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Abstract

In order for mobile robots to interact effectively with
people they will have to recognize faces. In this paper
we describe a robot system that finds people, approaches
them and then recognizes them. The system uses a va-
riety of techniques: color vision is used to find people;
vision and sonar sensors are used to approach them; a
template-based pattern recognition algorithm is used to
isolate the face; and a neural network is used to recog-
nize the face. All of these processes are controlled using
an intelligent robot architecture that sequences and mon-
itors the robot’s actions. We present the results of many
experimental runs using an actual mobile robot finding
and recognizing up to sz different people.

1 Introduction

A long range goal of the Robotics Architecture Labo-
ratory at NASA Johnson Space Center is to develop tech-
nologies that will allow for effective human-robot teams
in dynamically changing environments. For example, a
human might be working at a repair site and ask a robot
to fetch tools or spare parts from another repair site or to
deliver something to a person working at another site.
For robots to cooperate with people in such a manner
will require that they have many skills. This paper de-

scribes the development of one of the more important
skills that a robot should have as part of a human-robot
team—the ability to find and recognize faces.

Face recognition has received a great deal of attention
in the literature and there are many experimental meth-
ods [1, 2, 3, 4]. Face recognition on a mobile robot, how-
ever, poses several additional challenges. First, speed
is important because the computational resources on-
board a robot are limited and transmission of images off-
board the robot is time-consuming. Second, robustness
is necessary because neither the camera nor the subject
are in fixed positions. Third, the face recognition prob-
lem begins not with an image of the face, but with the
problem of first finding a person, second finding the face
and then recognizing the face. Finally, since the face
recognition process is not a stand-alone application it
must fail in such a way that the robot can take addi-
tional actions to identify the person.

We have broken the problem of finding and recogniz-
ing people into four distinct sub-tasks:

1. Locating a person. The robot needs to find peo-
plein a large, open environment. In order to do this
we require that people wear a solid color shirt for
which the robot can search.

2. Approaching that person. When the robot sees
a color that indicates a person, it must approach
that person so that it can isolate their face.
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Figure 1: A mobile robot with a color vision system.

3. Locating their face The robot uses the colored
shirt and a face-matching template to crop a 32 by
32 pixel image that contains only the person’s face.

4. Recognizing their face. The cropped 32 by 32
pixel image is fed into a three-layer neural network
that has been trained to recognize up to six different
faces.

Each of these sub-tasks is described in Sections 2, 3,
4, and 5 of this paper respectively. All of them are im-
plemented on an actual mobile robot that performs a
“find-and-recognize” task within our laboratory. This
robot is described in the next subsection of this paper.
All robot control is done within the context of an intel-
ligent control architecture that we are developing. This
software control architecture is described in subsection
1.2 of this paper.

1.1 Hardware infrastructure

Our experimental platform is a Cybermotion K2A
base with a ring of 24 sonar sensors (see Figure 1). On-
board the robot are two 68030 processors that control
all non-vision related functions. On top of the robot is a
color CCD camera with a 6mm lens, which gives a hor-
izontal field of view of 58 degrees and is mounted on a
pan/tilt head. A multi-axis motion controller provides
azimuth and elevation control of the pan/tilt head. The
color camera output video signal is in Y/C (or S-Video)
format. The Y/C video signal is converted into RGB

component signals and digitized by an on-board Dat-
acube Digicolor board. Color segmentation and track-
ing is performed by an on-board Datacube MaxVideo
200 board. A 68040 MPU board is used as the host
processor for the robot’s vision system and performs the
cropping and neural network computations. All vision
processing and motion control is located on-board the
robot.

1.2 Software infrastructure

The integration of the vision system and the mobile
robot takes place within the context of an intelligent
architecture we are developing for control of robots. The
architecture is composed of a set of skills and methods
for turning on and turning off subsets of these skills to
achieve different tasks.

Skills are defined as a closed loop of software that
seeks to achieve or maintain a state (either internal or
external). For the task of finding and recognizing a per-
son, the robot has skills that allow it to move around a
room, to search for and track colors, to approach peo-
ple and to detect and recognize faces. Subsets of these
skills may be active concurrently to achieve a desired
robot behavior. A system called the skill manager [5] is
responsible for coordinating skills that are active. Sec-
tion 6 gives details about our robot’s skills.

