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Abstract

Background Fetal ultrasound is an important component of antenatal care, but shortage of

adequately trained healthcare workers has limited its adoption in low-to-middle-income

countries. This study investigated the use of artificial intelligence for fetal ultrasound in

under-resourced settings.

Methods Blind sweep ultrasounds, consisting of six freehand ultrasound sweeps, were collected

by sonographers in the USA and Zambia, and novice operators in Zambia.We developed artificial

intelligence (AI) models that used blind sweeps to predict gestational age (GA) and fetal mal-

presentation. AI GA estimates and standard fetal biometry estimates were compared to a pre-

viously established ground truth, and evaluated for difference in absolute error. Fetal

malpresentation (non-cephalic vs cephalic) was compared to sonographer assessment. On-

device AI model run-times were benchmarked on Android mobile phones.

Results Here we show that GA estimation accuracy of the AI model is non-inferior to

standard fetal biometry estimates (error difference −1.4 ± 4.5 days, 95% CI −1.8, −0.9,

n= 406). Non-inferiority is maintained when blind sweeps are acquired by novice operators

performing only two of six sweep motion types. Fetal malpresentation AUC-ROC is 0.977

(95% CI, 0.949, 1.00, n= 613), sonographers and novices have similar AUC-ROC. Software

run-times on mobile phones for both diagnostic models are less than 3 s after completion of

a sweep.

Conclusions The gestational age model is non-inferior to the clinical standard and the fetal

malpresentation model has high AUC-ROCs across operators and devices. Our AI models are

able to run on-device, without internet connectivity, and provide feedback scores to assist in

upleveling the capabilities of lightly trained ultrasound operators in low resource settings.

https://doi.org/10.1038/s43856-022-00194-5 OPEN

1 Google Health, Palo Alto, CA, USA. 2Department of Obstetrics and Gynaecology, University of Zambia School of Medicine, Lusaka, Zambia. 3 Department
of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, USA. 4UNC Global Projects—Zambia, LLC, Lusaka, Zambia.
5 Google Research, Mountain View, CA, USA. 6These authors contributed equally: Ryan G. Gomes, Bellington Vwalika, Chace Lee, Angelica Willis. 7These
authors jointly supervised this work: Jeffrey S. A. Stringer, Shravya Shetty. ✉email: ryangomes@google.com; akibu@google.com; tsed@google.com;
sshetty@google.com

Plain language summary
Despite considerable progress in

maternal healthcare, maternal and peri-

natal deaths remain high in low-to-

middle income countries. Fetal ultra-

sound is an important component of

antenatal care, but shortage of ade-

quately trained healthcare workers has

limited its adoption. We developed and

validated an automated system that

enables lightly-trained community

healthcare providers to conduct ultra-

sound examinations. Our approach uses

artificial intelligence to automatically

interpret ultrasound video acquired by

sweeping an ultrasound device across

the patient’s abdomen, a procedure that

can easily be taught to non-experts. Our

system consists of a low cost battery-

powered ultrasound device and a

smartphone, and can operate without

internet connectivity or other infra-

structure, making it suitable for deploy-

ment in low-resourced settings. The

accuracy of our method is on par with

existing clinical standards. Our approach

has the potential to improve access to

ultrasound in low-resource settings.
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Despite considerable progress in maternal healthcare in
recent decades, maternal and perinatal deaths remain
high with 295,000 maternal deaths during and following

pregnancy and 2.4 million neonatal deaths each year. The
majority of these deaths occur in low-to-middle-income countries
(LMICs)1–3. The lack of antenatal care and limited access to
facilities that can provide lifesaving treatment for the mother,
fetus and newborn contribute to inequities in quality of care and
outcomes in these regions4,5.

Obstetric ultrasound is an important component of quality
antenatal care. The WHO recommends one routine early ultra-
sound scan for all pregnant women, but up to 50% of women in
developing countries receive no ultrasound screening during
pregnancy6. Fetal ultrasounds can be used to estimate gestational
age (GA), which is critical in scheduling and planning for
screening tests throughout pregnancy and interventions for
pregnancy complications such as preeclampsia and preterm labor.
Fetal ultrasounds later in pregnancy can also be used to diagnose
fetal malpresentation, which affects up to 3–4% of pregnancies at
term and is associated with trauma-related injury during birth,
perinatal mortality, and maternal morbidity7–11.

Though ultrasound devices have traditionally been costly, the
recent commercial availability of low-cost, battery-powered
handheld devices could greatly expand access12–14. However,
current ultrasound training programs require months of super-
vised evaluation as well as indefinite continuing education visits
for quality assurance13–19. GA estimation and diagnosis of fetal
malpresentation require expert interpretation of anatomical
imagery during the ultrasound acquisition process. GA estimation
via clinical standard biometry20 requires expertly locating fetal
anatomical structures and manually measuring their physical
sizes in precisely collected images (head circumference, abdom-
inal circumference, femur length, among others). To address
these barriers, prior studies have introduced a protocol where
fetal ultrasounds can be acquired by minimally trained operators
via a “blind sweep” protocol, consisting of six predefined freehand
sweeps over the abdomen21–27. While blind-sweep protocols
simplify the ultrasound acquisition process, new methods are
required for interpreting the resulting imagery. AI-based inter-
pretation may provide a promising direction for generating
automated clinical estimates from blind-sweep video sequences.

