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Technologies such as batteries, biomaterials, and heterogeneous catalysts have 
functions that are defined by mixtures of molecular and mesoscale components. As 
yet, this multi-length scale complexity cannot be fully captured by atomistic 
simulations, and the design of such materials from first principles is still rare1-5. 
Likewise, experimental complexity scales exponentially with the number of variables, 
restricting most searches to narrow areas of materials space. Robots can assist in 
experimental searches6-14 but their widespread adoption in materials research is 
challenging because of the diversity of sample types, operations, instruments and 
measurements that is required. Here we use a mobile robot to search for improved 
photocatalysts for hydrogen production from water15. The robot operated 
autonomously over 8 days, performing 688 experiments within a 10-variable 
experimental space, driven by a batched Bayesian search algorithm16-18. This 
autonomous search identified photocatalyst mixtures that were six times more active 
than the initial formulations, selecting beneficial components and deselecting 
negative ones. Our strategy uses a dexterous19,20 free-roaming robot21-24, automating 
the researcher rather than the instruments. This modular approach could be deployed 
in conventional laboratories for a range of research problems beyond photocatalysis.   

The mobile robot platform is shown in Figure 1a and Extended Data Fig. 1. It can move 
freely in the laboratory and locates its position using a combination of laser scanning 
coupled with touch feedback for fine positioning (Methods & Supplementary Movie S1). This 
gave an (x, y) positioning precision of ± 0.12 mm and an orientation precision of θ ± 0.005 
degrees within a standard laboratory environment with dimensions 7.3 m x 11 m (Figure 1b; 
Extended Data Fig. 2; Supplementary Figs. S1–10). This precision allows the robot to carry 
out dexterous manipulations at the various stations in the laboratory (Figure 1; Extended 
Data Fig. 3) that are comparable to those performed by human researchers, such as 
handling sample vials and operating instruments. The robot has human-like dimensions and 
reach (Fig. 1a,d) and it can therefore operate in a conventional, unmodified laboratory. 
Unlike many automated systems that can dispense only liquids, this robot dispenses both 
insoluble solids and liquid solutions with high accuracy and repeatability (Supplementary 
Figs. S12, S13, S16–S20), broadening its utility in materials research. Factoring in the time 
needed to recharge the battery, this robot can operate for up to 21.6 h per day with optimal 
scheduling. The robot uses laser scanning and touch feedback, rather than a vision system. 
It can therefore operate in complete darkness, if needed (Supplementary Movie S2), which 
is an advantage when carrying out light-sensitive photochemical reactions, as here. The 
robot arm and the mobile base comply with safety standards for collaborative robots, 
allowing human researchers to work within the same physical space (section 1.5, 
Supplementary Information). A movie of the robot operating an autonomous experiment over 
a 48-hour period is shown in Supplementary Movie S1. 
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The benefits of combining automated experimentation with a layer of artificial intelligence 
(AI) have been demonstrated for flow reactors25, photovoltaic films13, organic synthesis8-10,14, 
perovskites26, and for formulation problems18. However, to date, no approaches have 
integrated mobile robotics with AI for chemical experiments. Here, we built Bayesian 
optimization16-18 into a mobile robotic workflow to conduct photocatalysis experiments within 
a 10-dimensional space. Semiconductor photocatalysts that promote overall water splitting 
to produce both hydrogen and oxygen are still quite rare15. For many catalysts, a sacrificial 
hole scavenger is needed to produce hydrogen from water, such as triethylamine (TEA)27 or 
triethanolamine (TEOA)28, and these amines are irreversibly decomposed in the reaction. It 
has proved difficult to find alternative hole scavengers that compete with these organic 
amines29.  