The responsibility for deciding which skills should be
active and when they should be activated in order to
achieve a task rests with a sequencer called the Reactive
Action Packages (RAP) system [6]. The RAP system
takes into consideration the robot’s task, its current state
and the state of the world and then selects a set of skills
that should run to accomplish the task.

2 Locating a person

Locating a person in a dynamic environment is a com-
plicated task. To simplify this task, we require that the
person to be recognized wear a single solid color shirt.
The robot uses the color to locate and approach a per-
son, but not to recognize them. Locating a person is
split into two components: 1) A visual search from a
fixed location; and 2) Systematically moving the robot
to new locations within the room and then doing (1).
First we will describe how the vision system uses color
to locate a person within its field of view and then we
will describe how we search a room for a person.

2.1 Color detection

To find a person, we use a real-time color recognition
technique that detects a color by comparing every pixel



in an image frame with the target color at frame rate
[7]. The normalized color component (NCC) values of
each pixel in an image frame are computed and are com-
pared to a pair of target NCC values, r, and g,. The
NCC values, # and § are defined by approximating the
chromaticity coordinates as follows:

# = RH,
§=GH,
1
H= e ——
°(7re7s)

R, G, and B are the red, green, and blue color compo-
nents, respectively. @ (.) is a linear quantizer that maps

a floating point value to a n-bit value.

1
R+G+B
The NCC values of each pixel in an image frame are

compared to 7, and g, using the following criteria:

1, fr,(1-6,)<#;<r,(1+46,)and
Pij = 9o (1= 8g) < gi,j < go(1+4dg);
0, otherwise.

pi,; is the pixel value at location (7, j) of the resultant
binary image. §, and d, are chosen such that r, (1 —4,),
7o (14 4,), 9o (1 —4,), and g, (1 + J4) together define a
rectangular NCC region corresponding to a group of col-
ors that are visually indistinguishable from the color de-
fined by 7,, g,. The color-matching results of every pixel
in an image frame are represented by a binary image with
1 indicating a positive match and 0 indicating otherwise.
The binary image is then convolved with a local averag-
ing filter to eliminate any isolated pixel areas. Positively
matched pixels form a blob in the resultant image. The
centroid (z,y) of the blob provides the location of the
person.

2.2 Searching

The procedure described above is packaged into a
robot skill (called SEARCH-COLOR) that sweeps a 180
degree area with the camera head, performing the color
matching process while sweeping. If a person is located,
the vision system keeps the person within the camera
field of view by coordinating the pan/tilt movement of
the camera head with the centroid location of the de-
tected blob in real-time. This skill also informs the RAP
system of its success or failure in finding a person. If the
search was successful, then the RAP system will instruct
the robot to begin approaching the person (described in
the next section). Otherwise, the RAP system deacti-
vates the SEARCH-COLOR skill, activates a skill (TURN-
RELATIVE) to turn the robot 180 degrees and then reacti-
vates the SEARCH-COLOR skill to perform another sweep.

If this second sweep is also unsuccessful, then RAPs
instructs the robot to move to another position in the
room. This is accomplished by activating three obsta-
cle avoidance skills: VFH-MAP, VFH-FREE-DIR, and VFH-
MOVE, which implement the VFH obstacle avoidance
technique [8]. While moving, the robot is also looking
for people and will stop if it sees one. When the robot
attains its new position (all search positions are fixed) it
again performs two visual sweeps. The robot continues
this process until it finds a person.

3 Approaching a person

Once the robot has located a person, it has to ap-
proach them so that their face can be cropped. Ap-
proaching a person is a two step process. First, visual
information is used to approach within 2 meters of the
person. Then robot’s sonar sensors can be used to ap-
proach to 1.5 meters from the person.

To approach a person visually, the RAP system acti-
vates a TRACK-COLOR skill. This visual skill moves the
camera head to keep the tracked color in the center of
the field of view. This skill also feeds the heading and
distance of the tracked color to the obstacle avoidance
and robot movement skills, which allows the robot to
pursue the color while avoiding obstacles. Distance to
the tracked color is roughly determined by measuring
the size of the color (in pixels) in the image. The robot
will continue to pursue the color until it estimates that
it is within 2 meters of the color.