In this study, we used two prospectively collected fetal ultra-
sound datasets to estimate gestational age and fetal mal-
presentation while demonstrating key considerations for use by
novice users in LMICs: (a) validating that it is possible to
build blind-sweep GA and fetal malpresentation models that run
in real-time on mobile devices; (b) evaluating generalization of
these models to minimally trained ultrasound operators and low-
cost ultrasound devices; (c) describing a modified 2-sweep
blind-sweep protocol to simplify novice acquisition; (d) adding
feedback scores to provide real-time information on sweep
quality.

Methods
Blind-sweep procedure. Blind-sweep ultrasounds consisted of a
fixed number of predefined freehand ultrasound sweeps over the
gravid abdomen. Certified sonographers completed up to
15 sweeps. Novice operators (“novices”), with 8 h of blind-sweep
ultrasound acquisition training, completed six sweeps. Evaluation
of both sonographers and novices was limited to a set of six
sweeps—three vertical and three horizontal sweeps (Fig. 1b).

Fetal age machine learning initiative (FAMLI) and novice user
study datasets. Data were analyzed from the Fetal Age Machine
Learning Initiative cohort, which collected ultrasound data from

study sites at Chapel Hill, NC (USA), and the Novice User Study
collected from Lusaka, Zambia (Fig. 1a)27. The goal of this pro-
spectively collected dataset was to enable the development of
technology to estimate gestational age28. Data collection occurred
between September 2018 and June 2021. All study participants
provided written informed consent, and the research was
approved by the UNC institutional review board (IRB #18-1848)
and the biomedical research ethics committee at the University of
Zambia. Blind-sweep data were collected with standard ultra-
sound devices (SonoSite M-Turbo or GE Voluson) as well as a
low-cost portable ultrasound device (ButterflyIQ). Studies inclu-
ded standard clinical assessments of GA20 and fetal mal-
presentation performed by a trained sonographer using a
standard ultrasound device.

Algorithm development. We developed two deep learning neural
network models to predict GA and fetal malpresentation. Our
models generated diagnostic predictions directly from ultrasound
video: sequences of image pixel values were the input and an
estimate of the clinical quantity of interest was the output. The
GA model produced an estimate of age, measured in days, for
each blind-sweep video sequence. The GA model additionally
provided an estimate of its confidence in the estimate for a given
video sequence. No intermediate fetal biometric measurements
were required during training or generated during inference. The
fetal malpresentation model predicted a probability score between
0.0 and 1.0 for whether the fetus is in noncephalic presentation.
See Supplementary Materials for a technical discussion and
details regarding model development.

In the USA, the ground truth GA was determined for each
participant based on the “best obstetric estimate,” as part of
routine clinical care, using procedures recommended by the
American College of Obstetricians and Gynecologists (ACOG)29.
The best obstetric estimate combines information from the last
menstrual period (LMP), GA derived from assisted reproductive
technology (if applicable), and fetal ultrasound anatomic
measurements. In Zambia, only the first fetal ultrasound was
used to determine the ground truth GA as the LMP in this setting
was considered less reliable as patients often presented for care
later in pregnancy.

The GA model was trained on sonographer-acquired blind
sweeps (up to 15 sweeps per patient) as well as sonographer-
acquired “fly-to” videos that capture five to ten seconds before the
sonographer has acquired standard fetal biometry images. The
fetal malpresentation model was only trained on blind sweeps.
For each training set case, fetal malpresentation was specified as
one of four possible values by a sonographer (cephalic, breech,
transverse, oblique), and dichotomized to “cephalic” vs “non-
cephalic”. This dichotomization is clinically justified since
cephalic cases are considered normal while all noncephalic cases
require further medical attention.

Our analysis cohort included all pregnant women in the
FAMLI and Novice User Study datasets who had the necessary
ground truth information for gestational age and fetal presenta-
tion from September 2018 to January 2021. Study participants
were assigned at random to one of three dataset splits: train, tune,
or test. We used the following proportions: 60% train/20% tune/
20% test for study participants who did not receive novice sweeps,
and 10% tune/90% test for participants who received novice
sweeps. The tuning set was used for optimizing machine learning
training hyperparameters and selecting a classification threshold
probability for the fetal malpresentation model. This threshold
was chosen to yield equal noncephalic specificity and sensitivity
on the tuning set, blinded to the test sets. None of the blind-sweep
data collected by the novices were used for training.
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Cases consisted of multiple blind-sweep videos, and our models
generated predictions independently for each video sequence within
the case. For the GA model, each blind sweep was divided into
multiple video sequences. For the fetal malpresentation model, video

sequences corresponded to a single complete blind sweep. We then
aggregated the predictions to generate a single case-level estimate for
either GA or fetal malpresentation (described further in the Mobile
Device Inference section in supplementary materials).

