagation of action potential for both myelinated and unmyelinated

axons. Our results show that solving the EN models is much more efficient than the original PNP system.

DOI: 10.1103/PhysRevE.98.032404

I. INTRODUCTION

Ion transport plays a critical role in normal biological
functions, and in many cases, excessive charges accumulate
next to cell membranes and form thin boundary layers
(BLs). These BLs constantly adapt to the in- and ef-fluxes
of ions through pores formed by proteins embedded in cell
membranes, affecting membrane potential and therefore
cellular functions. When the overall flux is negligible, and
these changes in the BLs occur over a timescale shorter than
that of the normal biological function, one can approximate
the charge accumulation in the BL by an effective capacitor.
On the other hand, when the overall flux is not small, ignoring
these changes lead to inconsistency in the electro-neutral
status of an ionic solution away from these thin layers. In
Ref. [1] effective boundary conditions were derived so that
BLs do not need to be considered explicitly when the main
interest of the investigation is focused on the evolution of the
bulk ionic concentration, under the Dirichlet conditions for
ions. An extension to other boundary conditions including
flux conditions was given in our previous work [2] for the
problem in one-dimensional (1D) space.

The Poisson-Nernst-Planck (PNP) system is a mathemati-

cal model that describes the ion transport under the influence

of both an ionic concentration gradient and an electric field.

It is essentially a system coupling diffusion and electro-

statics, and the nonlinearity comes from the drift effect of

electric field on ions. Such a system and its variants have

extensive and successful applications in biological systems,

particularly ion channels on cell membranes [3,4]. It has also

been applied to many industrial fields, such as semiconductor
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devices [5] and the detection of poisonous lead by ion-

selective electrodes [6].
When applied to the biological systems, the PNP system

will possess a small dimensionless parameter. Such a small
parameter leads to the presence of BLs near the boundary of
the concerned domain, often called Debye or double layer in
the literature. For many decades, research efforts have been
devoted to BL analysis of the PNP systems. For example, sin-
gular perturbation analysis of PNP systems has been carried
out for narrow ion channels with a certain geometric structure
[7,8]. A geometric singular perturbation approach has been
developed to investigate the existence and uniqueness of
solutions in a stationary PNP system [9,10] as well as the
effects of permanent charge and ion size [11,12]. For a general
steady-state case, Wang et al. [13] have managed to reduce
the asymptotic solutions to a single scalar transcendental
equation.

Generally speaking, in BL analysis, the solution of a
PNP system consists of two parts: the BL solution near the
boundary and the bulk solution in the interior region of the
domain. The two solutions are connected by some matching
conditions. In 1D cases, some matching or continuity con-
dition has been proposed, e.g., the continuity of an electro-
chemical potential in Ref. [1]. This has been successfully
applied to the study of steady states of 1D systems, showing
the existence of multiple steady states with piecewise constant
fixed charge [14]. In a previous paper [2], we have conducted
a systematic BL study for the 1D dynamical PNP system
and derived various effective boundary conditions. We have
also managed to bring back high-order contributions into
such effective conditions, which are not negligible in most
biological applications. However, most practical cases are
two- or three-dimensional (2D or 3D), and we will extend the
study to the 2D case in this paper (3D is a straightforward
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generalization). These conditions replace the BL and have
potential applications for deriving macroscopic models [15]
for the bulk region in complicated structures. For example,
macro-equations are derived in the bulk region for the lens
circulation [16,17], by taking into account the fluxes through
membranes but ignoring the BL (where the fluxes calculated
there might not be accurate).

In addition to BL analysis, many conservative numerical

schemes have been developed for PNP systems, such as the

finite element method [18], finite-difference scheme [19], and

finite volume method [20–22], in one- and higher-dimensional

spaces [23,24]. It is well known that one challenge of com-

putation of PNP is how to accurately capture the BL. Since

functions vary rapidly in the BL, more mesh points are needed

in the BL than in the bulk region to attain certain accuracy

[25,26]. This increases the computational cost and/or requires

more sophisticated numerical approaches, especially when

there are many BLs in a complicated system. One attractive

idea is to derive effective conditions at the boundary to avoid

the need for resolving the BL, so that computation is needed

only for the bulk region. This becomes extremely important

in the multidimensional case and is the other motivation

of the current work. Our electro-neutral (EN) model with

effective boundary conditions can be solved with much less

computational power compared to the original PNP system.

This will be demonstrated in many numerical examples, in

particular the propagation of an action potential along axon.

The rest of the paper is structured as follows. In Sec. II

we present the EN theories. First, to illustrate the ideas, we

will study the two-ion case with a circular boundary. This is

followed by generalizations to multi-ion cases with general

boundaries. In Sec. III these effective boundary conditions

are validated by several numerical examples. In Sec. IV we

study one specific biological application, i.e., the propagation

of the action potential along an axon. Our EN model, together

with effective interface conditions, is very efficient to capture

the propagation of action potential. Finally conclusions and

discussion of future directions are given in Sec. V.

II. THE ELECTRO-NEUTRAL THEORIES

In this section, we investigate the 2D (or 3D) dynamical

PNP system and derive electro-neutral (EN) systems with

various effective boundary conditions. The domain is set to be

� with boundary Ŵ = ∂�. First, to illustrate the main ideas,

we will study the two-ion case with valencies ±1 and with a

circular boundary Ŵ. Then it is easily generalized to multi-ion

case with general boundaries.

Now we briefly recall the 2D (or 3D) dynamical PNP

system and introduce some assumptions for deriving EN

systems. Suppose there are n ion species, and let pi be the

ion concentrations and ψ be the electric potential. In �, the

dimensional PNP system is given by

−ǫ0ǫr�ψ = e0NA

n
∑

i=1

zipi,

∂tpi = −∇ · Jpi
= Di∇ ·

(

∇pi +
e0

kBT
zipi∇ψ

)

,

(1)

where i = 1, . . . , n. The first equation is the electrostatic

Poisson equation for ψ (x, t ) (x ∈ �), and the second (Nernst-

Planck) equation describes the ion transport for each ion

species pi (x, t ) (i = 1, . . . , n). The quantity Jpi
is the asso-

ciated flux vector for pi , and Di is the diffusion constant.

The flux consists of two parts: the linear part due to the ionic

concentration gradient and the nonlinear part from the drift

effect of the electric field. Other parameters are the vacuum

permittivity ǫ0, relative permittivity ǫr , elementary charge e0,

Avogadro constant NA, Boltzmann constant kB , and absolute

temperature T .

In the following, we will consider the dimensionless or

normalized version of the above PNP system; see Appendix D

for details of a nondimensionalization process. We still adopt

the same notations, and the PNP system for dimensionless

quantities pi, ψ in the normalized domain � is given by

−ǫ2
�ψ =

n
∑

i=1

zipi,

∂tpi = −∇ · Jpi
= Di∇ · (∇pi + zipi∇ψ ), (2)

where i = 1, . . . , n, and Di are some dimensionless diffusion

constants. Here ǫ ≪ 1 is a dimensionless small parameter and

defined by

ǫ =

√

ǫ0ǫrkBT

e2NAp0L2
, (3)

where p0 is some typical ion concentration and L is some

typical length of domain. This system is accompanied by

some initial conditions for pi and some suitable boundary

conditions for both ψ and pi . For example, we may propose

either a Dirichlet condition or flux condition for each ion

species pi . The initial effect is not considered in this work, and

we mainly limit ourselves to the case when the BL is already

present or gradually appears.

As in the 1D case [2], we assume that local electro-

neutrality (LEN) condition in the bulk region is satisfied, and

moreover the near global electro-neutrality (NGEN) condition

is satisfied, i.e., there is only at most O(ǫ) unbalanced charge.

The second assumption essentially puts some restriction on

the boundary conditions; see Remarks 3 and 4 in later sec-

tions. These conditions can be justified in many biological

applications, for example, in the neuronal axon [27]. It is

then natural to assume in the bulk region all the functions

concerned, and their derivatives are O(1):

ψ,∇ψ, . . . ∼ O(1), pi, ∂tpi,∇pi, . . . ∼ O(1). (4)

In the next subsections, we will derive the EN systems and

associated effective boundary conditions based on these as-

sumptions.

A. Two-ion case with circular boundary

In this subsection, we investigate the typical case of two

ions with valences z1 = 1, z2 = −1. Suppose that the bound-

ary Ŵ is a circle with radius r0 ∼ O(1). Polar coordinates

(r, θ ) will be adopted. We denote the cation and anion

as p1(x, t ) = p(r, θ, t ) and p2(x, t ) = n(r, θ, t ), and write

ψ (x, t ) = ψ (r, θ, t ).

032404-2



ELECTRONEUTRAL MODELS FOR A MULTIDIMENSIONAL … PHYSICAL REVIEW E 98, 032404 (2018)

From (2), the original PNP system for p, n,ψ is written as

−ǫ2

(

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2

)

= p − n,

−∂tp =
∂J r

p

∂r
+

1

r

∂J θ
p

∂θ
+

1

r
J r

p, (5)

−∂tn =
∂J r

n

∂r
+

1

r

∂J θ
n

∂θ
+

1

r
J r

n ,

where superscripts r, θ denote the normal and circumferential

fluxes.

