
A modal interface contract theory for guarded input/output automata

with an application in traffic system design

Tung Phan-Minh1, Steve Guo, Bastian Schürmann, Matthias Althoff, and Richard M. Murray

Abstract— To contribute to efforts of bringing formal design-
by-contract methods to hybrid systems, we introduce a variant
of modal interface contract theory based on input/output
automata with guarded transitions. We present an algebra
of operators for interface composition, contract composition,
contract conjunction, contract refinement and some theorems
demonstrating that our contract object has reasonably universal
semantics. As an application, we apply our framework to the
design of a networked control systems of traffic.

INTRODUCTION

The growth in scale and complexity of engineering sys-

tems has been fueling a practical demand for formal ap-

proaches to modular design [1], [6]. Generally speaking,

modular design means breaking up a system into more or

less standalone modules for a reduction in complexities. To

guarantee correct product integration, it is therefore not only

a matter of convenience but also of necessity for design

choices intended for a module to be made available to

others. One way of dealing with this dependency is to divide

tasks of designing a module into two parts: specifying an

interface and ensuring that the implementation satisfies it.

The interface of a module is a relatively simple object that

contains all information about the interactions it can offer

to other modules. The implementation is a structure that

satisfies all the specifications of the interface. The idea is

that changes to an implementation of a module should not

affect the overall behavior of assembled system as long as

the implementation still satisfies the requirements of the

interface.

A lightweight automata-theoretic approach to represent

interfaces was introduced by de Alfaro and Henzinger [5], in

which the temporal behavior of an interface is described by

a game-based model in the form of an input/output (I/O)

automaton, a formalism that first appeared in Lynch and

Tuttle [9]. This was soon followed by modal specifications

by Larsen [8], which can state whether an action is optional

or obligatory. Later Raclet unified modal specifications and

interface automata, paving the way for a preliminary theory

of modal interface contracts [11]. More recently, Benveniste

et al. subsumed this theory under an elegant, encompassing

metatheory, referred to in this work as the metatheory, that

aims to unite various formal contract frameworks [2]. In the

application domain, however, the semantics of the theory is

*This work was supported by DENSO, the European Commission under
the project UnCoVerCPS (grant number 643921), and the Caltech SURF
program. We would like to thank Anhminh Nguyen for contributing to the
simulation implementation.

1Tung Phan-Minh is a graduate student in Mechanical Engineering at the
California Institute of Technology tung@caltech.edu

limited by a lack of clear restrictions on when a transition

can trigger and by a peculiar rule for composing actions,

namely, requiring that the action obtained from composing

an input action with an output action to be an output action,

which, while preserving the “interface” semantics, obscures

the distinction between open and closed interfaces/systems.

These drawbacks make it difficult and sometimes impossible

to specify systems whose variables assume a large or infinite

set of values.

With an aim to bringing the benefits of the theory of modal

interface contract automata to more real-time systems, in-

spired by symbolic transducers [4], we develop a new theory

that includes Boolean guards, a more intuitive definition of

how the I/O actions interact, an introduction of a special state

that enriches the semantics of the contract object, a simplifi-

cation in the definitions of interfaces. In addition, we prove

that the algebraic operations defined for our contract theory

also have metatheoretic properties, implying compatibility

with many existing contract frameworks. We then implement

a set of tools that carry out the contract algebra in a similar

manner to Mica, which implements the modal interface

contract in [12]. As an illustrative example application of our

theory, we introduce a method for setting up an autonomous

traffic system where various interfaces communicate with

each other while abiding by the contract protocol. Our

concrete case study involves a real-time simulation of a

traffic intersection (see Fig. 1) whose components interact

with each other in accordance with the contract objects we

devise.

Fig. 1. A snapshot of an implementation of a networked control system
of traffic presented in [10]

INTERFACE CONTRACT THEORY

Many real-world applications ranging from online pay-

ment services to autonomous robots require networking

Submitted, 2019 American Control Conference (ACC)
https://www.cds.caltech.edu/~murray/preprints/pha+19-acc_s.pdf

protocols to control sequential exchanges of information

between many subsystems or participating agents. By “se-

quential” we mean that the interactions must occur in a well-

specified, agreed upon temporal order. A good implementa-

tion of these protocols presupposes the notion of a set of

rules for each subsystem that not only restrict what action the

subsystem can perform from a certain state at a certain time

but can also be compared to or combined with other sets of

rules corresponding to other subsystems. To illustrate these

ideas, we will provide definitions for three formal objects,

arranged in the hierarchy pyramid in Fig. 2 by their level of

abstraction. The higher the object sits, the more abstract it is

and the fewer ways there are to implement it. First, we will

introduce the interface.

Interface

Our formalism rests upon the assumption that each state

of the universe fixes the values for a master set of variables

U whose temporal and algebraic behaviors are governed

by mathematical and physical laws. The interface of a

component (or interface for short) may be described by a

subset of U (these are called its reference variables), and

can interact with the rest of the universe (i.e., one of its

environments) through a set of actions. Any action from this

interface may belong to exactly one of the following three

classes. An input action of an interface corresponds to the

receiving of mass or energy from its environment. An output

action, on the other hand, corresponds to sending mass or

energy to its environment. An internal or rendezvous action

represents an interconnection. Intuitively, an interconnection

implies the existence of at least one input and one output

action and we can think of it as being internally exchanged

within the component. As a syntactic reminder, we will prefix

input actions with an exclamation mark (!), output actions

with a question mark (?) and rendezvous actions with a hash

symbol (#).