Our objective was to identify bioderived hole scavengers with efficiencies that match 
petrochemical amines and that are not irreversibly decomposed, with the long-term aim of 
developing reversible redox shuttles. The photocatalyst that we chose was P10, a 
conjugated polymer that shows good hydrogen evolution rates in the presence of TEOA28. 
We first used the robot to screen 30 candidate hole scavengers (Extended Data Fig. 4). This 
was done using a screening approach, without any AI. Initially, the robot loads a solid-
dispensing station that weighs any solid components into sample vials (Figure 1c), in this 
case the catalyst, P10. Next, the vials are transported 16 at a time in a rack to a dual liquid 
dispensing station (Extended Data Fig. 3c), where the liquid components are added; here, 
50 g L-1 aqueous solutions of the candidate hole scavengers (Supplementary Movies S3 & 
S4). The robot then places the vials into a capping station, which caps the vials under 
nitrogen (Supplementary Fig. S21; Supplementary Movie S5). Optionally, the capped vials 
are then placed into a sonication station (Supplementary Fig. S23; Supplementary Movie 
S3) to disperse the solid catalyst in the aqueous phase. The vials are then transported to a 
photolysis station, where they are illuminated with a mixture of ultraviolet and visible light 
(Fig. 1a; Extended Data Fig. 3b; Supplementary Fig. S24; Supplementary Movie S6). After 
photolysis, the robot transfers the vials to a head space gas chromatograph (GC) station 
where the gas phase is analyzed for hydrogen (Figure 1d) prior to storage of completed 
samples (Figure 1e). Except for the capping station and the photolysis station, which were 
built specifically for this workflow, the other stations used commercial instruments with no 
physical hardware modifications: the robot operates them in essentially the same way that a 
human researcher would. 

Conditional automation was used in this hole scavenger screen to repeat any hits; that is, 
samples that showed a hydrogen evolution rate (HER) of >200 µmol g-1 h-1 were 
automatically re-analyzed five times. Most of the 30 scavengers produced little or no 
hydrogen (Extended Data Fig. 4), except for L-ascorbic acid (256 ± 24 µmol g-1 h-1) and L-
cysteine (1201± 88 µmol g-1 h-1). Analysis by 1H NMR spectroscopy showed that L-cysteine 
was cleanly converted to L-cystine (Supplementary Fig. S32), indicating that it may have 
potential as a reversible redox shuttle in an overall water splitting scheme30.   
 
While it showed promise as a hole scavenger, L-cysteine produced much less hydrogen 
than an aqueous solution of TEOA at the same gravimetric concentration (2985 ± 103 µmol 
g-1 h-1 at 50 g L-1). We therefore sought to increase the hydrogen evolution rate of the P10 / 
L-cysteine system by using an autonomous robotic search based on five hypotheses 
(Figure 2a). The first hypothesis was that dye sensitization might improve light absorption 
and hence the HER, as found for the structurally related covalent organic framework, FS-
COF31. Here, three dyes were investigated (Rhodamine B, Acid Red 8731, and methylene 
blue). Second, we hypothesized that pH might influence the catalytic activity (NaOH 
addition). The third hypothesis was that ionic strength could also be important32 (NaCl 
addition). Catalyst wettability is known to be factor in photocatalytic hydrogen evolution using 
conjugated polymers33, so the addition of surfactants (sodium dodecyl sulfate, SDS, and 
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polyvinylpyrrolidone, PVP) formed our fourth hypothesis. Fifth, we speculated that sodium 
disilicate might act as a hydrogen-bonding anchor for the scavenger, L-cysteine, or for the 
dyes, based on the observation that it aids in the absorption of dyes onto the surface of 
carbon nitride34.   
 
These five hypotheses had the potential to be synergistic or anti-synergistic; for example, 
ionic strength could either enhance or decrease dye absorption onto the surface of the 
photocatalyst. We therefore chose to explore all five hypotheses at once. This involved the 
simultaneous variation of the concentration of P10, L-cysteine, the three dyes, NaOH, NaCl, 
the two surfactants, and sodium disilicate, which equates to a 10-variable search space 
(Figure 2a). The space was constrained by the need to keep a constant liquid volume (5 mL) 
and therefore head space for GC analysis and by the minimal resolution for liquid dispensing 
module (0.25 mL) and solid dispensing module (1 mg).  
 
Problems of this type are defined by a simplex that scales exponentially with size 
(Figure 2b). For this specific search space, there were more than 98 million points. Full 
exploration of such a space is unfeasible, so we developed an algorithm that performs 
Bayesian optimization based on Gaussian process regression and parallel search strategy35 
(see Methods). To generate a new batch, we build a surrogate model predicting hydrogen 
evolution rate of potential formulations based on the measurements performed so far and 
quantify the uncertainty of prediction. Subsequent sampling points are chosen using a 
capitalist acquisition strategy, where a portfolio of upper confidence bound functions is 
generated on an exponential distribution of greed to create markets of varying risk aversity, 
which are searched for global maxima. Each market is given an agent that searches to 
return a global maximum, or batch of k-best maxima. The uneven distribution of greed 
allows for some suggested points to be highly exploitative, some to be highly explorative, 
and most to be balanced, thus making the strongest use of the parallel batch experiments. 

