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Many of the formalisms; used in Attribute Value grammar are notational variants
of languages of propositional modal logic,. and testing whether two Attribute Value
descriptions unify amounts to testing for modal satisfiablity. In this paper we put this.
observation to work. We study the complexity of the satisfiability problem for nine
modal languages which mirror different aspects of AVS description formalisms, includ-
ing the ability to express re-eintrancy, the ability to express generalisations, and the
ability to express recursive constraints. Two mail techniques axe used: either Kripke
models with desirable properties are" constructed, or modalities are used to simulate
fragments of Propositional Dynamic Logic:: Further possibilities for the application of
modal logic in computational linguistics are"noted

Attribute Value Structures (AVSs) are probably the most widely used means of repre_
senting linguistic structure in current computational linguistics, and the process of unifying
descriptions of AVSs lies at the heart of many parsers. As a number of people have recently
observed (see for example {28] [6], [30], [38] and [43])" the most common formalisms for
describing AVSs are notational variants of propositional modal languages, AVSs themselves
are Kripke models, and unification amounts to looking for a satisfying model for 0 AO given.
two (modal)" wffs"q5 and zb. The purpose of this paper is to -make use of this connection
with modal logic to investigate the complexity of various unification tasks of interest in
computational linguistics.

The paper is structured as follows. The first section" begins with an introduction to such
topics as `attributes', `values', and `unification' and why they areof interest in computational
linguistics. It then goes onto- explain the link with modal logic, and gives the syntax
and semantics of three modal; languages - L,, LN and LKR =which correspond to three
common unificationformalisms:-In, the second section we examine the satisfiability problems
for these languages and show, using a very simple `small- model' argument, that all three
are NP complete. In the third section we introduce three", stronger languages, L°, LN°
and LKRO. These are L, "L and LKR respectively augmented by the universal modality
. Adding this modality allows. general constraints on linguistic. structure to. be expressed.
As we will show, ":however, there is a price to pay: the satisfiability problem for LKRO is
II° complete. -We.;then go on to show that dropping the ability "to' enforce generalisations
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involving re-entrancy results in decidable systems. In fact we show that the satisfiability
problems for both L° and LN° are EXPTIME complete. In the third section we examine
modal languages in which recursive constraints on linguistic structure can be expressed,
namely systems built using the master modality [*] of Gazdar et al.. [15] and Kracht [28].
Wen augment our'base languages'L; LN and LKR with [*], forming Ll*l, LNl*1 and LIR[*]
respectively, and investigate, the. complexity of their satisfiability problems. We show that
many of the proof methods and results from our discussion of the the universal modality
transfer to the new setting, though in the case of most interest the satisfiability problem for
LKR[*] turns out to be Ei complete. We conclude the paper with a table summarising our
results and a discussion of more general issues arising from this work. - .

The paper is relatively self contained; in particular, all the necessary concepts from
unification based grammar and modal logic are presented. However .we do assume that the
reader understands what is meant by such complexity classes as NP, EXPTIME and so on;
such definitions may be found in [1], for example. Further, later in the paper some ideas from
Propositional Dynamic Logic (PDL) are used. While these are explained, some readers may
find the additional background provided by [21] helpful. For further information on modal
logic the reader is referred to;[23]; and for more on unification based grammar, [44] is useful.
Finally, its worth remarking that there is a hidden agenda: although we emphasize the use
of modal logic as tool for grammar specification, it is our belief that modal techniques have a
wider role to play in computational linguistics and some possibilities are noted in the course
of the paper.

1 Attribute VV.ll ite .logic:

Even the most cursory examination of recent proceedings of computational linguistics con-
ferences reveals that there is a substantial level, of interest in such topics as `attributes',
`values', and `unification'. This section presents a brief introduction to these topics, and
explains what, they have to do with -modal logic. The basic point it makes is that the
most common machinery underlying Attribute Value grammar formalisms is `simply that
of propositional modal logic, and that testing whether unification is possible amounts to
testing for modal satisfiability. This correspondence provides the raison detre of the paper:
by examining the complexity of the satisfiability problem for the modal languages involved,
we learn - often very straightforwardly - about the complexity of various tasks of interest
to computational linguistics.