An interface is closed if and only if its corresponding set of

actions is empty or only consists of rendezvous actions. An

interface is called open otherwise. For example, the universe,

in its entirety has a closed interface. A wireless router has

an open interface because it takes inputs from a modem and

emits radiowaves.

For any set of variables V ✓ U , an evaluation e of V ,

denoted by e[V] is a legal assignment of values to each of

the variables in V . By legal, we mean that each variable

is assigned a value that is in the value set specified by its

type (e.g., the reals). In mathematical logic terms, e is a

ground substitution of variables in V . The set EV := {e |
e is an evaluation of V } contains all possible evaluations of

V . Since one of our interests is in “connecting” different

interfaces it is important to specify the conditions under

which this can happen. For this purpose and also to obtain

a compact automaton representation of interfaces, we will

invoke the notion of guards.

Definition 1 (Guard): Let > := True and ? := False.

A guard g defined on a set of variables V is a predicate on

the variables in this set, namely, g : EV ! {>,?}. The set

of all predicates on V is denoted by GV .

For example, when V is a set of Boolean variables, then

a guard on V is a map from 2V to {>,?}. Below, we will

use the tilde symbol ⇠ as a wild card character that acts as

a placeholder for one of !,? and #.

Definition 2 (Interface): Each interface M is defined by a

set of reference variables V and a tuple A = (S,s0,?,A,!)
where

(i) S is a finite set of operational states

(ii) s0 2 S is the start state

(iii) ? 62 S is the failure state

(iv) A is a set of actions. We will often write A as the

partition

A = ?A[!A[#A,

where ?A, !A,#A are the smallest sets containing all the

input, output, and internal actions of A respectively.

(v) !⇢ S⇥ [GV | A]⇥ S̄ is a guarded transition relation

with S̄= S[{?} (note the asymmetry between the start

and end sets). For all s1,s2,g,a such that s1⇥ [g |⇠a]⇥
s2 2!, we say that the action ⇠a is only available to

M in those states of the universe where g evaluates to

>. We also require the transitions to be deterministic

by requiring that, from each state, there is only one

transition per unmasked action.

We will be writing q
[g|α]
��! p in place of q⇥ [gE | α]⇥ p 2!

as a predicate. The fact that our interfaces are deterministic

allows us also to use the shorthand q
[g|α]
��! to say with little

ambiguity that there exists a state p 2 S̄ such that q
[gE |α]
���!

p. Now we are ready to define the interface composition

operator, which we will denote by the symbol ⇥. Intuitively,

given two interfaces M1 and M2 and assuming M1 is currently

in state s1 and M2 in s2. If, for example, from s1, M1 has

a transition [g1 | ?a] to some state s01 and from s2, M2 has a

transition [g2 | !a] to state s02, then if M1 and M2 were to be

composable, it would make sense to require M1 and M2 to

exchange the action a with one another. This then reduces to

checking if g1 ^ g2 is satisfiable (there exists an evaluation

of the variables in g1^g2 that makes it evaluate to True).

If there is at least one satisfying assignment, then the two

interfaces must handshake or “rendezvous” on it, otherwise,

they are not composable.

Definition 3 (Composition of Transitions): The composi-

tion of two transitions t1 = q1
[g1|⇠a1]
����! q01 and t2 = q2

[g2|⇠a2]
����!

q02, from automata M1 and M2 respectively, is possible if g1^

g2 is satisfiable and a1 = a2. If these conditions are satisfied,

the composed transition is given by t = (q1,q2)
[g|a]
��! (q01,q

0
2),

where g := g1^g2 and a :=⇠a1 +⇠a2 where + is a binary

operator acting on ⇠a1 and ⇠a2 such that, for i 2 {1,2}

⇠a1 +⇠a2 :=

8

>

>

>

>

>

<

>

>

>

>

>

:

#a1

2
W

i=1

(⇠ai 2 !Ai^⇠a3�i 2 ?A3�i)

_⇠ai = #ai

?a1 ⇠a1 2 ?A1^⇠a2 2 ?A2

!a1 ⇠a1 2 !A1^⇠a2 2 !A2

Components

Interfaces

Contracts

Fig. 2. Contract design hierarchy pyramid

Any input supplied to an automaton that is an output of

the other becomes a rendezvous action of the composed

automaton since the composed automata should represent

the interconnection of the two automata. Observe also that

input (or output) actions that compose with themselves

are not converted to rendezvous actions but rather remain

unchanged. For convenience, we define u to be a universal

“unmasking" function that maps all prefixed actions to pure

actions, namely, u : ⇠a 7! a. As an abuse of notation, for

a set A of prefixed actions, we write u(A) to mean the set

{u(a) : a 2 A}. The composition M of two interfaces M1 and

M2 is defined as follows.