Based on the previous assumptions, we obtain approxi-

mately the EN condition p ≈ n from the first equation in

Eq. (5), and more precisely we write in the bulk region

p = n = c + O(ǫ2), ψ = φ + O(ǫ2). (6)

Thus, the reduced EN system for c and φ is

∂tc = −∇ · J+
c = ∇ · (∇c + c∇φ),

∂tc = −∇ · J−
c = ∇ · (∇c − c∇φ), (7)

with remainder O(ǫ2), and it is equivalent to

∂tc = �c, ∇ · (c∇φ) = 0. (8)

The first equation is the standard diffusion equation for the

common concentration c in bulk, and the second is the conti-

nuity equation of electric current with effective conductance

c. In polar coordinates, (7) can be written as

−∂tc =
∂J r,±

c

∂r
+

1

r

∂J θ,±
c

∂θ
+

1

r
J r,±

c , (9)

where J r,±
c , J θ,±

c are normal and circumferential components

of fluxes J±
c . Then the objective is to find two effective

boundary conditions for the EN system (8), based on three

exact boundary conditions for the PNP system (5). In the

following, we present the results for the cases of Dirichlet

boundary conditions and flux boundary conditions. The proofs

of Propositions 1 and 2 are given in Appendix A.

Proposition 1. Suppose the LEN and NGEN conditions are

satisfied, the PNP system (5) is defined in circular domain

r < r0, and the Dirichlet boundary conditions are given by

ψ (r0, θ, t ) = ψ0(θ, t ),

p(r0, θ, t ) = p0(θ, t ), (10)

n(r0, θ, t ) = n0(θ, t ),

where the subscript 0 denotes quantities at r = r0, then we

have the effective boundary conditions for the EN system (8)

ln c0 + φ0 −
√

2J
r,+
c,0 ǫ

(c0)3/2
(e(ψ0−φ0 )/2 − 1) = ln p0 + ψ0 + o(ǫ),

ln c0 − φ0 −
√

2J
r,−
c,0 ǫ

(c0)3/2
(e(φ0−ψ0 )/2 − 1) = ln n0 − ψ0 + o(ǫ),

(11)

where J
r,±
c,0 denotes the normal flux J r,±

c at r = r0.

Remark 1. The leading-order condition in Eq. (11) is often

referred to as the continuity of electro-chemical (EC) potential

[1]. The high-order O(ǫ) correction indicates that if the flux

is 0 (e.g., the steady state), EC potential is constant across BL,

otherwise the flux modifies the EC potential at next order. For

practical implementation, one can use the equivalent boundary

conditions for c0 and φ0:

c0 =
√

p0n0 + ǫ
n

1/4
0 − p

1/4
0√

2
√

p0n0

(

n
1/4
0 J

r,+
c,0 − p

1/4
0 J

r,−
c,0

)

,

φ0 = ψ0 +
1

2
ln(p0/n0)

+ ǫ
n

1/4
0 − p

1/4
0√

2n0p0

(

n
1/4
0 J

r,+
c,0 + p

1/4
0 J

r,−
c,0

)

. (12)

The leading order terms are exactly the Dirichlet boundary

conditions for c, φ in the EN system (8), and to include

correction terms one could simplify approximate the fluxes

J
r,±
c,0 from the previous time step (see Sec. III B).

Proposition 2. Suppose the assumptions are the same as

Proposition 1, and the flux boundary conditions for PNP

system (5) are given by

J r
p (r0, θ, t ) = J r

p,0(θ, t ),

J r
n (r0, θ, t ) = J r

n,0(θ, t ), (13)

ψ (r0, θ, t ) = ψ0(θ, t ),

then we have the effective boundary conditions for the EN

system (8):

J
r,+
c,0 = J r

p,0 + ǫ∂t [
√

2c0(eζ/2 − 1)]

−
ǫ

r2
0

∂θ {
√

2c0(eζ/2 − 1)∂θ [ln c0 + φ0]} + o(ǫ),

J
r,−
c,0 = J r

n,0 + ǫ∂t [
√

2c0(e−ζ/2 − 1)]

−
ǫ

r2
0

∂θ {
√

2c0(e−ζ/2 − 1)∂θ [ln c0 − φ0]} + o(ǫ),

(14)

where ζ = φ0 − ψ0 is the zeta potential, and the subscript 0

denotes quantities at r = r0.

Remark 2. Keeping the O(ǫ) terms in Eq. (14) is necessary

for two reasons. First, in bulk equations (7) we have assumed

an O(ǫ2) remainder, so it is reasonable and consistent to

bring back the O(ǫ) terms on boundary conditions. Second,

neglecting the O(ǫ) terms is physically incorrect for EN

system as the solution would not be unique (e.g., φ can differ

by a constant). The effective flux conditions incorporate two

effects: (1) the ∂t term accounts for the accumulation of ions in

BL, like a capacitor and (2) the ∂θ term represents the spacial

variation along the circumferential boundary. Such terms can

be essential in many biological applications, as in the example

of the action potential in later sections. For practical imple-

mentation, one can do an addition and a subtraction of these

two conditions to obtain formulas for fluxes ∂rc and c∂rφ at

the boundary for the system (8). The high-order terms also

involve c0, φ0, and usually an implicit scheme will be used.

Remark 3. In the above proposition, the given fluxes

J r
p,0, J

r
n,0 can be either O(1) or O(ǫ), as long as the NGEN is

satisfied. This means when fluxes are O(1), we should impose

032404-3



ZILONG SONG, XIULEI CAO, AND HUAXIONG HUANG PHYSICAL REVIEW E 98, 032404 (2018)

some restriction on the fluxes,
∫ t

0

∫

Ŵ

(

J r
p,0 − J r

n,0

)

dŴ dt = O(ǫ), (15)

which means the total current flowing into the domain is O(ǫ).

In some cases, the flux is not explicitly given but is related

to the concentrations and electric potential by some model.

For example, in biological applications there is the Hodgkin-

Huxley model [27] or GHK flux model [28], and for elec-

trolytes there are Chang-Jaffle boundary conditions [6,29,30].

Suppose the boundary condition is in the form J r
p,0 =

f (p0, ψ0), where f is some given function, then we need to

replace J r
p,0 by f in Proposition 2 and supplement these ef-

fective flux conditions with those conditions in Proposition 1.

B. Multi-ion case with general boundary

In this subsection, we extend the preceding results for two

ion species to the general multi-ion species case, and we

consider a domain � inside a general 2D boundary Ŵ. We

assume that Ŵ is smooth without singularities and that the

curvature is not too large, say, O(1).

We use curvilinear coordinates to represent a region near

boundary. The boundary Ŵ is parametrized by a variable η,

and let ξ denote the signed distance (outward means positive)

to the boundary. The tangent vector along Ŵ is defined by

gη =
ds

dη
= g(η)eη, (16)

where s(η) represents the position vector on the boundary. The

function g(η) is the metric and g = 1 if η is suitably chosen as

the arc length variable, and eη is the tangent unit vector. The

unit outward normal to the boundary is denoted by eξ . Then

the curvature κ (η) on the boundary is defined by

κ (η) = −
1

g(η)

deξ

dη
· eη. (17)

We consider the original PNP system (2) with n species of

ions. With previous assumptions, we write in the bulk region

pi = ci + O(ǫ2), ψ = φ + O(ǫ2). (18)

Then the EN system for bulk region is

∂tci = −∇ · Jci
= Di∇ · (∇ci + zici∇φ), (19)

where i = 1, . . . , n. Alternatively, by the EN condition
∑n

i=1 zici = 0, the above EN system for n unknowns

c1, . . . , cn−1, φ can be written as

∂tci = −∇ · Jci
= Di∇ · (∇ci + zici∇φ),

n
∑

k=1

zkDk∇ · (∇ck + zkck∇φ) = 0, (20)

for i = 1, . . . , n − 1 and whenever cn appears we should re-

place it by cn = − 1
zn

∑n−1
i=1 zici . The last equation in Eq. (20)

is roughly the current continuity equation for φ, e.g., if

Di = D0 are the same constant, then the last equation for φ

reduces to ∇ · (σ∇φ) = 0 with the effective conductance σ =
∑n

k=1 z2
kck . In the following theorems, we present three cases

of boundary conditions and associated effective boundary

conditions for EN system (20), and the proofs are given in

Appendix A.

Theorem 1. Suppose LEN and NGEN conditions are satis-

fied, and let (ξ, η) be the local coordinates near the boundary

Ŵ = ∂�. The boundary Ŵ is characterized by metric g(η) and

curvature κ (η), which are supposed to be O(1). For PNP

system (2), the boundary conditions of normal fluxes and

electric potential are given by

ψ (0, η, t ) = ψ0(η, t ), J ξ
pi

(0, η, t ) = J
ξ

pi ,0
(η, t ), (21)

then we have the effective boundary conditions for EN system

(20)

J
ξ

ci ,0
=J

ξ

pi ,0
+ ǫ∂tFi0 − ǫ∇Ŵ · (DiFi0∇Ŵμi0) + o(ǫ), (22)

where ∇Ŵ = 1
g
∂η in this 2D case, and the subscript 0 denotes

quantities on the boundary Ŵ (i.e., at ξ = 0), and

μi0 = ln ci0 + ziφ0,

Fi0 = Fi (c10, . . . , cn−1,0, φ0 − ψ0)

= ±
ci0√

2

∫ eφ0−ψ0

1

uzi − 1
√

∑n
k=1 ck0(uzk − 1)

du

u
. (23)

In Fi , the ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0

respectively, but Fi is well defined around φ0 = ψ0, and if Fi

can be integrated out, the expressions from the two cases are

the same (see Appendix B).