Fig. 1 Development of an artificial intelligence system to acquire and interpret blind-sweep ultrasound for antenatal diagnostics. a Datasets were
curated from sites in Zambia and the USA and include ultrasound acquired by sonographers and midwives. Ground truth for gestational age was derived from
the initial exam as part of clinical practice. An artificial intelligence (AI) system was trained to identify gestational age and fetal malpresentation and was
evaluated by comparing the accuracy of AI predictions with the accuracy of clinical standard procedures. The AI system was developed using only sonographer
blind-sweep data, and its generalization to novice users was tested on midwife data. Design of the AI system considered suitability for deployment in low-to-
middle-income countries in three ways: first, the system interpreted ultrasound from low-cost portable ultrasound devices; second, near real-time
interpretation is available offline on mobile phone devices; and finally, the AI system produces feedback scores that can be used to provide feedback to users.
b Blind-sweep ultrasound acquisition procedure. The procedure can be performed by novices with a few hours of ultrasound training. While the complete
protocol involves six sweeps, a set of two sweeps (M and R) were found to be sufficient for maintaining the accuracy of gestational age estimation.
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Evaluation. The evaluation was performed on the FAMLI (sono-
grapher-acquired) and Novice User Study (novice-acquired)
datasets. Test sets consisted of patients independent of those used
for AI development (Fig. 1a). For our GA model evaluation, the
primary FAMLI test set comprised 407 women in 657 study visits
in the USA. A second test set, “Novice User Study” included 114
participants in 140 study visits in Zambia. Novice blind-sweep
studies were exclusively performed at Zambian sites. Sweeps col-
lected with standard ultrasound devices were available for 406 of
407 participants in the sonographer-acquired test set, and 112 of
114 participants in the novice-acquired test set. Sweeps collected
with the low-cost device were available for 104 of 407 participants
in the sonographer-acquired test set, and 56 of 114 participants in
the novice-acquired test set. Analyzable data from the low-cost
device became available later during the study, and this group of
patients is representative of the full patient set. We randomly
selected one study visit per patient for each analysis group to avoid
combining correlated measurements from the same patient. For
our fetal malpresentation model, the test set included 613 patients
from the sonographer-acquired and novice-acquired datasets,
resulting in 65 instances of noncephalic presentation (10.6%). For
each patient, the last study visit of the third trimester was included.
Of note, there are more patients in the malpresentation model test
set since the ground truth is not dependent on a prior visit. The
disposition of study participants are summarized in STARD dia-
grams (Supplementary Fig. 1) and Supplementary Table 1.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Mobile-device-optimized AI gestational age and fetal mal-
presentation estimation. We calculated the mean difference in
absolute error between the GA model estimate and estimated
gestational age as determined by standard fetal biometry mea-
surements using imaging from traditional ultrasound devices
operated by sonographers20. The reference ground truth GA was
established based on an initial patient visit as described above in
Methods. When conducting pairwise statistical comparisons
between blind sweep and standard fetal biometry absolute errors,
we established an a priori criterion for non-inferiority which was
confirmed if the blind-sweep mean absolute error (MAE) was less

than 1.0 day greater than the standard fetal biometry’s MAE.
Statistical estimates and comparisons were computed after ran-
domly selecting one study visit per patient for each analysis
group, to avoid combining correlated measurements from the
same patient.

We conducted a supplemental analysis of GA model prediction
error with mixed effects regression on all test data, combining
sonographer-acquired and novice-acquired test sets. Fixed effect
terms accounted for the ground truth GA, the type of ultrasound
machine used (standard vs. low cost), and the training level of the
ultrasound operator (sonographer vs. novice). All patient studies
were included in the analysis, and random effects terms accounted
for intra-patient and intra-study effects.

GA analysis results are summarized in Table 1. The MAE for
the GA model estimate with blind sweeps collected by
sonographers using standard ultrasound devices was significantly
lower than the MAE for the standard fetal biometry estimates
(mean difference −1.4 ± 4.5 days, 95% CI −1.8, −0.9 days). There
was a trend toward increasing error for a blind sweep and
standard fetal biometry procedures with the gestational week
(Fig. 2a).

The accuracy of the fetal malpresentation model for predicting
noncephalic fetal presentation from third-trimester blind sweeps was
assessed using a reference standard determined by sonographers
equipped with traditional ultrasound imagery (described above). We
selected the latest study visit in the third trimester for each patient.
Data from sweeps performed by the sonographers and novices were
analyzed separately. We evaluated the fetal malpresentation model’s
area under the receiver operating curve (AUC-ROC) on the test set
in addition to noncephalic sensitivity and specificity.

The fetal malpresentation model attained an AUC-ROC of
0.977 (95% CI 0.949, 1.00), sensitivity of 0.938 (95% CI 0.848,
0.983), and specificity of 0.973 (95% CI 0.955, 0.985) (Table 2 and
Fig. 3).

Generalization of GA and malpresentation estimation to
novices. Our models were trained on up to 15 blind sweeps per
study performed by sonographers. No novice-acquired blind
sweeps were used to train our models. We assessed GA model
generalization to blind sweeps performed by novice operators that
performed six sweeps. We compared the MAE between novice-
performed blind-sweep AI estimates and the standard fetal
biometry. For the malpresentation model, we reported the

Table 1 Gestational age estimation.

