
Mobile Networks and Applications 2 (1997) 149–162 149

A mobile transaction model that captures both the data and
movement behavior

Margaret H. Dunham a,∗, Abdelsalam Helal b,∗∗ and Santosh Balakrishnan c

a Department of Computer Science and Engineering Southern Methodist University, Dallas, TX 75275, USA
b MCC, 3500 West Balcones Center Dr., Austin, TX 78759-6509, USA

c Department of Computer Science, University of Texas at Arlington, Arlington, TX 76019, USA

Unlike distributed transactions, mobile transactions do not originate and end at the same site. The implication of the movement of
such transactions is that classical atomicity, concurrency and recovery solutions must be revisited to capture the movement behavior.
As an effort in this direction, we define a model of mobile transactions by building on the concepts of split transactions and global
transactions in a multidatabase environment. Our view of mobile transactions, called Kangaroo Transactions, incorporates the property
that transactions in a mobile computing system hop from one base station to another as the mobile unit moves through cells. Our
model is the first to capture this movement behavior as well as the data behavior which reflects the access to data located in databases
throughout the static network. The mobile behavior is dynamic and is realized in our model via the use of split operations. The data
access behavior is captured by using the idea of global and local transactions in a multidatabase system.

1. Introduction

Recent advances in hardware technologies such as
portable computers and wireless communication networks
have led to the emergence of mobile computing systems.
Examples of mobile systems that exist today include travel-
ers carrying portable computers that use cellular telephony
for communications, and transporting trains and airplanes
that communicate location data with supervising systems.
In the near future, it is expected that tens of millions of
users will carry a portable computer and communicator that
uses a wireless connection to access a worldwide informa-
tion network for business or personal use. Access by users
with mobile computers to data in the fixed network will
involve transactions. However a transaction definition in
this environment varies from that within a centralized data-
base or even a distributed environment. In addition, limita-
tions of the wireless and nomadic environment place a new
challenge to implementing efficient transaction processing
using classical transaction models. Disconnection is the
major obstacle. Moreover, the long-lived nature of trans-
actions issued by mobile users exposes transactions to a
larger number of disconnections. Such frequent disconnec-
tions give rise to reliability (instead of availability) being
the primary system requirement for transaction processing
in the mobile environment. A new transaction model is
therefore needed to cope with this new requirement.

∗ This research was partially supported by the National Science Founda-
tion under Grant Number INT-9417907 and by a Massive Digital Data
System (MDDS) effort sponsored by the Advanced Research and De-
velopment Committee of the Community Management Staff. Part of
this research was performed while Margaret Dunham (then Margaret
Eich) was on sabbatical at the University of Queensland in Brisbane,
Australia.

∗∗ This research was partially supported by Hughes Research Laboratories
under Grant Number 906356.

In addition to differences in the environment, a mobile
transaction executes differently from a distributed transac-
tion. The former hops through a collection of visited sites,
while the latter communicates with a collection of remote
sites, and starts and ends at the same originating site. The
implication of this difference is that protocols for coordina-
tion of transaction termination (be it for commit or abort)
must be revisited. In the distributed transaction case, it
suffices for any remote site to send to (and maybe receive
acknowledgment from) the originating site to participate in
the termination protocol. In the mobile environment, how-
ever, the originating site could be different from the site at
which the transaction finishes. And even networking pro-
tocols that provide relocation transparency (like Mobile-IP)
may not be able to guarantee delivery to the originating
site. This is because the mobile host may be disconnected
due to roaming off the area, damaged, or stolen.

A new transaction model for the mobile environment
is needed. It should address the movement behavior of
transactions. As mobile transactions “hop” from a stationed
host to another, the state of the transaction and its progress
must also move, transparently. This transaction model must
still support concurrency, atomicity, and recovery. It should
also handle frequent disconnection failures and maintain
mutual consistency among replicated data.

The new model is not expected to be purely ACID. Not
that ACID is not enforceable, but because it is expected that
ACID will be enforced using too many aborts, resulting in
a system that is perfectly consistent, but that gets only a
small fraction of useful work done. To cope with all the
disconnections, and to accommodate for different network
characteristics, the new transaction model should provide a
spectrum of correctness criteria ranging from ACID to un-
restricted access. The case for the usefulness of unrestricted
access can be easily made in the mobile environment. For

 Baltzer Science Publishers BV



150 M.H. Dunham et al. / A mobile transaction model

Figure 1.

example, given the scarcity of resources in the mobile en-
vironment, a conflicting access to a data item (caused by
a concurrent update) should be allowed. Returning “dirty”
data tagged with appropriate warnings is much more useful
than returning an ABORT message, especially, that band-
width and delays will be incurred anyway.

In this paper, we present a transaction model that can
cope with the hopping behavior of the mobile user.

We build on two previously proposed transaction mod-
els: global transactions in a multidatabase environment
[2,3,23], and split transactions [17]. In the next section we
provide an overview of the mobile computing environment.
In section 3 we examine the requirements which a mobile
transaction should satisfy. Section 4 introduces our model
of mobile transactions. In section 5 we briefly review re-
lated transaction research, and finally in section 6 we sum-
marize the paper and list future research.

2. Mobile database environment

Figure 1 shows the existing (and widely accepted) ar-
chitectural model of a system that supports mobile comput-
ing [7,11–15,21,24]. The model consists of stationary and
mobile components. A Mobile Unit is a mobile computer
which is capable of connecting to the fixed network via
a wireless link. A Fixed Host is a computer in the fixed
network which is not capable of connecting to a mobile
unit. A Base Station is capable of connecting with a mo-
bile unit and is equipped with a wireless interface. They
are also known as Mobile Support Stations. Base stations,

therefore, act as an interface between mobile computers
and stationed computers. The wireless interface in the base
stations typically uses wireless cellular networks. Ericson
GE Mobidem is an example of a cellular network that uses
packet radio modems. The wireless interface can also be a
local area network, of which NCR WaveLan is an exam-
ple. Current cellular technology offers a limited bandwidth
in the order of 10 Kb/s (Mobidem offers 8 Kb/s), whereas
current wireless LAN technology offers a bandwidth in the
order of 10 Mb/s (WaveLan offers 2 Mb/s). While these
numbers are most likely to change in the future, it is safe
to assume that the network bandwidth will remain a major
limitation and a performance bottleneck for nomadic sys-
tem design in the near future. In addition, cost is also a
factor in the development of non-LAN applications. In this
paper, we use the existing mobile computing model in fig-
ure 1 as a foundation ground on top of which we define
our mobile transaction model.

