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A MODAL EXTENSION OF FIRST ORDER CLASSICAL
LOGIC–Part II

We define the semantics of the modal predicate logic introduced in
Part I and prove its soundness and strong completeness with respect to ap-
propriate structures. These semantical tools allow us to give a simple proof
that the main conservation requirement articulated in Part I, Section 1, is
met as it follows directly from Theorem 5.1 below. Section numbering is
consecutive to that of Part I. The bibliography at the end applies only to
Part II.

We will freely use notation and results from Part I. Moreover, in
what follows ∀A will denote the canonical universal closure of A, that is,
(∀y1) · · · (∀yn)A where y1, . . . , yn are all the free variables of A in alpha-
betical order. Thus ∀A is the same expression as A if the latter is closed.
We may also abbreviate (∀y1) · · · (∀yn) by (∀~y). In general, ~a denotes
a1, . . . , an, where n is either unimportant or is clear from the context.

5. The Main Conservation Requirement

Theorem 5.1. If A is a wff and T is a classical theory, then `T 2A
implies that T ` A, classically. The converse also holds by the derived rule
“WN” (cf. Part I, Metatheorem 4.2).

1This research was partially supported by NSERC grant No. 8820
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As for the conservation requirement–that “for classical T , A and B,
we have `T 2A → 2B iff T +A ` B classically”–assume the left hand side
of the iff. Now using MP and adding a redundant axiom (A), we obtain
T ∪ 2T ∪ {A,2A} ` 2B, that is, `T +A 2B. The right hand side follows
by 5.1. The converse is as easy, applying the deduction theorem on the
modal deduction `T +A B to obtain `T ∀A → 2A → B. An application
of WN followed by the use of axiom (M1) yields `T 2∀A → 22A → 2B.
Now tautological implication along with axioms (M2) and (M3) rest the
case.

Theorem 5.1 holds, as it immediately follows from the following two
lemmata. A consequence of 5.1 is that if T is consistent classically, then
T ∪ 2T is so modally. For if the latter proves everything, it must prove
2⊥. But then T must prove ⊥ classically, and hence prove everything by
tautological implication.

Lemma 5.2. If A is a wfmf and T is a classical theory, then `T 2A
implies that `T A.

Note that the lemma above is claiming less than Theorem 5.1: In the
lemma, A is a wfmf, and the proof implied by the expression `T A is still
within the modal system, possibly using nonlogical axioms from T ∪2T .

Lemma 5.3. If A is a wff and T is a classical theory, then `T A modally
implies that T ` A classically.

The lemmata follow easily by semantical considerations that we briefly
outline here. In the interest of brevity we will rely on known facts from the
literature. In particular we are influenced by the notation and approach
in [2], which we adapt here to first order theories such as those defined in
Part I. Our semantics is appropriate for the presence of axiom (M3) and
for our syntactic choice that 2A is always a sentence.

Definition 5.4. A pointed Kripke frame is a triple F = (W,R, α0), where
W is a nonempty set of objects–usually called “worlds”–R is a transitive
relation on W , and α0 ∈ W is R-minimum, that is, (∀β ∈ W )(α0 =
β ∨ α0Rβ).
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Definition 5.5. A Kripke structure for a modal language L is a pair M =(F , {(Mα, Iα) : α ∈ W}) where F = (W,R, α0) is a pointed frame and, for
each α, Mα is a nonempty set of individuals and Iα is an interpretation
mapping with the following properties:

(i) For every constant c in L and α ∈ W , Iα(c) ∈ Mα,
(ii) For every function f of arity n > 0 in L and α ∈ W , Iα(f) is a

total function Mn
α → Mα,

(iii) For every predicate P of arity n > 0 in L and α ∈ W , Iα(P ) is a
subset of Mn

α ,
(iv) For every propositional variable q in L and α ∈ W , Iα(q) is a

member of {t, f}. By t and f we mean the metamathematical truth values
“true” and “false” respectively.

We extend semantics to arbitrary terms and formulae by performing
the Henkin trick, that is, importing all the individuals of Mα into L as new
constants (cf. [1], [3]). To simplify notation, we will use the same name,
“c”, to name an informal constant in Mα, and its formal counterpart that
was imported into L.

Let us denote the language so extended by L(Mα). Then we extend
the mapping Iα to all closed terms and formulae of L(Mα) as follows:

Definition 5.6. [Extending Iα]
(1) By induction on closed terms over L(Mα) we define:

(a) For every α ∈ W and constant c in L(Mα), we let Iα(c) be the same
as in (i) of Definition 5.5 if c ∈ L. Else it is c itself. That is, imported
individuals translate as themselves in every world.