When the robot is within two meters of the color,
the RAP system deactivates the obstacle avoidance skills
and activates a special skill that will approach the per-
son. This skill is called SONAR-APPROACH and it moves
the robot in the direction of the target color while contin-
ually checking the forward sonar sensors until they read
1.5 meters. The camera head is still tracking the color
and feeding updated headings to the SONAR-APPROACH
skill, so the robot can still pursue the person should they
move. Once the robot is at 1.5 meters from the per-
son the SONAR-APPROACH skill will attempt to maintain
that distance by moving forward or backward as the per-
son moves. The skill also signals RAPs that it has ap-
proached the person so RAPs can begin to activate the
skills for locating and recognizing a face.

4 Locating a face
Locating human faces is a difficult first step in auto-

matic face recognition. Yet the task of locating a face is
often avoided by either segmenting the image manually



Figure 2: The face subimage (upper rectangle) is based
on the rectangular boundary of the colored shirt (lower
rectangle).

Figure 3: The greyscale subimage and the corresponding
binary subimage.

or by using a known uniform background. For a mobile
robot that is required to work in a dynamic environment,
automatic face detection is essential to the success of the
face recognition process. With the approximate location
of the face computed based on the location of the col-
ored shirt, a simple binary template matching technique,
suitable for real-time computation, can effectively locate
the frontal view of a human face.

When the robot is approximately 1.5 meters away
from the person, the vision system grabs an image frame
and crops the portion of the image above the shirt (Fig-
ure 2). A wider subimage is initially cropped from the
grabbed image to ensure that the entire face is included.
A 96 by 90 subimage, located 18 pixels above the center
of the upper edge of the rectangular boundary of the de-
tected color shirt, is initially cropped from the grabbed
image. The precise location of the face relative to the
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Figure 4: A binary template that models human eyes
(top). The template is divided into five regions (bot-
tom).

subimage is determined using a binary template match-
ing technique. The final size of the face subimage to be
cropped is 53 by 90 pixels if the robot to person dis-
tance is 1.5 meter. The sizes and the vertical location
of the subimages to be cropped are scaled linearly ac-
cording to the exact robot to person distance provided
by the sonar sensors. The cropped color face subimage
is first transformed to a grey scale subimage. The grey
scale subimage is then converted to a binary subimage
by comparing each pixel to a threshold. (Figure 3). In
this experiment, a threshold of 70 is used.

A binary template that models human eyes is formed
based on real face images of different persons. The tem-
plate is divided into five regions. Figure 4 shows the 34
by 9 binary template used in this experiment. The bi-
nary template is compared, pixel by pixel for each of the
five reglons, to all possible 34 by 9 pixel blocks within the
upper portion of the binary subimage. A pixel block is
considered as a possible match if the number of match-
ing pixels in each of the five regions is greater than a
threshold. A different threshold is chosen for each of the
five regions based on the total number of pixels in each
region of the template. The pixel block that has the
maximum total number of matching pixels is considered
as the best match. If no possible match is found, the
vision system reports the failure in locating a face to the
skill manager.

The relative location of that pixel block in the subim-
age is used to compute the location of the face. The face
subimage is then extracted from the grey scale subimage
accordingly. Each extracted face subimage is shrunk to
a fixed size, 32 by 32 pixels, before it is processed for
recognition.

The face locating process described above has been
tested on nine different persons, three women and six
men. Each test begins with the robot tracking and ap-
proaching the person in a large room. This ensures that
variations associated with the movements of the robot



and the person, and the background environment are in-
cluded in these tests. Experimental results show that
the vision system is able to accurately locate the faces
of eight out of the nine persons in over 90 percent of
the tests. However, the vision system can only correctly
locate the face of one man in the test group in approxi-
mately 20 percent of the tests. The performance of the
face locating process can be improved for any particular
person by adjusting the threshold used in the color to
grey scale image conversion, or by adjusting the shape
and the size of the binary template to be a more accurate
representation of the eyes of that person. Using a bank
of different templates instead of a single fixed template,
that requires increasing processing time, should be able
to improve the success rate of face detection.

The approach described above has been packaged as a
skill called GET-FACE that can be activated by the RAP
system at the appropriate time (i.e., when the robot has
approached within 1.5 meters of a person). After a suc-
cessful GET-FACE the RAP system will immediately ac-
tivate the skill for recognizing a face, described in the
next section of this paper.