We have previously defined a reference model for mobile
database systems [10]. Our reference model consists of
three layers: the source system, the data access agent, and
the mobile transaction. Table 1 provides an overview of
this reference model.

The Source System represents a collection of regis-
tered systems that offer information services to mobile
users. Examples of future services include white and yellow
pages services, mail-enabled applications, public informa-
tion systems including weather, navigation, stock quotes,
and company-private database/information systems. In our
model, a system in this layer could be any existing sta-
tionary system that follows a client-server or a peer-to-peer



M.H. Dunham et al. / A mobile transaction model 151

Table 1
Reference model layers.

Layer Location Purpose

Source System Fixed Host Provide services defined by specific software
Base Station
Mobile Unit

Data Access Agent Base Station Coordinate access to data in source system and
facilitate recovery. Manage mobile transaction

Mobile Transaction Base Station Grouping of operations needed to perform
Mobile Unit user request initiated at a Mobile Unit

Figure 2.

design. A distributed database system is a perfect exam-
ple. Data in the source system(s) is accessed by the mobile
transaction through the Data Access Agent (DAA). Each
base station hosts a DAA. The DAA does not maintain lo-
cation information of the mobile user, even though it will
need to use this information. When it receives a transaction
request from a mobile user (we call this a mobile transac-
tion), the DAA forwards it to the specific base stations or
fixed hosts which contain the needed data and source sys-
tem component. In the simplest case, the DAA would for-
ward all requests to one multidatabase host system which
would then determine where to execute the subtransactions.
A more general situation would be where each DAA con-
tains location tables which indicate, by transaction or sub-
transaction, the correct MDBS (Multidatabase System) or
DBMS to process the request. When the mobile user is
handed over to another base station, the DAA at the new
station receives transaction information from the old base
station. The mobile user accesses data and information by
issuing transactions. We define the Mobile Transaction as

the basic unit of computation in the mobile environment. It
is identified by the collection of sites (base stations) it hops
through. These sites are not known until the transaction
completes its execution. A major function performed by
the DAA is management of the mobile transaction. We call
this component of the DAA the Mobile Transaction Man-
ager (MTM). Its responsibilities include keeping track of
the execution status of all mobile transactions concurrently
executing (or previously executed at this site but not yet
committed), logging recovery information, and performing
needed checkpointing.

We view a mobile DBMS computing environment as an
extension of a distributed system. Özsu and Valduriez have
provided an excellent classification for distributed DBMSs
based on the system characteristics of autonomy, distribu-
tion, and heterogeneity [16]. Figure 2 extends their classi-
fication to include mobile DBMS systems. To their clas-
sification we have added an extra point on the distribution
axis. This is because a mobile computing system must in-
clude a fixed network (see figure 1) which is a distributed



152 M.H. Dunham et al. / A mobile transaction model

system. A mobile computing system can thus be viewed as
a dynamic type of distributed system where links between
nodes in the network change dynamically. These chang-
ing links represent the connection between the mobile units
and the base stations to which they are connected. Based
on this categorization we could conceivably have a mobile
system with no autonomy or heterogeneity among the com-
ponent DBMSs. However, we view this as being highly un-
likely. We target our transaction model to the most general
system: a Mobile Heterogeneous, Multidatabase System.
By building on transaction models designed for the most
general distributed environment, Distributed Heterogeneous
Multidatabase System, we develop a transaction model for
the most complicated mobile computing environment. Our
model as will be detailed in section 4 captures such gener-
alization by observing the constraints and requirements of
heterogeneous and multidatabase systems, including local
autonomy, and global serializability constraints.

3. Requirements of a mobile transaction

There have been many previously proposed transaction
models and many of these are applicable for a distributed
database system [8]. In fact, we will build our mobile trans-
action model using the concepts of Open Nested Trans-
actions [23] and Split Transactions [17]. However, these
models alone do not capture the complete behavior of a
mobile transaction. In this section we justify this claim
and provide motivation for our mobile transaction model.

One of the primary requirements which we would like to
have for a mobile transaction is to build on top of the exist-
ing infrastructure in the fixed network. The software at the
DAA will be used primarily to manage the mobile transac-
tions. The source system software will be responsible for
accessing the data. Since we target our model for a Mobile
Heterogeneous Multidatabase System, we assume complete
autonomy of the component DBMSs and the various multi-
database systems. Figure 3 shows our view of how mobile
transaction management is related to multidatabases. The
DAA serves as a mobile transaction manager built on top of
existing Global Database System (GDBS) and DBMS soft-
ware residing on the fixed network. Its relationship to the
GDBS is similar to the GDBS relationship to local DBMS

Figure 3.

systems. A GDBS assumes that the local DBMS systems
perform the required transaction processing functions in-
cluding recovery and concurrency. The DAA’s view of the
GDBS is similar to that seen by a user at a terminal in the
fixed network. As a matter of fact, as seen in figure 3 there
may be terminals in the fixed network issuing the same
transactions from the same GDBS. The GDBS is not aware
of the mobile nature of some nodes in the network and the
DAA is not aware of the implementation details of each
requested transaction.

One aspect to mobile transaction management which dif-
fers greatly from that in distributed transaction management
is the movement of the transaction through the network. In
order to properly manage a mobile transaction, this move-
ment must be documented by the transaction controlling
mechanism. This movement is as much a part of the trans-
action behavior as is the data access. When a mobile trans-
action hops to a new cell, the control of the transaction may
move or may remain at the originating site. If it remains
at the originating site, however, messages would have to
be sent from the originating site to the current base station
any time the mobile unit requests information. To avoid this
message overhead, we assume that the transaction manage-
ment function moves with the mobile unit. Each DAA has
log information for that portion of the transaction that is
executed from its site.