(b) If t = f(t1, . . . , tn) and the ti are closed terms of L(Mα), then

Iα(t) = Iα(f)
(Iα(t1), . . . , Iα(tn)

)

(2) For each α ∈ W we define by induction on closed formulae of L(Mα):
(A) Iα(⊥) = f and Iα(>) = t.

(B) If ti are closed terms of L(Mα) and P is an n-ary predicate, then

Iα

(
P (t1, . . . , tn)

)
= Iα(P )

(Iα(t1), . . . , Iα(tn)
)

(C) If t and s are closed terms of L(Mα), then Iα(t = s) = t iff Iα(t) =
Iα(s).
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(D) For any closed formula A of L(Mα), Iα

(¬A
)

= t iff Iα(A) = f .

(E) For any closed formula (∀x)A of L(Mα), it is Iα

(
(∀x)A

)
= t iff, for

all c ∈ Mα, it is Iα(A[x := c]) = t

(F) For any formula A of L(M), closed or not, it is Iα

(
2A

)
= t iff, for

all β such that αRβ, it is Iβ(∀A) = t

(G) For any closed formulae A and B of L(Mα), we have Iα(A ∨B) = t
iff Iα(A) = t or Iα(B) = t.

Definition 5.7. Let M =
(F , {(Mα, Iα) : α ∈ W}) be a structure for L,

where F = (W,R, α0) and A a wfmf of L. We say that A is true in M at α
iff Iα(∀A) = t. We say that M is a Kripke model of A, and write |=M A,
iff A is true at α0 in M. If Γ is a set of formulae over L, we say that M is
a Kripke model of Γ, in symbols |=M Γ, iff M is a Kripke model of every A
in Γ. The symbol Γ |= A is that for semantic implication. It means that
every (Kripke) model of Γ is also a model of A.

We have not defined modal validity, a notion that we will not employ
anywhere.

One can easily prove that all the axioms in Λ ∪ 2Λ are true in all
Kripke structures M and at all α in each such structure. We briefly verify
two interesting ones: First, consider 2A → 22A for an arbitrary wfmf A
and fix a M =

(F , {(Mα, Iα) : α ∈ W}). By Definition 5.6
(
(D), (F) and

(G)
)
, we have two cases to consider: One, if Iα(2A) = f (recall that 2A is

closed), then Iα(2A → 22A) = t. Suppose then that Iα(2A) = t. Then

Iβ(A[~x := ~c]) = t for all β satisfying αRβ and all ~c inMβ (1)

where ~x is the list of all the free variables of A. Assume now that Iα(22A) =
f . Then for some β such that αRβ, we have Iβ(2A) = f . This implies the
existence of a γ with βRγ, and a ~c in Mγ such that Iγ(A[~x := ~c]) = f . But
αRγ by transitivity of R, and we have just contradicted (1).

Next, we verify that Iα(2A → 2(∀x)A) = t. Again, assume (the
interesting case) Iα(2A) = t. Thus, Iβ((∀~y)(∀x)A) = t for all β satisfying
αRβ, where x, ~y is the list of all the free variables of A. By (F) in 5.6,
Iα(2(∀x)A) = t. It is as easy to check that all the other logical axioms
are true at all α and also to prove that the two rules of inference preserve
truth. Thus we have soundness:
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Proposition 5.8. [Soundness] Let T be any theory. Then for any wfmf
A, T ` A implies T |= A. In particular, `T A implies T ∪2T |= A.

Proposition 5.9. [Completeness]Let T be any theory. Then for any wfmf
A, T |= A implies T ` A. In particular, T ∪2T |= A implies `T A.

For a detailed sketch of proof of 5.9 see the next section. We can now
prove the two key lemmata of this section.

Proof [of Lemma 5.2] Assume hypothesis, and also 6`T A. Let M =(F , {(Mα, Iα) : α ∈ W}) be a model of T ∪2T such that 6|=M A, that is,

Iα0(∀A) = f (1)

Let α−1 be a new world and consider a new frame F ′ =
(
W ′, R′, α−1

)
,

where W ′ = W ∪ {α−1} and R′ = R ∪ ({α−1} ×W ).
We now build a structure M′ =

(F ′, {(M ′
α, I ′α) : α ∈ W ′}) where

M ′
α = Mα, I ′α = Iα for α ∈ W , while M ′

α−1
= Mα0 and I ′α−1

= Iα0 .
Thus, |=M′ T ∪ 2T , but I ′α−1

(2A) = f by (1), that is, T ∪ 2T 6|= 2A,
contradicting hypothesis by soundness.

