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Abstract The ever-increasing product complexity, espe-

cially for the case of engineer-to-order products, highly

affects the performance of manufacturing systems. There-

fore, a high degree of flexibility is needed during daily

decision-making activities, such as production scheduling.

For addressing this challenge, this research work proposes

a knowledge-enriched short-term job-shop scheduling

mechanism, which is implemented into a mobile applica-

tion. More precisely, it focuses on the short-term

scheduling of the resources of the machine shop, through

an intelligent algorithm that generates and evaluates

alternative assignments of resources to tasks. Based on the

requirements of a new order, a similarity mechanism

retrieves successfully executed past orders together with a

dataset that includes the processing times, the job and task

sequence, and the suitable resources. In addition to that, the

similarity mechanism is used to calculate the due-date

assignments of the orders based on the knowledge stored in

past cases. Afterwards, it adapts these parameters to the

requirements of the new order so as to evaluate the alter-

native schedules and identify a good alternative in a timely

manner. The deriving schedule can be presented on mobile

devices, and it can be manipulated by the planner on-the-

fly respecting tasks precedence constraints and machine

availability. A case study from the mould-making industry

is used for validating the proposed method and application.

Keywords Manufacturing systems � Scheduling � Mobile

applications

1 Introduction

Modern manufacturing relies on the reuse of previous

knowledge that is either contained in data repositories and

IT systems or exists in the form of tacit human knowledge.

Knowledge constitutes a key factor for improving manu-

facturing performance, during design, planning, and oper-

ational phases [1]. Most contemporary manufacturing

industries acknowledge that the exploitation of the existing

knowledge is necessary to enhance the performance of

manufacturing [2]. Indicatively, the importance of knowl-

edge reuse for a system’s design and planning phase is

evident, as rough estimations indicate that more than 20 %

of an engineer’s time is spent on searching and absorbing

information for a new project [3].

A particular type of manufacturing system, which

essentially relies on the knowledge and expertise of human

assets to improve its performance, is a job-shop that pro-

duces engineer-to-order (ETO) products. Usually, the

incorporation of new orders in the schedules of such sys-

tems is performed empirically and using rules of thumb,

even when the system operates near its maximum capacity.

However, with the rising complexity of production

requirements and the increased penetration of IT systems in

manufacturing, knowledge reuse is an enabler to reduce the

product development cycle and increase manufacturing

performance. On the contrary, in current practice, this

valuable knowledge generated and associated with

This article is part of a focus collection on ‘‘Robust Manufacturing
Control: Robustness and Resilience in Global Manufacturing
Networks’’.

& D. Mourtzis
mourtzis@lms.mech.upatras.gr

1 Laboratory for Manufacturing Systems and Automation,
Department of Mechanical Engineering and Aeronautics,
University of Patras, 26500 Rio, Greece

123

Logist. Res. (2016) 9:3

DOI 10.1007/s12159-015-0130-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-015-0130-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-015-0130-7&amp;domain=pdf


products and processes in a daily basis remains tacit and its

reusability is confined to a specific operator or planner [4].

Further to that, another requirement today is pervasive

access to information and decision-making. One enabling

technology to achieve ubiquitous access to knowledge and

assist decision-making is mobile apps, i.e. applications

developed for mobile devices. The general market of apps

is expected to reach revenues of $70B by 2017 [5]. More

and more companies are starting to base their business on

mobility; however, the adoption of apps in the manufac-

turing domain is yet at a primary stage [6].

Motivated by the above, in this research work, a

scheduling method that is enhanced with an integrated

knowledge reuse mechanism is proposed. The knowledge

reuse mechanism retrieves historical scheduling cases and

through the case-based reasoning (CBR) methodology

extracts information related to the modelling of the

scheduling workload. The deriving workload model

includes necessary input for a scheduler, such as the job

structure and the task breakdown, the precedence con-

straints, and the processing and set-up times. Alternative

schedules are generated and are evaluated using multiple

conflicting criteria, such as flowtime and tardiness. The

scheduling is performed using an intelligent search algo-

rithm (ISA) with three tuneable parameters, which are

adjusted through a parametric investigation, using a sta-

tistical design of experiments method. All functionalities

are exposed through a developed mobile app.

The remainder of the paper is structured as follows.

Section 2 includes a literature survey on knowledge-en-

riched scheduling (KES) applications. Section 3 analyses

the proposed methodology. Section 4 describes the design

of the scheduling app. Section 5 demonstrates a real-life

case study in a mould-making industry. Section 6 draws

the conclusions and describes the future work directions.

2 State of the art

Following the main topics of the research work, this section

discusses knowledge reuse in manufacturing, knowledge-

enriched scheduling methods, mobile apps in manufactur-

ing, and lead time estimation approaches.

Throughout the years, several methods have been pro-

posed for knowledge reuse in the manufacturing domain

with the aim to support designers and engineers in deci-

sions related to modelling, design, prediction, monitoring,

and optimisation. Knowledge reuse is considered to have a

major impact on several manufacturing domains, offering

productivity gains [7]. There are two main ways to reuse

past knowledge: reuse the past case solution and reuse the

past method that constructed the solution [8]. A widely

used artificial intelligence (AI) method that can effectively

enable reuse of past solutions is CBR, which retrieves past

experience to reuse for a target problem; of course, the

solutions of past cases may need to be revised for applying

in the new case. The successful problem-solving experi-

ence is then retained for further reuse [9]. CBR utilises

similarity mechanisms in order to compare past cases

stored in the repository and the target case, i.e. a new

product, based on case’s features or attributes [10]. The

most similar cases to the new one are recalled in order to

provide recommendations [11]. Li et al. 2011 presented

CBR as a tool for knowledge management during product

development and reported that reuse of past product

knowledge can be used to improve the problem-solving

capabilities [12]. The CBR method is utilised in this

research work due to its suitability for complex ill-defined

concepts, with unstructured knowledge, and because case

generalisation is necessary [9].