Sweeps collected by sonographers Sweeps collected by novices

Standard
ultrasound device

Low-cost
handheld device

Standard
ultrasound device

Low-cost
handheld device

Number 406 104 112 56
Blind-sweep MAE ± sd (days) 3.8 ± 3.6 3.3 ± 2.8 4.4 ± 3.5 5.0 ± 4.0
Standard fetal biometry estimates
MAE ± sd (days)

5.2 ± 4.6 3.8 ± 3.6 4.8 ± 3.7 4.7 ± 4.0

Blind sweep—standard fetal biometry
mean difference ± sd (days)

−1.4 ± 4.5 −0.6 ± 3.8 −0.4 ± 4.8 0.4 ± 5.1

MAE difference 95% CI (days) −1.8, −0.9 −1.3, 0.1 −1.3, 0.5 −1.0, 1.7
Blind sweep ME ± sd (days) −0.9 ± 5.3 0.4 ± 4.4 −1.5 ± 5.5 −3.8 ± 5.4
Standard fetal biometry estimates
ME ± sd (days)

−1.4 ± 7.0 −0.25 ± 5.4 −2.6 ± 5.3 −3.4 ± 5.2

Reduced blind-sweep protocol
MAE ± sd (days)

4.0 ± 3.7 3.5 ± 3.0 4.5 ± 3.5 5.1 ± 4.2

Mean absolute error (MAE) and mean error (ME) between gestational age (GA) estimated using the blind-sweep procedure and ground truth, and the MAE and ME between the GA estimated using the
standard fetal biometry ultrasound procedure and ground truth. One visit by each participant eligible for each subgroup was selected at random. The reduced blind-sweep protocol (last row) included
only two blind sweeps. All other blind-sweep results used a set of six blind sweeps per patient visit. All fetal biometry GA estimates were collected by expert sonographers using standard ultrasound
devices.
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AUC-ROC for blind sweeps performed by novices, along with the
sensitivity and specificity at the same operating point used for
evaluating blind sweeps performed by sonographers.

In this novice-acquired dataset, the difference in MAE between
blind-sweep AI estimates and the standard fetal biometry was
−0.6 days (95% CI−1.7, 0.5), indicating that sweeps performed by
novice operators provide a non-inferior GA estimate compared to
the standard fetal biometry. Table 1 provides novice blind-sweep
performance analyzed by ultrasound device type. The mixed effects
regression error analysis did not indicate a significant association
between GA error magnitude and the type of operator conducting
the blind sweep (P= 0.119).

Fetal malpresentation using novice-acquired blind sweeps was
compared to the sonographer’s determination on 189 participants
(21 malpresentations), and AUC-ROC was 0.992 (95% CI 0.983,
1.0). On the preselected operating point, sensitivity was 1.0 (95%
CI 0.839, 1.0) and specificity was 0.952 (95% CI 0.908, 0.979).

Performance of low-cost ultrasound device in GA and fetal
malpresentation estimation. GA model estimation using blind
sweeps acquired with the low-cost ultrasound device were
compared against the clinical standard on the combined

novice-acquired and sonographer-acquired test sets. We used the
same a priori criterion for non-inferiority as described above,
1.0 day. For the malpresentation model, we reported AUC-ROC
by type of ultrasound device along with sensitivity and specificity
at the same operating point discussed above.

GA model estimation using blind sweeps acquired with the
low-cost ultrasound device were compared against the standard
fetal biometry estimates on the combined novice-acquired
and sonographer-acquired test sets. The blind-sweep AI system
had MAE of 3.98 ± 3.54 days versus 4.17 ± 3.74 days for standard
fetal biometry (mean difference −0.21 ± 4.21, 95% CI −0.87,
0.44) which meets the criterion for non-inferiority.

Paired GA estimates for blind sweeps acquired with both a
standard ultrasound device and the low-cost device were available
for some study participants in the combined test set (N= 155
participants). The MAE difference between blind sweeps per-
formed with the low-cost and standard devices was 0.45 days (95%
CI, 0.0, 0.9). The mixed effects regression showed that use of the
low-cost device was associated with increased error magnitude
(P= 0.001), although the estimated effect was only 0.67 days.

Fetal malpresentation estimation using blind sweeps acquired
with the low-cost ultrasound device were compared against the

Fig. 2 Gestational age estimation. n= 407 study participants, blind sweeps performed by expert sonographers. a Blind-sweep procedure and standard
fetal biometry procedure absolute error versus ground truth gestational age (4-week windows). Box indicates 25th, 50th, and 75th percentile absolute
error, and whiskers indicate 5th and 95th percentile absolute error. b Error distributions for blind-sweep procedure and standard fetal biometry procedure.
c Paired errors for a blind sweep and standard fetal biometry estimates in the same study visit. The errors of the two methods exhibit correlation, but the
worst-case errors for the blind-sweep procedure have a lower magnitude than the standard fetal biometry method. d Video sequence feedback-score
calibration on the test sets. The realized model estimation error on held-out video sequences decreases as the model’s feedback score increases. A
thresholded feedback score may be used as a user feedback signal to redo low-quality blind sweeps. Box indicates 25th, 50th, and 75th percentile of
absolute errors, and whiskers indicate the 5th and 95th percentile absolute error.
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sonographer’s determination on the combined novice-acquired
and sonographer-acquired test sets (213 participants, 29 mal-
presentations). The blind-sweep AI system had AUC-ROC of
0.97 (95% CI 0.944, 0.997). At the preselected operating point,
sensitivity was 0.931 (95% CI 0.772, 0.992) and specificity was
0.94 (95% CI 0.896, 0.970).