The output from this autonomous robotic search is shown in Figure 3a. The baseline 
hydrogen evolution rate for P10 and L-cysteine only (5 mg P10 in 5 mL of 20 g L-1 L-
cysteine) was 3.36 ± 0.30 µmol h-1. Given that the robot would operate autonomously over 
multiple days, this two-component mixture was repeated throughout the search (two 
samples per batch) to check for long-term experimental stability (black squares in 
Figure 3a). Initially, the robot started with random conditions and discovered multicomponent 
catalyst formulations that were mostly less active than P10 and L-cysteine alone (first 22 
experiments, Figure 3a). The robot then discovered that adding NaCl provides a small 
improvement to the HER, validating the hypothesis that ionic strength is important. In the 
same period, the robot found that maximizing both P10 and L-cysteine increased the HER. 
In further experiments (15–100), the robot discovered that none of the three dyes nor the 
two surfactants improves the HER; indeed, they are all detrimental, counter to our first and 
fourth hypotheses. These five components were therefore deselected after around 150 
experiments (Figure 4); that is, after about 2 days in real experimental time (Fig. 3a). Here, 
P10 differs from the structurally related crystalline framework, FS-COF, where the addition of 
Acid Red 87 was increased the HER31. After 30 experiments, the robot learned that adding 
sodium disilicate improves the HER significantly in the absence of dyes (up to 15 µmol after 
300 experiments), while deprioritizing the addition of NaOH and NaCl. After 688 
experiments, which amounted to 8 days of autonomous searching, the robot found that the 
optimum catalyst formulation is a mixture of NaOH, L-cysteine, sodium disilicate, and P10, 
giving a HER of 21.05 µmol h-1, which was six times higher than the starting conditions.  

A number of scientific conclusions can be drawn from these data. Increased ionic strength is 
beneficial for hydrogen production (NaCl addition), but not as beneficial as increasing the pH 
(NaOH / sodium disilicate addition), which also increases the ionic strength. We had not 
investigated surfactant addition before, but for the two surfactants studied here, at least, the 
effect on catalytic activity is purely negative. Intriguingly, the dye sensitization that we 
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observed for a structurally similar covalent organic framework, FS-COF,31 does not translate 
to this polymer, P10, possibly because the COF is porous whereas P10 is not.  

To explore the dependence of the algorithmic search performance on the random starting 
conditions, we carried out 100 in silico virtual searches, each with a different random starting 
point, using a regression model and random noise to return virtual results (Supplementary 
Information, section 7). Around 160 virtual experiments were needed, on average, to find 
solutions with 95% of the global maximum HER (Figure 5). 
 
We estimate that it would have taken a human researcher several months to explore these 
five hypotheses in the same level of detail using standard, manual approaches 
(Supplementary Fig. S31). Manual hydrogen evolution measurements require about 0.5 
days of researcher time per experiment (1000 experiments = 500 days). The semi-
automated robotic methods that we developed recently33 can perform 100 experiments per 
day (half-day to set up, plus half-day for automatic dispensing and measurement; 1000 
experiments = 10 days = 5 days of dedicated researcher time). The autonomous robot that 
we present here also requires half a day to set it up initially, but it then runs unattended over 
multiple days (1000 experiments = 0.5 days of researcher time). Hence, the autonomous 
workflow is 1000 times faster than manual methods, and at least 10 times faster than semi-
automated but non-autonomous robotic workflows. It is unlikely that a human researcher 
would have persevered with this multivariate experiment using manual approaches since it 
might have taken 50 experiments / days to locate even a modest enhancement in the HER 
(Fig. 3a). The platform allows us to tackle search spaces of a size that would otherwise be 
impossible, which is an advantage for problems where our current level of understanding 
does not allow us to reduce the number of candidate components to a more manageable 
number. There were 10 components in the example given here, but search spaces with up 
to at least 20 components should be tractable with some modifications to the algorithm. 
 