The second area of interest in this research work is job-

shop scheduling. Scheduling is one of the most critical

issues for a manufacturing enterprise. In most SMEs, who

cannot afford costly investments in IT software solutions,

scheduling is carried out empirically. However, the defi-

nition of a performing solution is quite difficult, depending

on the job-shop environment, process constrains, and per-

formance indicators [13]. Numerous approaches have been

reported for the modelling and solving of the job-shop

scheduling problem [14]. Wang et al. [15] proposed the

development of an application using a genetic algorithm

including a chromosome representation in seven different

machines of a job floor that enables a dynamic job-shop

scheduling within complex production systems. Chrys-

solouris et al. [39], considering the limitations of static

scheduling, proposed a dynamic scheduling problem to

accurately reflect a real job-shop scheduling environment.

This dynamic nature of these scheduling problems [16]

constitutes KES approaches essential, as knowledge reuse

could assist in incorporating and scheduling new jobs in an

ever-changing environment. However, literature findings

that focus on knowledge reuse as an enabler for improving

scheduling performance are scarce. Motivated by empirical

knowledge, [17] proposes an efficient search method for

the multi-objective flexible job-shop scheduling in order to

reach high automation levels towards generating optimal or

near-optimal production schedules. Another study

exploiting previous knowledge proposed a data mining

technique for discovering dispatching rules that improve

scheduling performance [18]. The job-shop scheduling

problem has been addressed using a knowledge-enriched

genetic algorithm in [19]. The idea was to imbue produc-

tion system knowledge during the formulation of the initial

population of the algorithm with the potential of faster and

better convergence. The authors in [20] utilise data mining

for optimising a basic aspect of production scheduling, i.e.
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the assignment of due dates to orders dispatched in a

dynamic job-shop. Moreover, a knowledge-based algo-

rithm for flexible job-shop scheduling is presented in [21].

The authors in this approach combine the variable neigh-

bourhood search with a knowledge management module in

order to reach the optimum solution more efficiently. In

addition to these techniques, group technology could be

also utilised in order to minimise the makespan and the

sum of the completion times of a generated schedule based

on position-dependent learning effects [22]. Concluding,

according to [23], research should be shifted more towards

knowledge reuse for decision support tools, within safety,

reliability, and maintainability. Several of the above-men-

tioned studies utilise knowledge reuse techniques to

improve scheduling performance. However, most of them

focus on reusing knowledge to define the tuneable

parameters of the algorithm that perform and determine

scheduling attributes including dispatching rules or order-

ing details without offering actual reuse of meaningful

scheduling data [22]. There is little existing work on

knowledge reuse for determining the processing times of

new tasks or the due dates of new jobs. Nevertheless, this

can lead to the realisation of accurate and quick dynamic

scheduling.

The third area of interest is mobile technology. Mobile

technology evolves rapidly; in the last decade, the use of

mobile apps has outpaced traditional PC-based web-

browsing [24]. The usage of apps doubled on average over

the last 2 years, with utility and productivity apps ranking

second in growth [25]. The necessary components of apps

in order for them to be fully leveraged in manufacturing are

presented in [26], where architecture, development,

infrastructure, security, portfolio, and privacy issues are

investigated. Estimations speak of apps boosting produc-

tivity by 5–10 % [27]. The growth of mobility and mobile

apps is highly influenced by the growth and the adoption of

the cloud technology in manufacturing [28]. Cloud tech-

nology acts as an enabler to adopt mobile devices in

manufacturing not only for the provision of applications

but also for production data management purposes [29].

However, the adoption of apps focused on core manufac-

turing processes was up to now limited [25]. Cloud and

mobile technologies are not sufficiently adopted in manu-

facturing systems yet, despite the productivity boost that

they can offer [28, 30]. Nevertheless, apps are finding their

way into activities such as manufacturing network design

[31] and other scientific domains [32, 33].

The last area of interest is the manufacturing lead time

estimation. Based on the literature, the most robust meth-

ods for lead time estimation are AI methods [34]. Ozturk

et al. [34] used data mining as an AI method and attribute

tables in order to calculate manufacturing lead time.

Among AI methods, CBR, which focuses on solving

problems by adapting acceptable solutions and comparing

differences and similarities between previous and current

products, has been utilised for lead time estimation. An

approach based on CBR was applied during product

development in [35], and it effectively reduced lead time

and improved the problem-solving capabilities. The liter-

ature review makes apparent that the CBR and the data

mining techniques should be further considered for sup-

porting decision supports tools [22], especially in deter-

mining machining sequence and processing times.

