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ABSTRACT With the construction and promotion of the Ubiquitous Power Internet of Things (UPIoT),

it is an increasingly urgent challenge to comprehensively improve the recognition accuracy of the gas-

insulated switchgear (GIS) partial discharge (PD), and to incorporate the model into UPIoT intelligent

terminals supported by edge computing in embedded systems. Therefore, this paper proposes a novel

MobileNets convolutional neural network (MCNN)model to identify the GIS PD patterns. We first construct

the PD pattern recognition classification datasets by means of experiments and FDTD simulation, and also

preprocess images via binarization processing. After constructing the MCNN model, depthwise separable

convolutions and an inverse residual structure are adopted to deal with the vanishing gradient of the deep

convolutional neural network (DCNN) in the GIS PD pattern recognition process. Then, through the graphics

standardization process, the MCNN model is trained and tested. The whole training process is visualized by

Tensorboard. Compared with other deep learning models and traditional machine learning methods, MCNN

particularly stands out in recognition accuracy and time consumption with a 96.5% overall recognition rate

and merely 7.3 seconds in training time. This research explores how to optimize the model by improving the

recognition accuracy, and by reducing its computing load, storage space and energy consumption for better

incorporation into intelligent terminals in the UPIoT context.

INDEX TERMS Gas-insulated switchgear, mobilenets convolutional neural network model, partial dis-

charge, pattern recognition, ubiquitous power Internet of Things.

I. INTRODUCTION

The ubiquitous power Internet of Things (UPIoT), pro-

posed in January, 2019, is an important concept in Chi-

nese grid industry, which has been exerting broad impact

on power equipment operation, power quality, and power

supply [1], [2]. The construction of the UPIoT is largely

based on the perception layer where each device-level intel-

ligent terminal is supported by edge computing [3]. As the

core of the perception layer, online monitoring technol-

ogy plays a significant role in equipment interconnection,

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

service interoperability, and safe and reliable operation of the

power grid [4], [5]. Therefore, in view of the vulnerability

of the gas-insulated switchgear (GIS) in a power system,

determining how to make full use of ultra-high frequency

(UHF) methods for online monitoring is of great necessity to

avoid potential losses. This would to a large extent effectively

realize fault diagnosis and pattern recognition. Currently,

there are two methods of UHF analysis, namely the Time

Resolved Partial Discharge (TRPD) mode and the Phase

Resolved Partial Discharge (PRPD) mode.[6]. With detailed

time information, the former is more suitable for a UPIoT

context, despite the latter possessing much more clear and

obvious waveform features.
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Due to the randomness of partial discharge (PD), a large

number of machine learning methods for pattern detec-

tion and classification have emerged, such as support vec-

tor machines (SVM), decision trees (DT), random forests,

and neural networks [7]–[9]. These methods depend largely

on feature engineering, so the quality of features directly

affects their effectiveness in PD recognition. The existing

feature construction methods mainly include Fourier trans-

forms, wavelet transforms, empirical mode decomposition,

S-parameter transformation, and polar coordinate transfor-

mation [10]–[13]. Furthermore, in order to effectively extract

the most critical characteristic parameters of the PD and

reduce the feature dimension, principal component analy-

sis (PCA) and an auto-encoder have been introduced for GIS

PD recognition and classification [14], [15].

Features, however, are non-migratory: a certain set of

features is only valid for a particular classification method.

In order to address this problem, deep learning methods

have been introduced for the GIS pattern recognition and

fault diagnosis, such as the Lenet5 model, Alexnet model,

one-dimensional convolutional neural network model, and

LSTM-based deep recurrent neural network, which have

proven to be of great use [16]–[20].

The Lenet5 model has a higher recognition accuracy on

PRPD. On the TRPD waveform, however, it has an unsatis-

factory performance due to excessive loss of input signal and

an insufficient feature extraction. The Alenet model achieves

excellent results in TRPD mode through fusion decision. But

it is confronted with the vanishing gradient risk on account

of training from 0, and the fusion decision also enlarges the

model storage and calculation amount. The one-dimensional

convolutional neural network has an improvement in recog-

nition accuracy compared with two-dimensional convolution.

Nevertheless, the time is increased due to complex signal

processing and gradient vanishing. The LSTM-based deep

recurrent neural network method does well in the PRPD

mode, whereas it is subject to the sampling rate and feature

rules, which may lead to over-reliance on expert experience.