Remark 4. The above theorem is also valid in three di-

mensions; see the proof in Appendix A (in three dimensions

the following Theorems 2 and 3 will not change). In above

2D case, the surface gradient ∇Ŵ is a scalar operator, and

for the 3D case ∇Ŵ will be a vector operator on a surface.

The ∇Ŵ term is similar to a term in Eq. (2.246) of Ref. [31]

under linearization of Fi0. In the above effective conditions,

the ∂t term plays a role of a nonlinear capacitor, and the

∇Ŵ term accounts for the ion transport in BLs along the

boundary. In view of definition (A31), the term Fi0 accounts

for the accumulation of the ith ion in the BL. Only the

metric parameter g(η) is present, while the curvature does

not influence them as long as it is not very large. For the

two-ion case with formula (B1), the above conditions reduce

to those in Proposition 2. Similar arguments in Remarks 2 and

3 still apply here; particularly, the integrand in Eq. (15) should

be replaced by
∑n

i=1 J
ξ

pi ,0
. For practical implementation, the

conditions of J
ξ

ci ,0
(i = 1, . . . , n − 1) in Eq. (22) provide flux

conditions for (20)1, and the summation
∑n

i=1 ziJ
ξ

ci ,0
gives the

flux condition for (20)2.

Theorem 2. Suppose the assumptions are the same as

Theorem 1. For the PNP system (2), the Dirichlet boundary

conditions on Ŵ are given by

ψ (0, η, t ) = ψ0(η, t ), pi (0, η, t ) = pi0(η, t ), (24)

where i = 1, . . . , n, then for the EN system (20) we have the

effective boundary conditions

ln ci0 + ziφ0 −
ǫJ

ξ

ci ,0

Di

fi0 = ln pi0 + ziψ0 + o(ǫ), (25)
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where i = 1, . . . , n, the subscript 0 denotes quantities at

ξ = 0, and

fi0 = fi (c10, . . . , cn−1,0, φ0 − ψ0)

= ±
1

√
2ci0

∫ eφ0−ψ0

1

u−zi − 1
√

∑n
k=1 ck0(uzk − 1)

du

u
. (26)

Here the ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0, but

fi is well defined around φ0 = ψ0, and if fi can be integrated

out, the expressions from the two cases are the same (see

Appendix B).

Similar to Remark 1, the leading order conditions are the

continuity of the EC potential. For practical implementation,

one would use equivalent explicit Dirichlet conditions for ci0

and φ0 like (12). The leading order terms together with EN

condition imply
n

∑

i=1

zipi0e
zi (ψ0−φ0 ) = 0, (27)

from which φ0 is obtained, and then ci0 (i = 1, . . . , n − 1) are

obtained from (25). These are leading order Dirichlet condi-

tions for the EN system (20). Explicit high-order correction

can be obtained by replacing quantities ci0 and φ0 in fi by the

above leading order approximations.

Theorem 3. Suppose the assumptions are the same as

Theorem 1. For the PNP system (2), the boundary conditions

on Ŵ are given by

γ ∂ξψ (0, η, t ) = ψ̃0(η, t ) − ψ (0, η, t ),

J ξ
pi

(0, η, t ) = J
ξ

pi ,0
(η, t ), (28)

where γ � O(1) is a parameter and ψ̃0 is some given func-

tion, then for the EN system (20) we have the same effective

flux conditions (22) and (23) as in Theorem 1 except that

ψ0 ≡ ψ (0, η, t ) is determined by

ψ0 − ψ̃0 = ±
γ

ǫ

√

√

√

√2

n
∑

i=1

ci0(ezi (φ0−ψ0 ) − 1), (29)

where ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0,

but the right-hand side is well defined near ψ0 = φ0 (see

Appendix B).

As the above Robin-type boundary condition often appears

in modeling cell membranes, here we briefly mention an ex-

ample relevant to macroscopic models for cellular structures.

Suppose ψ and ψ̃ denote the electric potential inside and out-

side a cell, and on the tissue scale they are almost a constant

φ0 and φ̃0 (say, averaged quantities). But they are not constant

in the BL near a membrane and are connected by condition

(28) on a membrane with γ = ǫ2/Cm where Cm is some di-

mensionless membrane capacitance [cf. (45) in Sec. IV]. The

average of each ion concentration in the cell may be defined as

p̄i ≡
1

Vcell

∫

Vcell

pi dx

=
1

Vcell

∫

Vcell

ci dx +
1

Vcell

∫

VBL

pi − ci dx

= ci0 +
Sm

Vcell

ǫFi0(c10, . . . , cn−1,0, φ0 − ψ0), (30)

where VBL is some region containing the BL, Fi0 is in

Eqs. (23) or (A31), Sm is the surface area of a cell, ci in a cell

is also considered a constant ci0 on the tissue scale, and ψ0 is

determined by (29). As estimated in Remark 10 of Ref. [2],

we have O(ǫ) ≪ γ < O(1), and hence variation φ0 − ψ0 is

small as in (A43). Then we can simplify (29) and (30) based

on small φ0 − ψ0. It is easy to show from (A31) and (29) that

ziFi0 =
z2
i ci0

√

∑n
k=1 z2

kck0

(φ0 − ψ0),

γ

ǫ

√

√

√

√

n
∑

k=1

z2
kck0(φ0 − ψ0) = ψ0 − ψ̃0 ≈ φ0 − φ̃0, (31)

and thus Fi0 can be expressed by averaged quantities

ci0, φ0, φ̃0. By a summation, we see that

n
∑

i=1

zi p̄i =
Sm

Vcell

ǫ

n
∑

i=1

ziFi0

=
Sm

Vcell

ǫ2

γ
(φ0 − φ̃0)

=
Sm

Vcell

Cm(φ0 − φ̃0). (32)

This means that the averaged quantities p̄i on a whole cell

including BLs do not satisfy electro-neutrality exactly but

are approximated by a linear capacitor. This provides one

explanation that some works [31,32] in the literature can use

a capacitor to model the BL effect in macroscopic models.

More details and application to specific situations will be left

as future study.

III. NUMERICAL EXAMPLES

In this section, we present some numerical examples to

verify the previous effective boundary conditions and to show

the accuracy of the EN system.

A. A steady-state problem

As a first example to verify the previous effective con-

ditions, we study a steady-state problem [1,2], since it can

be solved analytically for the EN system. We consider an

annulus domain �, which is defined by 1 � r � 2 in polar

coordinates (r, θ ). We consider a 2D steady-state case for

two ions p(r, θ ), n(r, θ ) with valencies z1 = 1, z2 = −1. The

boundary conditions in (r, θ ) coordinates are

p(1, θ ) = n(1, θ ) = 1, ψ (1, θ ) = 0,

p(2, θ ) = 1, J r
n (2, θ ) = 0, ψ (2, θ ) = −V. (33)

Due to symmetry, the original PNP system (5) reduces to a 1D

problem

−ǫ2

(

d2ψ

dr2
+

1

r

dψ

dr

)

= p − n,

r

(

dp

dr
+ p

dψ

dr

)

= −j, (34)

dn

∂r
− n

dψ

∂r
= 0,
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TABLE I. Comparison of flux j with fixed V = 1 and different

ǫ, where “Leading” and “Present” are from formulas (37) and (38),

and “PNP” is obtained by solving the dynamic PNP system.

ǫ 0.1 0.05 0.01

Leading 1.1353 1.1353 1.1353

Present 1.1687 1.1519 1.1386

PNP 1.1718 1.1527 1.1387

where j is some flux constant. The aim is to determine the

current-voltage j -V relation. Hereafter, the argument θ in

functions will be omitted. Since it is electro-neutral at r = 1,

there is only a BL near the outer boundary r = 2. The EN

system (9) is

dc

dr
+ c

dφ

dr
=

−j

r
,

dc

dr
− c

dφ

dr
= 0. (35)

With boundary condition c(1) = 1, φ(1) = 0, the 1D analyti-

cal solution can be obtained:

c(r ) = 1 −
j

2
ln(r ), φ(r ) = ln(c(r )). (36)

By continuity of electro-chemical potential at r = 2 [see

leading order of (11)], we get

j =
2(1 − e−V/2)

ln 2
. (37)

The present effective condition (11) implies

2 ln

(

1 −
j

2
ln 2

)

− 2ǫj

[ √
2e−V/2

(2 − j ln 2)2
−

1

(2 − j ln 2)3/2

]

= −V, (38)

where an O(ǫ) correction is present.

In the numerical verification, we use the dynamic system

(5) with boundary conditions (33) and the following initial

conditions at t = 0:

p(r, θ, 0) = 1, n(r, θ, 0) = 1. (39)

The solution tends to the steady-state solution of (33) and (34),

and the flux j near the steady state can be found. A finite-

volume method with refined mesh near the outer boundary

r = 2 is adopted in the numerical simulation, since we require

more accuracy for flux j . The flux j at time t = 20 is almost

a constant and used as the exact value. With V = 1 and

ǫ = 0.1, 0.05, 0.01, we give the results of flux j using leading

order condition (37) and the present condition (38) in Table I.

It can be seen that the present effective condition produces

better results and the O(ǫ) term is correct. Figure 1 shows the

good agreement in the bulk region between EN solution (36)

with flux in (38) and the numerical solution at t = 20 with

ǫ = 0.05. In order to show the error of solution with respect

to small parameter ǫ, Table II compares the maximum errors

of c(r ) and φ(r ) in Eq. (36), in the bulk region [1,1.5] with

different ǫ.