A comprehensive example is now provided which will
serve to illustrate the requirements of a mobile transaction
model. This example is an extension of one found in [5]. In
an automobile insurance agency, an insurance adjuster must
physically examine each damaged automobile and provide
a cost estimate for needed repairs. To provide this estimate
she may need to access information about the automobile,
any police reports concerning the car accident in which the
vehicle was damaged, information about previous insurance
claims from this individual, and the current value which the
automobile has as found in the “Blue Book”. The ultimate
purpose of the database adjustment transaction is to provide
a report including insuree information, accident informa-
tion, damage information, cost estimate for repairs, and any
recommendation from the adjuster concerning whether the
insurance company should pay for the damage and whether
follow up actions are needed (cancel insuree, attempt to
recover from any third party involved in accident, etc.).
We first examine how this Adjustment Transaction would
be accomplished in the world of today. We then examine
how it could be performed in the mobile world of 2005.
Figure 4 illustrates this example. In the world of 1995,
the adjuster receives the request to perform the adjustment
transaction either in written form from her supervisor or in
electronic form when logging into her PC/terminal in her
office/home. Prior to examining the car, the adjuster must
gather information about the insuree, automobile, and re-
port. Some of the information is gathered via phone calls,
some must be requested in person at the appropriate loca-
tion, and others by requesting it from internet sites. The
adjuster then drives to the location of the automobile and



M.H. Dunham et al. / A mobile transaction model 153

Figure 4.

physically examines it. As she does so, written notes are
made concerning the damage. The adjuster then drives
back to her office and executes the adjustment transaction.
All of the information gathered throughout the day is in-
put via this transaction and the appropriate report is sent to
her supervisor. Much of the work was performed off line
while the needed information was being gathered. Now,
how do we envision that this work could be performed in
the year 2005 using mobile transactions? First of all, much
of the gathering of the needed data will be performed on-
line. After the adjuster has examined the claims to be filed
for that day, she determines which to evaluate first. Then
she immediately begins the adjustment transaction. Logi-
cally, this transaction performs the same functions as that
of the 1995 model, but the gathering of data is done by
the transaction itself. Subtransactions will be generated to
obtain all of the needed data automatically. By the time
she arrives at the car location, all of the needed data is
available. While examining the car she may retrieve any
of the data desired. When she examines the car she en-
ters all the needed information into the mobile unit which
automatically updates the data in the source DBMS. Any
needed reports are filed at that time. When she leaves the
scene, she has finished processing the claim. She can then
begin on the next adjustment transaction as she drives to
the location of the next damaged automobile. The use of
the mobile unit has had several impacts on the process-
ing of the claim. First of all the claims processing has
been speeded up and overall efficiency of the the adjuster
has been increased. Absolutely no paperwork has been in-
volved. Secondly, the length of time that the transaction is
active has increased.

There is one additional complicating factor that may oc-
cur. Let’s suppose that the first adjustment transaction has
been completed at 11:00 am. The second transaction is
started at that time. On the way to examine the second auto-
mobile, however, the adjuster decides to stop for lunch. To
conserve power, she turns off her mobile unit. After lunch
she turns the unit back on and resumes the active transac-
tion at the point in time that she left. Thus if a voluntary
shut down of the mobile unit occurs, the active transaction
should not be terminated. Note that she may wish to do the
same thing if, for some unforseen problem, the computer
was involuntarily shut down. For example, she may lose
power in the mobile unit battery. She would like to resume
the active transaction when the unit is brought back on line.
This complicates the management of the mobile transaction
as active transactions which have been interrupted may need
to be resumed. The time between interruption and resump-
tion of the transaction could be quite long. To make matters
worse, there may be cases where the user would like to see
these interrupted transactions aborted.

To facilitate this ability to resume transactions, we see
the need to commit portions of the mobile transaction early.
These early commits can release valuable resources (locks)
rather than holding them for long periods of time.

We summarize this section by listing the basic require-
ments which we think any mobile transaction model should
satisfy.

1. Build on existing multidatabase systems and do not
duplicate support provided by a source system.

2. Capture movement of mobile transaction as well as
data access. Move transaction control as mobile unit
moves.



154 M.H. Dunham et al. / A mobile transaction model

3. Provide flexibility in terms of atomicity feature.

4. Support long lived transactions.

4. Kangaroo Transactions

In this section we introduce our mobile transaction
model which we call Kangaroo Transactions. Our model
is built on traditional transactions which are a sequence
of operations executed under the control of one DBMS.
Figure 5 shows the basic structure. Here three operations
(op11, op12, and op13) are performed as part of the trans-
action. LT is used to identify the traditional transaction
as it is executed as a Local Transaction to some DBMS.
The operations performed are the normal read, write, begin
transaction, abort transaction, and commit transaction. The
first operation (op11) must be a begin transaction while the
last (op13) must be either a commit or abort.

Our view of global transactions in multidatabase systems
is somewhat broader than that which is often assumed. We
actually consider two types of global transactions. The
limited view of global transactions is shown in figure 6(a).
Notice that the Global Transaction root (GT) is composed
of subtransactions which can be viewed as Local Transac-
tion (LT) to some existing DBMS. The local transactions
are often called subtransaction (or Global SubTransaction,
GST) of the GT. Each of these can in turn be viewed as con-
sisting of a sequence of operations. Figure 6(b) takes the

Figure 5.

(a) Limited Global Transaction view

(b) Global Transaction view

Figure 6.

Figure 7.

more general view of global transactions. In this case the
subtransactions may themselves be global transactions to
another multidatabase system. So we would have (for this
figure) operations underneath LT1 and LT4. Underneath
GT2 and GT3 would be other LTs and GTs. This view of
global transactions gives a recursive definition based on the
limiting bottom view of local transactions.

4.1. Introducing Kangaroo Transactions

Global transactions serve as the basis upon which we
define our mobile transactions. Global transactions alone,
however, do not capture the “hopping” nature of mobile
transactions. Based on the hopping property, we call
our model of mobile transactions Kangaroo Transactions
(KT).1

Figure 7 shows the basic structure of a Kangaroo Trans-
action. When a transaction request is made by a mobile
unit the DAA at the associated base station creates a mobile
transaction to realize this request. A Kangaroo Transaction
ID (KTID) is created to identify the transaction. We define
a KTID as follows:

KTID = Base Station ID + Sequence Number,

where the base station ID is unique, the sequence number is
unique at a base station, and + is a string catenation oper-
ation. Each subtransaction represents the unit of execution
at one base station and is called a Joey Transaction (JT).
We define a Pouch to be the sequence of global and local
transactions which are executed under a given Kangaroo
Transaction. The origination base station initially creates
a JT for its execution. The only difference between a JT
and a GT is that the JT is part of a KT and that it must be
coordinated by a DAA at some base station site. When the
mobile unit hops from one cell to another, the control of
the KT changes to a new DAA at another base station. The
DAA at the new base station site creates a new JT (as part
of the handoff process). It is assumed that JTs are simply
assigned identification numbers in sequence. Thus a Joey
Transaction ID (JTID) consists of the KTID + Sequence
Number. This creation of a new JT is accomplished by a
split operation. The old JT is thus committed independently
of the new JT. In figure 7, JT1 is committed independently
from JT2 and JT3. At any time, however, the failure of
a JT may cause the entire KT to be undone. This is only

1 The fact that the first author was on sabbatical in Australia when this
idea was developed certainly contributed to this name.