Therefore, new deep learning methods are needed to improve

the recognition accuracy and real-time fault processing of

GIS PD pattern recognition.

A novel adversarial learning framework was proposed to

make the feature representation robust, boost the general-

ization ability of the trained model, and avoid overfitting

with a small size of labeled samples for intelligent diagnosis

of mechanical faults [21]. A modified deep convolutional

neural network through adjusting two set of parameters in

the fully connected network was also proposed for abnormal

brain image classification, achieving excellent recognition

results [22]. Lastly, deep belief networks through parallel

computing were proposed to slave computing nodes to learn

the features of their respective subdatasets and transmit them

to the master computing node achieving good results in traffic

flow prediction [23].

As a novel deep learning method, the MobileNets Con-

volutional Neural Network (MCNN), a novel deep learning

method, was proposed by Google in 2018 has a broad clas-

sification in pattern recognition [24]. It effectively solves the

problem that prevented training due to the vanishing gradient

during the training process, reduces themodel parameters and

the storage space, and improves the accuracy of model recog-

nition. Thus far, MCNN has not been applied to classifying

GIS PD pattern recognition. At the same time, considering

the growing demand for UPIoT construction in the smart

grid, embedding the model into mobile terminals and intel-

ligent terminals composed of Linux systems is still an urgent

challenge. Hence, in this paper, a MCNN-based method is

proposed, which can not only immensely reduce the model’s

computation burden, storage space and energy consumption

for better incorporation into intelligent terminals, but also

improve the recognition accuracy and solve the vanishing

gradient problem. The main contributions of this paper are

as follows:

(1) A MCNN-based method for GIS PD pattern recog-

nition under the TRPD mode is proposed. It solves the

problem of the vanishing gradient when many layers are

involved. The recognition accuracy is also highly and

effectively improved by maximizing the random simula-

tion of PD with the experimental data and simulation data

together.

(2) The GIS PD pattern recognition method proposed in

this paper is significantly improved compared with other

methods in a large number of training samples. The shortest

testing time guarantees real-time and fast processing of sig-

nals under UPIoT. Simultaneously, depthwise separable con-

volutions and reverse residual structure are adopted to greatly

reduce the computation load, storage space, and energy con-

sumption of the model. Since it can be run on the CPU,

it is very suitable to be embedded into a UPIoT intelligent

terminal.

(3) Tensorboard can visualize the whole model training

process, which addresses the ‘‘black box’’ problem of the

neural network model. Image preprocessing technology, such

as binary processing, can effectively tackle the problem of

large data transmission and huge storage under the UPIoT cir-

cumstance, thereby shortening the model training and testing

time.

II. DATA ACQUISITION

A. GIS PD EXPERIMENT

In order to effectively simulate the true conditions of GIS

PD, in this paper we select four typical GIS PD defects

for pattern recognition and fault classification: free metal

particle defects, metal tip defects, floating electrode defects,

and insulation void defects [25]. The simulation model of the

four types of defects is shown in Fig. 1.

The main instruments and key parameters in the exper-

iment are provided in Table 1. The schematic wiring dia-

gram of the data acquisition experiment system is shown

in Fig. 2. In the PD simulation experiment, the instruments

in Table 1 are used for data acquisition, and the obtained GIS

PD TRPD signals are shown in Fig. 3.
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FIGURE 1. Typical PD defects model.

TABLE 1. Main equipment and key parameters in the experiment.

FIGURE 2. A schematic wiring diagram of the experiment system.

B. FDTD SIMULATION

In order to fully simulate the random GIS PD process and

obtain sufficient data to verify the performance of the pro-

posed MCNN model, we follow the practice of previous

studies [26], [27], andmake use of FDTD simulation software

to simulate GIS PD.Guo et al. [28] and Li et al. [29] have both

verified the feasibility of FDTD simulation.

The simulation model is shown in Fig. 4. Its center con-

ductors and tanks are 120 mm and 400 mm in diameter,

respectively, whereas the tank wall is 10 mm in thickness

FIGURE 3. PD TRPD waveform.

FIGURE 4. The GIS PD simulation model.

and 2.2 m in length. In the simulation, a wide-band Gaussian

pulse signal with a -30dB attenuation at -3GHz and a con-

tinuous stationary frequency distribution is used as the local

discharge current waveform, and its frequency distribution

is changed by adjusting the waveform width parameter [30].