Proof [of Lemma 5.3] Assume hypothesis, and let M = (M, I) be a
classical model of T .2 Consider the frame F = ({0}, ∅, 0) (one world, “0”,
and empty R). We now form the Kripke structure M′ =

(F , {(M0, I0)}
)

where M0 = M , and I0 = I. Clearly, M′ is a model of T ∪ 2T in the
sense of Definition 5.7. Thus, by soundness, we have I0(∀A) = t. It is
easy to verify that I0(∀A) = I(∀A), hence A is true in M, classically. The
latter being an arbitrary classical model of T , we have that A is classically
derivable from T .

6. The Completeness of M 3

In this section we outline the proof of completeness of M3 with respect
to pointed Kripke structures. There are some standard steps in the proof
for which we refer the reader to the literature (e.g., [1], [2], [3]) to avoid
labouring over the well-known. Thus we start with a consistent set of wfmf

2If T has no classical models, then it is inconsistent, hence T proves A classically
anyway.
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T and an arbitrary enumerable set M . We fix an enumeration m0, m1, . . .
of M and also fix the two enumerations below:

A0, A1, A2, . . . of all closed wfmf over L(M) (1)

F1, F2, . . . of all closed wfmf over L(M) of the form (∃x)A (2)

We can now define by recursion a sequence Γ0, Γ1, . . . in two stages: First,
let Γ0 = T and then

∆n =
{

Γn ∪ {An} if Γn 6` ¬An

Γn ∪ {¬An} otherwise

Finally, we let

Γn+1 =
{

∆n ∪ {A[x := a]} if ∆n ` Fn+1 where Fn+1 is (∃x)A
∆n otherwise (3)

In (3) we choose the so-called Henkin constant a so that a = mi where i is
smallest such that mi does not occur in any of A0, . . . , An, F1, . . . , Fn+1.

It is standard folklore in the classical setting (cf. [3]) that ∆n is con-
sistent if Γn is, and Γn+1 is consistent if ∆n is. The proofs carry over
unchanged to the modal case. Now setting Γ =

⋃
n≥0 Γn we can state:

Lemma 6.1. Let T be a consistent set of wfmf over the language L, and
let M be an enumerable set. Then there is a consistent Henkin completion
Γ of T over L(M). That is, a set of wfmf over L(M) such that

(i) T ⊆ Γ
(ii) Γ is consistent
(iii) (Maximality) For any sentence A over L(M), if A /∈ Γ, then ¬A

is in Γ
(iv) (Henkin property) If Γ proves the sentence (∃x)A then it also

proves A[x := a] for some a ∈ M .

Maximality and consistency directly imply that such completions are
deductively closed: If Γ ` A for a sentence A over L(M), then A ∈ Γ.

Our insistence to allow constants and functions in the language makes
us work harder. We now need to cut down Γ so that it “distinguishes
constants”. Once again we defer to [3] for the details and we simply state:
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Lemma 6.2. [Main Semantic Lemma] Let T be a consistent set of wfmf
over the language L, and let M be an enumerable set. Then there is a finite
or enumerable subset N of M , and a consistent Henkin completion Γ of T
over L(N) that distinguishes constants. That is, a set of wfmf over L(N)
such that

(i) T ⊆ Γ
(ii) Γ is consistent
(iii) (Maximality) For any sentence A over L(N), one of A and ¬A

is in Γ
(iv) (Henkin property) If Γ proves the sentence (∃x)A over L(N), then

it also proves A[x := a] for some a ∈ N
(v) (Distinguishing constants) If a 6= b is (metamathematically) true

in N , then Γ ` ¬a = b.

We are near our goal. We prove the consistency theorem first, that a
consistent T must have a Kripke model M. We show how to construct M.

By 6.2 there is a countable set N , and a set of formulae Γ that is a
consistent Henkin completion of T that moreover distinguishes constants.
We fix one such Γ. We will build a pointed Kripke frame using Γ as our
“α0”. Our proof outline follows the proof given for the propositional case
in [2]. In principle, a world will be any consistent Henkin completion–in
the sense of 6.2–of the logical axiom set Λ ∪ 2Λ. We fine tune this by
keeping just those worlds that are accessible from Γ. Thus we define the
accessibility relation first: For a set of formulae ∆ we define

∆2 = {∀A : 2A ∈ ∆} (4)

We now define the relation R for any two consistent Henkin completions
of Λ ∪2Λ:

∆RΣ stands for ∆2 ⊆ Σ (5)

We easily check that R is transitive: Suppose ∆R∆′R∆′′ and let ∀A ∈ ∆2.
We want ∀A ∈ ∆′′. Indeed,