Simplified sweep evaluation. Protocols consisting of fewer
sweeps than the standard 6 sweeps (Fig. 1b) may simplify clinical
deployment. We selected M and R sweep types as the best per-
forming set of two sweeps on the tuning set and evaluated this
reduced protocol on the test sets.

On test set sweeps performed by sonographers, the reduced
protocol of just the M and R sweep types (Fig. 1b) was sufficient
for maintaining the non-inferiority of the blind-sweep protocol
relative to the standard fetal biometry estimates (MAE difference
95% CI: [−1.5, −0.69] days). The reduced protocol was sufficient
for maintaining non-inferiority of blind sweeps relative to
standard fetal biometry on test set examinations performed by
novices (MAE difference 95% CI: [−1.19, 0.67] days). On average,
the reduced protocol can be completed in 20.1 seconds, as
extrapolated from videos collected from novices (see

Supplementary Table 2). MAE across subgroups using the
reduced protocol are provided in Table 1 (last row).

Feedback-score evaluation. Our GA model provided a feedback
score to evaluate the suitability of a video sequence for GA esti-
mation. The GA model computed the feedback score for 24-
frame video sequences (about one second in length) and therefore
provided a semi-continuous feedback signal across the duration
of a typical 10-s long blind sweep. The feedback score took the
form of an inverse variance estimate and can be used to weight
and aggregate GA predictions across blind-sweep video sequences
during a study visit. All GA results were computed using this
inverse variance weighting aggregation method. More details are
provided in “Methods”.

As expected, video sequences with high feedback score had low
MAE when compared against ground truth GA, and low
feedback-score video sequences had high MAE compared against
ground truth GA. Figure 2d indicates the calibration of the
feedback score on the held-out test datasets. Supplementary
Fig. 2c shows example blind-sweep video frames from high and
low feedback-score video sequences. The feedback score qualita-
tively aligns with the degree to which the fetus is visible in the
video clip, with the high feedback score left and center-left

Table 2 Fetal malpresentation estimation.

Subset Number of
participants

Number of
malpresentations

AUC-ROC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

All 613 65 0.977
(0.949, 1.0)

0.938
(0.848, 0.983)

0.973
(0.955, 0.985)

Low-cost device only 213 29 0.970
(0.944, 0.997)

0.931
(0.772, 0.992)

0.940
(0.896, 0.970)

Standard device only 598 65 0.980
(0.953, 1.000)

0.954
(0.871, 0.990)

0.977
(0.961, 0.988)

Novice only 189 21 0.992
(0.983, 1.000)

1.000
(0.839, 1.000)

0.952
(0.908, 0.979)

Sonographer only 424 43 0.972
(0.933, 989)

0.907
(0.779, 0.974)

0.987
(0.970, 0.996)

The fetal malpresentation model was assessed by comparing predictions to the determination of a sonographer. In each subset of the data, we selected only the latest eligible visit from each patient. For
sensitivity and specificity computations, model predictions were binarized according to a predefined threshold. Confidence intervals on the area under the receiver operating characteristic (AUC-ROC)
were computed using the DeLong method. Confidence intervals on sensitivity and specificity were computed with the Clopper–Pearson method.

Fig. 3 Fetal malpresentation estimation. n= 623 study participants. Receiver operating characteristic (ROC) curves for fetal malpresentation estimation.
Crosses indicate the predefined operating point selected from the tuning dataset. a ROC comparison based on the type of device: low-cost and standard.
b ROC comparison based on the type of ultrasound operator: novices and sonographers.
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examples showing the fetal abdomen and head (respectively). In
contrast, the fetus is not visible in the low feedback-score
examples (center-right and right).

Run-time evaluation on mobile phones. Our blind-sweep AI
models were designed to enable near real-time inference on modern
mobile phones or standard computers, to enable elimination of
waiting time during the clinical examination procedure. We mea-
sured both GA and fetal malpresentation model run-time perfor-
mance using 10-s long blind-sweep videos, which were chosen to
match the average length of novice blind sweeps (Supplementary
Table 2). Videos were streamed to an Android test application
running on Google Pixel 3 and 4, Samsung Galaxy S10, and Xiaomi
Mi 9 phones (examples of Android phones that can be purchased
refurbished for less than $250 USD). Videos were processed by the
GA and fetal malpresentation models simultaneously, with both
models executed in the same TensorFlow Lite run-time environ-
ment. All necessary image preprocessing operations were also
included in the benchmark.

Our results indicated that combined diagnoses for both models
are available between 0.2 and 1.0 s on average after the completion
of a blind sweep on devices with a graphics processing unit (GPU),
and between 1.5 and 2.5 s on average after completion on devices
with neural network acceleration libraries for standard CPU
processors. See Table 3 for complete benchmark results.