1 1.2 1.4 1.6 1.8 2

r

-1

-0.5

0

0.5

1

p

n

c

FIG. 1. Comparison between analytic bulk solution with numer-

ical solution at t = 20, with ǫ = 0.05. Dots represent the exact

solutions of p, n, ψ , and solid lines are the approximate solutions

of c, φ.

B. A dynamic problem with Dirichlet conditions

Now we consider the circular domain � defined by r � 1

and study a dynamic two-ion case with Dirichlet boundary

conditions. The original PNP system for p, n,ψ is given by

(5), and the boundary conditions are adopted as

ψ (1, θ, t ) = 0, p(1, θ, t ) = 1 + t sin(|θ |/2),

n(1, θ, t ) = 1 + t cos(|θ |/2), −π < θ � π. (40)

In this example, both p and n increase from 1 as time evolves,

but the increased magnitudes are different between p and n

for fixed θ , and therefore the BL will gradually appear. We

take ǫ = 0.05 as an illustration, and the finite element method

with refined mesh near boundary r = 1 is used to solve this

PNP system.

In this example, the EN system in Eq. (8) is solved with ef-

fective conditions in Eq. (12) in Remark 1. More precisely, the

finite element method (without refined mesh near boundary) is

also used in the simulation. We conduct two implementations:

(1) with leading order boundary conditions,

c(1, θ, t ) =
√

p(1, θ, t )n(1, θ, t ),

φ(1, θ, t ) = 1
2

ln(p(1, θ, t )/n(1, θ, t )), (41)

TABLE II. Comparison of maximum errors of c(r ) and φ(r ) in

the bulk region r ∈ [1, 1.5] with different ǫ, where p and n are from

dynamic PNP system, and c and φ are from (36) with associated flux

j in Table I.

ǫ 0.1 0.05 0.01

PNP |p − n| 4.8232 × 10−3 7.3240 × 10−4 3.1258 × 10−5

|c − p| 2.8585 × 10−3 1.4192 × 10−3 5.6801 × 10−4

|ψ − φ| 5.2579 × 10−3 1.8024 × 10−3 5.8205 × 10−4
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TABLE III. Maximum error in concentration c(x, t ) and po-

tential φ(x, t ) in some bulk region r ∈ [0, 0.5] and t = 0.5, using

leading order condition (41) and present condition (12).

|c − p| |φ − ψ |

Leading 4.6304 × 10−4 2.7890 × 10−4

Present 3.0312 × 10−5 1.3641 × 10−4

PNP |p − n| 3.3183 × 10−5 –

and (2) the high-order boundary conditions (12) with a O(ǫ)

term, where an explicit method is used to treat the fluxes J
r,±
c,0

(here at r = 1) by the estimate from previous time step.

By using the numerical results of p(x, t ) and ψ (x, t ) of

the original system as a reference solution, Table III gives the

maximum errors of c(x, t ) and φ(x, t ) in some bulk region

r ∈ [0, 0.5] at t = 0.5. The results indicate that the accuracy

is very good with the effective boundary conditions. Fig-

ure 2 shows the comparison between p(r, θ, t ) from the PNP

system and c(r, θ, t ) from the EN model, and Fig. 3 shows

the comparison between ψ (r, θ, t ) from the PNP system and

φ(r, θ, t ) from the EN model with boundary condition (12)

at t = 0.5. They show that the approximate solutions c(x, t )

and φ(x, t ) agree very well with exact solutions. Furthermore,

FIG. 2. Comparison of concentrations: (a) p(r, θ, t ) from the

PNP system, (b) c(r, θ, t ) from the EN model with present condition

(12) at t = 0.5.

FIG. 3. Comparison of electric potentials: (a) ψ (r, θ, t ) from the

PNP system, (b) φ(r, θ, t ) from the EN model with present condition

(12) at t = 0.5.

the EN system allows for relatively large mesh and time

step sizes, and as a result the computational time is greatly

reduced. For instance, it takes roughly 4.8 h to compute the

original PNP system up to t = 0.5 while it takes only 2 min

for the EN system on the same computer (processor: 4 GHz,

i76700K; memory: 32 GB).

C. A dynamic problem with flux conditions

As a second dynamic example, we study the two-ion case

in circular domain � with flux conditions. More precisely, we

propose at r = 1,

ψ (1, θ, t ) = 0, J r
p (1, θ, t ) = 4ǫ sin(θ ),

J r
n (1, θ, t ) = 2ǫ cos(θ ), −π < θ � π, (42)

where ǫ = 0.05 as in the previous example. In this example,

the integral of J r
p or J r

n over the entire boundary (θ from −π

to π ) will be 0, and so the NGEN condition is automatically

satisfied.

In the simulation, a finite element method with refined

mesh (as in previous example) is used for the original sys-

tem (5,42). A uniform mesh is used for EN system (8)

together with effective boundary conditions from (14) by

an addition and subtraction. For boundary condition (14), a

linearized implicit scheme is used to treat the ∂t term, while an
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FIG. 4. Comparison of concentrations: (a) p(r, θ, t ) from the

PNP system, (b) c(r, θ, t ) from the EN model with present condition

(12) at t = 0.5.

explicit scheme is used to treat the ∂θ term. Figure 4 shows

the comparison between p(r, θ, t ) from the PNP system and

c(r, θ, t ) from the EN model, and Fig. 5 shows the comparison

between ψ (r, θ, t ) from the PNP system and φ(r, θ, t ) from

the EN model at t = 0.5, which is almost at steady state.

They show that the approximate solutions c(x, t ) and φ(x, t )

agree very well with exact solutions. The maximum errors

of c, φ for some bulk region r ∈ [0, 0.5] at t = 0.5 are,

respectively, 4.2 × 10−5 and 0.017. Again, the EN system

allows for relatively large mesh and time step sizes, and hence

the computational time is greatly reduced, i.e., about 4.4 h for

the original PNP and 17 min for the EN system on the same

computer (processor: 4 GHz, i76700K; memory: 32 GB).

IV. EN MODEL FOR ACTION POTENTIAL PROPAGATION

As a concrete example, we consider the problem of prop-

agation of an action potential along a neuronal axon. This

problem was first investigated in Ref. [33] by a cable model.

Later many works have simulated it in many cases [34,35] and

have attempted to recover the cable model based on the PNP

system and other assumptions [36–38]. We refer to the book

[39] for a good summary of a cable model. In this section,

we first formulate the problem by using a PNP system and

FIG. 5. Comparison of electric potentials: (a) ψ (r, θ, t ) from the

PNP system, (b) φ(r, θ, t ) from the EN model with present condition

(12) at t = 0.5.

then derive an EN model. Then we present the simulations

based on the PNP system and the EN model to show the

effectiveness of the EN model.

A. The PNP formulation

Here we follow the formulation based on a PNP system in

Ref. [35]. Due to symmetry of the axon, the problem is treated

as a 2D problem. In Cartesian coordinates (see Fig. 6), the

domain � is given by (x, y) ∈ [0, L1] × [0, L2], where the y

direction is normal to the membrane. The membrane is the

middle line y = L2/2, the lower region �I is the intracellular

space, and the upper region �E is the extracellular space. Only

three basic ions (sometimes called bioions) Na+, K+, Cl− are

FIG. 6. Sketch of the domain �.
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considered (the fixed negative charge in �I is incorporated

into Cl− ion as approximation), and the LEN condition in the

bulk region is valid in this biological application.

Now we present the system in dimensionless form,

and the nondimensionalization process is provided in Ap-

pendix D. Let pi (i = 1, 2, 3) denote ion concentrations

of Na+, K+, Cl−, with valences z1 = z2 = 1, z3 = −1. By

setting L2 = 1, the dimensionless domains become �I =
[0, L1] × [0, 1/2) and �E = [0, L1] × (1/2, 1]. The final di-

mensionless PNP system is given by (2) with n = 3 in do-

mains �I and �E , with parameter ǫ defined in Appendix D.

The membrane at y = 1/2 is described by the Hodgkin-

Huxley model [27], in order to simulate an action potential

for a neuronal axon. The interface conditions at y = 1/2 for

the normal flux J
y
pi

along the y direction are given by

ziJ
y
pi

∣

∣

y= 1
2
± = Gpi

(

ψI − ψE −
1

zi

ln
piE

piI

)

, (43)

where Gpi
is the dimensionless conductance for ion pi and

possibly depends on variable x (e.g., a myelinated axon).

Hereafter, subscripts I and E denote the values or limit values

at the membrane y = 1/2 from the intracellular and extracel-

lular regions, respectively. Then Vm = ψI − ψE is defined as

the membrane potential. For the part of the axon without a

myelin sheath, the conductances Gpi
depend on the membrane

potential Vm. Following Refs. [2,35], we set

Gp1
≡ GNa = ḠNam

3h + GNa,leak,

Gp2
≡ GK = ḠKn4 + GK,leak, (44)

Gp3
≡ GCl = 0,

where ḠNa, ḠK,GNa,leak,GK,leak are some constant given in

Appendix C, and n,m, h (associated with potassium channel

activation, sodium channel activation, and sodium channel

inactivation) depend on Vm and are governed by a dynamic

system in Appendix D.

Suppose the membrane has a small thickness, and the elec-

tric potential is linear inside the membrane. The associated

interface conditions for ψ are given by

ǫ2∂yψ
∣

∣

y= 1
2
± = Cm(ψE − ψI ), (45)

where Cm is the dimensionless capacitance of membrane

(defined in Appendix D). All data and specific values of

dimensionless quantities for the neuronal axon are presented

in Appendix C.