The boundary is set as the perfect matching layer (PML) to

reduce the impact of the boundary structure on the simulation

calculations. The attenuation of the wave energy caused by

the structure is extremely slight, compared to the attenuation

resulting from the heat loss during the electromagnetic wave

propagation caused by the materials of the outer casing and

the center conductor. The energy attenuation caused by the

propagation structure itself is not considered in the simula-

tion.

Considering the electromagnetic energy leakage caused

by the discontinuity of the shielding at the basin insulator,

a simplified insulator structure is set at 0.7 m away from the

excitation source, with the material relative dielectric con-

stant εr = 4.0. Moreover, in order to ignore the losses on the

conductor walls, an ideal conductor is applied for the high-

voltage conductors and cavities. The relative dielectric con-

stant of SF6 filled in theGIS cavity is 1.00205, and the density

is set as 23.7273 kg/m3 under a pressure of 0.4 MPa-abs.

The relative magnetic permeability and electrical conductiv-

ity are 1 and 1.1015 × 10−5 S/m respectively. The highest

frequency calculated is 3 GHz and the cell size is set as

10 mm × 10 mm × 10 mm [31]. The simulation time is

300 ns and the time step is 9.661674 × 10−6µs. The FDTD

simulation waveforms for the four defects are presented

in Fig. 5.
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FIGURE 5. FDTD simulation waveforms for the four defects.

III. METHOD

A. THE CONVOLUTIONAL NEURAL NETWORK MODEL

As a typical deep learning method, the convolutional neural

network (CNN) has been rapidly developing in recent years

and has become an efficient method for pattern recogni-

tion [32]–[34]. A CNN generally consists of a fully connected

layer, a Softmax layer, and a feature extraction layer com-

posed of a convolutional layer and a pooling layer. The con-

volution calculation in the feature extraction layer possesses

the characteristics of sparse interaction, parameter sharing,

and isomorphic representation [35]. Sparse interactions make

the size of the convolution kernel much smaller than that of

the input. Parameter sharing ensures that only one parame-

ter set needs to be learned, which significantly reduces the

storage requirements of the model and provides it with a

translational equivariant feature. In addition, by using pooling

to ensure that when the input varies a bit of the translation,

the input representation is approximately unchanged. The

deep convolutional neural network (DCNN) model is used

as a pattern recognition classifier, which not only avoids the

complicated process of artificial feature engineering and the

problem of insufficient utilization of features, but can also

effectively improve the accuracy and generalization ability of

a diagnosis.

In each feature extraction layer, the feature map first

convolutedly calculates with multiple convolution kernels,

and then is connected to the next layer via bias calcula-

tion, activation function, and pooling operation. The oper-

ation of each feature extraction layer can be expressed

as:

x lj = f (
∑

i∈Mj

x l−1
i ∗ k lij + blj) (1)

where ∗ is the convolution operation; x l−1
i and x lj are respec-

tively the input and output of the l-th layer; blj is the bias;Mj

is the j-th choice in the feature map; k lij is the weight; and f is

the element in the kernel function.

For convolutional calculations, the input feature map is

calculated by convolution and then is output through the

activation function, which can be expressed as:

M l
j = σ (M l−1

j ∗W l−1
j + bl−1

j ) (2)

where σ is the activation function; ∗ is the convolution oper-

ation; M l−1
i and M l

j are respectively the input and output of

the l-th layer; W l−1
j is the weight matrix of the j-th layer

convolution kernel; and bl−1
j is the offset vector of the j-th

layer.

In the pooling layer, the calculation process can be

expressed as:

M l
j = pooling(M l−1

j ) (3)

In the fully-connected layer, the feature maps of the previ-

ous layer are processed with the weighted sum method. The

output feature map can be attained by the activation function,

which can be expressed as:

Z lj = σ (Z l−1
j ·W l−1

j + bl−1
j ) (4)

where · is the matrix multiplication operation; σ is the activa-

tion function; blj is the bias; Z
l−1
i and Z lj are respectively the

input and output of the l-th layer;W l−1
j is the weightmatrix of

the j-th layer convolution kernel; and bl−1
j is the offset vector

of the j-th layer.

The training goal of convolutional neural network is to

minimize the loss function. When used for classification

problems, the loss function uses cross entropy, as shown

in (5). When used for regression problems, the loss function

uses the mean square error function, as shown in (6).