5 Recognizing a face

We use a neural network to recognize faces. The ear-
liest connectionist work on face storage and recognition
was by Kohonen and his colleagues [9]. Their exper-
iments used two layer linear networks. They showed
that the network would classify images at novel orienta-
tions properly via linear interpolation. Midorikawa [10]
used a three-layer back-propagation network to classify
face patterns. He found that the network was robust
against a large amount of noise, and that the success
of the network depended on the initial weights rather
than on the number of hidden units. The recent de-
velopment of powerful connectionist learning algorithms
such as back propagation has made it possible to pro-
gram computation in networks by example rather than
algorithm [11, 12]. This is especially useful when no
algorithm is known. The face recognition technique de-
scribed here is based on Cottrell et al work on catego-
rization of faces using unsupervised feature extraction
[11]. An image compression network is used to automat-
ically extract image features for pattern recognition. Ex-
tracted features are used as input to a two layer network
trained to distinguish faces and to attach an identity to
the face image. The back-propagation neural network is
implemented based on the parallel distributed processing
models of McClelland and Rumelhart [13].

Figure 5: Left: The original face image. Right: The face
image after preprocessing.

Feature extractor Classifier

Face recognition network

Figure 6: The architecture of the human face recognition
network.

5.1 Image preprocessing

Since human heads are generally oval in shape, an
elliptic mask is applied to each image such that pixels
outside of the ellipse are excluded from further process-
ing. This eliminates most of the background pixels in
the image and reduces number of pixels per image to be
processed from 1024 to 793 pixels. The masked face im-
age is then normalized using histogram equalization to
reduce the lighting effect on the image (figure 5). Fur-
ther, the image data are converted from 255 grey scale
values linearly to floating point values of the range 0 to
1 before being input to the neural network. The same
preprocessing procedure is applied to all of the training
and testing images.



identity | target output pattern
Linda 100000
Eric 010000
Dave 001000
Carol 000100
Jodi 000010
Mark 000001

Table 1: Example target output patterns of the classifier
network

5.2 Network architecture

The architecture of the face recognition network (Fig-
ure 6) consists of two parts: (1) a feature extractor which
computes a feature map extracted from the raw image;
(2) a classifier working on the previously computed fea-
ture map. Each person is considered as a separate class.
The output of the classifier gives the class, or identity, of
the presented image. Such a system is able to separate
classes which are not linearly separable.

The feature extractor is a three-layer back-
propagation network. This network is trained to repro-
duce the input image on its output layer. Both the input
and the output layers each has 793 units (size of a face
image) and the hidden layer has 80 units. The input and
output layers are much larger than the hidden layer of
the network. This size differential indicates a compact
internal representation of the image information at the
hidden unit level. The classifier is a two-layer network.
The input layer has 80 units corresponding to the 80
hidden units of the feature extractor network. The out-
put layers has 6 units, each representing a different face
identification. The classifier network is trained to match
the compressed hidden unit representations of the train-
ing images with their identities. An example of target
output patterns corresponding to each identity or class
is shown in table 1.

The face recognition network (Figure 6) is constructed
by combining the first two layers of the feature extraction
network and the output layer of the classifier network.
Therefore, the face recognition network is a three-layer
network with a 793 X 80 X 6 architecture. The input
layer has 793 units corresponding to 793 pixels of an
input image. The 80 hidden units are the internal repre-
sentation of that image. The 6 units in the output layer
each represents the identity of one of the 6 subjects.

5.8 Training
A database of 105 face images of 8 different persons

has been created with images taken by the robot’s vision
system using the person and face locating techniques de-

Figure 7: Part of the face database containing images
taken autonomously by the mobile robot.

scribed in the previous sections (see Figure 7). Differ-
ent training data sets are generated from images in the
database. Each set of training data consists of 36 images,
6 images per person. The initial weight values of the fea-
ture extraction networks are generated randomly. The
welght changes are accumulated over all input images
presented within an epoch, and the weights are changed
only at the end of the epoch. The training of the feature
extraction network is completed when the sum of square
errors of all images is less than 8. The performance of
the feature extraction network can also be evaluated by
comparing the input image and the reproduced image
visually. The hidden units of each training image gen-
erated by the trained feature extraction network form
a data set of features corresponding to the training im-
ages. This feature data set is used for training the clas-
sifier network. The initial weight values of the classifier
network are also generated randomly. The network is
then trained until it can accurately label all of the im-
age representations in the training set and the total sum
of errors is less than 0.003. The activation level, in the
range of 0 to 1, of each output unit computed by the net-
work represents the confidence level of the corresponding



Figure 8: Two examples of input (left) and output
(right) images of the feature extractor

»| get-face _,,;;ggnize_, identity
search-
color
track- | —
color
2 o] vih-free-
vfh-map > ir
sonar- |«
approach vfh-move
turn-
relative

Figure 9: The skill network for our robot.

identification. An output unit is considered to be ON if
its activation level is greater than 0.70. Each of the out-
put units corresponds to a different identity. The weights
of the trained feature extraction and classifier networks
are used for building the face recognition network.