Definition 4 (Interface Composition): For two interfaces

M1 defined by V1 and (S1,s0,1,?2,A1,!1) and M2 defined

by V2 and (S2,s0,2,?2,A2,!2), their composition M = M1⇥

M2 is defined by V := V1[V2 and (S,s0,?,A!) such that

(i) S := S1⇥S2

(ii) s0 := s0,1⇥ s0,2

(iii) A is partitioned into #A[!A[?A, with

#A := #A1[#A2

2
[

i=1

#(u(?Ai)\u(!A3�i))

?A := ?A1[?A2

!A := !A1[!A2

(iv) ! is the Cartesian product of transitions in!1 and!2

with respect to composition as defined in definition 3.

More specifically, 8t1 2 S1⇥ [GV1
| A1]⇥ S̄1, t2 2 S2⇥

[GV2
| A2]⇥ S̄2 such that t1 and t2 are composable, t1⇥

t2 2!.

(v) associate each (reachable) composite state in ?1⇥S2[

S1⇥?2 with the failure state ?.

Observe that due to Definition 4(iv) and the fact that each

constituent interface is deterministic, from each composite

state there can be at most one transtion per unmasked action,

so the composition is also a deterministic interface.

Proposition 1 (Associativity and Commutativity): The in-

terface composition operator (⇥) is associative and commu-

tative. Namely, for all interfaces M1,M2,M3, we have

M1⇥M2 = M2⇥M1 (1)

and

(M1⇥M2)⇥M3 = M1⇥ (M2⇥M3). (2)

Proof: (1) easily follows from Definitions 3 and 4.

To see why (2) holds, first we note that it is trivial to

show that the resulting sets of operational states, the initial

states, and the sets of states that eventually become the

failure state from both sides of equation 2 are equal. In what

follows, we will be referring to the constituents (e.g., action

set) of each interface Mi by their standard notations. Now

observe from the last two items in Definition 4(iii), that

the input and output action sets of the resulting interfaces

on both sides of equation (2) are equal. For the internal

action set, a direct calculation with an application of the

set distributive law shows either side of (2) can be reduced

to
3
S

i=1

#A
3
S

j=1, j 6=i

#(u(?Ai) \ u(!A j)). By Definition 4(iv) it

remains to be shown that the transition sets are identical,

which is to prove

8t1, t2, t3.

3̂

i=1

(ti 2!i) =) (t1⇥ t2)⇥ t3 = t1⇥ (t2⇥ t3) (3)

By Definition 3, we can assume that a1 = a2 = a3 = a. Let

us suppose that the resulting action of (t1 ⇥ t2)⇥ t3 is an

internal action (the cases for input and output actions are

straightforward). Then either

• at least one of ⇠a1 or ⇠a2 or ⇠a3 is an internal action,

in which case the resulting action of t1⇥ (t2⇥ t3) must

also be an internal action since # “absorbs” any other

type of action.

• or among ⇠a1, ⇠a2, ⇠a3 there are exactly two types

of actions, namely, input and output, in which case, the

resulting action of t1⇥(t2⇥t3) is also an internal action.

Both cases show that (3) holds.

Below, whenever we make a reference to an interface Mi and

later a contract, we will be using the same notations used in

their respective definitions with the appropriate subscripts

to talk about their constituents (set of actions, start states

etc.). Given two interfaces, knowledge of whether they are

comparable to one another can be very useful. One way to

enable this comparison to check whether one interface can

“imitate” or simulate the other.

Definition 5 (Simulation): Let M1 and M2 be two interface

automata. For i = 1,2, let qi be a state of Mi. q2 simulates

q1, written q1 . q2, if for all α 2 A

q1
[g1|α]
���! q01 =) 9q02 : q2

[g2|α]
���! q02^ (g1 =) g2)^ (q

0
1 . q02)

(4)

M2 simulates M1, written M1 . M2, when s0,1 . s0,2.

The following is a fact will be useful later when we define

contract composition.

Proposition 2: If M1 . M2 and M3 . M4, then M1⇥M3 .

M2⇥M4.

Proof: The start state of M1⇥M3 can be written as

(q1,q3) where q1 and q3 are start states of M1 and M3.

By Definition 5, the start states q2, q4 of M2 and M4

satisfy q1 . q2 and q3 . q4. We claim (q1,q3) . (q2,q4).

Suppose for some q01,q
0
3 such that (q1,q3)

[g1^g3|α]
�����! (q01,q

0
3)

where q1
[g1|α1]
����! q01, q3

[g3|α2]
����! q03 and α = α1 + α2. By

Definition 5, we have q2
[g2|α1]
����! q02 ^ (g1) g2)^ q01 . q02

and q4
[g4|α2]
����! q04 ^ (g3) g4) ^ q03 . q04. These two yield

the transition (q2,q4)
[g2^g4|α1+α2]
��������! (q02,q

0
4) in M2⇥M4 and

g1^g3) g2^g4. By performing this argument inductively,

we have (q01,q
0
3) . (q02,q

0
4) and therefore q1⇥q3 . q2⇥q4,

from which the claim follows.