J (2) = −
1

m

m
∑

i=1

[yi log ŷi + (1 − yi) log
(

1 − ŷi
)

] (5)

J (2) =

m
∑

i=1

((yi − ŷi)
2

m
(6)

where x i is the i-th input; yi is the true value of the i-th input;

and ŷi is the predicted value of the i-th input.

B. THE MCNN MODEL

The MCNN model is a lightweight deep neural network

model proposed by Google for embedded devices [36]. Cur-

rently, there are two versions, MobileNet-V1 andMobileNet-

V2. Their major modules are respectively shown in Fig. 6.

MobileNet-V1 adopts the depthwise separable convolution

method to largely reduce the redundancy of the convolution

kernel compared to that of traditional 3D convolution. It not

only optimizes the delay, and reduces the size of the model,

but also improves the model’s recognition accuracy [37].

Based on the structure of Mobile Net-V1, MobileNet-V2 is

added with another two basic structures, the linear bottle-

neck layer as well as a reverse residual structure, which can

accelerate convergence and prevent degradation. In view of

the potential risk of a vanishing gradient in Mobile Net-V1,

in this paper we use MobileNet-V2 to detect and classify GIS

PD patterns.
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FIGURE 6. The structural module of MobileNet-V1 and MobileNet-V2.

FIGURE 7. The calculation process of deep convolution.

1) DEPTHWISE SEPARABLE CONVOLUTION

The core layer of MCNN utilizes depthwise separable

convolution instead of traditional standard convolution,

which reduces the redundant representation of convolu-

tion kernels. The depthwise separable convolution can

be decomposed into depthwise convolution and pointwise

convolution.

Depthwise convolution filters the input channels without

increasing the channel number. As is shown in Fig. 7, assum-

ing that the input feature map is H × W × N and the convo-

lution kernel space size is K × K; in order to convolve with

each group of input feature data, the number of convolution

kernel channels is 1; providing that the number of convolution

kernels is N, and each set of feature data corresponds to

a convolution kernel with respective K × K convolution.

Therefore, the computational load of the depthwise separable

convolution is HWNK 2, which is 1/M of the standard con-

volution. The amount of parameters is K 2N , which is 1/M

of the standard convolution. The training time of MCNN is

significantly reduced by ignoring the convolution in the chan-

nel dimensions, for to some extent depthwise convolution is

similar to collecting the spatial characteristics of each channel

separately.

Pointwise convolution is a special convolution operation

with 1 × 1 convolution kernel in the spatial size. Specifi-

cally, it means that M sets of 1 × 1 × N standard convo-

lution are performed on the input of H × W × N, where

FIGURE 8. The calculating process of point-by-point convolution.

FIGURE 9. The structural module of MobileNet-V1 and MobileNet-V2.

H × W is the input feature space size, N represents the chan-

nel number of input features and the convolution kernel, and

M is the number of the convolution kernels. As is presented

in Fig. 8, pointwise convolution is mainly used to change

the output channel feature dimension. Pointwise convolution

‘‘mixes’’ information among channels, which can cope with

‘‘unsmooth information flow’’ caused by deep convolution

and packet convolution.

2) REVERSE RESIDUAL STRUCTURE

The reverse residual structure is also a residual structure.

Usually, the structure of the residual blocks reduces the

feature map channel by the bottleneck layer.[38]. Since the

shortcut is connected to the feature map with the reduced

channel dimension, it is a reverse residual structure, as shown

in Fig. 9. The reverse residual model in this paper firstly

expands feature channel through the bottleneck layer; and

then, transforms features via the deep convolutional layer;

finally, compresses features through the bottleneck layer.

In the reverse residual operation, the deep convolutional layer

is only used to complete the feature nonlinear transforma-

tion, so the residual connection is added between the two

bottleneck layers. But in general, the function of the residual

connection in this structure is still the same as the residual

blocks, which is used to speed up convergence and prevent

degradation.

Suppose the channel dimension of the input feature is C,

which includes all the useful information. The structure first

expands the features into t · c dimensions (t is greater than

or equal to 1), and the useful features will be distributed in

the subspace of the t · c dimensional space; ReLU activation

function can retain useful features; finally, to avoid informa-

tion loss, the last activation function is removed, and features

are only compressed by a linear bottleneck layer.
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TABLE 2. The overall structure of MobileNet-V2 model.

TABLE 3. The Realization of the Core Module Construction in
MobileNet-V2.