Perhaps the best way of approaching these topics is via Attribute Value Matrices (AVMs),
or Feature Value Matrices as they are sometimes called. A (rather simple) AVM might look
something like this:

CASE nominative
T : [PERSON 1St]

Such an AVM is taken to be apartial description of some piece of linguistic structure. In this
case we are describing a piece of linguistic, structure that has two attributes, namely CASE-
and AGREEMENT. The CASE attribute takes as value the atomic value nominative, while the
AGREEMENT attribute takes as value:the-complex. entity [PERSON1st]. This complex entity
consists of an .attribute PERSON that takes as value the atomic value 1st. The particular
atomic values (or constants) and attributes (or features) that may occur in AVMs varies
widely from theory to theory, but typical choices ,of atomic entities a syntactician might
make are singular, plural, 3rd, ,end, 1st, genitive and accusative; and when it comes to a
choice of attributes the selection might include, TENSE, NUMBER, PERSON, AGREEMENT, and
CASE..But although the different theories differ on the particular choices made, and indeed
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in the uses they piit this machinery to, they are united in agreeing that at least a part of
our descriptions of linguistic structure should embody the idea of attributes taking (possibly
complex) values.

The information exptessedby AVMs can beconsiderabl'y more complex than in the above,
example. The above AVM is purely conjunctive, but many linguists feel it is necessary to be
able to express both disjunctive and negative information in their Attribute Value grammars.
To give two well known examples due to Kartunnen [25], one might write {

NUMBER plural
[ CASE {nominative, genitive, accusative}

an AVM which states that the attribute CASE takes one of the values nominative, genitive;`
or accusative, but doesn't say which; or one might write

[ NUMBER: plural
CASE,[- dative]

an AVM which specifies that CASE doesn't take the value, dative.
Its worth making a short historical remark here. Well shortly be introducing Attribute

Value Structures (AVSs) and treating them as semantic structures for AVMs. Thatis
were going to be adopting the now standard distinction between description languages (for
example AVMs) and linguistic structure (the AVSs). Historically, the impetus for making
this distinction was motivated by the difficulties involved in giving a, precise account of
AVMs that employed disjunction or negation. The distinction was first introduced by Pereira
and Sheiber [33], and it underpins the- influential work of Kaspar and Rounds [26] [41] [42].
Thus the move towards full Boolean expressivity marked.. an important burning point in the
development of Attribute Value formalisms.

What do computational linguists do with AVMs? The answer is, they try to unify
them. Intuitively, unifying two AVMs means forming another AVM that combines all the
information about. Attribute Value dependencies contained in the two constituent AVMs.
ror example, writing ;u, to indicate ununcatuc

AGR [PER 1St]
NUM plural

CASE nominative U=[AGR [NUM: plural]], APR 1st
CASE nominative

There is a clear sense in which the AVM on the right hand side embodies all the information
in the two constituent structures; it is the result of unifying these structures.

But this is rather vague. "Precisely when is unification possible? Answering this question
will lead us first to AVSs, the semantics of AVMs, and then, quite naturally, to the link with
modal languages.

AVSs are certain kinds" of 'decorated' labeled graphs. Such graphs play the central role
in unification based linguistics: they are the mathematical model of linguistic structure
underlying these frameworks. A number of definitions of AVSs exist in the literature. We
shall work with a particularly simple one:

Definition 1.1 (Attaib toVa$ue'Struct"uses) Let C and A be non-empty`fnite'or" de=
numerably infinite sets, the set -of labels and the set of atomic information `respectively.
An Attribute Value Structure (AVS) of signature (C, A) is a -Triple (W, {R1}rEG, {Qa}aEA),
where W is a. non-empty set, the set of nodes; for all l E

£,,R1
is a binary relation on`W

that is a partial, function; and for, all a E A, Qa is unary, relation- on W.

we have:

I

1

PER 1

G, RI
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The most important thing to note about this definition is the requirement that all the
binary relations be partial functions. As we shall see, this demand plays a crucial role in
establishing some of our complexity results.