Component

While the interface is a mathematical object that specifies

actions a module can exchange with its environment, a

component is any structure (e.g., hardware or software, or

human) that satisfies the promises of the interface for that

module. To keep the interface representation compact, it is

helpful to maintain a small action alphabet. In applications,

this may be done by appropriately mapping the numerous

actions (due to parametrization or the fact that they stem

from different structures) to a small number of classes that

represent the actions in the alphabet of the corresponding

interface. For a component K, letting Q be this action

equivalence map, we have the following definition.

Definition 6 (Component): We say a component K models

an interface M under the action equivalence map Q and write

K |=Q
comp M if there exists a state machine representation K̄

of K modulo Q such that K̄ . M.

Immediately from the definition, we have for all interfaces

M1 and M2, M1 . M2 =) M1 |=I
comp M2. where I is the

identity map.

Contract

At the top of the contract design hierarchy is the contract

object, which is defined as follows

Definition 7 (Guarded Modal Interface Contracts):

A guarded modal interface contract C consists of a

set of reference variables V and a tuple of the form

A = (S,s0,?,A,!,99K), where S,s0,?,A are defined as in

the interface automaton object.! and 99K are two transition

relations called must and may respectively. Intuitively, a may

transition with guard g and action α in the interface contract

specifies that any interface implementing the contract is

allowed but not required to perform α as long as the guard

is satisfied. On the other hand, a must transition in the

interface contract specifies a transition that any interface

implementing it is required to include. Clearly, this implies

that any must transition must also be a may transition,

namely for q 2 S,g1,g2 2 GV , and α 2 A, we have

(q
[g1|α]
���!=) q

[g2|α]
9999K)^ (g1 =) g2) (5)

(5) says that the existence of a must transition implies the

existence of a may transition with a weaker guard. A modal

interface contract C naturally induces two interface automata

Mmust and Mmay with only ! and 99K as transition relations

respectively and fixes a set of environments of the contract,

denoted by EC . An environment E 2 EC is an interface

automaton such that E⇥Mmay is closed (by (5), E⇥Mmust is

also closed) and for each reachable state (qE ,qM)2E⇥Mmay

and any (unprefixed) action a

qE
[gE |!a]
���!=) qM

[gM |?,#a]
�����!^(gE =) gM) (6)

qE
[gE |?a]
����!=) qM

[gM |!,#a]
�����!^(gE =) gM) (7)

Here ?, # indicates that α can be either input or internal.

Together, these mean that any time the environment is only

willing to emit an output or request an input if Mmay can

accept it. C also fixes a set of interfaces MC that implement

C, such that M 2MC if

Mmust . M . Mmay (8)

which is essentially stating that all reachable must transitions

must be included in M, and M can only use may transitions

of the contract. Below, we will use as a shorthand .may(must)

as the simulation relation with respect to the may(must)

transitions only in the contract object. Contract refinement,

conjunction, and composition are defined as follows

Definition 8 (Modal Refinement): Let C1 and C2 be two

guarded modal interface contracts. Then C2 refines C1,

written C2 � C1 if and only if

M2,may . M1,may (9)

M1,must . M2,must. (10)

Proposition 3: A more refined contract allows for more

environments, namely

C2 � C1 =) EC2
◆ EC1

(11)

Proof: Let E 2 EC1
. By Definitions 5 and (9), we have

M2,may . M1,may and for any reachable state (qE ,q2) of E⇥

M2,may, there exists a reachable state (qE ,q1) in E⇥M1,may

such that q2 . q1. So for any outgoing transition of (qE ,q2)
in E ⇥M2,may doing an action α , there is a corresponding

transition from (qE ,q1) in E⇥M1,may that also does α . Since

E⇥M1,may is closed, α must be an internal action. Therefore

E⇥M2,may is also closed. Furthermore,

qE
[gE |!a]
���!

E2EC1=) q1
[g1|?,#a]
����!

(9)
=) q2

[g2|?,#a]
����!

and gE

E2EC1=) g1
(9)
=) g2

satisfying (6). Similarly, (7) also holds, implying E 2 EC2
.

Proposition 4: A contract is more refined than another

if and only if its implementations are also the other’s

implementations.

C2 � C1 () MC2
✓MC1

(12)

Proof: ()) : Let M 2 MC2
, by (9) we have M .

M2,may . M1,may. By (10), we have M1,must . M2,must and

therefore M1,must . M. This proves M has property (8).
(() : First, we have M2,may 2 MC2

✓ MC1
=) M2,may .

M1,may. On the other hand, M2,must 2MC2
✓MC1

and hence

M1,must . M2,must. This shows that C2 � C1.

Propositions (3) and (4) immediately yield

Corollary 1: Modal refinement and metatheoretic refine-

ment are equivalent.

Contract refinement allows us to compare levels of abstrac-

tions of contracts; for instance, a contract that involves

details on how to perform local control actions may refine

a contract for a car driving safely into a traffic intersection.

The conjunction of two contracts C1 and C2 is defined as the

greatest common lower bound (GCLB) of C1 and C2, or in

other words, the most abstract contract C that refines both

C1 and C2.