Building upon the literature on the field, the combination

of knowledge reuse techniques together with intelligent

scheduling algorithms under the umbrella of mobile and

cloud technology is considered as a necessary step towards

the next generation of decision support tools. Addressing

these challenges, the proposed research work provides a

methodology that utilises a knowledge reuse mechanism for

extracting manufacturing information related to machining

sequence and orders due dates in order to support a short-

term scheduling application. Moreover, the scheduling

mechanism is developed into an app, motivated by the fact

that the adoption of the mobile devices in manufacturing,

and specifically in decision-making activities, can lead to

easier access to information, as well as quick and accurate

visualisation and interaction with the generated scheduling

and planning information [6, 30, 31]. Finally, the proposed

methodology is applied in a real manufacturing environ-

ment utilising data from a mould-making SME and the

scheduling algorithm is compared with others dispatching

rules in order to benchmark its performance. This work

extends the research presented in [36–38] by enhancing the

scheduling algorithm with knowledge reuse capabilities and

by verifying the method in a case coming from the domain

of ETO products.

3 The knowledge-enriched scheduling method

The knowledge-enriched scheduling (KES) engine consists

of two mechanisms, namely: (1) the knowledge extraction

and reuse mechanism and (2) the short-term scheduling

mechanism (Fig. 1). Regarding the workflow of the first

mechanism, once a new order enters the system, a break-

down of the product components into a bill of materials

(BoM) structure is performed. The product is characterised

by a number of attributes (product features) that are used

by the similarity mechanism of CBR for a pairwise attri-

bute comparison. The result of the similarity comparison is

an ordered list that contains the past cases ranked from the

most to the least similar. By reusing the knowledge stored

in these past cases, the expert planner is allowed to extract

valuable information that helps introduce the new order

into the production system with the needed adaptations.
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The reusable information includes the required number and

type of jobs, the number of tasks for each job and their

precedence constraints, the processing times for each task

in specific machines, and finally the due dates of the tasks.

The output of this process comprises the necessary input

for a scheduling engine. It is noted that specific process

planning information, such as cutter selection, process

parameters, and fixture specification, is beyond the direct

scope of the proposed work.

The latter component of the KES is the short-term

scheduling mechanism. After the identification of the most

similar cases, the expert planner aggregates information

that can be reused in the new case and adapts it. The

adaptation is required in order to compensate for missing

tasks that were not identified during the similarity mea-

surement, or in order to imbue to the dataset the actual

situation of the shop-floor (machine breakdowns and

availability). The result of the adaptation is the workload

and the facility models. These models are imported into the

intelligent scheduling engine. The planner defines the

decision-making criteria and their weight factors, which

reflect the design and planning objectives of the company.

Following on that, the definition of the tuneable parameters

of the scheduling algorithm is defined. The tuneable

parameters are the maximum number of alternatives

(MNA), the decision horizon (DH), and the sampling rate

(SR). The description of the function of these parameters is

provided in Sect. 3.2. The scheduling algorithm generates

alternative schedules, selects a good alternative in a timely

manner, and displays it in the form of a Gantt chart.

The two mechanisms are designed in a modular way.

The scheduling engine is capable to function without input

provided by the knowledge mechanism, if the latter is not

available. Similarly, the knowledge mechanism is decou-

pled from the scheduling engine and can be used for

extracting manufacturing information for different pur-

poses, such as for the estimation of the delivery time of an

injection mould [38].

3.1 Modelling of the facility and the workload

The production facility is hierarchically divided into job-

shops that contain work-centres, which in turn contain a

number of resources. The latter are individual processors
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(resources with diverse processing capabilities (machining

technology, cycle times, investment costs, fixed operating

costs, etc.)). Similarly, the workload model includes orders

that are broken down into jobs, each containing a number

of tasks that are processed by the resources. As Fig. 2

shows, orders are dispatched to the facility, jobs to job-

shops, and tasks to work-centres’ resources. Resources are

not parallel processors, and their availability is subject to

the system workload. The release of tasks considers finite

capacity, precedence relations, and availability constraints.

The job and task modelling is shown in Fig. 3. Specif-

ically, each mould consists of a number of components.

Each mould is represented as an order, and each compo-

nent is represented as a job. Each job is composed of a

number of tasks that need to be performed in order to

manufacture each component of an order. Finally, the

generation, evaluation, and selection of task to resource

assignment are performed by an intelligent multi-criteria

search algorithm (ISA) as described in [39]. ISA evaluates

the alternatives in a decision matrix based on set-up cost

and processing time criteria. A utility function is used for

ranking the alternatives and for selecting the highest per-

forming one.

3.2 Description of the knowledge reuse mechanism

The first step in the workflow of the knowledge reuse

mechanism is the comparison of the new order against past

cases in order to identify similar cases and reuse their data.

This similarity measurement emphasises on the differences

exhibited between the basic attributes that characterise old

and new orders alike. CBR is functioning on the premise

that a comparison between cases is feasible. To accomplish

that, a set of attributes of the product that enters the system

as a new order is selected, to characterise the case. For

every new ETO product, the engineers together with the

customer complete a web-based form with predefined fields

that comprise the product’s specifications. The attributes

used to characterise the ETO product cases include: type of

product, geometry stacks, slides, type of hardening, core

cap, stacks material, profile rings, data provided, polishing,

side of injection, tamper evident, gating type, way of

ejection, ejector rings type, no of cavities, and wall thick-

ness, depth, width, diameter, and length.