M.H. Dunham et al. / A mobile transaction model 155

accomplished by compensating any previously completed
JTs as the autonomy of the local DBMSs must be assured.

To manage the KT execution and recovery, a doubly
linked list is maintained between the base station sites in-
volved in executing a Kangaroo Transaction. Control in-
formation about a JT is identified by its JTID. To complete
a partially completed KT, this linked list is traversed in a
forward manner starting at the originating base station site.
Thus to restart an interrupted transaction, the user must
be able to provide the starting site (base station) for the
transaction. To undo a KT the linked list is traversed in
a backward manner starting at the current JT base station
site.

There are two different processing modes for Kangaroo
Transactions: Compensating Mode and Split Mode. When
a KT executes under the Compensating mode, the failure
of any JT causes the current JT and any preceding or fol-
lowing JTs to be undone. Previously committed JTs will
have to be compensated for. Operating in this mode re-
quires that the user (or source system) provide information
needed to create compensating transactions. This includes
information that the JT is compensatable in the first place.
Deciding whether a JT is compensatable or not is a diffi-
cult problem. Not only does the JT itself need to be com-
pensatable, but the source system should also be able to
guarantee the successful commitment of the compensating
transaction. The split mode is the default mode. In this
mode, when a JT fails no new global or local transactions
are requested as part of the KT. However, the decision as to
commit or abort currently executing ones is, of course, left
up to the component DBMSs. Previously committed JTs
will not be compensated for. Neither the Compensating nor
Split modes guarantees serializability of the kangaroo trans-
actions. Although Compensating mode ensures atomicity,
isolation may be violated (thus violating the ACID princi-
ple) because locks are obtained and released at the local
transaction level. With the Compensating mode, however,
Joey subtransactions are serializable.

Figure 8 shows the relationship between movement of a
mobile unit between cells and the corresponding Kangaroo
Transaction. Here we assume that when the transaction is
started, the mobile unit is in Cell 1 which is associated with
Base Station 1. At this time, the DAA at this Base Station
created a new Kangaroo Transaction and immediately cre-
ated a Joey Transaction. When the mobile unit moves to
Cell 2, a handoff is performed. As part of this handoff,
the KT is split into two transactions. The first part of this
transaction is the subtransactions under JT1, the remain-
der (at this time) will be part of JT2. Similarly, when the
mobile unit moves into Cell 3 and Cell 4, handoffs occur
and new Joey Transactions are created via a split operation.
Note that this process is dynamic. A new Joey is created
only when a hop between cells occurs: no hop – no Joey.
The same transaction requested at two different times could
have different structures. We illustrate this fact in figure 9.
Figure 9(b) represents a short lived or slow mobility type
of transaction, where as figure 9(c) shows a long lived or

(a) Movement of Mobile Unit through Cells

(b) Hopping from Base Station to Base Station

(c) Kangaroo Transaction

Figure 8.

(a) One possible Kangaroo Transaction for Adjustment Transaction in

Figure 4

(b) An equivalent Kangaroo Transaction

(c) Another equivalent Kangaroo Transaction

Figure 9.

fast mobility transaction. This figure shows three different
transactions which are equivalent to that in figure 7. Even
though the structure of each is different in terms of the
number of Joeys and the format of the Joey, the underlying
set of global and local transactions of each is the same. We
thus say that two Kangaroo Transactions are Equivalent if
they have the same pouch.

We conclude this section by describing in more detail
the manner in which Joeys are created. The Joeys are cre-



156 M.H. Dunham et al. / A mobile transaction model

ated by a split operation. As part of the handoff procedure,
a split operation is always performed. When looking at
figure 8(b) a split is first performed during the hop from
Base Station 1 to Base Station 2. The KT is then split
into two subtransactions: JT1 and JT2. We assume that the
subtransactions of the mobile transaction (that is the global
and local transactions within it) are executed in sequence.2

The user does not request the next subtransaction until the
previous one is completed. Thus the local and global trans-
actions under JT1 will all occur before those in JT2. This
guarantees that JT1 precedes JT2 in serializable order. In
fact, we assume that no subtransactions under JT2 will be
created until the currently executing one in JT1 is commit-
ted. Notice that when JT2 is created there will probably
be a local or global transaction under JT1 which is cur-
rently being executed. The JT2, however, must be created
when the handoff occurs. The situation shown in figure 8(c)
shows that JT4 has been created but no subtransactions yet
exist.

4.2. A formal definition for Kangaroo Transactions

In the following, we more formally define Kangaroo
Transactions. They are defined recursively with the ba-
sic building block being a local transaction defined for a
DBMS. Our definitions follow that found in [2] as a start-
ing point and building block.

Definition 1. A Local Transaction LT is a sequence of read
(ri) and write (wi) operations ending in either a commit(ci)
or abort(ai) operation.

Definition 2. A Global Transaction GT is any sequence of
global transactions Gj and local transactions Lj .

Definition 3. A Joey Transaction JT is a sequence of zero
or more global transactions Gk and local transactions Lk
followed by either a commit ck, abort ak, or split sk oper-
ation.

Note that this definition for JT ensures that the GTs and
LTs within it represent a sequence. As stated earlier, we
assume that all operations of one Joey are executed prior
to those of the next.

Definition 4. A Kangaroo Transaction KT is a sequence of
one or more Joey Transactions Jl. The last Joey Transaction
must end in a commit cl or abort al. All Joey Transactions
other than the last one must end in a split sl.

The Kangaroo Transaction captures the movement be-
havior of the mobile transaction by forcing all joeys but
the last to end in a split.

2 Our discussion assumes that subtransactions are requested by the user
at the MU, but they may actually be requested by an agent at the base
station.