Definition 9 (Contract Conjunction): Conjunction is de-

fined for two modal interface contracts C1 and C2 if A1

and A2 are equal and have the same decomposition. Then

the pre-conjunction C1^C2 has states S = S1⇥S2, start state

s0,12 = s0,1⇥ s0,2 and the same alphabet as C1 and C2, with

transitions defined by the following relations, assuming for

any subscript i if a transition from qi to q0i doesn’t exist then

we add it in with a False guard

(q1,q2)
[g1^g2|α]
9999999K (q01,q

0
2), q1

[g1|α]
9999K q01^q2

[g2|α]
9999K q02

(13)

q1
[g1|α]
���! q01_q2

[g2|α]
���! q02, (q1,q2)

[g1_g2|α]
�����! (q01,q

0
2) (14)

A state (q1,q2) of C1^C2 is illegal if it inconsistent, that

is, the “must implies may” condition in (5) does not hold.

Specifically, if there exists α 2 A such that (q1,q2)
[g1|α]
���!

^(q1,q2)
[g2|α]
9999K but g1 ; g2, then we prune it by deleting

all may transitions leading to (q1,q2), if (q1,q2) a start state,

it will simply get removed. Repeating this procedure and

deleting all non-may reachable states yields the conjunction

C1 ^C2 (note that the deletion must terminate because the

number of states is finite).

Proposition 5: C1^C2 has a start state if and only if C1

and C2 have a common lower bound.

Proof: ()) : We prove C1^C2 � C1,C2, by showing

(9) and (10). Letting (q1,q2) be the start state of C1 ^C2,

we have for i 2 {1,2} and any (q01,q
0
2) in C1^C2 such that

(q1,q2)
[g01^g02|α]
9999999K (q01,q

0
2), we have by (13) that qi

[g0i|α]
9999K q0i

and continuing inductively, we conclude (q1,q2) .may qi.

Fixing i, for any q00i ,β such that qi

[g00i |β]
���! q00i , by (14),

(q1,q2)
[g001_g002 |β]
�����! (q001 ,q

00
2) in C1^C2. Since (q1,q2) is not

illegal, so is (q001 ,q
00
2), because otherwise, the may transition

that performs β from (q1,q2) to (q001 ,q
00
2) would have been

deleted during pruning, violating (5) for (q1,q2). This shows

that qi .must (q1,q2).
(() : Suppose C �C1,C2. Instead of showing the start state

of C1 ^C2 is not pruned, we will prove a stronger result,

namely that C � C1^C2. Indeed, if q is the start state of C ,

then by definition, the start state qi of Ci for i = 1,2 satisfies

for α 2 A, (q
[g0|α]
9999K q0) qi

[g0i|α]
9999K q0i)^ (g

0) g0i)^ (q
0 .may

q0i). Thus q
[g0|α]
9999K q0) (q1

[g01|α]
9999K q01 ^ q2

[g02|α]
9999K q02) with

g0) g01^g02 and q0 .may q0i. By (9), we have q
[g0|α]
9999K q0)

(q1,q2)
[g01^g02|α]
9999999K (q01,q

0
2) where (q1,q2) and (q01,q

0
2) are

states of C1^C2. Fixing i, for any β

qi

[g00i |β]
���! q00i) q

[g00|β]
���! q00^ (g00i) g00)^ (q00i .must q00)

Also by (14)

(q1,q2)
[g001_g002 |β]
�����! (q001 ,q

00
2)

Since q is not illegal, there is an α 2 A such that β = α
and also g00) g0, then by determinism q0 = q00 and q0i = q00i .

Clearly, g001 _ g002) g00) g0) g01 ^ g02 so that the must

transition from (q1,q2) to (q01,q
0
2) doing β is also legal.

Finally, continuing this chain of inductive reasoning, we

obtain (9) and (10) for C and C1 ^C2, proving the claim.

Proposition 5 and the stronger result shown in the reverse

direction of its proof imply

Proposition 6: Modal conjunction and metatheoretic con-

junction are equivalent, that is, the modal conjunction of two

contracts is their GCLB.

Definition 10 (Contract Composition): Contract compo-

sition is denoted by the operator ⌦. The pre-composition

C1⌦C2 of two contracts C1 and C2 is given by

M1⌦2,must = M1,must ⇥M2,must

M1⌦2,may = M1,may⇥M2,may

A state (q1,q2) of C1⌦C2 is illegal if one automaton attempts

to supply an input but the other refuses it. Furthermore, state

(q1,q2) is illegal if it is impossible for the guards to match in

input/output matching, resulting in the input being rejected.

Define SATV to be the set of satisfiable predicates over V .

For i 2 {1,2}, assuming gi is satisfiable, then (qi,q3�i) is

illegal if either there exists αi 2 Ai such that

(qi

[gi|αi]
9999K ^αi 2?A3�i); q3�i

[g3�i|αi]
�����!^(gi^g3�i 2 SATV)

Pruning of states is done as in contract conjunction. This

new contract is C1⌦C2. And we have the following result.

Proposition 7: Modal composition is equivalent to

metatheoretic contract composition.

Proof: It suffices to show that, for M1 2MC1
, M2 2MC2

,

1) M1⇥M2 2MC1⌦C2

2) For all E 2 EC1⌦C2
, E⇥M2 2 EC1

and E⇥M1 2 EC2

3) C1⌦C2 is the least contract with respect to refinement

that satisfies these.