It took a significant investment of time to build this workflow (approximately 2 years), but 
once operating with a low error rate (Supplementary Fig. S38), it can be used as a routine 
tool. The time required to implement this approach in another laboratory would be much 
lower, since much of the 2-year development timescale involved core protocols and software 
that are transferable to other research problems. Also, this modular approach to laboratory 
automation uses instruments in a physically unmodified form and it will be straightforward to 
add further modules, such as NMR or X-ray diffraction, now that the basic principles are in 
place. This modularity makes our strategy applicable to a wide range of research problems 
beyond chemistry. The speed and efficiency of the method allow the exploration of large 
multivariate spaces, and the autonomous robot has no confirmation bias36; this raises the 
prospect of emergent function in complex, multi-component materials that we could not 
design in the conventional sense. Autonomous mobile robots could also have extra 
advantages for experiments with especially hazardous materials, or where traceability and 
auditing are important, such as in pharmaceutical processes. 
 
This approach also has some limitations. For example, the Bayesian optimization is blind in 
that all components have equal initial importance. The robotic search does not capture 
existing chemical knowledge, nor include theory or physical models: there is no 
computational brain. Also, this autonomous system does not at present generate and test 
scientific hypotheses by itself.37 In the future, we propose to fuse theory and physical models 
with autonomous searches: for example, computed structures and properties1-5 could be 
used to bias searches towards components that have a higher likelihood of yielding the 
desired property. This will be important for search spaces with even larger numbers of 
components where purely combinatorial approaches may become inefficient. To give one 
example, energy-structure-function maps38 could be computed for candidate crystalline 
components to provide Boltzmann energy weightings39 for calculated properties, such as a 
charge transport or optical gap, to bias the robotic search. 
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METHODS 
 
Robot specifications. The robot used was a KUKA Mobile Robot (KMR) mounted on a 
KUKA Mobile Platform (KMP) base (Fig. 1a; Extended Data Fig. 1). The robot arm has a 
maximum payload of 14 kg and a reach of 820 mm. The KMP base can carry payloads of up 
to 200 kg. The robot arm and the mobile base combined has a mass of approximately 
430 kg. The movement velocity of the robot was restricted to 0.5 m s-1 for safety reasons 
(Supplementary Information, section 1.5). A multipurpose gripper was designed to grasp 10 
mL GC sample vials, solid dispensing cartridges, and a 16-position sample rack (Extended 
Data Fig. 5), thus allowing a single robot to carry out the whole variety of tasks required for 
this workflow. This robot was specified to be a flexible platform for a wide range of research 
tasks beyond those exemplified here; for example, the 14 kg payload capacity for the arm is 
not fully utilized in these experiments (one rack of filled vials has a mass of 580 g), but it 
could allow for manipulations such as opening and closing the doors of certain equipment. 
Likewise, the height and reach of the robot allows for operations such as direct loading of 
samples into the GC instrument (Fig. 1d). By contrast, a smaller and perhaps less expensive 
robot platform might require an additional, dedicated robot arm to accomplish this, or 
inconvenient modifications to the laboratory, such as lowering bench heights. 
 
Robot navigation. In a process analogous to simultaneous localisation and mapping 
(SLAM)40, the robot tracks a cloud of possible positions, and updates its position to the best 
fit between the output of its laser scanners and the map for each position in the cloud. The 
position of the robot is determined by x & y and θ, where x & y describe its position on the 
map, and θ its orientation angle. Histograms of the robot position measured over 563 
movements are shown in Supplementary Figs. S2–S5, which show that the (x, y) positioning 
precision was better than ± 10 mm and the orientation precision was less than ± 2.5 
degrees, as achieved within a real, working laboratory environment. This level of precision 
allows navigation to the various experimental stations in the laboratory, but it does not allow 
fine manipulations, such as placement of sample vials. The precision was therefore 
enhanced by using a touch-sensitive 6-point calibration method. Here, the robot touches six 
points on a cube that is associated with each experimental station to find the position and 
orientation of the cube relative to the robot (Supplementary Figs. S7–S11). This increased 
the positioning precision to ± 0.12 mm and the orientation precision to ± 0.005 degrees. This 
makes it possible for the robot to operate instruments and to carry out delicate manipulations 
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such as vial placements at a level of precision that is broadly comparable to a human 
operator.  
 