Definition 5. The sequence of local and global transactions
which belong to a Kangaroo Transaction is called its Pouch.

Definition 6. Two Kangaroo Transactions are said to be
Equivalent Kangaroo Transactions if they have exactly the
same pouch.

4.3. Mobile Transaction Manager data structures

The functions of the MTM are those related to managing
a mobile transaction. The primary data structure at each site
which is used to do this is the transaction status table (see
table 2).

Each base station maintains a local log (see table 3)
into which the MTM writes records needed for recovery
purposes. Unlike DBMS and GDBS systems, this log con-
tains no records dealing with recovering (undo or redo) data
base updates. The log however is stored in stable storage
in the base station. Most of these records are related to
the transaction status entries. During handoff processing
the log buffer must be flushed to ensure recoverability if
a failure occurs during the handoff process. When (after)
a Kangaroo Transaction is started a BTKT (Begin Trans.
KT) record is written to the log. During handoff processing
(before), an HOKT (HandOff KT) record is written into the
originator’s (Base Station requesting handoff) log while a
CTKT (ConTinuing KT) record is written into the destina-
tion’s (Base Station being handed off to) log (after). Joeys
are documented in the log with a Begin (BTJT) record and a
Commit (ETJT) record. BTJT records are linked together in
reverse order of creation while ETJT records are linked to-
gether in forward order of creation. Subtransactions within
a joey have begin (BTST) and end (ETST) records. BTST
records contain the actual local/global transaction requested
and the compensating transaction if the KT is compensat-
able.

4.4. Kangaroo Transaction processing

The flow of control of processing Kangaroo Transactions
by the MTM can be described as follows:

1. When a mobile unit issues a Kangaroo Transaction, the
corresponding DAA passes the transaction to its MTM
to generate a unique identifier (KTID) and creates an
entry in the transaction status table. The MTM also
creates the first Joey Transaction to execute locally in
its communication cell. At the end of this setup, a
BTKT record is written into the MTM transaction log.

2. The creation of a Joey Transaction (be it the first or
otherwise) is also done by the MTM and involves gen-
erating a unique JTID and creating an entry in the
transaction status table. The count of number of ac-
tive Joeys in the KT status table entry is incremented
by 1. A BTJT record is then written into the log. Fi-
nally a JT entry is written into the transaction status
table.



M.H. Dunham et al. / A mobile transaction model 157

Table 2
KT transaction status table entries.

Record type Attribute Description

KT KTID ID for KT
Mode Split or Compensating
Joey Count Count of number of active Joeys in this KT
Status Active, Commiting, Aborting
FirstJTID Pointer to first JT status record for this KT

JT JTID ID for JT
NextJTID Pointer to next JT status record for this KT
PriorJTID Pointer to previous JT status record for this KT
Status Active, Commit, or Abort
STList List of local and global transactions ST
Compensatable Yes/No

ST STID ID for ST
Status Active, Commit, or Abort
Request GT or LT requested
Compensatable Yes/No
CompTR Compensating transaction

Table 3
Log records.

Record type Contents

BTKT KTID, Mode
CTKT KTID, Mode
BTJT JTID, PriorJTID
BTST STID, Request, Compensating
ETJT JTID, NextJTID
ETST STID
ETKT KTID
HOKT KTID

3. The Kangaroo Transaction is executed in the context
of Joey Transactions. For each JT, translation is made
to map the KT operations into specific source system
global and local transactions. Based on the translation
results, an ST entry is created in the transaction table
for each native (local or global) transaction. A log
record, BTST, is written in the MTM log before ship-
ping each native transaction to the appropriate source
system DBMS or GDBS.

4. When network-level handoff occurs, the DAA is im-
mediately notified so that it responds by initiating a
transaction-level handoff protocol. When this takes
place, the DAA starts executing a split operation at the
origination site. As part of this split the DAA writes
an HOKT record in the log to indicate that a handoff
has taken place. In addition, the log buffer is flushed
to the stable log on disk. These actions represent a
checkpoint operation. Notice that subtransactions may
still be executing at the source system sites.

5. The destination base station then initiates the other part
of the split operation. A CTKT record is logged after a
new Joey Transaction is created with the tentative con-
tent being the rest of the entire Kangaroo Transaction.
In addition, a KT entry is placed in the destination’s
status table.

6. To ensure the atomicity of the source system DBMS
and GDBS systems, they will determine when to com-
mit or abort the subtransactions. When the DAA is
notified (by the DBMS or GDMS) that a subtransac-
tion has been committed, the DAA writes an ETST
record in the log. In addition, if the KT processing
mode is split, then the ST entry in the transaction sta-
tus table is removed. If the KT mode is Compensating,
this entry remains in case the KT is later aborted and
the compensating transaction must be executed. The
STList in the status table is updated to reflect the fact
that this subtransaction has committed. If there are no
active subtransactions for this Joey, then a ETJT record
is written to the log and the status of the JT status ta-
ble entry is changed to commited. Finally, the count
for number of active Joeys is decremented by 1. Note
that the KT status table entry for the last active Base
Station contains the current values for Status and Joey
count. If the Joey count is 0 and the status of the KT
is Commiting, then the KT is commited.

7. When the mobile user indicates that the transaction
has ended, the status entry for the KT is changed to
Commiting. At this time, if the active Joey count is 0
the KT is commited.

8. To commit a KT the ETKT entry is written to the log
and all status table entries for all involved Base Stations
are freed.

4.5. Logging and recovery with Kangaroo Transaction
processing

To illustrate recovery possibilities, in table 4 we show
a sequence of actions and log records created for a simple
transaction. The MU requests a transaction through base
station 1 (BS1). As a result a KT (BS1.1), a JT (BS1.1.1),
and ST (BS1.1.1.1) are created. In the table, the ∧ indi-
cates an empty value. The MU then moves into the cell



158 M.H. Dunham et al. / A mobile transaction model

Table 4
Log records.