The definition covers all the well known definitions of :Attribute Value Structures, and
in particular those of Gazdar et al. [15] and Kaspar and Rounds [26]. Moreover its not too
loose: there are only two reasonably common further restrictions on the binary relations that
it doesn't insist on. The first is that AVSs must be point generated. In point generated AVSs
there is always a starting node Wo E W such that all other nodes w E W are reachable via
transition sequences,from wo. The second is that AVSs must be acyclic, which means that it
is never possible to return to a node w by following some sequence of R1 transitions from w.
As neither of these restrictions plays a prominent role in the linguistics literature anymore,
we ignore them here., This definition also ignores three constraints computational linguists
used to routinely place on node decoration.. The constraints in question are these. =First, for
all, w. E -W and all a,)3 E A, if w E Qa and a # , then w ¢ Q3. That is, the constraint
forbids what linguists call 'constant-:constant clashes'. Second, for all -w E W, w is in Q,, for
some a E A iff w is a terminal node. This constraint rules out 'constant-compound clashes'.
Third, for all w,w' E W, if w E Qq and w' E Qa then w = w'. Once again, the main,,,,
reason for ignoring these demands is that they no longer play the prominent role they once
did. Indeed in more recent work in computational linguistics, particularly work in the Head
Driven Phrase Structure Grammar (HPSG) framework, much use:is made of sorts [35]; and
sorts are essentially pieces of atomic information that don't obey these three restrictions.

Let's consider some concrete examples of AVSs. Suppose we are working with some,
linguistic theory which contains among its theoretical apparatus the. attributes PERSON,
NUMBER, CASE and AGREEMENT, and the atomic information, 3rd, 2nd, 1st, plural and
nominative. That is,' our linguistic theorising has specified a signature (C, A). such that
{PERSON, NUMBER, CASE, AGREEMENT} C .C, and {3rd, 2nd,`Ist, plural, nominative} C A.
Then the following graphs are all examples of AVSs of this signature, as nodes are decorated
only with items drawn from' A and transitions are labelled only with items drawn from C:

1st
nom

What do AVSs have to do with AVMs? As has already been remarked, AVMs are partial
descriptions of linguistic structure, and in fact the structure they describe is the structure
embodied in the definition of AVSs. That is, AVMs are a formal language for describing
linguistic structure, AVSs provide the interpretation for AVMs, and thus the relationship is
that which always exists between semantic and syntactic entities: we talk of AVSs satisfying
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(or failing to satisfy) the AVMs. To return to our examples, the first graph, consisting of a
single node decorated with the atomic information 1st, satisfies`the atomic AVM 1st. Why?
Because this atomic AVM demands a node decorated with the atomic information 1st, and
the first graph is such a node. The second graph satisfies the AVM [PERSON Ist] at its root
node. Why? Because this AVM demands a node in some piece of linguistic structure that
has the following property: a transition along an RpERSON relation takes one to a node
decorated with the information 1st. The root node of the second graph has this property.
As a last example, consider the fourth graph. This satisfies the AVM

AGREEMENT' [NUMBER plural

CASE nominative

at its root node.
]Now, we could give a precise definition of what it means for an. AVS to satisfy an AVM,

but in fact this would be a waste of energy, for, as .we'll now see, the satisfaction rela-
tion between AVSs and AVMs is just a disguised version of something very -familiar: the
satisfaction relation between Kripke models and modal wffs. There are two facets to this
correspondence, the semantical and the syntactical. We'-11 treat each in turn, beginning with,
the semantical.

Consider once more the definition of AVSs as triples (W, {RI}IEC, {Qa}aEA). Such triples
are just (multimodal) Kripke models: each RI interprets a modal operator' (l), and each
unary relation Qa interprets the propositional symbol pa. To be sure, multimodal Kripke
models are usually presented as triples (W,{RI}IEC,V), where V is a valuation function
from a collection of propositional symbols VAR to. Pow(W). (In such presentations the
pair (W, {RI}jv,c) is usually given a special name, namely multiframe.) But obviously there
is no mathematical substance to this difference. Given a traditionally presented Kripke'
model (W, {RI}IEC,V), we, have that (W, {Rz}IEC, {V(p) : p E-VAR}) is an AVS of sig.-
nature (G, VAR); -and conversely, given any AVS (W, {RI}IEC, {Qa}aEA), we have that
(W, {RI}IEc,-V) is a Kripke model, where V is the function from the set of (a-indexed)
propositional variables VAR to Pow(W) defined by V(pa)' = Qa. In short, every AVS is a
Kripke model, and vice versa. - -

Now for the syntactical correspondence. .Consider the following AVM.