Experimental stations. The workflow comprised six steps, each with its own station. Solid 
dispensing was carried out with a Quantos QS30 instrument (Mettler Toledo) (Fig. 1c; 
Supplementary Fig. S11; Extended Data Fig. 3a; Supplementary Movie S3). Liquid 
dispensing was carried out with bespoke system that used a 200 series Mini Peristaltic 
Pump (Williamson) and a PCG 2500-1 scale (Kern), to dispense liquids gravimetrically using 
feedback loop (section 2.2 in Supplementary Information; Supplementary Movie S5). This 
system showed excellent precision and accuracy for a range of aqueous and non-aqueous 
liquids over 20,000 dispenses (Figures S16–S17, S19, S20). A bespoke instrument was built 
(Labman) to allow both for sample inertization (to exclude oxygen) and cap crimping in one 
step. It would be straightforward to modify this platform to allow other gases to be 
introduced; for example, to study photocatalytic CO2 reduction. The instrument used caps 
from a vibratory bowl feeder to cap crimp 10 mL headspace vials (section 2.2 in 
Supplementary Information; Supplementary Movie S5). If required, a sonication station was 
used to disperse the solid photocatalyst in the aqueous solution, prior to reaction 
(Supplementary Fig. S23). Photolysis was carried out in bespoke photolysis station (Fig. 1a) 
that uses vibration to agitate liquids and a light source that is composed of BL368 tubes and 
LED panels (Extended Data Fig. 5b; Supplementary Fig. S24; Supplementary Movie S6). 
GC measurements were performed with 7890B GC with a 7697A Headspace Sampler from 
Agilent GC (Supplementary Movie S3; Extended Data Fig. 3d). The experimental stations 
were controlled by a process management system (PMS) module, which contains all of the 
process logic for controlling the labware. Communication between the PMS and the stations 
was achieved using various communication protocols (TCP/IP over WIFI/LAN; RS-232), as 
detailed in section 2.7 in the Supplementary Information (Supplementary Fig. S28). 
 
Autonomous search procedure and scheduling. The robot worked with batches of 16 
samples per sample rack and ran 43 batches (688 experiments) during the search. Of these 
688 experiments, 11 results were discarded because of workflow errors or because the 
system flagged that the oxygen level was too high (faulty vial seal). It took, on average, 183 
minutes to prepare and photolyze each batch of samples and then 232 minutes per batch to 
complete the GC analysis. The detailed timescales for each of the step in the workflow are 
shown in Extended Data Fig. 6. The work was heuristically scheduled in parallel, with the 
robot starting the oldest available scheduled job. While the robot was working on one job, 
other instruments, such as the solid dispenser, the photolysis station, and the GC, worked in 
parallel. This system can process up to six batches at once, but given the timescales for this 
specific workflow, where the preparation/reaction time is approximately equal to the analysis 
time, the robot processed two batches simultaneously. That is, it prepared samples and ran 
photolysis for one batch while analyzing the hydrogen produced for the second batch using 
GC. The robot recharged its battery automatically in between two jobs when the battery 
charge reached a 25% threshold. The robot was charged but idle for approximately 32% of 
the time in this experiment, largely because of time spent waiting for the GC analysis, which 
is the slow step. In principle, this time could be utilized to run other experiments in parallel. 
The autonomous workflow was programmed to alert the operator automatically when the 
system is out of stock (e.g., it ran out of sample vials, or stock solutions were low), or if a 
part of the workflow failed (Supplementary Information, section 8). Most errors could be 
reset remotely without being in the laboratory since all stations were equipped with 24/7 
CCTV cameras (Supplementary Fig. S39). 
 
Bayesian search algorithm. The AI guidance for the autonomous mobile robot was a 
batched, constrained, discrete Bayesian optimization algorithm. Traditionally, Bayesian 
optimization is a serial algorithm tasked with finding the global maximum of an unknown 
objective function16. Here, this equates to finding the optimal set of concentrations in a 
multicomponent mixture for photocatalytic hydrogen generation. The algorithm builds a 
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model that can be updated and queried for the most promising points to inform subsequent 
experiments. This surrogate model is constructed by first choosing a functional prior ϕprior(θ), informed by existing chemical knowledge (if any). Given data 𝒟 and a likelihood 

model ϕlikelihood(𝒟|θ), this yields a posterior distribution of models using Bayes' theorem: 
 

(1) ϕposterior(θ|𝒟) = ϕlikelihood(𝒟|θ)ϕprior(θ)ϕ(𝒟)  