Action Log records at BS1 Log records at BS2 Comments

Transaction requested (BTKT, BS1.1, Split) Create KT, JT, ST
at MU (BTJT, BS1.1.1, ∧)

(BTST, BS1.1.1.1, Req, ∧)

HandOff (HOKT, BS1.1) (CTKT, BS1.1, Split) Create JT
and Split (BTJT, BS1.1.2, BS1.1.1↑)

DBMS commits (ETST, BS1.1.1.1) Commit JT, ST
subtrans (ETJT, BS1.1.2↑)

Another subtrans (BTST, BS1.1.2.1, Req, ∧) Create ST
requested

associated with base station 2 (BS2). As a result an HOKT
is written into the log at BS1 and a CTKT is written at
BS2. Immediately a new JT (BS1.1.2) is created and a
corresponding log record is written. Even though the split
has occured the previous JT and ST can not be committed
until this message is received from the DBMS. At that time
the ET records are written into the log and the next ST is
created.

Suppose an MU failure occurs (or it is lost or stolen) at
this point in time. Since the KT is of split mode, the cur-
rently executing JT and ST will be allowed to complete, but
no new STs will be created. No real recovery occurs. This
allows the transaction to be restarted at a later point if de-
sired. If, however, the KT is of compensating mode, then a
compensating transaction would have been created for each
of the subtransactions (BS1.1.1.1 and BS1.1.2.1). Then in
case of MU failure, the work of these subtransactions (and
as a result the KT) will be “undone”.

5. Relation to other research

In this section we briefly review previous research re-
lated to our view of mobile transactions. Besides reviewing
these articles, we also briefly examine related work which
has influenced this paper.

5.1. Related research

Kangaroo Transactions are built using the concept of
Global Transactions in a MultiDataBase System (MDBS) [2,
3,23]. However, we add an additional layer on top of
the GDMS (see figure 3). A mobile transaction is in turn
composed of several subtransactions which are themselves
global or local transactions. A mobile transaction, in our
view, is not a global transaction (from the MDBS perspec-
tive). This is true for two reasons: the DAA performs
limited transaction management functions and the DAA
must be able to dynamically change the transaction struc-
ture based on the movement of the mobile unit. A major
difference between mobile transactions and global transac-
tions is the fact that mobile transactions do not have one
computer site which serves as the transaction management
site.

Although originally devised to handle open-ended trans-
actions in the CAD environment, Split Transactions [17]
lend themselves to the mobile environment very well.
A split-transaction “divides an ongoing transaction into two
serializable transactions” [17]. With a KT, the serialization
order of the subtransactions is that in which they are split.
A second major desirable property of the split transaction is
that the split occurs dynamically and on the request of the
split operation. This is central to the idea of a Kangaroo
Transaction. We thus feel that the split transaction concept
can be used to capture the “hopping” nature of a mobile
transaction.

There are some similarities between our view of mo-
bile transactions and workflow activity models [6,19,20].
A workflow is a set of related tasks which are executed
to satisfy a business requirement. It has been argued that
transaction and workflow models should be integrated into
one architecture [1]. In this article, it was pointed out that
multidatabase transactions indicate how data operations can
be interleaved and that workflow models capture the task
dependencies. With our view of mobile transactions, we
argue that the data dependencies are captured by multidata-
base transaction models. The control flow (in our view
of mobile transactions) is captured by the movement be-
havior of mobile transactions. Thus our definition of mo-
bile transactions merges control and data behavior into one
transaction model.

There has recently been much research concerning mi-
gration of state information in Mobile Computing envi-
ronments [4,18]. The first work [4] deals with how best
to perform a request made from a MU that will require
processing on multiple nodes in the fixed network. The
itinerant agent concept assumes that a special intelligent
process is “launched” at the MU and then roams through
the fixed network visiting servers which will help to com-
plete the request made by the MU. As the agent moves
through the network the state of completing the request
is kept. With a KT, the user may request new subtrans-
actions based on results of earlier ones. A similar func-
tion is performed dynamically by the itinerant agent it-
self. Although the itinerant agent concept could be used
to implement a Kangaroo Transaction, the reverse is not
true. However, with an itinerant agent, there would be no



M.H. Dunham et al. / A mobile transaction model 159

need for the logging and status table information at the
base stations as this state information would move with
the agent. The second work [18] discusses the desire to
have a user agent inside the fixed network functioning on
behalf of the user at the mobile unit. This server acts as
an intermediary between the client (MU) and server. The
DAA that we propose in our model serves a similar pur-
pose, although it is not associated with one MU. The sta-
tus table information and logging information which the
DAA maintains is, however, unique to the MU which re-
quested the mobile transaction. This paper also looks at
how this agent migrates on the network. Although we
do not migrate the DAA, the transaction status informa-
tion (including the log) does migrate. Unlike both of the
agent ideas, howevear, we do not migrate the entire state
information. As a matter of fact, the entire state infor-
mation of the kangaroo transaction is distributed at the
various nodes on the fixed network which helped to ex-
ecute it.

5.2. Other mobile transaction models

Like our approach, Chrysanthis [5] views mobile trans-
actions as being built using concepts developed for mul-
tidatabase transactions. However, unlike our view, they
assume that a mobile transaction is a special type of multi-
database transaction. To manage mobile transactions, they
assume that a GDBS exists at each base station to con-
trol the management of the mobile transaction. They do
assume that the subtransactions of the mobile transaction
will commit or abort independently and that if a subtrans-
action aborts, all others which have yet to be committed
will also abort. Their atomic and non-compensatable trans-
actions serve the same purpose as our two different modes
of execution for a mobile transaction. However, they also
have two additional types of subtransactions (reporting and
co-transactions).

The clustering model [9] assumes a fully distributed sys-
tem, and the transaction model is designed to maintain con-
sistency of the database. The database is divided into clus-
ters. In this model a mobile transaction is decomposed into
a set of weak and strict transactions. The decomposition is
done based on the consistency requirement. The read and
write operations are also classified as weak and strict. The
weak operations are allowed to access only data elements
belonging to the same cluster, where as strict operations
are allowed database wide access. For every data item,
two copies can be maintained – one of them strict and the
other weak.

The semantics-based mobile transaction processing
scheme [22] views mobile transaction processing as a con-
currency and cache coherency problem. The model as-
sumes a mobile transaction to be a long lived one char-
acterised by long network delays and unpredictable dis-
connections. This approach utilizes the object organization
to split large and complex objects into smaller manage-
able fragments. A stationary database server dishes out the

fragments of a object on a request from a mobile unit. On
completion of the transaction the mobile hosts return the
fragments to the server. These fragments are put together
again by the merge operation at the server. If the fragments
can be recombined in any order then the objects are termed
reorderable objects. Aggregate items, sets, and data struc-
tures like stacks and queues are examples of fragmentable
objects.