First we show C1 ⌦ C2 satisfies conditions 1 and 2. Let

C =C1⌦C2. Then condition 1 is equivalent to Mmust .M1⇥

M2 . Mmay. Since, for i 2 {1,2}, Mi 2MCi
, Mi,must . Mi .

Mi,may, the desired result immediately follows from Proposi-

tion 2. Next consider some E 2 EC1⌦C2
, so E ⇥ (M1,may⇥

M2,may) is closed. It follows that (E ⇥M1,may)⇥M2,may

and (E ⇥M2,may)⇥M1,may are also closed. By definition,

M1 . M1,may and M2 . M2,may, so (E ⇥M1)⇥M2,may and

(E⇥M2)⇥M1,may are closed. It then remains to show E⇥M1

and E⇥M2 satisfy (6) and (7) of Definition 7. First, since

E is an environment of C1⌦C2, we have for any reachable

state (qE ,q1⌦2) in E⇥M1⌦2,may

qE
[gE |!α]
����!) q1⌦2

[g1⌦2|?,#α]
������!^(gE) g1⌦2)

qE
[gE |?α]
����!) q1⌦2

[g1⌦2|!,#α]
������!^(gE) g1⌦2)

Note that since M1⌦2,must = M1,must ⇥M2,must, these are

equivalent to

qE
[gE |!α]
����!) q1

[g1|⇠1α]
�����!^q2

[g2|⇠2α]
�����!^(gE) g1^g2)

qE
[gE |?α]
����!) q1

[g1|⇠1α]
�����!^q2

[g2|⇠2α]
�����!^(gE) g1^g2)

where ⇠1 and ⇠2 are action types such that their composition

matches that of C1⌦C2. The following chart demonstrates

possible action types of this transition.

E C1 C2 E⇥M1,must E⇥M2,must

! ? ? # #

! # # # #

! # ? # #

! # ! # !

? ! ! # #

? # # # #

? # ! # #

? # ? # ?

The proof proceeds as follows. For M1 implementing C1 and

M2 implementing C2, note that for i 2 {1,2}

qi
[gi|?α]
���!) qMi

[gMi
|?α]

����!^(gi) gMi
)

So in E⇥M1, state (qE ,qM1
) is reachable if state (qE ,q1) is

reachable in E⇥C1,must . Consider the first row of the chart,

where the environment is outputting α . Then from our result

above, we have

qE
[gE |!α]
����!) qM1

[gM1
|?α]

�����!^q2
[g2|?α]
����!^(gE) gM1

^g2),

so the composition of the transitions from qE and qM1
in

E⇥M1 yields

q(E,M1)

[gE^gM1
|#α]

�������!) q2
[g2|?α]
����!^(gE ^gM1

) g2)

and the equivalent result for E⇥M2 yields

q(E,M2)

[gE^gM2
|!α]

�������!) q1
[g1|?α]
����!^(gE ^gM2

) g1)

The latter result is precisely (7) with respect to E⇥M2 and

C1. It can be easily verified in a similar manner that the rest

of the combinations yield similar results. For condition 3,

it suffices to show that C1⌦C2 is the greatest lower bound

of all contracts that satisfy conditions 1 and 2. Thus, for

any C⇤ satisfying 1 and 2, then C1⌦C2 . C⇤. This follows

immediately from condition 1 and Proposition 2, since M1⇥

M2 2MC⇤
yields, as desired

M⇤,must . M1⇥M2 . M⇤,may

)M⇤,must . M1,must⇥M2,must . M1⇥M2

. M1,may⇥M2,may . M⇤,may

)M⇤,must . M1⌦2,must . M1⌦2,may . M⇤,may.

So far, we have only defined contract operations for

contracts with matching alphabet conditions. Alphabet equal-

ization is achieved via the same procedure described in [3].

May self-loops are temporarily added during the computation

of the conjunction and must self-loops added for composition

both having > as their guards.

AN APPLICATION IN TRAFFIC CONTROL

We will apply the developed theory to the contract-based

design of the real-time networked control traffic system illus-

trated in Fig. 1. A full simulation of this system is presented

at [10]. This system consists of 4 interacting components

whose temporal behaviors are described by the contracts

Clights,Cpedestrian,Cvehicle and Cscheduler shown in Fig. 3. These

specify the desired models for pedestrians, traffic lights, cars,

and a scheduler in the intersection. We note that the many

continuous variables involved in the timers and execution

conditions of these components would have made producing

and deciphering their contracts in the vanilla modal interface

framework significantly more challenging due to the need

for numerous potentially confounding auxiliary states and

actions.

The traffic lights, in addition to some timing constraints on

the duration of the “red”, “green”, “yellow” signals, are also

required to have an “all red” phase that lasts for t_c seconds,

a period long enough for cars to clear the intersection before

the walk signal with duration t_w is turned on. Pedestrians

should only attempt to cross when they are capable of

successfully landing on the other island for the duration of

the walk signal. All (or at least some) vehicles involved

are robots that can be informed by a centralized planner

on how to proceed past the intersection without causing

accidents. These directions must be requested by the robots

upon entrance. The traffic lights and the pedestrians form

a subsystem Clights⌦Cpedestrian that operates orthogonally to

the subsystem Cvehicle ⌦Cscheduler defined by the cars and

the scheduler. By orthogonality, the overall system is simply

(Clights⌦Cpedestrian)^ (Cvehicle⌦Cscheduler).