 
The Gaussian process prior used a Matern similarity kernel, constant scaling, and 
homoscedastic noise41. This composite kernel allows for variable smoothness, catalytic 
activity, and experimental noise. The form and respective hyperparameters were refined 
using cross-validation on other, historical photocatalysis datasets (350 experiments). Other 
alternatives for a functional prior included Bayesian neural networks17; but Gaussian 
processes were selected here for robustness and flexibility42. An acquisition function, αUCB, was assembled from the posterior distribution by considering the posterior mean, μ(x), 
and uncertainty, σ(x). The maximum of this function was then used as the next suggested 
experiment. To balance exploitation (prioritizing areas where the mean is expected to be 
largest) and exploration (prioritizing areas where the least is known), we used an upper 
confidence bound that is dependent on a single hyperparameter, β, to govern how ‘greedy’ 
(exploitative) the search is: 
 

(2) αUCB(x; 𝒟)  ≔  μ(x) + βσ(x) 
 
The portfolio of acquisition functions for different values of β, which we call markets, was 
used to generate a batch. This ‘capitalist’ approach has the advantage of simple 
parallelization and is robust across variable batch sizes35. Our method allowed us to 
constrain the sum of all liquid components to 5 mL to allow a constant gas headspace 
volume for GC analysis. The sum total volume constraint was handled during the market 
searches; discretization, which was determined by instrument resolution, was handled after 
the market searches. The market search was completed using a large initial random 
sampling followed by a batch of seeded local maximizations using the SLSQP algorithm. 
This maximization occurs on a continuous space, and the results are placed into discrete 
bins following the experimental precision. The explored space is tracked as continuous and 
discrete variables for respective model building and acquisition function maximization. The 
algorithm was implemented using the scikit-learn and in scipy packages43. 
 
Materials and synthetic procedures. The polymeric photocatalyst P10 was synthesized 
and purified according to a modification on a literature procedure44 (Supplementary 
Information, section 10). For solid dispensing, the polymer was ground with mortar and 
pestle before use. Sodium disilicate was obtained as a free sample from Silmaco. Tap water 
was purified with PURELAB Ultra System. All other materials were purchased from Sigma-
Aldrich and used as received.  
 
Data availability. The implementation of liquid dispense station, photolysis station, and 
workflow, along with 3D designs for labware developed in the project, are available at 
https://bitbucket.org/ben_burger/kuka_workflow, the code for the robot at and the Bayesian 
optimizer is available at https://github.com/Taurnist/kuka_workflow_tantalus and 
https://github.com/CooperComputationalCaucus/kuka_optimizer. Additional design details 
can be obtained from the authors upon request. 
 
  

https://bitbucket.org/ben_burger/kuka_workflow
https://github.com/Taurnist/kuka_workflow_tantalus
https://github.com/CooperComputationalCaucus/kuka_optimizer
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Figure 1. Autonomous mobile robot and experimental stations. a, Photograph showing 
robot loading samples into the photolysis station. b, Map of the lab generated by laser 
scanning showing positions of the eight stations; the orange crosshairs indicate recorded 
navigation locations, the robot position is indicated by the green rectangle. Inputs 1–3 are 
areas for the storage of empty vials or completed sample racks. c, Robot loading empty 
sample vials into the solid-dispensing station prior to dispensing the photocatalyst. d, Loading 
the gas chromatograph (GC) station with a new rack of samples for analysis. e, Storing racks 
of completed samples in Input Station 1 after GC analysis. 
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Figure 2. Hypothesis-led autonomous search strategy. a, The robot searches chemical 
space to optimize the activity of the photocatalyst / scavenger combination according to five 
separate hypotheses. It does this by simultaneously varying the concentration of the ten 
chemical species shown here. b, Plot showing the size of the simplex, or the search space, 
created with a discretization of 19 concentrations for each liquid and 21 concentration levels 
for the solid catalyst, P10, which corresponds to the solid / liquid dispensing precision over the 
constrained space of the experiment. For this 10-component problem, the full simplex has 
98,423,325 points. 
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Figure 3. Output from the autonomous robotic search. a, Plot showing hydrogen evolution 
achieved per experiment in an autonomous search that extended over 8 days. Sixteen 
experiments were performed per batch, along with two baseline controls. The baseline 
hydrogen evolution was 3.36 ± 0.30 µmol (black squares). The maximum rate attained after 
688 experiments was 21.05 µmol h-1. The robot made 319 moves between stations and 
travelled a total distance of 2.17 km during this 8-day experiment. b, Radar plot showing the 
evolution of the average sampling of the search space in mL; scale denotes fraction of 
maximum solution volume dispensed. The starting conditions (Batch 1) were chosen 
randomly. The best catalyst formulation found after 43 batches contained P10 (5 mg), NaOH 
(6 mg), L-cysteine (200 mg) and Na2Si2O5 (7.5 mg) in water (5 mL).  
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Figure 4. Selection and deselection of photocatalyst formulation components. Plots 
showing the mass (mg, P10) or volume (mL, all other components) dispensed for the various 
components in the search space as a function of experiment. The photocatalyst, P10, and the 
scavenger, L-cysteine, are selected, along with sodium disilicate (Na2Si2O5) and NaOH. All 
other components were deselected after around 150 experiments. The three dyes and the two 
surfactants had a negative effect on the hydrogen evolution rate. NaCl had a small positive 
effect, but less so than the four selected components, and it was therefore deselected. Note 
that NaOH was initially deselected, and not included in experiments 15–283 (see black arrow), 
while Na2Si2O5 and L-cysteine were favoured. The positive effect of NaOH was initially 
masked by negative components such as the dyes. Later in the search, NaOH was favoured, 
ultimately in preference to Na2Si2O5, illustrating the benefit of using an uneven distribution of 
greed in the search. 
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Figure 5. Virtual, in silico experiments. Histogram showing the number of virtual 
experiments needed to reach 95% of the optimal hydrogen evolution rate (HER), as 
determined by carrying out 100 in silico searches, each with a different random starting point. 
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Extended Data Fig. 1. Mobile robotic chemist. The mobile robot used for this project, shown 
here performing a 6-point calibration with respect to the black cube that is attached to the 
bench, in this case associated with the solid cartridge station (see also Supplementary 
Fig. S11; Extended Data Fig. 3a). 
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Extended Data Fig. 2. Laboratory space used for the autonomous experiments. The key 
locations in the workflow are labeled. Other than the black location cubes that are fixed to the 
benches to allow positioning (see also Extended Data Figure 1), the laboratory is otherwise 
unmodified. 