For a feature of h × w in size, the expansion factor is t, the

kernel size is k, the input channel is d1, and the output channel

is d2. The total computation amount is:

Q = h · ω · d1 · t(d1 + k2 + d2) (7)

3) MCNN MODEL STRUCTURE

The overall structure of MobileNet-V2 model is shown

in Table 2. Each row describes one or more sequences of the

same layer. With being repeated n times, all layers sharing the

same sequences have the same number of output channels c.

The step size of the first layer of the sequence is s and the

other layers’ steps are 1. All spatial convolution kernel is

3× 3 in size, and the expansion rate t is always applied to the

input features described in Table 3.MobilNet-V2 contains the

full convolutional layer with 32 convolution kernels, followed

by 17 reverse residual bottleneck modules, with ReLU6 as a

nonlinear activation function, for ReLU6 activation function

is more suitable for low-precision calculations.[39]. Use 3 ×

3 convolution kernels and use Dropout and Batch Normaliza-

tion during training.

The Hyper-Parameter Width Factor α and the Resolu-

tion Factor β are used in MobileNet-V2 to further com-

press the model. Unlike MobileNet-V1, whose width factor

value is less than or equal to 1, that of MobileNet-

V2 is from 0.35 to 1.4. Except the last convolution

layer, the width factor is applied to all layers, which

can to a large extent improve the performance of small

models [40].

FIGURE 10. The calculating process of point-by-point convolution.

C. MCNN MODEL FOR GIS PD PATTERN RECOGNITION

In this paper we use the aforementioned MobileNet-V2 to

identify and classify the GIS PD patterns. First, binarization

processing is conducted on the TRPD three-channel map to

obtain a single-channel binary image, which can reduce the

model parameters, shorten the training time, and shrink the

image from 600 × 438 to 224 × 224. In the model output

layer, Softmax is used as a classifier, and one-hot encoding

is used to identify four kinds of PD initial maps. All active

functions in the model are ReLU6 functions.

In Fig. 10, we can see the clear PD pattern recognition

process ofMobileNet-V2 basedMCNNmodel. Specific steps

are as follows:

(1 )Data preprocessing. Before training, the time domain

map is converted into a single channel image by binarization,

and is shrinked from 600 × 438 to 224 × 224. The inputs

after preprocessing is shown in Fig. 11.

(2) Data enhancement. Data enhancement is used to ran-

domly select 20% training data for image generation to

improve the generalization ability of the model.

(3) Data standardization. The input data is normalized by

Z-score standardization method to establish the comparabil-

ity of data from different sources.

(4) Model training. Model training uses a backpropagation

algorithm and a stochastic gradient descent algorithm, and

also uses Dropout and Batch Normalization to improve train-

ing performance.

(5) Model testing. Model testing is to verify the general-

ization ability, fault recognition accuracy and testing time of

the model.

(6) Model visualization. Tensorboard is used to visualize

the model training process and the feature extraction process.

IV. RESULTS AND ANALYSIS

In this paper, We trained our model with Keras (Tensor-

flow backend) on a machine that has a GeForce RTX

2060 GPU, an Intel i7-8700 CPU and 16 gigabytes of RAM.

In order to verify the performance of the proposed method,
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FIGURE 11. The inputs after preprocessing.

FIGURE 12. The training accuracy and verification accuracy curves during
the model training.

we conduct GIS PD recognition by SVM, DT, BP neural net-

work (BPNN), Lenet5model, Alexnet model, VGG16model,

Resnet18model and theMCNNmodel proposed in this paper.

For the traditional machine learning methods, the max value,

root mean square deviation, standard deviation, skewness,

kurtosis, and the peak-to-peak value are designated as the

feature parameters.[41].

A. MODEL TRAINING AND VISUALIZATION

In order to fully verify the feasibility of the proposed method,

80% of the 5000 datasets in this paper are selected for

model training (70% for training, 10% for verification) and

the remaining 20% for model testing. In order to visual-

ize the training process and extracted features, Tensorboard

is adopted for visualization. Fig. 12 shows the training

accuracy and verification accuracy curves during the model

training.

It can be seen from Fig. 12 that the training accuracy

gradually increases and then levels off with the increase of the

number of training steps, whereas the verification accuracy

is on the increase in general, but decreases at some certain

points. After the large fluctuation, the verification accuracy

curve tends to level out. The model converges on training.