To simplify the process of writing the interface contract

for the traffic lights, we specify and compose two separate

subcontracts for traffic lights in each direction, Chorizontal_lights

and Cvertical_lights, for the east-west and north-south directions

respectively, that is Clights = Chorizontal_lights ⌦Cvertical_lights.

Since Chorizontal_lights and Cvertical_lights are symmetric with

the exception of the start state (the former starts at node 0

while the latter starts at node 3), we only show the former in

Fig. 3. The variables for Chorizontal_lights are h, h’, h_timer,

which represent the traffic lights’ current state, the next

state after performing a related action and a special timer

to specify the minimum durations to allow for vehicles to

finish clearing the intersection t_c and for the walk signal

t_w. The traffic light states are r for red, y for yellow, and

g for green. The output actions are !r_h and !h_walk

which serve to announce that the current state is red or that

the walk sign for lanes in the north-south directions is on.

The input signal is ?r_v, denoting a safety check with the

state of the lights in the north-south direction. As can be

seen in the automaton, via the may transition, we also allow

the traffic lights to potentially bypass the yellow phase in

transitioning from green to red. The contract Cpedestrian is

more simple. Its variable is t_cross which denotes the

minimum time it takes the pedestrian to cross the street and

the input actions are ?h_walk and ?v_walk which, in that

order, denote a crossing action in the north-south and east-

west directions of the pedestrian (both of these actions need

to synchronize with a walk signal from the corresponding

traffic lights). Note that both transitions in this contract are

optional. The composition Chorizontal_lights⌦Cvertical_lights was

computed automatically with the code in [10] and shown

in Fig. 4. Though not included here to economize space,

composing this with Cpedestrian closes all the remaining output

actions in Fig. 4.

The scheduler contract automaton has access to a vari-

able len(request_queue), which is the length of the

request queue. In addition, Cscheduler has one input action,

?request, which denotes a check for whether there is

a new request from a vehicle trying to travel through the

intersection. Its output actions are !reject and !accept

denoting whether the scheduler decides to accept or reject

the request, and !primitives denoting the sending of

controlling signals to the requesting vehicle. The internal

action is #processing, corresponding to the internal

computation of the controller. Observe that the scheduler

must be able to accept requests under any condition (by the

True guard) but can only process the request if the queue

length is greater than 0. Cvehicle has a variable not_done

which keeps track of whether the original request has been

carried out to completion. As can be expected, the car can

make a request with !request and receive signals from

the scheduler with the action ?reject, ?accept, and

?primitives. Composing Cscheduler with Cvehicle yields

the third system shown in Fig. 3. Observe that this system

is also closed.

By Definition 6, checking that an implementation is a

component whose interface satisfies the corresponding con-

tract involves finding action equivalence maps between the

implementation and the interface. To illustrate this process,

consider the action of sending and receiving primitive com-

mands of the scheduler and the vehicle, !primitives

and ?primitives. For a reasonable autonomous traffic

intersection, the class of actions that qualify as the action

primitives are those control signals that result in a safe

and deadlock-free operation of all vehicles. We propose an

implementation based on computing robust controllers or

“primitives” that can restrict the vehicles to a waypoint

graph structure even in the presence of stochastic distur-

bance. In particular, the vehicle dynamics are given by

v̇ = a+w1, θ̇ = v
L

tan(δ +w2), ẋ = vcos(θ), ẏ = vsin(θ),
with velocity v, orientation θ , positions x and y as state

variables; acceleration a 2 [�9.8,9.8] m
s2 and steering angle

δ 2 [�0.9,0.9] rad
s

as controllable inputs; w1 2 [�1.1,1.1] m
s2

and w2 2 [�0.065,0.065] rad
s2 as uncontrollable disturbances;

and vehicle length L = 2.8m.

We use a formal, set-based algorithm [13], [14], [15] to

obtain controllers that steer cars from one node to another

on the waypoint graph with each node being a set of states

of the car’s dynamics around a nominal state. The reason a

set of states is used is because of the disturbance present.

This low-level controller ensures the satisfaction of input

constraints and provides the occupancy sets of the vehicles,

each of which represents a directed edge in the graph.