AGREEMENT [PERSON 1st]

-CASE -nominative

This corresponds to
.(AGREEMENT)(PERSON)1-it' -

A (CASE) nominative

The key point to grasp is that the function of the attributes AGREEMENT, PERSON and CASE
in the AVM is precisely analogous to the function of the existential modalities (AGREEMENT),
(PERSON) and (CASE) in the modal wff. The function of the attributes is to demand the
existence of certain transitions in AVSs, the function of the modalities is to demand the
existence of certain transitions in Kripke models. But AVSs are just Kripke models, and
thus the equivalence of the description languages is clear., The rest of the correspondence is
straightforward: atomic values :correspond to propositional symbols, and the modal wff is in
effect just a.linearisation of the AVM. To put it more generally, AVMs. are just modal wffs
written in a particularly perspicuous manner.

This, correspondence extends in the obvious manner-to AVMs with full Boolean expres--
sivity. For example corresponding to the following,AVM:,

J

r

L
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f NUMBER -plural
CASE {nom'inative genitive accusative

we: have the wff

(NUMBER)-ipluralA (CASE) (nominative V genitive V accusative).

The most important aspect of the link between modal languages and AV -formalisms s,
is what it tells us about unification. Recall that unification is the attempt to coherently
merge two AVMs. But what does `coherent' mean? It. means that the demands that the
two AVMs make can be simultaneously satisfied at some node in some AVS. Now, both
AVMs correspond to a modal wff. Cal these two wffs 0 and 0 respectively. Then we have
that unification succeeds iff 0 AO is satisfiable at some node in some Kripke model. That
is, testing whether unification is possible amounts to testing for 'modal satisfiability , 'This
observation lies at the heart of the paper.

The correspondence we have noted extends to richer unification formalisms than 'the
rather simple AVMs so far considered. In particular, it extends to formalisms that have
the ability to encode re-entrancy. Re-entrancy is a very influential idea in unification based
approaches to grammar, .and we; need to discuss it, and how it can be dealt with in modal
languages.

One of the best known notations for forcing re-entrancy is to use AVMs with `boxlab'els'--N
Consider the following AVM:

AGR foo
SUB! 1

Al PRED bar

COMP [SUBJ. . ]

s What: is intended- by this ,notation is explained by the following u;

The. first graph does not satisfy the AVM at its root node. This is because 1 is a name:
it labels a unique node. The second graph does satisfy' the AVM. The crucial difference is
that in this graph the SUBJ re-enters the graph at the named node. Thus all the conditions
demanded by the AVM are satisfied, including the demand that 1 picks out a unique node.

How can we make modal languages referential in this way? The key idea needed can be
traced back to early work by Arthur Prior [37], and Robert Bull [7]: it is to introduce a
second sort of atomic symbol constrained to be true at exactly one node. These new symbols
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`name' the unique node they are true at. In this paper;,these symbols are called-nominals,,
and they are usually, -written as i, j, k and m.

AVM boxlabels correspond nominals. Consider once more the fol-
lowing AVM: -

1

AGR fo0
SUBJ 1

PRED bar

COMP [SUBJ 71 ] _., ..

This corresponds to the following, wff:

r (SUBJ)(i A-(AGR)foo A (PRED)bar)` }

A (COMP)(SUBJ)i

Note that the nominal i is doing the same work in the modal wff that 1 does in the AVM.
More generally, the use of nominals permits a transparent linearisation of those AVMs that
utilise boxlabels.

Although AVM notation is widely used, it is certainly not the only notation computa-
tional linguists use to describe AVSs. Another influential notation arose from the command
language of the PATR-II system [44]. PATR-II is an `implemented grammar formalism',,:
a program which provides a high level interface language geared towards the needs of the,
linguist, together with a parser. The linguist writes grammars in the interface language and
tests them using the parser. The use of path equations for specifying re-entrancy arose from
this source. A user of PATR-II might write:

(VP HEAD) = (VP VERB' HEAD)

This path equation means that the sequence of transitions encoded by`the list of attributes`
on the left takes one to the same. node as -the sequence- of transitions encoded by the list of
attributes on the right. That is, both transition sequences lead to the same node. Note that-
although this mechanism permits. re-entrancy to be specified, it does so in a very different
way from the `boxlabels' approach: no node labelling is involved.

To capture the effect of this in a modal language, were going to extend the basic language,
in such a ,way as to permit `modal, path equations' to be formed: In particular, well add-'a'
new primitive symbol to allow us to equate strings of modalities: This will permit wffs
such as

(VP).(HEAD) (VP) (VERB) (HEAD),

to be formed, and we'will define the semantics of these'new wffs soYthat they capture'the
meaning of the PATR-II path equations. Actually, well also add a second new primitive
symbol, 0. This will be a name for the null transition, and with its help we will be able to
write such- path equations as (b)(a) Pe 0. This wff, for example, will mean that making an
Rb transition followed by an Ra transition is the same as making the null transition. That
is, the path RbRa terminates at its starting point.