We use typical bulk concentrations as the initial values (see

Appendix C) at t = 0, then we have

p1(x, y, 0) = 1,

p2(x, y, 0) = 0.04, (46)

p3(x, y, 0) = 1.04, in �E,

and

p1(x, y, 0) = 0.12,

p2(x, y, 0) = 1.25, (47)

p3(x, y, 0) = 1.37, in �I .

For the boundary conditions, we adopt Dirichlet conditions on

the top boundary (cf. Fig. 6):

ψ (x, 1, t ) = 0, p1(x, 1, t ) = 1,

p2(x, 1, t ) = 0.04, p3(x, 1, t ) = 1.04, (48)

and zero-flux conditions on other boundaries:
∂ψ

∂y
(x, 0, t ) = 0, J y

pi
(x, 0, t ) = 0,

∂ψ

∂x
(0, y, t ) = 0, J x

pi
(0, y, t ) = 0, (49)

∂ψ

∂x
(L1, y, t ) = 0, J x

pi
(L1, y, t ) = 0,

where i = 1, 2, 3.

B. The EN model with effective flux conditions

By (20), the EN equations for c1, c2, φ are given by

∂tci = −∇ · Jci
= Di∇ · (∇ci + zici∇φ),

3
∑

k=1

zkDk∇ · (∇ck + zkck∇φ) = 0, (50)

where i = 1, 2, z1 = z2 = 1, z3 = −1, and c3 = c1 + c2. The

outer boundary ∂� lies in the bulk region, so associated

boundary conditions are easily derived from (48) and (49),

and we have

φ(x, 1, t ) = 0, c1(x, 1, t ) = 1, c2(x, 1, t ) = 0.04,

J y
ck

(x, 0, t ) = 0, J x
ck

(0, y, t ) = 0, J x
ck

(L1, y, t ) = 0, (51)

where k = 1, 2, 3.

As illustrated in Fig. 6, there are BLs at two sides

of a membrane. Then we need to propose approximate

jump conditions at the middle interface for bulk quantities

ciI , φI , ciE, φE (i = 1, 2), where subscripts I, E indicate

the limit values at interface y = 1/2 from intracellular

(lower) and extracellular (upper) regions. Based on

previous results in Theorems 1 and 2, we first note that

η = x, ξ = ±(y − 1/2), g = 1 in the theorems and obtain

the following 12 conditions:

Gpi

(

ψI − ψE −
1

zi

ln
piE

piI

)

= zi

[

J
y

ci ,E
+ ǫ∂tFiE − ǫDi∂x (FiE∂xμiE )

]

,

Gpi

(

ψI − ψE −
1

zi

ln
piE

piI

)

= zi

[

J
y

ci ,I
− ǫ∂tFiI + ǫDi∂x (FiI∂xμiI )

]

,

ln ciE + ziφE +
ǫJ

y

ci ,E

Di

fiE = ln piE + ziψE,

ln ciI + ziφI −
ǫJ

y

ci ,I

Di

fiI = ln piI + ziψI , (52)

where i = 1, 2, 3, c3I = c1I + c2I , c3E = c1E + c2E , and we

have defined

μis = ln cis + ziφs,

Fis = Fi (c1s, c2s, φs − ψs ), (53)

fis = fi (c1s, c2s, φs − ψs ), s = I, E,
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where Fi and fi are given by (B3) and (B6). From Theorem

3, (45), and (B8), we get

Cm(ψE − ψI ) = ǫ
√

2c3E (e(φE−ψE )/2 − e(ψE−φE )/2),

Cm(ψE − ψI ) = −ǫ
√

2c3I (e(φI −ψI )/2 − e(ψI −φI )/2). (54)

From the definition (44) and the data in Appendix C,

the conductances are small, i.e., Gpi
� O(ǫ). Then one can

simplify the conditions in Eq. (52) by neglecting higher order

O(ǫ2) terms, and we obtain the effective flux conditions at the

interface:

ziJ
y

ci ,E
= Gpi

(

φI − φE −
1

zi

ln
ciE

ciI

)

− ziǫ∂tFiE + ǫDizi∂x (FiE∂xμiE ),

ziJ
y

ci ,I
= Gpi

(

φI − φE −
1

zi

ln
ciE

ciI

)

+ ziǫ∂tFiI − ǫDizi∂x (FiI∂xμiI ), (55)

The ∂t terms account for the ion accumulation in a BL like

a nonlinear capacitor [2], and the ∂x terms account for the

spacial variations along boundary. To summarize, the final EN

model consists of (50) and (51) and interface conditions (54)

and (55).

Remark 5. By linearization according to small φI − ψI and

φE − ψE , we get from (53), (B3), and (54) that

ǫziFiI ≈ CmλiIVm,

Vm = ψI − ψE ≈ φI − φE, (56)

where

λiI =
ciI

∑3
k=1 ckI

. (57)

Summation of fluxes in Eq. (55) implies

3
∑

i=1

ziJ
y

ci ,I
−

3
∑

i=1

Gpi

(

φI − φE −
1

zi

ln
ciE

ciI

)

≈ Cm∂tVm − Cm

3
∑

i=1

Di∂x (λiIVm∂xμiI ). (58)

Physically, the first term is the current from bulk region, the

second term is the Hodgkin-Huxley flux model (with bulk

quantities), and the right-hand side represents a capacitor and

spacial variation along membrane. One can further recover the

classic cable model by adopting suitable scaling for variable

x, which is left for future study.

C. Numerical simulation

In this subsection, we present numerical results using both

the original PNP system and the present EN model. The

computation is divided into two steps: first, we generate a

resting state, and, second, we simulate the propagation of the

action potential. We will study two cases: axons with and

without myelin sheath.

First, we study the unmyelinated axon. The length of an

axon is much larger than the typical scale of a cell [35,40],

t
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FIG. 7. Numerical results of original system (red) and electro-

neutral (EN) model (blue) to generate the resting state: (a) dynamics

of membrane potential Vm; (b) distribution of electric potential at

t = 6.

and the domain is set to be � = [0, 2000] × [0, 1]. In step

1, to generate a resting state, we use the conductances in

Eq. (44) with equilibrium values for n,m, h given in Eq. (D9).

In the computation, we use a 1D code for the y direction,

since the problem is uniform in x. For the original model,

the finite element method with a nonuniform fixed mesh

is adopted, where mesh size varies from 1.6 × 10−4 near

the BL to 3.3 × 10−2 in the bulk. A uniform mesh with

mesh size 3.3 × 10−2 is adopted in the EN model. The flux

of sodium ion J
y
p1

is negative, i.e., from �E to �I , while

the flux of potassium ion J
y
p2

is positive. After a certain

period, e.g., at t = 6, the net flux across the membrane tends

to 0, i.e., J
y
p1

+ J
y
p2

|
y=1/2 = 0, which is set as the resting

state. Figure 7(a) shows the dynamics of membrane potential

Vm = ψI − ψE for both the original model and the new EN

model, and the two solutions agree very well with each

other (error is shown in the figure). Figure 7(b) shows the

distributions of electric potential ψ for the original system

and φ for the EN model, at resting state t = 6. They agree

very well in the domain except the BL. The resting potential is
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FIG. 8. Numerical results of original system with �t = 10−4

and EN model with three different time step sizes: (a) �t = 10−4,

(b) �t = 5 × 10−4, (c) �t = 10−3.

calculated as

Vm|t=6 = ψI − ψE|t=6 ≈ −2.7,

Vr =
kBT

e0

(ψI − ψE )|t=6 ≈ −65 mV. (59)

TABLE IV. Comparison of computation time between the orig-

inal system and EN model, and the maximum error for membrane

potential Vm in the EN model.

Original system EN model, EN model, EN model,

�t = 10−4
�t = 10−4

�t = 5 × 10−4
�t = 10−3

Error − 0.01 0.05 0.12

Time 56 h 20 h 3 h 1.9 h

In step 2, to simulate the propagation of action potential

[35], we use the conductances in Eq. (44), where n,m, h

depend on membrane potential Vm and their dynamics are

given in Appendix D. To initiate the action potential near

x = 0 on the membrane, we increase the conductance of

Gp1
(x) by modifying ḠNa (to the value 0.6) in the interval

x ∈ [0, 60] for the time period 0 < t < 0.1. This allows an

extra influx of sodium ions into �I and hence generates the

action potential. In the computation, the finite element method

is used for both the original system and the EN model. For

the original system, an implicit scheme for nonlinear terms is

adopted to avoid some stability issues due to small parameter

ǫ, and the “exact” numerical solution is calculated with time

step size �t = 10−4. For the EN model, there is no BL, and

it allows for relatively larger time step sizes. We try three im-

plementations for the EN model with different time step sizes

�t = 10−4, 5 × 10−3, 10−3. Figure 8 shows the dynamics

of membrane potential Vm(x, t ) = ψI − ψE at different loca-

tions of a membrane obtained by using the original model and

the EN model. The action potential first occurs at x = 0 and

then propagates to the positive x. The error of Vm at x = 1000

is also shown in the figure, indicating good agreement of the

two models. The computation time and the maximum error

for Vm are listed in Table IV compared with the exact results

for the original system. It indicates that it costs 56 h for the

original system, while the computation time is greatly reduced

with EN model, where all computations are done on the same

computer (processor: 4 GHz, i76700K; memory: 32 GB). So

the EN model is more efficient with acceptable accuracy.