5.4 Results

The feature extraction and the face recognition net-
works have been tested separately. Figure 8 shows an
example of the feature extraction network results. Test
results show that the feature extraction network is able
to reproduce all of the training images with only minor
distortions. This indicates that the activation levels of
the hidden units provide an accurate internal represen-
tation of the input training image.

The face recognition network formed by combining
the feature extraction and classifier networks has been
tested with both trained and untrained images in the
database. The network can accurately classify all the
trained images. When tested with untrained images, the
network can correctly identify approximately 84 percent
of the images. Similar results are obtained from networks
trained with different training data sets.

6 Experimental runs with the robot

We have on-board our robot the following skills (see
Figure 9):

e SEARCH-COLOR, which sweeps the camera head
looking for a specific color.

e TRACK-COLOR, which moves the camera head to
keep the color within the field of view of the camera.

e VFH-MAP, VFH-FREE-DIR, and VFH-MOVE, which
move the robot while avoiding obstacles.

e TURN-RELATIVE, which turns the robot to a certain
angle.

e SONAR-APPROACH, which approaches a person to
within 1.5 meters and maintains that distance.

e GET-FACE, which crops a 32X32 pixel window that
contains the face.

e RECOGNIZE-FACE, which feeds the 32X 32 pixel win-
dow into a neural network that has been trained on
up to six different faces.

By activating different combinations of the above
skills, the robot can be made to perform any of the lo-
cating and recognizing sub-tasks. In experimental trials,
we had the robot find, approach and recognize a vari-
ety of people, each many different times. Our database
of images is relatively small due to the time-consuming
nature of acquiring images by having the robot find and
approach a person. However, because we are describing
a complete robot system and not just a face recogni-
tion technique, it is essential that all of our testing be
done using images that are acquired autonomously by
the robot. For this reason we cannot use existing face
databases for testing.

We have tested the robot system on six people, each
about twelve times. Of those runs, the robot recognizes
the person about 70 percent of the time. Note that the
system as a whole has a higher failure rate than the neu-
ral network itself (Section 5.4), because the robot system
can fail at other points along the recognition process.

Failures fall into three categories: 1) The robot does
not successfully locate the face; 2) The robot thinks it
has located a face, but has not; 3) The neural network
fails to recognize a good face image. In the first case,
the GET-FACE skill reports that it cannot locate a face
and the RAP system runs that skill again. Failure to
locate a face is often the result of the person moving or
because the background contains the color of the shirt
or a person’s long hair obscuring the colored shirt. If the
GET-FACE skill fails twice then the robot asks the person



to move a little bit and it will try again. In the second
case, the GET-FACE skill does not return an error, but
it has, in fact, not correctly isolated the face. This can
happen because the template-matching system has found
something that looks like eyes in a different part of the
image. When this happens, the RECOGNIZE-FACE skill
reports that it cannot recognize the person. This is not
the neural network’s fault as the cropped image does not
contain a complete face, however the failure is noticed
by the RECOGNIZE-FACE skill. In the last case, a good
face image is passed to the neural network, which simply
doesn’t recognize it. This often happens if someone is
not looking at the camera or has a vastly different facial
expression or orientation than in their training images.
In the last two cases, the RAP system will invoke each
skill again. If they fail a second time, the robot will ask
the person to move and it will try again.

6.1 Conclusion

In order for robots to interact effectively with people
they will have to be able to recognize faces. The process
described in this paper is a first step in that direction.
We use a variety of techniques to locate, approach, iso-
late and recognize people. All of these are implemented
on an actual mobile robot. All of the robot’s processes
are controlled by an intelligent software architecture that
sequences and monitors the robot’s actions. In the fu-
ture we hope to add additional human interaction skills,
including gesture and pointing recognition and speech
recognition. Then we hope to combine these skills in the
context of our intelligent architecture to execute long
running scenarios with human-robot teams.
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