The past cases are retrieved using the CBR methodology

and are compared with similarity mechanisms. The type of

attributes considered takes both numeric and alphanumeric

values. The alphanumeric attributes are mapped into dis-

crete values represented by numbers in [0–1] for normali-

sation reasons. Moreover, both attribute types are

multiplied with weight factors, considering their influence

on the actual similarity between cases. Equations (1) and

(2) are used for measuring the Euclidean distance through a

pairwise comparison between the attributes of past and new

cases. Equation (3) aggregates the results of the two dis-

tance metrics.
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where Dn numerical distance, Dt text distance, n number of

attributes, Tni ith attribute of the new case n, Tpi ith attri-

bute of the past case p, k mapping for alphanumeric attri-

butes, and wi the weight of attributes.
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The past case with the highest similarity index is anal-

ysed first (Fig. 4). The planner may retrieve the process

sequence, precedence constraints, the components, and the

resources used in the past case, as well as processing and

set-up times per task and resource. Moreover, based on

their experience, expert planners have the capability to

recognise whether the retrieved data are adequate to

describe the new order. In case they are insufficient, the

planner adapts the dataset to the requirements of the new

case. Furthermore, in cases when the new product requires

a different amount of components/processes than the

retrieved most similar past case, then the second most

similar case can be consulted, then the third, and so on.

Either way, the similarity index between two cases must

always remain above the threshold of 60 %, which is cal-

culated based on historical observations; otherwise, the

retrieved information would be misleading. Indicatively, if

the best match in terms of similarity index is fairly aged in

comparison with the new case, it is probable that adapta-

tions would be required to compensate for changes in the

shop-floor, such as the addition of new manufacturing

resources and technologies. In this case, engineers are

aware of the current state of the shop-floor and can replace

the old resources with the new similar ones in the new

process plan. Having decided the matching past similar

cases, the task sequences are retrieved, the availability of

the machines is confirmed, and then, the final combination

of the new sequence of processes and components is

settled.

3.3 Description of the short-term scheduling

mechanism

Schedules are constructed on the basis of events occurring

sequentially through time. Thus, the next scheduling

decision is identified by moving along the time horizon

until an event (release of a new order in the system or the

completion of a task) is scheduled to occur that will initiate

a change in the status of the system [40]. The set of

pending tasks becomes eligible for release at the time a

resource becomes available. The operational policy behind

the assignment of a task to a specific resource can be either
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a simple dispatching rule or a multiple-criteria decision-

making technique as described below. The advantages of

dispatching rules derive from their simplicity, since they do

not attempt to predict the future, but rather make decisions

based on the present. Thus, these rules are very useful in

factories that are extremely unpredictable, such as job-

shops. Also, they are spatially local, requiring only the

information available at the location where the decision

will be implemented. Finally, they are easily understood by

human operators and are easy to implement [41]. On the

other hand, the multiple-criteria decision-making technique

involves the formation of several alternatives and their

evaluation before assigning the available resources to

pending production tasks.

Since the method considers a finite capacity problem, in

case multiple jobs are competing for a resource, ISA, and

the decision matrix with the criteria and their weighting

factors are used to determine which task will be dispatched

to which resource, considering the planning objectives. The

weighting factors that are used in the scheduling algorithm

are determined based on the planner’s knowledge of the

business in order to satisfy business’s production require-

ments and goals. Moreover, in case of a tie between two

identical resources that are both suitable and available for a

task assignment, the intelligent search algorithm selects

randomly one of them and evaluates the generated path.

Nevertheless, other tie breaking policies can be used such

as the one proposed in [42].

In the ISA algorithm, the search of the solution space is

guided by three adjustable control parameters, namely the

maximum number of alternatives (MNA), the decision

horizon (DH), and the sampling rate (SR). MNA controls

the breadth of the search, DH controls the depth, and SR

directs the search towards branches of high-quality solu-

tions [43]. The proper selection of MNA, DH, and SR

allows the identification of a good solution by examining a

limited portion of the search space, thus effectively

reducing computational time. For that purpose, a statistical

design of experiments [44] has been carried out to reduce

the number of experiments and to identify the preferable

values of these factors in order to obtain the results of the

highest possible quality [37, 45]. The workflow of the

algorithm follows (Fig. 5):

Step 1: Start at the root and generate alternatives by

random assignments for DH layers until MNA.

Step 2: For each branch (Step 1), create SR random

samples until all the branch nodes are searched.

Step 3: Calculate the criteria scores for all the samples

belonging to the same alternative of Step 1.

Step 4: Calculate the score of the branch as the average

of the scores achieved by its samples.

Step 5: Calculate the utility values of each alternative/

branch.

Step 6: Select the alternative with the highest utility

value.

Step 7: Repeat Steps 1–6 until an assignment has been

done for all the nodes of the selected branch.

The nodes mentioned in the workflow steps above rep-

resent decision points where a task is assigned to a

resource. Once a task to resource assignment is made in

each one of the nodes, an alternative production scheme is

generated as shown in Fig. 5. More specifically, the ISA

follows consecutive steps during the decision-making

phase. The first step is the determination of the alternatives.

An alternative is defined as a set of possible assignments of

tasks to resources. The second step is the determination of

the attributes, which are the criteria used to evaluate the

alternatives. The multi-criteria ISA take into consideration

a number of conflicting criteria including flowtime (4), cost

(5), quality (6), and tardiness (7):
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i

L
ð6Þ

QUALITY ðaltqÞ ¼

PL
i¼1 ðQLiÞ

L
ð7Þ

where Ri ith resource, altq qth alternative formed at the

decision point, L number of completed tasks in the work-

centre/job-shop at a decision point, Ti
comp (altq) completion

time of the ith pending task if altq is implemented, Ti
arr time

at which the ith pending task arrived at the work-centre,

ti
proc(altq) estimated time required to process ith pending

task if altq is implemented, Ri
proc cost of resource i to

process the pending task if altq is implemented, QLi quality

index of the resource Ri to perform a ith pending task if altq
is implemented, and Ti

dd due date of the ith pending task.