The conductance velocity is defined as the velocity that the

action potential (the electric signal) travels along the axon.

In this example, it is estimated as 1.3 m/s in dimensional

quantities, which is the same order as usual estimates [35].

This is slightly larger than that in Ref. [35], since the length

of an axon is not long enough and the boundary effect at

x = 0, 2000 influences the velocity.

In the second case, we consider the myelinated axon, where

conductances Gpi
(x) are nonzero at only unmyelinated parts

(typically the nodes). By Ref. [40], each segment between

nodes is roughly 100–300 (scaled by 1 μm); here it is set

to 200. To see the qualitative effect, we increase the por-

tion of the myelinated part in each segment of the axon,

where the portions 3/4 and 9/10 are tested. Figure 9 shows

the propagation of the action potential for myelinated axon,

calculated with the EN model. In the figures, blue and red

curves represent the action potential at some locations for

myelinated and unmyelinated parts, respectively. The action

potential is initiated at the x = 0, weakens at myelinated

parts, and reinforces a little at the unmyelinated part (node) of
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FIG. 9. Numerical results of propagation of action potential for

myelinated axon: (a) 3/4 myelinated, (b) 9/10 myelinated.

each segment. For the 3/4 myelinated axon, the peak values

of the action potential gradually decrease from about 1.6 at

x = 0 to about 1.4 at x = 1000 and recover to about 1.6 at

x = 1800. For the 9/10 myelinated axon, the peak values of

action potential decrease from about 1.6 at x = 0 to about 1.1

at x = 1000 and then increase to about 1.4 at x = 1800. In the

latter case, the tested axon is not long enough for the signal

(action potential) to fully recover to its original strength.

V. CONCLUSIONS

In this work, we have investigated a multidimensional

dynamic PNP system with various boundary conditions, and

have derived the corresponding EN system with effective

boundary conditions. In the case of Dirichlet boundary con-

ditions, the effective conditions can be considered as a gener-

alization of continuity of electrochemical potential. For flux

conditions, we derived a physically correct effective con-

ditions by keeping some essential high-order terms, which

are important in many biological applications. The effective

conditions for the general multi-ion species case involves

elliptic integrals, and these extra terms of elliptic integrals

account for the accumulation of ions in the BL and the spatial

variation along the boundary. We have validated our EN mod-

els with several examples and demonstrated the effectiveness

of the EN system with the implementation of the well-known

Hodgkin-Huxley model for propagation of the action potential

on an axon.

As a next step, for the biological example in Sec. IV we

plan to analyze the reduction from the EN system to the classic

cable model, under some consistent assumptions. We also

plan to extend our approach to a modified PNP system where

the size effect of the ions is included.
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APPENDIX A: PROOFS IN SECTION II

Proof of Proposition 1. Under the assumptions of LEN and

NGEN and from some previous steady-state analysis [1,41],

we expect a BL with thickness O(ǫ) near r = r0. In BL, we

make the transformation

�(R) = ψ (r ), N (R) = n(r ),

P (R) = p(r ), R =
r0 − r

ǫ
, (A1)

where all of the new functions �, P ,N and their derivatives

are assumed to be O(1). In Eq. (A1) and hereafter, the

arguments (θ, t ) in functions will be omitted for brevity. With

such scaling, the leading order system of equations in BL is

−∂RR� = P − N,

∂R (∂RP + P∂R�) = O(ǫ), (A2)

∂R (∂RN − N∂R�) = O(ǫ).

It is quite standard as in Ref. [2] to obtain the leading-order

BL solutions:

�(R) = φ0 + 2 ln
1 − e−

√
2c0R tanh

(

φ0−ψ0

4

)

1 + e−
√

2c0R tanh
(

φ0−ψ0

4

) + O(ǫ),

P (R) = c0

[

1 + e−
√

2c0R tanh
(

φ0−ψ0

4

)

1 − e−
√

2c0R tanh
(

φ0−ψ0

4

)

]2

+ O(ǫ), (A3)

N (R) = c0

[

1 − e−
√

2c0R tanh
(

φ0−ψ0

4

)

1 + e−
√

2c0R tanh
(

φ0−ψ0

4

)

]2

+ O(ǫ),

where the constants c0, φ0, ψ0 are functions of (θ, t ). The

composite solutions are given by

p(r ) = P (R) + c(r ) − c0 + O(ǫ),

n(r ) = N (R) + c(r ) − c0 + O(ǫ), (A4)

ψ (r ) = �(R) + φ(r ) − φ0 + O(ǫ),

which are uniformly valid in the domain �. Since in the

bulk we have p(r ) = c(r ) + O(ǫ2) by (6), it is reasonable

to expect p(r ) = c(r ) + o(ǫ) in some intermediate region

r0 − r ∼ O(ǫα ) with 0 < α < 1, say, α = 1/2.
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Next, we consider the O(ǫ) correction term, since we have

kept such terms in Eqs. (7) for c(r ). We take cation p(r ), for

example. The transport equation can be written as

∂
(

rJ r
p

)

∂r
= −r

∂p

∂t
−

∂J θ
p

∂θ
. (A5)

In BL with r = r0 − ǫR and ∂r = − 1
ǫ
∂R , we have

J r
p (R) = J r

p,0(R) + O(ǫR), (A6)

where J r
p,0 is some unknown normal flux at the boundary r =

r0. Then, by definition of J r
p and using the scale (A1), we get

∂P

∂R
+ P

∂�

∂R
= ǫJ r

p,0 + O(ǫ2R). (A7)

From Proposition 2, we see that J r
p,0 ≈ J

r,+
c,0 . Therefore, divid-

ing by P and integrating, we obtain

ln(P (R)) + �(R)

= ln p0 + ψ0 + ǫJ
r,+
c,0

∫ R

0

1/P (z) dz + O(ǫ2R), (A8)

where P (R),�(R) on the left-hand side contain O(ǫ) terms,

while for P (z) inside the integral we can use the leading order

solution (A3). By matching Ref. [42], let R = ǫα−1s (i.e., r0 −
r = ǫαs) with 1/2 < α < 1, and we get

P (ǫα−1s) = c(r0 − ǫαs) + o(ǫ),

�(ǫα−1s) = φ(r0 − ǫαs) + o(ǫ). (A9)

Taking R = ǫα−1s in the previous relation (A8), we get from

left-hand side

ln(P (R)) + �(R)

= ln(c0) + φ0 −
[

∂rc(r0)

c0

+ ∂rφ(r0)

]

ǫαs + o(ǫ),

(A10)

and from the integral on the right-hand side

ǫ

∫ R

0

1/P (z) dz =
ǫαs

c0

+
√

2ǫ

c
3/2
0

(e(ψ0−φ0 )/2 − 1) + o(ǫ).

(A11)

In view of the definition J
r,+
c,0 , the ǫαs terms automatically

cancel each other, then substituting into (A8) leads to (11)1.

Proof of Proposition 2. We take cation p(r ) for an example.

From equation (5)2 of the PNP system, we easily get for some

finite δ > 0 (say, δ = r0/2)

(r0 − δ)J r
p (r0 − δ) = r0J

r
p,0 −

∫ r0−δ

r0

(

r
∂p

∂t
+

∂J θ
p

∂θ

)

dr.

(A12)

Similarly, from (7)1 of the EN system, we obtain

(r0 − δ)J r,+
c (r0 − δ) = r0J

r,+
c,0 −

∫ r0−δ

r0

(

r
∂c

∂t
+

∂J θ,+
c

∂θ

)

dr.

(A13)

Based on assumptions (4) and (6), we get

J r,+
c (r0 − δ) = J r

p (r0 − δ) + O(ǫ2). (A14)

Then immediately combining (A12)–(A14) gives

r0J
r,+
c,0 = r0J

r
p,0 −

∫ r0−δ

r0

r
∂ (p − c)

∂t

+
∂
(

J θ
p − J θ,+

c

)

∂θ
dr + O(ǫ2). (A15)

In the following, we shall simplify the integral in the above

equation. For simplicity, we denote the zeta potential [43,44]

as

ζ (θ, t ) = φ0(θ, t ) − ψ0(θ, t ). (A16)

The first term in the integral of Eq. (A15) is calculated as

∫ r0−δ

r0

r
∂ (p − c)

∂t
dr

=
∫ r0−

√
ǫ

r0

r
∂ (p − c)

∂t
dr + o(ǫ)

=
∫ r0−

√
ǫ

r0

r0

∂ (p − c)

∂t
dr + o(ǫ)

= −ǫ

∫ ∞

0

r0

∂ (P − c0)

∂t
dR + o(ǫ)

= −ǫr0∂t [
√

2c0(eζ/2 − 1)] + o(ǫ), (A17)

where we have used the assumption that p = c + o(ǫ) for

r0 − r �
√

ǫ, and by setting the upper limit of integral as ∞
only exponentially small terms are neglected. For the second

term in the integral of Eq. (A15), we first write

J θ
p − J θ,+

c

= −
1

r

[

∂ (p − c)

∂θ
+ p

∂ψ

∂θ
− c

∂φ

∂θ

]

= −
1

r

[

∂ (p − c)

∂θ
+ (p − c)

∂φ

∂θ
+ p

∂ (ψ − φ)

∂θ

]

. (A18)

Then, similarly to (A17), the integrals of first two parts in

Eq. (A18) are readily found as

−
∫ r0−δ

r0

1

r

∂ (p − c)

∂θ
dr =

ǫ

r0

∂θ [
√

2c0(eζ/2 − 1)] + o(ǫ),

−
∫ r0−δ

r0

1

r
(p − c)

∂φ

∂θ
dr = ǫ

√
2c0

r0

(eζ/2 − 1)
∂φ0

∂θ
+ o(ǫ).