It should now be clear that various AV formalisms correspond straightforwardly to propo-
sitional modal languages. To conclude this section let's make our discussion of these modal
languages more precise. Syntactically, the language L (of signature (,C, A)) is a, language of
propositional modal logic with an £ indexed collection of distinct (existential) modalities
and an A indexed collection of propositional symbols. As primitive Boolean symbols we
choose and V. The wffs of the language are defined by saying that: (a) All propositional
symbols pa are wffs, for all a E A; (b) If 0 and z are wffs then so are -iq5, 0 V Eli, and (1)q,
for all l E, G; (c) Nothing else is a wff.. We define the other Boolean -connectives: --*, Ai ,

N
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1, and T in the usual way. We also define [1]0 to be for all l E G and all wff `O.
The following syntactic notions will be useful.. The degree of a formula is the number- of-
(primitive) connectives it contains. The length of a wff 0 (denoted by 101) is the number of
(primitive) symbols it contains. (We will also use the notation to indicate cardinality,
but this double use should cause no confusion.)

To interpret L we use Kripke models M of signature (.C, A)'. Such a Kripke model is a
triple (W, {RI}1EG,V), where W is a non-empty set (the set of nodes); each RI is a binary
relation on W that is also a partial function, that is, for every node w there exists at most
one w' such that wRlw'; and V (the valuation) is a function which assigns each propositional
symbol pa a subset of W. We interpret wffs of L ,on models M in the familiar fashion:

M P. [W] iff w E V(pa)
M [_ -1g5[w] iff M g5[w]M

V [w] . -iff M q[w] or M ,O[w]

M-(1)g[w] iff 3w'(wRlw' & M = g[w'])

If M g[w] -then -we say that M satisfie's' g5 at w, or` g5 is true in Meat w. To V sum up,
the language L corresponds to the `core' AVM notation used by computational linguists.
Its models are just AVSs, and the way L formulas are evaluated in a model. is, just the way
AVMs are checked against AVSs.

L lacks any mechanism for enforcing re-entrancy. This lack is'inade good.in its extensions,
LN and

LKR.,
The language LN (of signature (C, A, B)) is the language L (of signature

(G, A)) augmented by a S indexed collection of distinct new propositional symbols called
nominals. These symbols are typically written as. i,_ j, k and, m and can be freely combined
with the other symbols in the usual fashion to make wffs. ' We assume that B is at most
countably infinite. To interpret nominals we insist that any valuation must assign a singleton
subset to each nominal. That is, an Lr' model is just an L model whose valuation has been
extended to assign singletons to nominals. Because each nominal is thus true at exactly
one node in any model, it. acts as a`name' identifying that node. LN corresponds to AVMs
augmented with `boxlabels' for indicating re-entrancy. There have been a number of logical
investigations of intensional languages containing nominals. In addition-to the early work
by Prior and Bull already mentioned, see [31], [12] and [32] for an examination of nominals
in the setting of-Propositional Dynamic Logic (PDL); see [11] and [13] for nominals in the
setting of modal logic; and finally see [4] and [5] for nominals in tense logic.

The language LKR is L augmented by two new symbols, 0 and sr. The symbol 0 acts as
a name for the null transition. In what follows we shall assume without loss of generality
that 0 0 L, and denote the identity relation on any set of nodes W by Ro. (This convention
simplifies the statement of the following truth definition.) We use to make path equations:,-,
given any nonempty sequence (A) and (B) made up of modalities and (0), then (A) (B) is
a path equation. Path equations are wffs and can be combined with other wffs in the usual
way to make more complex wffs. LKR- models are just L models, and we,interpret the path
equations as follows. For all 11, ... ,1k, li, ... ,1; E L U {0}:

M (l1) .. (Ik) ^ {li) (l7»)[w] iff `3w(wRlt .. Rl,zw`& wRil ... RI; w)

LKR models the path equation=mechanism of PATR-II. The negation free fragment of this
language was first defined -and- studied by Kaspar and Rounds [26] [41]; a more detailed
presentation of their work may be found in [42]. Further logical investigations of LKR may
be found in ;[30] and [6].