The set-based controller computes a reference trajectory, a

feedback controller to track this reference trajectory, and the

corresponding reachable set of states. For any states p,q

of the vehicle, let X0(p) and X f (q) denote the initial and

final sets around p and q respectively. By construction, the

primitive controller steers in a fixed time t1,2 from the initial

set X0(p1) around a nominal waypoint p1 to a final set

X f (p2) around p2. Constraining X f (p2) ✓X0(p2) allows

any trajectory in the edge that starts from X0(p1) and ends

in X f (p2) to be concatenated with any trajectory starting

in X0(p2). In this way, long chains of primitive commands

that span multiple (directed) edges can be formed from unit

commands spanning a single edge, this justifies treating the

scheduling problem as a graph routing problem to which

we propose Algorithm 1 as a solution. In Algorithm 1, the

SCHEDULE(request_queue, timetabel) function, taking two

variables representing a queue of requests and a scheduling

timetable is called repeatedly to rendezvous with new re-

quests. Each time, it extracts the request from a certain car in

the form of a starting configuration and an ending configura-

tion. From this information, the scheduling algorithm finds a

path in the primitive graph that connects these configurations

and consults with the scheduling timetable to see if the path

is safe and legal. If it is, the scheduler will send the primitives

(each is of a fixed, known time length) to the requesting car,

otherwise, to improve efficiency, it will attempt to find a safe

and legal transit node along the path to temporarily send the

car to. If such a node is found, it will send the corresponding

primitives. If not the request will be rejected. Proof details

regarding the correctness of this algorithm mainly rely on

the use of the timetable to avoid conflicts and illegal actions.

Under this algorithm, !primitives and ?primitives

actions therefore correspond to the 2 SEND_PRIMITIVES(·)
calls in the pseudocode.

Algorithm 1 The scheduling algorithm

function SCHEDULE(request_queue, timetable)

path,car EXTRACT_REQUEST(request_queue)
if IS_SAFE(path, timetable) then

SEND_PRIMITIVES(path,car, timetable)
else if EXISTS_TRANSIT_NODE(path, timetable) then

transit FIND_TRANSIT_PATH(path, timetable)
SEND_PRIMITIVES(transit,car, timetable)
request_queue.ADD_LEG(path,car, transit)

else

request_queue.READD(path,car)

CONCLUSION AND FUTURE WORK

In this work, we introduce and show that our theory of

guarded modal interface contracts does retain many metathe-

oretic properties from [2], which is not only evidence that it

has reasonable semantics but also a step closer to unifying

many different existing contract protocols under a common

formal structure. We then demonstrate the expressiveness of

Fig. 3. Reading from left to right, then top to bottom: Cscheduler, Ccar ,
Cscheduler⌦Ccar , Chorizontal_lights, Cpedestrian.

this theory by using it to specify in a compact manner various

components involved in a traffic intersection with variables

taking on a continuous range of values that the vanilla modal

interface theory would have struggled or failed to capture.

For future work, we would like to consider methods to

further automate contract synthesis and verification which

may or may not involve defining new objects and expanding

the algebra to include new operators. Extending the current

framework to include specifications in rich specification

languages like TLA+ [7] is also an interesting direction.

REFERENCES

[1] Carliss Y Baldwin and Kim B Clark. Modularity in the design of
complex engineering systems. In Complex engineered systems, pages
175–205. Springer, 2006.

Fig. 4. Clights = Chorizontal_lights⌦Cvertical_lights

[2] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto
Passerone, Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto
Sangiovanni-Vincentelli, Werner Damm, Tom Henzinger, and Kim
Larsen. Contracts for systems design. 2012.

[3] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto
Passerone, Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto
Sangiovanni-Vincentelli, Werner Damm, Tom Henzinger, and Kim
Larsen. Contracts for systems design: Methodology and application
cases. 2015.

[4] Nikolaj Bjorner and Margus Veanes. Symbolic transducers. Technical
report, January 2011.

[5] Luca de Alfaro and Thomas A Henzinger. Interface automata.
ESEC/FSE, pages 109–120, 2001.

[6] Chun-Che Huang and Andrew Kusiak. Modularity in design of
products and systems. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 28(1):66–77, 1998.
[7] Leslie Lamport. The TLA+ Hyperbook. 2015.
[8] Kim Guldstrand Larsen. Modal specifications. In International

Conference on Computer Aided Verification, pages 232–246. Springer,
1989.

[9] Nancy A Lynch and Mark R Tuttle. Hierarchical correctness proofs
for distributed algorithms. In Proceedings of the sixth annual ACM

Symposium on Principles of distributed computing, pages 137–151.
ACM, 1987.

[10] Tung M Phan. Traffic intersection. https://github.com/

tungminhphan/traffic-intersection, 2018.
[11] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Cail-

laud, Axel Legay, and Roberto Passerone. Modal interfaces: unifying
interface automata and modal specifications. In Proceedings of the

seventh ACM international conference on Embedded software, pages
87–96. ACM, 2009.

[12] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Cail-
laud, Axel Legay, and Roberto Passerone. A modal interface theory for
component-based design. Fundamenta Informaticae, 108(1-2):119–
149, 2011.

[13] Bastian Schürmann and Matthias Althoff. Guaranteeing constraints
of disturbed nonlinear systems using set-based optimal control in
generator space. In Proc. of the 20th IFAC World Congress, pages
12020–12027, 2017.

[14] Bastian Schürmann and Matthias Althoff. Optimal control of sets of
solutions to formally guarantee constraints of disturbed linear systems.
In Proc. of the American Control Conference, pages 2522–2529, 2017.

[15] Bastian Schürmann, Daniel Heß, Jan Eilbrecht, Olaf Stursberg, Frank
Köster, and Matthias Althoff. Ensuring drivability of planned motions
using formal methods. In Proc. of the Intelligent Transportation

Systems Conference, pages 1661–1668, 2017.