Once the criteria are determined, the consequences need

to be defined. Consequences are the values of the attributes

at the time the decisions and are performed in order to

evaluate the selected alternatives. The set of alternatives

selected during the decision-making phase is assessed

using a set of performance indicators including production

flowtime, resource utilisation, and mean tardiness.

A main benefit offered by the proposed scheduling

mechanism is its ability to adapt to new order arrivals and

quickly reschedule the job-shop. More specifically, when a

new schedule needs to be generated due to the arrival of a

new order, the running tasks of the existing jobs are fixed in

their current positions and the rest of the tasks that are

planned ahead of them are rescheduled together with the

new ones. Through this functionality, the job-shop can

adapt to unforeseen demand, rush orders, and other dis-

ruption in production such as machine breakdowns.

3.4 Order due-date assignment

Scheduling that incorporates due dates is of permanent

interest [46]. The problem has been investigated since 1965

in the work of Jackson [47]. In academic research, the

incorporation of due dates in scheduling problem acts in a

twofold manner: it increases the constraints of the problem

and thus it increases computational complexity, and it

serves as a milestone against which important indicators are

calculated, such as tardiness, earliness, and slack time. In a

similar manner, in an industrial context, where the satis-

faction of customer needs is the primary concern, the

assignment and adherence of due dates determine the effi-

ciency of a factory. Therefore, the assignment of realistic

due dates is utterly important. In the literature, few works

treat scheduling problems with the due-date assignment

decision being of primary focus. Among the most signifi-

cant contributions, Cheng and Gupta [48] review due-date

assignment approaches up to 1990, whereas Gordon et al.

[46] review more recent publications (up to 2002). In most

works, the due-date assignment problem is treated using

benchmarking instances [49], single-resource problems [50,

51] or is focused on assembly shops [52]. Moreover, the

calculation of due dates in ETO environments is relatively

mistreated. Most studies focus on static problem instances

where jobs do not arrive continuously in the system [46], or

require significant modelling efforts [53] and simulation

experiments [54], which are rarely feasible in actual daily

practice for due-date calculation.

In ETO industries, and particularly in mould-making, the

actual practice implies for delivery dates to be negotiated

with the customer during quotation. This agreement, later

on during the job dispatching phase, will dictate how the

due dates for the order will be set. The customer of a mould-

making SME cannot tolerate delays in mould deliveries

from the latter since this may delay the entire production of

the former. Deviations in the expected delivery date of a

mould can cause perturbations across the value chain and

lead to supplying bottlenecks in the subsequent value-added

phases of the customer, in the interlinked economy [55].

Therefore, it is utterly important for an SME to provide a

customer with a solid estimation of when the mould will be

available. However, the planner must have an estimation of

the manufacturing lead time in the first place to use it in

customer negotiations. The due date that will be defined by

the lead time estimation of an order will be considered

together with the customer’s due date in order to satisfy the

customer’s demand according to the estimated due date

calculated by the mould-making industry.

Therefore, the mechanism described in Sect. 3.2 is also

utilised for the accurate calculation of the due date of a new

order. It is reasonable that the manufacturing of two similar

ETO products in a similarly configured manufacturing

system will require the use of similar resources and will be

completed in approximately the same time. Utilising the

similarity mechanism, accurate estimations about the

delivery dates can be produced for ETO products manu-

facturing. Once the complete set of attributes is submitted

as described above, a sales agreement is achieved, the order

is considered active, and the calculation of lead time ini-

tiates. The proposed due date estimation method reuses

previous knowledge from executed orders, which are

stored as cases in a case base. First, previous cases are

retrieved and a pairwise comparison between the new order

and each of the stored ones is performed. Based on the

procedure described previously, the most similar case is

obtained together with the calculated similarity index. The

obtained case is revised in order to fit the new case
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requirements. Then, the manufacturing lead time of the

past case is multiplied with the similarity index to derive

the estimated lead time for the new case. The estimated

manufacturing lead time is essentially the due date of the

order. The estimation is finally checked by the planner and

if accepted is inserted in the scheduling module as the due

date of the order. If rejected, the procedure described in

Sect. 3.2 is followed. Finally, after production is com-

pleted, multiple scheduling adherence methods (integration

with an MES system, machine monitoring techniques,

manual reporting, etc.) can be utilised in order to validate

the accuracy of this estimation. If the accuracy is accept-

able, the case is retained and stored in the case base. The

mechanism which is shown to yield high-quality results is a

similar industrial case as reported by Mourtzis et al. [38].

4 Development of the knowledge-enriched

scheduling app

The two sections below present the KES app and describe

its architecture and the software tools used for its

development.

4.1 Description of the knowledge-enriched

scheduling app

The scheduling and the similarity mechanisms have been

implemented in Java for validation purposes. The integrated

KES engine has been designed for implementation into a

mobile app for the Android OS. The designed app allows

data entry, selection of decision-making criteria, definition

of weight factors and tuneable parameters of the ISA, and

visualisation of results, as shown in the screenshot of Fig. 6.