It is instructive (and will later prove" technically useful) to examine L, LN and LKR from
the more general perspective provided by modal correspondence theory. This subject is the
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systematic study and: exploitation-of the relationships that exist between modal languages
and various classical languages; an excellent overview is provided by [2] The correspondence
between L, LN and LKR and first order logic arises as follows. Note that AVSs (that is,'
Kripke models) can equally well :be regarded as models for a certain first order language;
namely the first order language (with- equality) that contains a binary relation symbol F1 for
each RI, and a unary relation symbol Pa for each Qom; we will call this language V. There
is an obvious translation, from our modal languages to L1, the standard translation. These
are the clauses for L:

ST(pa) ..= P«x -
ST(- O) , = ST(O)
ST(Ov ) = ST(ci)vST(O)
ST((l)0) 3y(xRly n [y/x]ST(O))

Here x is the first order variable that represents the evaluation node, and 'the [y/x] in
the final clause means substitute y for all free occurrences of x, where y is some fresh first
order variable. Note that the standard translation is essentially another way of looking at the
satisfiability definition for L, thus it is clear that the standard translation is truth preserving:
that is, M = O[w] iff M H ST(o)[w]. Note that on the left hand side of this equivalence

and [w] are read modally (that is, in accordance with the satisfiability definition for L
given above) whereas on the right hand side these symbols. have their standard first order
meaning. The standard translation shows that L can be regarded as a very simple fragment
of Li, namely a one-free-variable fragment in which only bounded quantification; is used.

Li is also the first order correspondence language for both LN and LKR. To see this
note that we can extend the standard translation to 'EN by- adding the following clause: ;

Again x is the first order variable that picks out the point of evaluation, and, xi is the first
order variable that we have chosen to correspond to the nominal is Similarly, we can extend
the standard translation LKR by adding the'clause:l

S.T((h)... (1k) .. (lam)) 5= 3y(xR4 R'... 1"'Y wRil :.. Rim Y).

Both extensions are truth preserving, thus the use of nominals can be seen as the use of
certain extra equalities, while the use of is essentially the use of an additional form of
bounded quantification. Thus all three of "our base languages are rather small fragments of
Li .

These observations" immediately link the modal approach' of this` paper 'ith other ap-
proaches to Attribute Value logic which may more familiar to the reader. Note in particular
,that the standard, translation links our approach with that of Smolka-[46]. Smolka was per-
haps the first person to make explicit the connection between AVSs and first order models,
and a number of results, concerning a certain first order language of AVSs,,
namely the language we have here called Ll. Thus, via correspondence theory, many of
the results of the present paper can be seen as an investigation of the complexity of certain-
fragments of Smolka's language; this includes the results concerning the yet to be introduced
universal modality. However the word `many' is important. Modal operators aren't restricted
to having first order correspondences, and when we later consider the master modality we
will in effect be working with a small fragment of infinitary logic.

This completes our discussion of the theoretical background of the paper. "]Jet's now turn
to the issue of most 'immediate relevance to computational linguistics: .the complexity of
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various satisfiability problems. As most AV grammar formalisms assume a finite collection=,
of both attributes and atomic symbols, the key problem is the satisfiability problem for
languages of signature (L, A) where both C and A are finite.. Actually, with one interesting
exception, our _results are insensitive. to ,the cardinality .of=..C for ILI > 2, however when''
we treat the richer languages -involving the universal. or master modalities extra work is
required to show that our results go through for the case of A finite. In order to minimise
the work, involved we, shall, proceed' as follows., We will first prove results which hold for
languages ILK > 2 and A countably infinite; this allows natural proofs to be given.,Later,,
on a very general result is proved. (the Single Variable Reduction Theorem which allows all
these results to he sharpened to cover languages containing only one propositional variable
p. (In fact, in order to give a complete classification of the problem were even going to
show that our results hold for ILI > 2 when no propositional variables at all are used; all one
needs is a primitive truth symbol-T. We will '-call languages with aprimitive T symbol and
no propositional variables languages of signature (L, O).) Finally, we .know of no linguistic
theory which puts- a fixed finite upper bound on the number of boxlabels that may, be used,
thus for languages with nominals the complexity of the satisfiability problem when B js
countably infinite is the most important.

2, C thplexity results for L, LN and LKR

In this section we' show that the satisfiability problems for='L, LN and LKR are all NP
complete. The -fundamental result is that for L, ' for it" turns out that the method used
for this language generalises straightforwardly to its two extensions. The key to the NP
completeness result for L is to show that given a formula 0 which is, satisfiable at a node
v in some model M, we can always find a suitably small model Mrnodes(o,v) which also
satisfies 0. Once we have defined Mrnodes(45, v) and determined its size the NP completeness
result is immediate.