2A ∈ ∆ implies 22A ∈ ∆ (∆ is a completion of the logical axioms)
implies 2A ∈ ∆2 (note that 2A being closed, ∀2A is 2A)
implies 2A ∈ ∆′

implies ∀A ∈ ∆′2
implies ∀A ∈ ∆′′
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We can now set W = {Γ} ∪ {∆ : ΓR∆} and F = (W,R,α0) with
α0 = Γ. For each world α (alias for some ∆) in W we let Nα denote a
finite or enumerable set “N” as per Lemma 6.2. Our next task is to define
a structure N =

(F , {(Nα, Iα) : α ∈ W}), that is, a model of T . For each
world α we define Iα as follows:

For each Boolean variableq, Iα(q) = t iff q ∈ α (6)

For each n-ary predicate P, and ~an in Nα, Iα

(
P (~an)

)
= t iff P (~an) ∈ α

(7)
The Henkin and the “distinguishing constants” properties help to define
Iα for closed terms t over L(Nα), for each α ∈ W , and prove α ` t = Iα(t)
for such t (cf. [3]). This leads to

Iα

(
P (t1, . . . , tn)

)
= t iff P (t1, . . . , tn) ∈ α (7′)

for all predicates of arity n and closed terms ti over L(Nα). We now claim

Lemma 6.3. For each α ∈ W and each closed A over L(Nα),

Iα(A) = t iff A ∈ α (8)

Proof. The proof is by induction on formulae. For the basis, the cases
P (including =) and q are (7′) and (6) respectively. The cases ⊥ and >
follow by soundness and 5.6 since α contains > but not ⊥. We look at the
interesting cases:

A is B ∨ C: If Iα(B ∨ C) = t, then, say, Iα(B) = t. By I.H., B ∈ α,
hence α ` A, therefore A ∈ α. Conversely, if A ∈ α, then B ∈ α or
C ∈ α (and we are done using the I.H.) Indeed, if B /∈ α and C /∈ α, then
(¬B) ∈ α and (¬C) ∈ α by maximality, rendering α inconsistent.

A is (∀x)B: If Iα

(
(∀x)B

)
= t, then Iα

(
B[x := b]

)
= t for all b ∈ Nα.

By I.H.,
B[x := b] ∈ α, for all b ∈ Nα (9)

We claim that (∀x)B ∈ α. If not, then
(¬(∀x)B

) ∈ α as before. That is,(
(∃x)¬B

) ∈ α; hence ¬B[x := h] is in α for some h ∈ Nα by the Henkin
property. This contradicts (9) by the consistency of α. Conversely, say
(∀x)B ∈ α. Hence α ` (∀x)B and thus (axiom (2)) α ` B[x := b], for all
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b ∈ Nα, from which we get (9). By the I.H., Iα

(
B[x := b]

)
= t for all

b ∈ Nα, hence Iα

(
(∀x)B

)
= t.

A is 2B: Let 2B ∈ α. Then ∀B ∈ α2. It follows that if αRβ, then
∀B ∈ β, hence β ` ∀B, therefore (axiom (2)) β ` B[~x := ~b] for all bi in
Nβ , where ~x is the list of all free variables in B. By earlier remarks, all
the sentences B[~x := ~b] are in β, hence Iβ

(
B[~x := ~b]

)
= t by I.H. and

thus Iβ

(∀B)
= t. Therefore, β being arbitrary satisfying αRβ, we have

Iα

(
2B

)
= t.

For the converse we argue contrapositively: Let 2B /∈ α. Thus ∀B /∈
α2. We next claim that

α2 6` ∀B (10)

If not, the deduction theorem yields ` A1 → A2 → . . . → Ar → ∀B, for
some Ai in α2 (all the Ai are of the form ∀C). Hence ` 2A1 → 2A2 →
. . . → 2Ar → 2∀B, from which (and 2Ai ∈ α)3 we get α ` 2∀B by
modus ponens. This yields α ` 2B by 2-monotonicity and axiom (2),
thus 2B ∈ α, contradicting the assumption. With (10) established, let ~x
be the list of all free variables in B and γ be a consistent Henkin completion
of {¬(∀~x)B} ∪ (α2) as in 6.2. Then

(¬(∀~x)B
) ∈ γ and αRγ, hence γ `

(∃~x)¬B. Thus
(¬B[~x := ~b]

) ∈ γ, for some ~b in Nγ , therefore B[~x := ~b] /∈ γ.
By the I.H. we have Iγ

(
B[~x := ~b]

)
= f , hence (semantics of 2) Iα

(
2B

)
= f .

We can now prove (strong) completeness of M3. Let T |= A. Then

T |= ∀A (11)

Now, if T 6` ∀A, then {¬∀A} ∪ T is consistent. Let M be a Kripke model
for {¬∀A} ∪ T . Then |=M T yet 6|=M ∀A, contradicting (11).
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