Therefore, theMCNNmodel performswell in GIS PD pattern

recognition. Since the model test accuracy has a tendency to

stabilize after a slight decrease at around 18, the early stop

FIGURE 13. The extracted features of some layers of the MCNN model.

technique is adopted in the training process to fully bring out

the advantages of the model.

Since the extracted features cannot be directly observed,

the CNN is also called a ‘‘black box’’ model. In order to

address this problem, we uses Tensorboard to visualize the

features extracted automatically by the MCNN model. The

extracted features of some layers of the MCNN model are

presented in Fig. 13. We visualize the operation results of

different convolutional layers in the MCNN after extracting

them. The specific process is as follows: the input is a planar

two-dimensional image of the previous layer, and the output

is a planar two-dimensional image after the convolution oper-

ation of the layer. After themulti-layer convolution operation,

the original image becomes more and more blurred, which

indicates that as the network layer deepens, the features

extracted by our network structure are more abstract and

high-level. Obviously, the convolution filter after learning is

relatively smooth in space, indicating that training is suffi-

cient. In addition, it can be seen from the feature visualization

results that the features extracted by the convolutional neural

network are sensitive to time. In the initial feature map,

the contours of the waveform are mainly extracted, and then

the specific combination of waveform features is formed. The

smooth feature map further illustrates the feasibility of the

model.

B. PATTERN RECOGNITION ACCURACY ANALYSIS

In order to verify the recognition accuracy of the model,

respective 1250 sets of data for free metal particle defects

(M type defects), metal tip defects (N type defects),

air gap defects (P type defects) and floating electrode

defects (O type defects) were selected for GIS PD pattern

recognition. The pattern recognition results are shown in

Table 4.

It can be seen from Table 4 that the overall recognition

rate of the MCNN model is 96.5%, significantly higher than

86.5% of Resnet18, 83.4% of VGG16, 81.9% of Alexnet,

74.8% of Lenet5, 92.5% of SVM, 83.7% of BPNN, and

93.1% of DT. When training from 0, the VGG16 and Alexnet

models have no change in training accuracy and loss curve

after adjusting the hyper-parameters in the training process.
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TABLE 4. GIS PD pattern recognition results.

The reason is that the vanishing gradient and themodel cannot

be trained, which prevents it from detecting GIS PD patterns.

To this end, we use transfer learning to train VGG16 and

Alexnet. The reason why the Lenet5 model has low recog-

nition of partial discharge patterns is that model’s feature

learning is far from enough. It also results from the excessive

loss of the image feature due to the 28 × 28 input size of

the model. The shallow model depth also accounts for its

failure to fully extract the GIS PD feature information. For

traditional machine learning methods, the feature parameters

result in their lower recognition rate, for after the feature

dimension reduction, excessive manual interventions give

rise to insufficient utilization of the GIS PD feature informa-

tion.

Among all pattern recognition methods, the recognition

rate of P type defects is relatively low. Because small gaps in

the molding resin or voids in the layered regions between the

insulating materials and the metal inserts tend to accumulate

electric fields with time going by, which may further give

rise to the instability of the PD[42]. MCNN recognizes more

than 99% of M type and N type defects. Therefore, on the

whole, MCNN is the best pattern recognition method among

the above models. In order to further compare the accu-

racy of the MCNN, Lenet5 model and traditional machine

learning methods in the recognition accuracy, Fig. 14 reports

the improvement of the recognition accuracy of MCNN in

different training samples compared to traditional machine

learning algorithms.

We can see from Fig. 14 that when the training sam-

ples are 500, compared with Lenet5, SVM, DT, and BPNN,

the improvement of recognition accuracy of the MCNN is

respectively 9.6%, −15.3%, −16.6%, −12.8%. SVM and

DT significantly outperform DCNN model in recognition

accuracy, which demonstrates the evident advantages of tra-

ditional machine learning methods in small samples.

When the samples reach 1430, the recognition accuracy of

theMCNN respectively improves by 20.7%, 0.3%, 0.1%, and

2.5%, which means the DCNN model has begun to demon-

strate its advantages in recognition accuracy. When the data

set reaches 4000, that of the MCNN respectively improves

FIGURE 14. The improvement of the recognition accuracy of MCNN in
different training samples compared to traditional machine learning
algorithms.

by 21.7%, 4%, 3.4%, and 12.8%. The MCNN significantly

outperforms the traditional machine learning methods. With

the increase of the training data sets, the deep learning

method demonstrates growingly significant advantages over

the traditional machine learning methods in recognition accu-

racy. Thus, the overall performance of MCNN is obviously

better than any other traditional machine learning meth-

ods, which may possess promising prospect in big data and

UPIoT context.