Discussion
In this study, we demonstrated how our end-to-end blind-sweep
mobile-device-optimized AI models can assist novices in LMICs
in acquiring blind-sweep ultrasounds to estimate two important
obstetric measurements: GA and fetal malpresentation. While
there have been multiple GA models proposed in the past, ours is
the first to describe an end-to-end system focusing on use in
LMIC settings. Three prior studies have described using deep
learning on single video frames to either directly estimate GA or
estimate head circumference that is then used in fetal biometry
formulas23–25,27. One prior study describes using the FAMLI
dataset to estimate GA through deep learning of blind-sweep
ultrasound videos27. One prior study describes estimation of fetal
malpresentation using AI to first detect fetal anatomy, followed
by applying a clinical decision-making matrix26. Our models
perform as well or better than previously described models. Our
GA model estimation was non-inferior to standard fetal biometry
estimates and our fetal malpresentation model had high sensi-
tivity and specificity. Both models also had similar performance
across sonographer and novice-acquired ultrasounds.

We found that later in pregnancy, there was less deterioration of
GA model estimation accuracy compared to the clinical standard
fetal biometry. Our models utilize the entire ultrasound video as
opposed to only accounting for isolated biometric measurements
(e.g., head circumference, femur length..) per the standard fetal
biometry. This holistic approach may account for the increased

accuracy later in the pregnancy, when the correlation between GA
and physical size of the fetus is less pronounced. This may be
especially helpful in providing more accurate estimated GA in LMIC
settings where access to ultrasound in early pregnancy is rare30.

While pairwise comparisons between traditional devices and
low-cost devices suggest that traditional devices may perform
slightly better, GA model estimation from low-cost devices was
non-inferior to standard fetal biometry estimation. This suggests
that variation in device performance does not result in clinically
significant differences in GA model performance. For our fetal
malpresentation model, performance was similar between low-
cost and traditional devices.

We focused on improving user experience and simplifying
ultrasound acquisition since some of the most vulnerable patients
are in geographically remote areas without Internet access. While
we initially evaluated on blind sweeps consisting of six sweeps, we
found that our GA model performed similarly using only two
sweeps. The compatibility of the GA model with this simplified
2-sweep protocol suggests that we may be able to simplify
acquisition complexity for novices. Our GA model generates a
real-time feedback score that provides information on ultrasound
video quality and reliability for use in our AI models. In a clinical
setting, this feedback score can potentially notify the ultrasound
operator to redo a poorly performed sweep. Both the GA and
malpresentation models along with the video quality feedback
score have been optimized to run on affordable mobile devices
and do not require Internet access.

One limitation of this study is the small sample size, which
makes it difficult to evaluate each subgroup individually: novices,
sonographers, and ultrasound device type. Our dataset included
very few videos for GA less than 12 weeks and greater than
37 weeks so we cannot ensure the AI models generalize for these
groups. In addition, we only had a limited number of noncephalic
presentations resulting in wide confidence intervals. We plan to
validate our findings on a larger cohort to address these limitations.
These future studies will also include predictions for other critical
maternal fetal diagnostics and pregnancy risk stratification.

While designing the AI models, we addressed obstacles that
may be encountered in low-resourced settings where remote care
is often delivered through novices with limited training. Overall,
tools such as the ones assessed in this study can potentially assist
in upleveling the capabilities of both facility and novices in pro-
viding more advanced antenatal care. Additionally, the under-
lying techniques and technology could be applied and studied in
other ultrasound-based clinical workflows. The prospective clin-
ical evaluation will be important to evaluate real-world effec-
tiveness, and adaptations may be needed to integrate tools such as
this into real-world workflows.

Data availability
The data used in this study was collected as part of grant OPP1191684 funded by
the Bill and Melinda Gates Foundation and is covered by their Global Access program

Table 3 Mobile-device model run-time benchmarks.

Processor type

Mobile phone GPU mean ± standard deviation CPU w/ XNNPACK library (4 threads) CPU (4 threads)

Pixel 3 0.9 ± 0.1 s 2.1 ± 1.0 s 13.2 ± 2.9 s
Pixel 4 0.2 ± 0.1 s 1.5 ± 0.8 s 9.8 ± 2.5 s
Samsung Galaxy S10 0.5 ± 0.1 s 1.7 ± 1.1 s 10.3 ± 2.3 s
Xiaomi Mi 9 1.0 ± 0.2 s 1.8 ± 1.3 s 13.7 ± 3.4 s

Time to model inference results (mean and standard deviation in seconds) measured from the end of a 10-s-long blind-sweep video. Both gestational age and fetal malpresentation models run
simultaneously on the same video sequence and image preprocessing operations are included. Near real-time inference is achievable on smartphones with graphics processing units or compute libraries
optimized for neural network operations. This enables a simple and fast examination procedure in clinical environments.
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(https://globalaccess.gatesfoundation.org/). The data will be hosted at synapse.org, and
access for research purposes can be requested through the foundation. Source data for
Figs. 2 and 3 are available in Supplementary Data 1.

Code availability
Source code for the artificial intelligence models is provided at https://github.com/
Google-Health/google-health/tree/master/fetal_ultrasound_blind_sweeps31.

Received: 10 February 2022; Accepted: 28 September 2022;

References
1. World Health Organization. Newborns: improving survival and well-being.

https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-
mortality (2020).