 

  



 15 

Extended Data Fig. 3. Stations in the workflow. a, Photograph showing the robot at the 

solid dispensing / cartridge station. The two cartridge hotels can hold up to 20 different solids; 

here, four cartridges are located in the hotel on the left. The door of the Quantos dispenser is 

opened using software prior to loading the correct solid dispensing cartridge into the 

instrument (Supplementary Movie S3). Since the KMR robot is free-roaming and has an 

820 mm reach, it would be simple to extend this modular approach to 100’s or even 1000’s of 

different solids given sufficient laboratory space. b, Photograph showing the KMR robot at the 

photolysis station (see also Supplementary Movies S3, S6). c, Photograph showing the KMR 

robot at the combined liquid handling / capping station. The robot can reach both the liquid 

stations and the capper-crimper station after 6-point positioning, such that liquid addition, 

headspace inertization, and capping can be carried out in a single coordinated process (see 

Supplementary Movies S3, S5), without any position recalibration. d, Photograph of the KMR 

robot parked at the headspace gas chromatography (GC) station. The GC instrument is a 

standard commercial instrument and was unmodified in this workflow. 
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Extended Data Fig. 4. Hydrogen evolution rates for candidate bioderived sacrificial hole 
scavengers. Results of a robotic screen for sacrificial hole scavengers using the mobile robot 
workflow. Of the 30 bioderived molecules trialed, only cysteine was found to compete with the 
petrochemical amine, triethanolamine. Scavengers are labeled with the concentration of the 
stock solution that was used (5 mL volume; 5 mg P10). 
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Extended Data Fig. 5. Multipurpose gripper used in the workflow. The gripper is shown 

grasping various objects. a, The empty gripper; b, gripper holding a capped sample vial (top 

grasp); c, gripper holding an uncapped sample vial (side grasp); d, gripper holding a solid-

dispensing cartridge, and; e, gripper holding a full sample rack using an outwards grasp that 

locks into recesses in the rack. The same gripper was also used to activate the gas 

chromatograph using a physical button press (see Supplementary Movie S3; 1 min 52 sec). 
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Extended Data Fig. 6. Timescales for steps in the workflow. Average timescales for the 
various steps in the workflow (sample preparation, photolysis and analysis) for a batch of 16 
experiments. These averages were calculated over 46 separate batches. These average 
times include the time taken for the loading and unloading steps (e.g., the photolysis time itself 
was 60 minutes; loading and unloading takes an average of 28 minutes per batch). The 
slowest step in the workflow is the GC analysis.  
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