The planner, through the data entry menu, is capable to

insert information related to the facility, jobs, and workload

and model their interrelationships in the form of prece-

dence constraints (pre- and post-conditions). The planner

can also provide information related to the working cal-

endar not only of the resources but also of the entire fac-

tory. Moreover, the data related to the workload are defined

according to the order due-date assignment. The due date

of each order is specified by the knowledge reuse mecha-

nism and is taken into consideration during the generation

of the alternative schedules.

The app also allows the operator to interact with the

proposed schedule. This rescheduling is necessary in cases

Fig. 6 Screenshot of the data entry fields of the scheduling app
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that the derived schedule needs refinements due to order

prioritisation and machine breakdowns among other rea-

sons (Fig. 7). The precedence constrains, machine avail-

ability and capacity, and due dates are respected during this

human-triggered rescheduling action. Moreover, perfor-

mance indicators are recalculated each time a rescheduling

occurs. Finally, the alternative with the highest utility value

is displayed together with the scheduling Gantt chart and

the mean values of the performance indicators (utilisation,

flowtime, and tardiness).

4.2 Software architecture and development tools

Mobile apps deployed on the Android OS are based on a

three-tier architecture that consists of three layers (data,

business, and presentation) following the rules of the

Model–view–controller architectural pattern. The presen-

tation layer includes the graphical user interfaces of the

app, and the data layer retrieves data from the back end.

Finally, the business layer handles the data exchange

between these two layers. For the programming of the

platform, the Android software development kit (SDK) was

used, which provides the developers the API libraries and

tools necessary to build, test, and debug apps for Android.

The back end is implemented with the Apache Tomcat

version 7.0.19, since it is fully compliant with the latest

advances in web programming and servlet specifications.

The supporting data model of the app is based on

requirements’ collection from a mould manufacturer. The

application runs on devices with ARM-based processors,

512 MB minimum memory, 300 MB free minimum stor-

age space, and OS Android 4.0TM or later.

5 Industrial case study: experiments and results

The case study uses real data from a high-precision mould-

making machine shop. The mould-shop best fits to the

engineer-to-order (ETO) business model, where custom

moulds and dies are designed and manufactured based on

particular customer needs. Injection moulds produced by

this mould-shop are one of a kind, first-time-right products

that vary greatly in terms of quality needs, tolerances, and

mainly functionality. Evidently, the mould-making indus-

try is highly specialised and knowledge dependant. Once a

new production order is released, a scheduling of its tasks

must follow. Work is delegated among engineers, based on

their expertise, who are usually in charge of a project from

start to end. The resources needed are determined by the

project’s particularities. The manufacturing lead time is

identified as a major competitive factor of mould-making

industries [56]. Machinists together with designers usually

perform a first estimation of manufacturing lead time, but

the accuracy is empirical [38]. Similarly, in the current

business model of the company, unofficial oral meetings

take place in order to schedule resources, and, if the situ-

ation demands it, the management department is involved

in the decision-making and work prioritisation. However,

no software tools are used to support short-term scheduling

or to document the decisions made. Therefore, by using the

developed knowledge-enriched scheduling mechanism, not

only will the scheduling of the tasks be more accurate,

flexible, and easily reconfigurable to handle unpre-

dictable events, but also the employees will be able to

receive notifications related to schedule changes and other

job-shop-related information through mobiles devices.

Precedence

Availability

Capacity

Due dates

Mean Utilization

Mean Tardiness

Mean Flowtime

Calculation of 

Constraints:

Re-calculation of 

Performance 

Indicators:

Fig. 7 Rescheduling performed by the operator through a tablet using drag and drop commands
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The shop-floor of the case study consists of eight job-

shops, which include 14 work-centres that are formed by 40

individual resources in total (Fig. 8). The resources include

on the one hand high-precision CNC machines that are

capable to perform milling, drilling, turning, electro-dis-

charge wire cutting, sinking, grinding, tapping, roughing,

polishing, and hardening operations and on the other human

operators that perform manually operations of design, fit-

ting, assembly, measuring, and polishing (Table 1). The

hierarchical model of the production facility is shown in

Fig. 8. The utilised historical dataset includes the process-

ing times, tasks, sequences, and resources used for the

manufacturing of thirty (30) moulds. The dataset was col-

lected within a time span of approximately 3 years.

In actual production terms, five orders (moulds) are

simultaneously executed in the shop-floor on average, as

the analysis of the historical data depicted. Therefore, in

the experiments below, it is considered that four orders are

already under processing and a new order enters the system

eight calendar days later. The schedules for these orders

have already been generated previously and are currently

being executed. The system must then be rescheduled in

order to accommodate the new order. The new mould order

carries the identification number ‘‘13.23’’. The basic attri-

butes of ‘‘13.23’’ are given in Table 2, and the different

components and tasks required for this mould are shown in

Fig. 9.