A recent paper by Yeo and Zaslavsky examined how
multidatabase transactions could be submitted from mo-
bile workstations [25]. A major premise of this article
is that mobile units may voluntarily disconnect from the
network prior to having any associated transactions com-
pleted. Yeo’s view, like ours and like Chrysanthis’, is that
mobile transactions should be built on top of multidata-
base global transactions. These authors also indicate that
any mobile transaction model should support the concept
of “long-duration transactions and sagas” [25].

Tables 5 and 6 summarize the differences between the
different models. In addition, none of the other models
captures the movement property of a mobile transaction as
does the Kangaroo Transaction.

The issue of consistency and concurrency control has
been addressed by the models in a widely varying manner.
In the Reporting and Co-Transaction model compensating
transactions are used to maintain the consistency of data.
Kangaroo Transactions and the MDSTPM assume that the
underlying database maintains consistency via concurrency
control. In the Clustered Data Model the entire data model
is designed around maintaining data consistency in a dis-
tributed environment.

The various models make certain assumptions about
software or hardware infrastructures needed to support the
model. With the Reporting and Co-Transaction model,
transaction managers will have to be modified to handle
reporting and co-transactions. Since concepts like delega-
tion and co-transactions are involved, it may be difficult
to implement this model as a wrapper around an existing
database. The Kangaroo transaction model assumes a Data
Access Agent (DAA) exists at each base station. Thus a
base station will have to be enhanced to provide this fa-
cility. The Clustering model requires the ability to define
and execute strict and weak transactions, and additional
attributes reflecting their consistency requirements. The
Semantics based Mobile Transaction Model requires ad-
ditional capability at both the server and the mobile unit
end to split, operate and merge objects. Moreover the
model also assumes that the database operates on objects so
structured that fragmentation and merging is possible. The
MDSTPM model is implemented by defining an MDSTPM
layer over the existing DBMSs. This layer acts as an in-
terface between the mobile hosts and the underlying Mul-
tidatabase system. The functionality of this layer is similar
to that of a multidatabase system with more requirements
than that needed by the the DAA for Kangaroo transac-
tions.



160 M.H. Dunham et al. / A mobile transaction model

Table 5
Mobile transaction models I.

Models Consistency Database system model Additional infrastructure
Concurrency

Reporting Compensating Multidatabase Trans Manager modified
and transaction
Co-Transactions

Kangaroo Relies on Heterogeneous Data access agent
model underlying multidatabase

database

Clustering Bounded inter- Fully distributed Strict and Weak
model cluster database transactions

consistency

Semantics Based on Distributed multidatabase Fragmentation
based model object

semantics

MDSTPM Relies on Heterogeneous multidatabase MDSTPM layer
underlying systems
database

Table 6
Mobile transaction models II.

Models Net management User profile Extensions required Scalability
Comm. cost for commercial DB

Reporting Handoff info Can be used for Transaction Manager Will require
and required. relocating will have to be high bandwidth
Co-Transaction Reporting transactions extended to handle

Co-Transaction new transaction types
info exchanged

Kangaroo Handoff info Can be used to
model required. relocate transactions

Assumes that
each base
station can
handle
transactions

Clustering Handoff info Used to define Transaction Manager Large number
model required clusters and for should be enhanced of clusters

transaction migration to handle weak, or large
strict transactions databases
clusters definitions could lead to

cluster mgmt

Semantics Handoff info Not required Objects should be
based model required fragmentable or

reorderable.
Object managers
will be required

MDSTPM No handoff info Can be used for Requires the transaction Transaction
required. priority queuing Manager layer above queuing could
Involves only the database system create a bottle
submission and neck
querying of
results

Communication costs form a significant factor in mobile
transaction execution. All models, except the MDSTPM,
require handoff data include information about the mobile
transaction. The MDSTPM assumes that the mobile trans-
action management completely resides at the base station

where it was originally requested. In addition, the Re-
porting and Co-Transaction moded requires communication
between a mobile node and the fixed server takes place
through co-transaction pairs or between a reporting trans-
action and co-transaction pair.



M.H. Dunham et al. / A mobile transaction model 161

6. Summary and future work

In this paper we have introduced a model for mobile
transactions, Kangaroo Transaction, which captures both
the data and hopping nature of mobile transactions. Our
model is based on both the global transaction and the split
transaction models. The novel aspect of the Kangaroo
transaction model is its powerful generality. It can accom-
modate computing in a heterogeneous, multidatabase envi-
ronment. It encompasses both short lived and long lived
transactions. In addition, it naturally mimics the interac-
tion of the mobile user with the data service provided by
the mobile system, which means that programming appli-
cation under the Kangaroo transaction model will be eas-
ier. Future work will examine checkpointing, logging, and
caching, as requirements for performance guarantees of the
Kangaroo transactions. In addition, we will examine other
processing modes besides Compensating and Split.

Acknowledgements

The authors would like to thank Alex Delis, Mario
Nascimento, and Srihari Ramachandra for comments on
earlier versions of this article. We thank Alex Delis for
providing the much improved version of figure 2 which is
seen in the paper. We particularly appreciate input from
Maria Orlowska who pointed out the similarity to work
flow problems. In addition, we wish to thank reviewers of
an earlier version of this paper. Their comments helped to
greatly improve the final version.

References

[1] Y. Breitbart, A. Deacon, H.-J. Schek, A. Sheth and B. Weikum,
Merging application-centric and data-centric approaches to support
transaction-oriented multisystem workflows, ACM SIGMOD Record
22(3) (September 1993) 23–29.

[2] Y. Breitbart, H. Garcia-Molina and A. Silberschatz, Overview of
multidatabase transaction management, VLDB Journal 2 (1992)
181–239.

[3] Y. Breitbart, A. Silberschatz and G.R. Thompson, Transaction man-
agement issues in a failure-prone multidatabase system environment,
VLDB Journal 1 (1992) 1–39.

[4] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris and G. Tsudik,
Itinerant agents for mobile computing, IEEE Personal Communica-
tions (October 1995) 34–49.

[5] P.K. Chrysanthis, Transaction processing in mobile computing envi-
ronment, in: Proceedings IEEE Workshop on Advances in Parallel
and Distributed Systems (October 1993) pp. 77–82.

[6] U. Dayal, M. Hsu and R. Ladin, A transactional model for long-
running activities, in: Proceedings of the International Conference
on Very Large Data Bases (1991).