(A19)
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For the third part in Eq. (A18), by using the explicit solutions

(A3), we get

−
∫ r0−δ

r0

p

r

∂ (ψ − φ)

∂θ
dr

= −
∫ r0−

√
ǫ

r0

p

r0

∂ (ψ − φ)

∂θ
dr + o(ǫ)

=
ǫ

r0

∫ ∞

0

P (R)
∂ (� − φ0)

∂θ
dR + o(ǫ)

= −
ǫ

r0

{
√

2c0∂θ (eζ/2) − (eζ/2 − 1)∂θ (
√

2c0)} + o(ǫ).

(A20)

Combining above formulas in Eqs. (A18)–(A20), we obtain

∫ r0−δ

r0

(

J θ
p − J θ,+

c

)

dr

=
ǫ

r0

(eζ/2 − 1)[2∂θ (
√

2c0) +
√

2c0∂θ (φ0)] + o(ǫ).

(A21)

Finally from (A15), (A17), and (A21), we obtain (14)1.

Proof of Theorem 1. The proof follows similar lines as

Proposition 2, and here we will mention the key different

steps. For a domain inside and near Ŵ, we adopt the scalings

�(X) = ψ (ξ ), Pi (X) = pi (ξ ), X = −
ξ

ǫ
, (A22)

where i = 1, . . . , n, and arguments (η, t ) are omitted here-

after. In the multi-ion case, the previous explicit solutions in

Eq. (A3) cannot be used anymore. Instead, by the BL analysis,

we get

−∂XX� =
n

∑

i=1

ziPi (X) + O(ǫ)

=
n

∑

i=1

zici0e
zi [φ0−�(X)] + O(ǫ). (A23)

Integrating once gives

∂X� = ±

√

√

√

√2

n
∑

i=1

ci0(ezi [φ0−�(X)] − 1) + O(ǫ), (A24)

where ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0,

respectively.

In the (ξ, η) coordinate system, in some region near bound-

ary Ŵ, the normal and tangential fluxes for PNP system are

given by

J ξ
pi

= eξ · Jpi
= −Di

(

∂pi

∂ξ
+ zipi

∂ψ

∂ξ

)

,

J η
pi

= eη · Jpi
= −

Di

g̃

(

∂pi

∂η
+ zipi

∂ψ

∂η

)

, (A25)

where

g̃(η, ξ ) = [1 − κ (η)ξ ]g(η). (A26)

Similarly the fluxes J
ξ
ci
, J

η
ci

for EN system can be defined by

replacing pi by ci .

In terms of the fluxes (A25), the transport equation (2)2 for

pi can be written as

−
∂pi

∂t
=

∂J
ξ
pi

∂ξ
−

κ

1 − κξ
J ξ

pi
+

1

g̃

∂J
η
pi

∂η
. (A27)

Multiplying the factor (1 − κξ ) on both sides and rearranging

terms give

∂

∂ξ

(

(1 − κξ )J ξ
pi

)

= −(1 − κξ )
∂pi

∂t
−

1

g

∂J
η
pi

∂η
. (A28)

Likewise, the transport equation (19) for ci is

∂

∂ξ

[

(1 − κξ )J ξ
ci

]

= −(1 − κξ )
∂ci

∂t
−

1

g

∂J
η
ci

∂η
. (A29)

Integrating (A28) and (A29) from 0 to δ and using the fact

J
ξ
ci

(δ) = J
ξ
pi

(δ) + O(ǫ2) in the bulk, we obtain

J
ξ

ci ,0
= J

ξ

pi ,0
−

∫ δ

0

{

(1 − κξ )
∂ (pi − ci )

∂t
+

1

g

∂ (J
η
pi

− J
η
ci

)

∂η

}

dξ

+ O(ǫ2), (A30)

where δ > 0 is some typical bulk value.

Next, we shall simplify the integral in Eq. (A30), by using

leading order relations in Eqs. (A23) and (A24). We get from

the first term that

∫ δ

0

(1 − κξ )
∂ (pi − ci )

∂t
dξ = −ǫ∂tFi0 + o(ǫ),

Fi0 =
∫ ∞

0

[Pi (X) − ci0]dX

= ±
ci0√

2

∫ eφ0−ψ0

1

uzi − 1
√

∑n
k=1 ck0(uzk − 1)

du

u
, (A31)

where we have made use of the assumption that κ is O(1)

[or at least κ < O(1/ǫ)]. We have used (A23) and (A24) in

Fi0, and the remaining terms have been put to the o(ǫ) term.

For the second term in integral of (A30), we write the flux

difference as

J η
pi

− J η
ci

= −
Di

g̃

[

∂ (pi − ci )

∂η
+ zi (pi − ci )

∂φ

∂η
+ zipi

∂ (ψ − φ)

∂η

]

,

(A32)

and integration leads to

∫ δ

0

(

J η
pi

− J η
ci

)

dξ =
Di

g

[

ǫ∂ηFi0 + ǫziFi∂ηφ0

+
∫ δ

0

zipi

∂ (ψ − φ)

∂η
dξ

]

+ o(ǫ),

(A33)
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where the last term is given by

∫ δ

0

zipi

∂ (ψ − φ)

∂η
dξ

= −ǫ

∫ ∞

0

ziPi (X)
∂ (� − φ0)

∂η
dX + o(ǫ)

= −ǫci0

∫ ∞

0

zie
zi (φ0−�) ∂ (� − φ0)

∂η
dX + o(ǫ)

= ǫci0∂η

∫ ∞

0

(ezi (φ0−�) − 1) dX + o(ǫ)

= ǫci0∂η

(

1

ci0

Fi0

)

+ o(ǫ). (A34)

Finally, combining Eqs. (A30), (A31), (A33), and (A34) gives

the result in (22). It can be shown as in Appendix A of Ref. [2]

that the function Fi is well defined near φ0 = ψ0.

Proof of Theorem 1 in three dimensions. In the 3D case,

local coordinates (ξ, η1, η2) will be adopted, where η1, η2 are

parameters of surface Ŵ along two principal directions e1, e2.

The surface Ŵ is characterized by metric g1, g2 and curvatures

κ1, κ2. Then the flux of PNP system is written as

Jpi
= J ξ

pi
eξ + JŴ

pi
= J ξ

pi
eξ + J η1

pi
e1 + J η2

pi
e2, (A35)

and the explicit expressions for the components will be similar

to (A25) and (A26). The counterpart of (A27) is

−
∂pi

∂t
=

∂J
ξ
pi

∂ξ
−

(

κ1

1 − κ1ξ
+

κ2

1 − κ2ξ

)

J ξ
pi

+ [1 + O(κξ )]∇Ŵ · JŴ

pi
, (A36)

where κ = max{|κ1|, |κ2|}. Rearranging terms gives

∂

∂ξ

[

(1 − κ1ξ )(1 − κ2ξ )J ξ
pi

]

= −[1 + O(κξ )]

(

∂pi

∂t
+ ∇Ŵ · JŴ

pi

)

. (A37)

Then we get [similar to (A30)]

J
ξ

ci ,0
= J

ξ

pi ,0
−

∫ δ

0

{

∂ (pi − ci )

∂t
+ ∇Ŵ ·

(

JŴ

pi
− JŴ

ci

)

}

dξ,

(A38)

where o(ǫ) terms are omitted. The later proof will be straight-

forward as 2D by referring to the identity in the BL:

JŴ

pi
− JŴ

ci
= − [1 + O(κǫ)]Di[∇Ŵ (pi − ci )

+ zi (pi − ci )∇Ŵφ + zipi∇Ŵ (ψ − φ)]. (A39)

Proof of Theorem 2. The proof follows similar lines as

Proposition 1. We only need to start with Eq. (A28) instead

of Eq. (A5). Then with the scale X = −ξ/ǫ, we get

J ξ
pi

(X) = J
ξ

pi ,0
(X) + O(ǫX). (A40)

Then, similarly to (A8), one can get

ln(Pi (X)) + zi�(X)

= ln pi0 + ziψi0 +
ǫJ

ξ

ci ,0

Di

∫ X

0

1/Pi (z) dz + O(ǫ2X).

(A41)

Finally by matching with X → ∞, we get condition (25), and

the term fi0 in Eq. (26) is defined from the above integral by

using relations (A23) and (A24).

Proof of Theorem 3. In this case, ψ (0, η, t ) is not known,

and so we need an additional condition to determine ψ0 ≡
ψ (0, η, t ) in flux conditions (22) and (23). From the relation

(A24) and with ∂X = −ǫ∂ξ , we get at the leading order

−ǫ∂ξψ (0) = ±

√

√

√

√2

n
∑

i=1

ci0(ezi (φ0−ψ0 ) − 1), (A42)

where ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0,

respectively. Combining with (28)1 leads to the nonlinear

condition (29).

In the above, we have tacitly assumed that γ � O(ǫ), so

that the remainder is o(1) in Eq. (29). For the case O(ǫ) <

γ � O(1), with the NGEN assumption in this work, some

previous results [2,41] and numerical evidence in Sec. IV

show that ψi − φi = o(1), which is consistent with (29). In

fact, in BL we have

ψ − φ0, pi − ci0 = O(ǫ/γ ),

∂ξψ, ∂ξpi = O(1/γ ), (A43)

∂ξξψ = O(1/(γ ǫ)), . . . .