As described in Sect. 3.2, the new order that triggers the

scheduling mechanism is first compared against docu-

mented past cases for the reuse of knowledge related to

processes and product structure. In the presented work, the

MOULD-MAKING FACTORY

Design 

Milling

EDM

Measuring

Polishing

Fitting

Hardening

Assembly

Design 

Roughing

Grinding

Air & Water 

Circuit Cutting

Tapping 

&Threading

Finishing Sinking

Wire EDM

Drilling

Measuring Polishing

Fitting

Hardening

Assembly

Factory Jobshops Workcenters

Fig. 8 Facility model of the mould-making job-shop

Table 1 Hierarchical model of the mould-making job-shop

Job-shop Work-centre No. of resources

Design Design 2

Milling Roughing 14

Grinding 5

Air and water circuit cutting 3

Tapping and threading 4

Finishing 6

EDM Sinking 3

Wire EDM 5

Drilling 1

Measuring Measuring 1

Polishing Polishing 1

Fitting Fitting 1

Hardening Hardening 2

Assembly Assembly 1

Table 2 Attributes of the
compared mould cases

Attributes Mould 13.23 Mould 12.20 Mould 11.38

Number of cavities 6 2 4

Type of hardening Very good Very good Very good

Side of injection Moving side Moving side Moving side

Mould size Medium Large Large

Core cap No Yes Yes

Ejector rings 6 2 4

Temper evident No No No

Type of data Idea Idea Idea

Surface’s quality Mirrors Mirrors Mirrors

Number of basic components 9 12 11
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past case is the complete dataset of a previously executed

mould-making order, including the mould specifications/

attributes, scheduling parameters used, the schedule fol-

lowed (policy, sequencing, etc.), and the documented

processing times and sequencing of tasks. In the case study,

the new order is compared against all 30 documented past

cases. Ten attributes are considered by CBR for the pair-

wise comparison of cases, namely the: number of cavities,

type of hardening, side of injection, mould size, core cap,

ejector rings, tamper evident, type of data, surface’s qual-

ity, and number of basic components, with the following

weight factors: 0.15, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.1,

and 0.15. The weight factors were defined and fine-tuned

together with the experts of the case study. The resulting

values denote the potential of an attribute to reveal actual

production-related similarities between any two cases. For

instance, the number of basic components that need to be

manufactured directly affects the required number of

manufacturing processes, and therefore, the attribute

‘‘number of basic components’’ is attributed with a large

weight value, since the more the number of required pro-

cess, the longer the flowtime of production. Another fun-

damental parameter that is taken into consideration is the

shape of the stacks. There are two options, namely moulds

with cylindrical or rectangular stacks. Since the mould

‘‘13.23’’ has cylindrical stacks, the attribute ‘‘length’’ is not

considered during similarity. After a similarity calculation,

the results indicate a similarity index of 83 % between

moulds ‘‘13.23’’ and ‘‘12.20’’. The planner then adapts the

process plan of the latter in order to prepare the dataset for

scheduling the former. The next most similar mould is

‘‘11.38’’, which is 75 % similar to ‘‘13.23’’. As given in

Table 2, mould ‘‘13.23’’ differs from ‘‘12.20’’ in the attri-

butes: ‘‘type of hardening’’, ‘‘number of basic compo-

nents’’, and ‘‘width’’. The components that are needed for

manufacturing the ‘‘13.23’’ mould are less than the com-

ponents of ‘‘12.20’’, so the planner should reuse the

sequence of processes of ‘‘11.38’’ mould and observe that

components, such as the bottom plates, are missing. Based

on his expertise, the extra components are removed and the

process sequence is successfully customised for the new

mould.

In a second step, the similarity mechanism is utilised in

order to estimate the due date of the new mould case. The

pairwise comparison of the past cases with the new one

results in a ranked list of the most similar cases according

to the defined attribute weights. Then, the manufacturing

lead time of the past case is multiplied with the similarity

index to derive the estimated lead time for the new case.

Table 3 presents the actual data of the processing times

of each mould based on the company’s database. More-

over, based on the data retrieved from the mould-making
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Fig. 9 Components, jobs, and tasks of the ‘‘13.23’’ order
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industry and after their analysis, the average set-up time

required to perform a task is 30 min. This set-up time is

incorporated in the processing times in order to decrease

the complexity of the model.

The results of the calculated similarity index are inclu-

ded in Table 4. As previously mentioned, the two stored

cases ‘‘12.20’’ and ‘‘11.38’’ are the most similar to the new

case ‘‘13.23’’. The similarity measure between ‘‘12.20’’

and ‘‘13.23’’ is calculated at S1 = 8.381574914. The

measure between mould ‘‘11.38’’ and ‘‘13.23’’ is

S2 = 6.087550996.

Afterwards, the adaptation of the case is performed in

order to estimate its manufacturing lead time. The lead

time of case ‘‘13.23’’ mould is multiplied with the simi-

larity measure between ‘‘12.20’’ and ‘‘13.23’’, and the

result is divided by 10. The resulting value for the esti-

mation of the lead time is Lead time13.23 = 1209.6708 h

(Table 5). Translating this lead time into calendar days

obeying at all times the working shifts of each resource per

day, the due date of the order is calculated at 51 days. It is

highlighted that this estimation deviated only 3.15 %

compared to the actual historical values, which depicts the

accuracy of the lead time estimation method. It is also

noted that by utilising a larger pool of past cases, the

Table 3 Lead time estimation
produced by the CBR
mechanism

Process time (h) Mould 11.38 Mould 12.20 Mould 13.23

Roughing 406.5 333.5 212.5

Finishing 87.0 296.5 221.8

Air and water circuit 81.0 80.0 89.5

Fitting 124.5 46.5 43.5

Polishing 69.5 33.0 41.5

Hardening 504.0 504.0 504.0

EDM 34.0 20.0 30.0

Electrodes 51.0 7.5 11.5

Other processes 61.5 23.5 10.5

Assembly 72.0 86.5 72.0

Design 40.0 12.25 12.3

Lead time in hours (days) 1531 (64) 1443.25 (60) 1249 (52)