C. PARAMETERS COMPARISON AND TIME ANALYSIS

The parameters and training parameters storage consumption

of the MCNN model, the Alexnet model, the VGG16 model,

and the Resnet18 model are listed in Table 5. We can

see from Table 5 that the MCNN model’s parameter num-

ber is 2.24 million, which is about one-fiftieth of that

of the VGG16 model, and about one-fifth of that of the

Resnet18 model. It possesses the smallest number of parame-

ters. In terms of the storage of training parameters, theMCNN

model has the least memory footprint in all deep learn-

ing models with only 12.8 MB, significantly smaller than

VGG16. Thereby, it can be easily ported to embedded sys-

tems, other mobile applications, and the UPIoT device level

intelligent terminal.

The length of time spent in model training and testing

directly determines whether the model can be applied under

the UPIoT context. The long testing time cannot realize the

in-time and quick processing under the online monitoring

of the UPIoT. The long training time also negatively affects

the updating ability of the model, which makes it difficult to

update for higher accuracy when excessive training samples

are acquired to form a larger historical knowledge database.

In order to verify the time efficiency of MCNN model,

we compare the training and testing time of MCNN and other

machine learning methods. Fig. 15 shows the training time

and testing time distribution of different models based on the

5000 TRPD datasets.

As can be seen from Fig. 15, the training time of MCNN,

Resnet18, VGG16, Alexnet, Lenet5, SVM, DT, and BPNN
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TABLE 5. The parameters and training parameters storage consumption
of the models.

FIGURE 15. Training time and testing time distribution of different
models based on 5000 TRPD datasets.

are 16.45 minutes, 18.26 minutes, 26.98 minutes, 25.45 min-

utes, 22.1 minutes, 11.63 minutes, 9.89 minutes, 10.95 min-

utes, respectively. MCNN’s training time is significantly

shorter than other deep learning models, but longer than

traditional machine learning methods. The testing time of

the above models are respectively 7.3 seconds, 7.5 seconds,

7.8 seconds, 7.4 seconds, 7.2 seconds, 11.2 seconds, 9.8 sec-

onds, 10.4 seconds. Deep learningmodels spend significantly

less testing time than traditional machine learning methods

on account of the feature engineering in machine learning.

Meanwhile, among all deep learning models, MCNN has the

shortest testing time. In the actual engineering application,

training does not occur frequently, whereas testing happens

from time to time. Therefore, MCNN demonstrates the great-

est advantage in time efficiency. Through the comparison of

the parameter number, the model storage and the model time

complexity, MCNN has achieved superior performance and

is more suitable for embedded systems and mobile terminals.

V. CONCLUSION

In this paper we propose a MCNN based method for GIS

PD pattern recognition, which not only fully utilizes the GIS

PD information to improve the recognition accuracy rate, but

also addresses the problem that some convolutional neural

network models cannot be trained due to vanishing gradient

after increasing the depth of layers. This model also to a large

extent reduces the model parameters and storage space, and

shortens the testing time. More importantly, it can be run

on the CPU, so it can easily be ported and integrated into

mobile and embedded systems. The specific conclusions are

as follows:

1) By using MCNN model, we can address the problem

that with the increase of model depth, the CNN models,

such as VGG16 as well as Alexnet, cannot be trained due

to the vanishing gradient problem. The problem of insuffi-

cient utilization of feature information can also be solved.

MCNN model possesses 96.5% recognition accuracy, which

is respectively 21.7%, 4%, 3.4% and 12.8% higher than that

of Lenet5, SVM, DT, and BPNN.

2) MCNN has the superior performance. With depth-

wise separable convolutions and reverse residual structure,

the MCNN model has the shortest testing time with only

7.3 seconds. Moreover, compared with other deep learning

methods, the model parameter number is 2.24 million and

the storage space is 12.8 MB, which greatly reduces the

parameter number, calculation amount, storage space and

energy consumption. More importantly, it can be run on the

CPU, so it can easily be ported and integrated into mobile and

embedded systems.

3) By adopting Tensorboard, we can visualize the model

training process and feature maps, which addresses the

‘‘black box’’ problem of the deep learning model. Mean-

while, the visualization also verifies the feasibility of the

MCNN model for GIS PD pattern recognition.
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