So with slight modification of the transformation (e.g., � =
ψ − φ0), one can show that the relation (29) still holds at

leading order.

APPENDIX B: FUNCTIONS IN THEOREMS 1, 2, AND 3

For some special cases, the explicit expressions for Fi, fi

and relation (29) are available. For z1 = 1, z2 = −1 in Theo-

rem 1, we recover the result

F1(c10, φ0 − ψ0) =
√

2c10(e(φ0−ψ0 )/2 − 1),

F2(c10, φ0 − ψ0) =
√

2c10(e(ψ0−φ0 )/2 − 1). (B1)

For the case z1 = 2, z2 = −1, we get

F1(c10, φ0 − ψ0) =
√

c10

2

[

e
φ0−ψ0

2

√

e(φ0−ψ0 ) + 2 −
√

3
]

,

F2(c10, φ0 − ψ0) =
√

2c10(
√

1 + 2e(ψ0−φ0 ) −
√

3). (B2)

For the three-ion case with z1 = 1, z2 = 1, z3 = −1, we have

Fj (c10, c20, φ0 − ψ0) =
√

cj0

c10 + c20

√

2cj0

(

e
φ0−ψ0

2 − 1
)

,

F3(c10, c20, φ0 − ψ0) =
√

2(c10 + c20)(e(ψ0−φ0 )/2 − 1),

(B3)

where j = 1, 2.
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For the case z1 = 1, z2 = −1 in Theorem 2, we have

f1(c10, φ0 − ψ0) =
√

2(e(ψ0−φ0 )/2 − 1)

c
3/2
10

,

f2(c10, φ0 − ψ0) =
√

2(e(φ0−ψ0 )/2 − 1)

c
3/2
10

. (B4)

For the case z1 = 2, z2 = −1, we get

f1 =
√

2 + eφ0−ψ0 (1 + 2eφ0−ψ0 )e
3
2

(ψ0−φ0 ) − 3
√

3

3
√

2c
3/2
10

,

f2 =
arcsinh(e(φ0−ψ0 )/2/

√
2) − arccsch(

√
2)

√
2c

3/2
10

. (B5)

For the case with z1 = 1, z2 = 1, z3 = −1, we have

fj (c10, c20, φ0 − ψ0) =
√

2(e(ψ0−φ0 )/2 − 1)

cj0

√
c10 + c20

,

f3(c10, c20, φ0 − ψ0) =
√

2(e(φ0−ψ0 )/2 − 1)

(c10 + c20)3/2
, (B6)

where j = 1, 2.

In Theorem 3, for the case z1 = 1, z2 = −1, the relation

(29) becomes

ψ0 − ψ̃0 =
γ

ǫ

√

2c10(e(φ0−ψ0 )/2 − e(ψ0−φ0 )/2). (B7)

For the case z1 = 1, z2 = 1, z3 = −1, it becomes

ψ0 − ψ̃0 =
γ

ǫ

√

2c30(e(φ0−ψ0 )/2 − e(ψ0−φ0 )/2), (B8)

where c30 = c10 + c20 by EN condition.

APPENDIX C: THE DATA USED IN SECTION IV

The data are mainly from papers [27,35] and the book [39].

The temperature in Ref. [27] is set to be 6.3 ◦C, so we get

T = 279.45 K. The other constants are

kB = 1.38 × 10−23 J/K, NA = 6.022 × 1023/mol,

e0 = 1.602 × 10−19 C, ǫ0 = 8.854 × 10−12 C/(V · m).

(C1)

The typical bulk concentrations for Na+, K+, Cl− are

p1, Na+ p2, K+ p3, Cl−

Extracellular 100 mM 4 mM 104 mM

Intracellular 12 mM 125 mM 137 mM

which are used as initial conditions (scaled by p0 below).

Some typical values are (diffusivity of Cl− is from Ref. [45])

ǫr = 80, ǫm
r = 2, hm = 5 nm,

L1 = 100 μm–10 mm, L2 = 1 μm,

p0 = 100 mM = 100 mol/m3, (C2)

D0 = 10−5 cm2/s = 10−9 m2/s,

D1 = 1.33D0, D2 = 1.96D0, D3 = 2.03D0.

The conductances are given by

ḠNa = 120 mS/cm2 = 1200 C/(V · s · m2),

ḠK = 360 C/(V · s · m2),

ḠNa,leak = 1.04 C/(V · s · m2),

ḠK,leak = 4 C/(V · s · m2). (C3)

where leak conductances are set to ensure that resting poten-

tial is roughly 65 mV.

From the above data, we get

kBT

e0

≈ 24 mV,
L2

2

D0

= 1 ms,

G0 =
p0D0e

2NA

kBT L2

≈ 400 758 C/(V · s · m2). (C4)

For the dimensionless system we have (the tilde is removed)

ǫ = 1.33 × 10−3, ǫm = 2.1 × 10−4,

hm = 5 × 10−3, L1 = 100 ∼ 104,

D1 = 1.33, D2 = 1.96, D3 = 2.03, (C5)

ḠNa = 3 × 10−3, ḠK = 9 × 10−4,

ḠNa,leak = 2.6 × 10−6, ḠK,leak = 1 × 10−5.

APPENDIX D: NONDIMENSIONALIZATION AND

DYNAMIC SYSTEM FOR m, h, and n

First, the dimensional PNP system is given by (1) with

n = 3 and z1 = z2 = 1, z3 = −1, in domain � = [0, L1] ×
[0, L2]. Here we have assumed the same ǫr for extracellular

and intracellular regions. The dimensional relation for the

current through the membrane or ion channel, from the in-

tracellular region to extracellular region, is

Ii = Gpi
(x)(Vm − Ei ), i = 1, 2, 3, (D1)

or in terms of normal flux at y = L2/2

zie0NAJ y
pi

≡ −zie0NADi

(

∂ypi +
e0

kBT
zipi∂yψ

)

= Gpi

(

ψI − ψE −
kBT

zie0

ln
piE

piI

)

, (D2)

where Gpi
is the conductance [cf. (44)] for ion pi , Ei is

the Nernst potential of ion pi , and Vm = ψI − ψE is the

membrane potential. Hereafter, subscripts I and E denote

the values or limit values at the membrane y = L2/2 from

the intracellular and extracellular regions, respectively.

Suppose the membrane has a small thickness hm and a

relative permittivity ǫm
r , and assume there are no ions in

membrane. Thus, the electric potential is linear (a constant

electric field) inside the membrane. The interface conditions

for ψ on the membrane y = L2/2 are

ǫr∂yψ |
y= L2

2
± = ǫm

r

ψE − ψI

hm

, (D3)

where L2

2
± mean limits at the membrane from upper and

lower regions.
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For nondimensionalization, we adopt the following scalings:

ψ̃ =
ψ

kBT/e0

, p̃i =
pi

p0

, L̃1 =
L1

L2

, x̃ =
x

L2

, ỹ =
y

L2

, h̃m =
hm

L2

, D̃i =
Di

D0

, t̃ =
t

L2
2/D0

, G̃pi
=

Gpi

G0

,

(D4)

where the length scale L2 is adopted as in Ref. [2] so that it gives the correct timescale for the action potential, p0 is the typical

concentration of ions, D0 is the typical diffusion constant, and typical conductance G0 is defined by G0 = p0D0e
2NA/(kBT L2).

All the parameter values and typical values are given in Appendix C. Substituting into (1) and removing the tilde lead to the

system (2) with n = 3 in Sec. IV A. The interface conditions are treated similarly, and we obtain (43) with the tilde removed in

G̃pi
and (45) with the dimensionless capacitance

Cm =
ǫ2
m

h̃m

. (D5)

In this system, the dimensionless parameters ǫ and ǫm are defined by

ǫ =

√

ǫ0ǫrkBT

e2
0NAp0L

2
2

, ǫm =

√

ǫ0ǫm
r kBT

e2
0NAp0L

2
2

. (D6)

The dynamics for m,h, n in Eq. (44) are given by [39]

dn

dt
= αn(1 − n) − βnn,

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αh(1 − h) − βhh. (D7)

The coefficients depend on Vm and are given by

αn =
1

100

10 − V̄

(e(10−V̄ )/10 − 1)
, βn =

1

8eV̄ /80
, αm =

1

10

25 − V̄

(e(25−V̄ )/10 − 1)
,

βm = 4e−V̄ /18, αh =
7

100
e−V̄ /20, βh =

1

e(30−V̄ )/10 + 1
, (D8)

where V̄ = Vm − Vr and Vr is some fixed resting potential. In above coefficients, the unit for V̄ is millivolts. Theoretically, there

is no singularity in the above coefficients, but for computation special treatment is performed as Ref. [2] when V̄ is near 10 or

25. With V̄ = 0, we obtain the steady-state solution:

n∞ ≈ 0.3177, m∞ ≈ 0.05293, h∞ ≈ 0.5961, (D9)

which are used to generate the resting state and used as initial values of the time-dependent problem to simulatethe action

potential. For the dimensionless system in Sec. IV A, we still use the system (D7) and will not scale the quantities in the

coefficients (D8), where the quantity V̄ (in millivolts) is related to the normalized membrane potential Vm = ψI − ψE through

V̄ =
kBT

e0

(ψI − ψE ) − Vr , (D10)

and Vr = −65 mV is the resting potential in millivolts [see (59)].
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