Table 4 Similarity
measurements between the
mould cases ‘‘13.23’’, ‘‘12.20’’,
and ‘‘11.38’’

Compared mould attributes Distance 11.38 ? 13.23 Distance 12.20 ? 13.23

Number of cavities 0.273861279 0.273861279

Type of hardening 0.223606798 0.223606798

Side of injection 0.316227766 0.316227766

Mould size 0.223606798 0.316227766

Core cap 0 0.316227766

Ejector rings 0.223606798 0.223606798

Temper evident 0.316227766 0.316227766

Type of data 0.223606798 0.223606798

Surface’s quality 0.316227766 0.316227766

Number of basic components 0.350324525 0.369274473

Sum 2.467296293 2.895094975

Similarity measure 6.087550996 8.381574914

Table 5 Lead time and processing times’ estimation according to
similarity comparison results

Processes Processing times of 13.23

Roughing 279.52

Finishing 248.51

Air and water circuits 67.05

Fitting 38.97

Polishing 27.66

Hardening 422.43

EDM 16.76

Electrodes 6.29

Assembly 72.50

Design 10.27

Other processes 19.70

Sum (lead time) 1209.67
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method yields results of even higher accuracy. Once the

adaptation of the new case is complete, the scheduling

algorithm generates and evaluates scheduling alternatives

and their respective performance indicators.

The tuneable parameters of the ISA are defined using a

statistical design of experiments [44], which reduced the

required number of experiments for determining the impact

of tuneable parameters on the cardinal preference of the

decision-making process. The number of experiments was

25, and each tuneable factor had five levels. The analysis of

means (ANOM) diagrams are created and depicted the

impact of the values of the tuneable factors to the utility

value. According to ANOM diagrams, the preferable val-

ues to be used in the particular scheduling experiment are

MNA = 100, DH = 15, and SR = 20. Each schedule is

assessed with the mean values of the performance indica-

tors of utilisation, flowtime, and tardiness, which are given

by the following formulas (8, 9, and 10):

Tardiness MTðtnÞ ¼
1

Ncomp

X

Ncomp

i¼1

max 0; t
comp
i � tddi

� �

ð8Þ

Flowtime MFðtnÞ ¼
1

Ncomp

X

Ncomp

i¼1

t
comp
i � tarri

� �

ð9Þ

Utilisation MUðtnÞ ¼
1

Ncomp

X

Ncomp

i¼1

t
comp
i � tstarti

ttot

� �

ð10Þ

where Ncomp the number of completed jobs up to time tn,

ti
comp the completion time of job i, ti

dd the due date of job i,

ti
arr the arrival time of job i, ti

start the start time of job i, ttot

the total operating time of the facility, and tn the time point

at which all performance measures are calculated.

Figure 10 visualises in slip-view the schedules of an old

order that was executed in the job-shop (left-hand side)

(right) and the new ‘‘13.23’’ order that has a start date

8 days earlier (right-hand side). The figure displays the

tasks for specific jobs, their duration, and the start and end

time in calendar form.

In order to benchmark the performance of the ISA, a

comparison against widely used dispatch rules is also

performed. The rules are: first in first out (FIFO), shortest

processing time (SPT), earliest due date (EDD), and least

process time (LPT) [45]. The diagrams of Figs. 11, 12

and 13 reveal the superiority of the ISA in terms of the

calculated performance indicator values. Still, in cases

when a specific production target must be achieved, dis-

patch rules yielded high-quality results. For instance,

EDD identified schedules with lowest flowtime and near

zero tardiness compared to the other dispatch rules and

ISA.

Fig. 10 Visualisation of
schedule for two orders that are
executed in the job-shop
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6 Conclusions and future work

The presented work focused on the enhancement of the

short-term scheduling of manufacturing resources through

the exploitation of historical design and planning knowl-

edge. The scheduling of tasks for the realisation of ETO

products is supported by a knowledge retrieval mecha-

nism that is based on the CBR method and similarity

measurements. The similarity index between past and new

cases is measured using the Euclidean distance, and both

numerical and alphanumeric attributes are considered.

The scheduling is performed by the ISA that uses

adjustable parameters, which configure the depth and

breadth of the search, while guiding it through the solu-

tion space to identify high performing alternatives in a

timely manner. The results of the application of the

methodology into a real-life pilot case with data obtained

from a mould-making industry verified that the short-term

scheduling algorithm provides solutions of high quality in

comparison to the historical values. Moreover, the

deployment of the scheduling engine on mobile devices

offers a certain degree of mobility, which is desired for

compensating for the dynamic nature of today’s turbulent

manufacturing environment.

A limitation of the proposed knowledge reuse approach

is the necessity for pre-existing and sufficiently

documented cases. The repository of past cases in the

examined case study included 30 cases with ten attributes

each and provided good results. The performance of the

method, in case fewer cases with partial documentation

were stored in the case base, is expected to be decreased.

Yet, the gathering of this amount of information about

previous cases is relatively easy, since these ten attributes

comprise basic characteristics of a mould, well known to

the planner, and a repository with 30 products can be built

in a fairly short amount of time.

Future work will focus on the quantitative evaluation of

the knowledge reuse and scheduling mechanisms. The

company of the case study is currently testing the devel-

opments in real-life situations. Moreover, a series of

interviews with the engineers will be organised to assess

the quality of the produced schedules and the accuracy of

the similarity measurement results. A long-term vision is

the total integration of these mechanisms in the everyday

practice of the company and their utilisation through the

developed app.
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