2. World Health Organization. Maternal mortality. https://www.who.int/news-
room/fact-sheets/detail/maternal-mortality (2019).

3. Organization, W. H. Strategies Towards Ending Preventable Maternal
Mortality (EPMM) (World Health Organization, 2015).

4. Okong, P., Byamugisha, J., Mirembe, F., Byaruhanga, R. & Bergstrom, S. Audit
of severe maternal morbidity in Uganda–implications for quality of obstetric
care. Acta Obstet. Gynecol. Scand. 85, 797–804 (2006).

5. Goudar, S. S. et al. Institutional deliveries and stillbirth and neonatal mortality
in the Global Network’s Maternal and Newborn Health Registry. Reprod.
Health 17, 179 (2020).

6. Tunçalp, Ӧ et al. WHO recommendations on antenatal care for a positive
pregnancy experience—going beyond survival. BJOG 124, 860–862 (2017).

7. Hickok, D. E., Gordon, D. C., Milberg, J. A., Williams, M. A. & Daling, J. R.
The frequency of breech presentation by gestational age at birth: a large
population-based study. Am. J. Obstet. Gynecol. 166, 851–852 (1992).

8. Azria, E. et al. Factors associated with adverse perinatal outcomes for term
breech fetuses with planned vaginal delivery. Am. J. Obstet. Gynecol. 207,
285.e1–9 (2012).

9. Giuliani, A., Schöll, W. M. J., Basver, A. & Tamussino, K. F. Mode of delivery
and outcome of 699 term singleton breech deliveries at a single center. Am. J.
Obstet. Gynecol. 187, 1694–1698 (2002).

10. Schutte, J. M. et al. Maternal deaths after elective cesarean section for breech
presentation in the Netherlands. Acta Obstet. Gynecol. Scand. 86, 240–243
(2007).

11. Duffy, C. R. et al. Malpresentation in low- and middle-income countries:
associations with perinatal and maternal outcomes in the Global Network.
Acta Obstet. Gynecol. Scand. 98, 300–308 (2019).

12. Papageorghiou, A. T. et al. Ultrasound-based gestational-age estimation in late
pregnancy. Ultrasound Obstet. Gynecol. 48, 719–726 (2016).

13. Bresnahan, B. W. et al. Cost estimation alongside a multi-regional, multi-
country randomized trial of antenatal ultrasound in five low-and-middle-
income countries. BMC Public Health 21, 952 (2021).

14. Kim, E. T., Singh, K., Moran, A., Armbruster, D. & Kozuki, N. Obstetric
ultrasound use in low and middle income countries: a narrative review.
Reprod. Health 15, 129 (2018).

15. Nathan, R. et al. Screening obstetric ultrasound training for a 5-country cluster
randomized controlled trial. Ultrasound Q 30, 262–266 (2014).

16. Swanson, J. O. et al. The diagnostic impact of limited, screening obstetric
ultrasound when performed by midwives in rural Uganda. J. Perinatol. 34,
508–512 (2014).

17. Swanson, J. O. et al. Web-based quality assurance process drives
improvements in obstetric ultrasound in 5 low- and middle-income countries.
Glob Health Sci Pract 4, 675–683 (2016).

18. Nathan, R. O. et al. Evaluation of focused obstetric ultrasound examinations
by health care personnel in the Democratic Republic of Congo, Guatemala,
Kenya, Pakistan, and Zambia. Curr. Probl. Diagn. Radiol. 46, 210–215 (2017).

19. Abuhamad, A. et al. Standardized six-step approach to the performance of the
focused basic obstetric ultrasound examination. Am. J. Perinatol. 33, 90–98
(2015).

20. Hadlock, F. P., Deter, R. L., Harrist, R. B. & Park, S. K. Estimating fetal age:
computer-assisted analysis of multiple fetal growth parameters. Radiology 152,
497–501 (1984).

21. Maraci, M. A. et al. Toward point-of-care ultrasound estimation of fetal
gestational age from the trans-cerebellar diameter using CNN-based
ultrasound image analysis. J Med. Imaging 7, 014501 (2020).

22. DeStigter, K. K. et al. Low-cost teleradiology for rural ultrasound. in 2011
IEEE Global Humanitarian Technology Conference 290–295 (IEEE, 2011).

23. van den Heuvel, T. L. A., de Korte, C. L. & van Ginneken, B. Automated
interpretation of prenatal ultrasound using a predefined acquisition protocol
in resource-limited countries. Preprint at https://arxiv.org/abs/1907.12314
(2019).

24. van den Heuvel, T. L. A., Petros, H., Santini, S., de Korte, C. L. & van
Ginneken, B. Automated fetal head detection and circumference estimation
from free-hand ultrasound sweeps using deep learning in resource-limited
countries. Ultrasound Med. Biol. 45, 773–785 (2019).

25. van den Heuvel, T. L. A. et al. Comparison study of low-cost ultrasound
devices for estimation of gestational age in resource-limited countries.
Ultrasound Med. Biol. 44, 2250–2260 (2018).