[7] M.H. Dunham and A. Helal, Mobile computing and databases: Any-
thing new? ACM SIGMOD Record 24(4) (December 1995) 5–9.

[8] A.K. Elmagarmid, ed., Database Transaction Models for Advanced
Applications (Morgan Kaufmann, 1992).

[9] P. Evaggelia and B. Bharat, Maintaining consistency of data in mo-
bile distributed environments, in: Proceedings of 15th International
Conference on Distributed Computing Systems (1995).

[10] A. Helal and M. Eich, Supporting mobile transaction processing in
database systems, Technical Report TR-CSE-95-003, University of
Texas at Arlington (April 1995).

[11] T. Imielinski and B.R. Badrinath, Mobile wireless computing, Com-
munications of the ACM 37(10) (October 1994) 19–28.

[12] T. Imielinski, S. Vishwanathan and B.R. Badrinath, Data on the air:
Organization and access, Technical Report DCS–TR, Department of
Computer Science, Rutgers University, New Brunswick, NJ 08903
(1993).

[13] J. Ioannidis and G.Q. Maguire Jr, The design and implementation of
a mobile internetworking architecture, in: Proceedings of the 1993
Winter USENIX Conference (January 1993) pp. 491–502.

[14] D. Johnson, Ubiquitous mobile host internetworking, in: Proceed-
ings of the Fourth Workshop on Workstation Operating Systems,
IEEE (October 1993).

[15] B. Marsh, F. Douglis and R. Caceres, Systems issues in mobile com-
puting, Technical Report MITL–TR–50–93, Matsushita Information
Technology Lab, 2 Research Way, Third Floor, Princeton, NJ (1993).

[16] M.T. Özsu and P. Valduriez, Principles of Distributed Database Sys-
tems (Prentice-Hall, 1991).

[17] C. Pu, G. Kaiser and N. Hutchinson, Split-transactions for open-
ended activities, in: Proceedings of the 14th VLDB Conference
(1988).

[18] R. Ramjee, T.F. La Porta and M. Veeraragahvan, The use of network-
based migrating user agents for personal communication services,
IEEE Personal Communications (December 1995) 62–68.

[19] A. Sheth and M. Rusinkiewicz, On transactional workflows, IEEE
Data Engineering Bulletin 16(2) (1993).

[20] H. Wächter and A. Reuter, Database Transaction Models for Ad-
vanced Applications (Morgan Kaufmann, 1992) Chapter 7 – The
ConTract model, pp. 219–263.

[21] H. Wada, T. Yozawa, T. Ohnishi and Y. Tanaka, Mobile computing
environment based on internet packet forwarding, in: Proceedings of
the 1993 Winter USENIX Conference (January 1993) pp. 503–517.

[22] G.D. Walborn and P.K. Chrysanthis, Supporting semantics-based
transaction processing in mobile database applications, in: Proceed-
ings of the 14th IEEE Symposium on Reliable Distributed Systems
(September 1995).

[23] G. Weikum and H.-J. Schek, Database Transaction Models for Ad-
vanced Applications (Morgan Kaufmann, 1992) Chapter 13 – Con-
cepts and applications of multilevel transactions and open nested
transactions, pp. 515–553.

[24] A. Whitcroft, T. Wilkinson and N. Williams, Nomads: The future of
personal computing services, Technical Report TCU/SARC/1993/10,
Systems Architecture Research Centre, City University, London, UK
(1993).

[25] L.H. Yeo and A. Zaslavsky, Submission of transactions from mobile
workstations in a cooperative multidatabase processing environment,
in: Proceedings of the 14th International Conference on Distributed
Computing Systems (1994) pp. 372–379.

Margaret (Maggie) H. Dunham received the
B.A. and M.S. degrees in mathematics from Mi-
ami University, Oxford, Ohio, and the Ph.D. de-
gree in computer science from Southern Methodist
University in 1970, 1972, and 1984, respectively.
From August 1984 to the present, she has been
first an Assistant Professor and now Associate
Professor in the Department of Computer Science
and Engineering at Southern Methodist University
in Dallas. In addition to her academic experi-

ence, Professor Dunham has nine years industry experience. Professor
Dunham’s research interests encompass main memory databases, distrib-
uted heterogeneous databases, temporal databases, and mobile computing.
Dr. Dunham served as editor of the ACM SIGMOD Record from 1986 to
1988. She has served on the program and organizing committees for sev-



162 M.H. Dunham et al. / A mobile transaction model

eral ACM and IEEE conferences. She served as guest editor for a special
section of IEEE Transactions on Knowledge and Data Engineering de-
voted to Main Memory Databases as well as a special issue of the ACM
SIGMOD Record devoted to Mobile Computing in Databases. She has
published over seventy technical papers in such research areas as database
concurrency control and recovery, database machines, and main memory
databases.
E-mail: mhd@seas.smu.edu

Abdelsalam (Sumi) Helal received the B.Sc. and
M.Sc. degrees in computer science and automatic
control from Alexandria University, Alexandria,
Egypt, and the M.S. and Ph.D. degrees in computer
sciences from Purdue University, West Lafayette,
Indiana. Before joining MCC to work on the
Collaboration Management Infrastructure (CMI)
project, he was an Assistant Professor at the Uni-
versity of Texas at Arlington, and later, a Visiting
Professor of Computer Sciences at Purdue Uni-

versity. His research interests include large-scale systems, fault-tolerance,

OLTP, mobile data management, heterogeneous processing, standards and
interoperability, and performance modeling. Dr. Helal is a member of
ACM and IEEE and the IEEE Computer Society, serving on the Executive
Committee of the IEEE Computer Society Technical Committee on Oper-
ating Systems and Application Environments (TCOS). He is co-author of
the recently published books Replication Techniques in Distributed Sys-
tems and Video Database Systems: Research Issues, Application, and
Products.
E-mail: helal@mcc.com

Santosh Balakrishnan received his Bachelor’s
degree from the Regional College of Engineering,
Nagpur, India, and Master’s degree in computer
science from the University of Texas at Arling-
ton in 1992 and 1996, respectively. His current
research interests include mobile agent environ-
ments, mobile systems architectures and mobile
databases. He is currently with Trillium Digital
Systems Inc., Los Angeles.
E-mail: santosh@trillium.com