26. Self, A., Chen, Q., Noble, J. A. & Papageorghiou, A. T. OC10.03: computer‐
assisted low‐cost point of care ultrasound: an intelligent image analysis
algorithm for diagnosis of malpresentation. Ultrasound Obstet. Gynecol. 56,
28–28 (2020).

27. Pokaprakarn, T. et al. AI Estimation of Gestational Age from Blind
Ultrasound Sweeps in Low-Resource Settings. NEJM Evidence. 1,
EVIDoa2100058 (2022).

28. FAMLI. UNC Global Women’s Health. https://gwh.web.unc.edu/famli/ (2018).
29. American College of Obstetricians and Gynecologists’ Committee on

Obstetric Practice. Committee Opinion No 700: methods for estimating the
due date. Obstet. Gynecol. 129, e150–e154 (2017).

30. WHO Alliance for Maternal and Newborn Health Improvement Late
Pregnancy Dating Study Group. Performance of late pregnancy biometry for
gestational age dating in low-income and middle-income countries: a
prospective, multicountry, population-based cohort study from the WHO
Alliance for Maternal and Newborn Health Improvement (AMANHI) Study
Group. Lancet Glob Health 8, e545–e554 (2020).

31. Gomes, R. Model code for ‘a mobile-optimized artificial intelligence system for
gestational age and fetal malpresentation assessment’. https://doi.org/10.5281/
zenodo.7114750 (2022).

Acknowledgements
We would like to thank Yun Liu and Cameron Chen for helpful feedback on the
manuscript. This study was partially funded by the Bill and Melinda Gates Foundation
(OPP1191684, INV003266). The conclusions and opinions expressed in this article are
those of the authors and do not necessarily reflect those of the Bill and Melinda Gates
Foundation.

Author contributions
R.G.G., C.Lee, A.W., and M.S. developed and evaluated the artificial intelligence models.
J.S.A.S., B.V., J.T.P., M.P.K., E.M.S., N.S., W.G. III, and B.H.C. developed and executed
the FAMLI ultrasound data collection study. J.A.T. and S.M.M. contributed to the
interpretation of model evaluation results. R.G.G. and C.C. drafted the manuscript with
contributions from C.Lee, A.W., S.S., J.S.A.S., B.H.C., J.A.T., D.T., A.U., K.C., and S.M.M.
G.E.D., J.G., and T.Sp. provided technical advice during the development of the artificial
intelligence model. C.Lau provided interpretation of ultrasound imagery during model
development. T.Sa. and K.L. conducted sonographer and patient experience research
during the FAMLI data collection study. T.T. and T.Sa. created the original image ele-
ments used in Fig. 1. J.W. and R.P. coordinated collaboration between Google Inc.,
University of North Carolina, and Bill and Melinda Gates Foundation. S.S., J.S.A.S., D.T.,
A.U., G.C., L.P., and K.C. established the research goals and direction of the study.

Competing interests
The authors declare the following competing interests: this study was partially funded by
Google Inc. R.G.G., C. Lee, A.W., M.S., J.A.T., S.M.M., C.C., S.S., D.T., A.U., K.C., J.G.,
G.E.D., T. Sp., T. Sa., K.L., T.T., G.C., L.P., J.W., and R.P. are employees of Google Inc.
and own stock as part of the standard employee compensation package. The remaining
authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43856-022-00194-5.

Correspondence and requests for materials should be addressed to Ryan G. Gomes, Akib
Uddin, Daniel Tse or Shravya Shetty.

Peer review information Communications Medicine thanks Dong Ni and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00194-5

8 COMMUNICATIONS MEDICINE |           (2022) 2:128 | https://doi.org/10.1038/s43856-022-00194-5 | www.nature.com/commsmed

https://globalaccess.gatesfoundation.org/
https://github.com/Google-Health/google-health/tree/master/fetal_ultrasound_blind_sweeps
https://github.com/Google-Health/google-health/tree/master/fetal_ultrasound_blind_sweeps
https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality
https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality
https://www.who.int/news-room/fact-sheets/detail/maternal-mortality
https://www.who.int/news-room/fact-sheets/detail/maternal-mortality
https://arxiv.org/abs/1907.12314
https://gwh.web.unc.edu/famli/
https://doi.org/10.5281/zenodo.7114750
https://doi.org/10.5281/zenodo.7114750
https://doi.org/10.1038/s43856-022-00194-5
http://www.nature.com/reprints
www.nature.com/commsmed


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00194-5 ARTICLE

COMMUNICATIONS MEDICINE |           (2022) 2:128 | https://doi.org/10.1038/s43856-022-00194-5 |www.nature.com/commsmed 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmed
www.nature.com/commsmed

	A mobile-optimized artificial intelligence system for�gestational age and fetal malpresentation assessment
	Methods
	Blind-sweep procedure
	Fetal age machine learning initiative (FAMLI) and novice user study datasets
	Algorithm development
	Evaluation
	Reporting summary

	Results
	Mobile-device-optimized AI gestational age and fetal malpresentation estimation
	Generalization of GA and malpresentation estimation to novices
	Performance of low-cost ultrasound device in GA and fetal malpresentation estimation
	Simplified sweep evaluation
	Feedback-score evaluation
	Run-time evaluation on mobile phones

	Discussion
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