The definition of M rnodes(o,v) follows from the'following general, property of modal
languages: when evaluating a wff in a model, only a certain selection of the model's nodes.
are actually relevant to the truth or falsity of the wff;` all other nodes can be discarded.
The nodes that are relevant when evaluating a wff 0 at a node v in a model M are the
nodes picked out by the function nodes : WFF x W --3` Pow(W) that satisfies the following
conditions::,

nodes(p,v) ., _. {v}

nodes(-iO, v) = nodes(o,v)

nodes( V O, v) = nodes(5,v) U nodes(ci,v)
nodes((l)O, v) = {v} U U,,,,R,,' nodes(V;, v')

Given a-model- M, a wff 0 and a node v we form M [nodes(Q5, v) in the obvious way: the
nodes of this model are nodes(es, v), and the relations and valuation are the restriction of
.those of MM to this set. 'The following lemma shoves that nodes selects the correct nodes:

Lemma 2.1 (Selection: Lemma) For :all-.models- M all nodes v of M and all wfs °0,

M I:= O[v] if M[nodes(o,v) H 0[v].

Proof:
By induction on the degree of 0. Note .that it follows from the definition of nodes that

v e,nodes(,v)., which is all that is needed to drive the induction through.

10



The selection' lemma is a completely general fact about-modal languages. I"oesnt"
depend on any assumptions we have made in this paper; :in particular we haven.'t yet made
use of the 'fact that we're- only concerned with models° in' which each of the Ri is a'partial
function. However when we take this` into account we `notice that M r nodes(¢, v) has 'a
pleasant property: it is very small. There can only be one more node in M-tnodes(O,v) than"
there are occurrences of modalities in

Lemma 2.2 (Size Lemma) Let mod(e) be. the number of occurrences of modalities in 0..
Then for all models M and all nodes v, in M we have that,jngdes(O,v)\{v}I < mod(e).:

Proof:
By induction on the degree of 0. For the base case note that for all atomic -formulas p

we have that Inodes(p,v)\{v}j = 0, thus the result holds. So assume the result for all wffs
of degree less than k. Now if 0 is a wff of degree k of'the form 0 V 8. then we have:,

Ino'des(ikV O,v)\{v}j < Inodes(z/i,v)\{v}l--F- Inodes(B,v)\{v}I

mod((& V B,).

esis)

Thus the required result -holds for The case for negations is similar.'
There only remains the case for modalities, so suppose that 0 is a wff of degree k of

the form (l)ei. We wish to show that jnodes((l)i, ,v)\{v}j < mod((l)i,b). There are two
cases to consider. The first is that there there are no nodes v' such that vRrv'. But then
Inodes((l)O,v)\{v}j = 0 and the result is immediate: So next consider the case when there
is node v' such that vRiv'-. Note that as we are working with. partial functional relations this
v' must be unique. Thus we have the following:

Inodes((l)i/i,v)\{v}l < Inodes(i,b,v')l

C (nodes(i/i,v')\{v'}) U {v } =°'F'
G

mod(z/i) + 1 %°;. (by Inductive Hypothesis)
mod((l)i/b)

Thus the required result also holds for modalities, and hence the truth of the lemma follows
by induction. w

Together the selection lemma and the size lemma lead directly to the main result:.

Theorem ' 2.1 Let,L ;bg 'a signature (t, A) where I.C{ > 2 and As countably
infinite. Then the satisfiability problemy forL .is NP complete.

Proof:
That this satisfiability problem is NP hard is clear, for as we have a countably infinite

collection of propositional variables at our disposal the problem contains the satisfiability,
problem for- propositional calculus as a special case. That the problem is in NP follows
directly from the fact that any satisfiable L wff 0 can be satisfied in a model containing at
most'mod(O) + 1 nodes; this- we know from the selection and size lemmas. Thus, given
we can non-deterministically choose a suitable model of at most this size, and evaluate qs in
this model in polynomial time.

Lets turn to to the complexity of the 'satisfiatiility prot5lenn for the language 11N Recall

that this language is L augmented by distinct new set of atomic symbols called nominals

1.1

< mod(O) + mod(8) (by Inductive
=

O

¢

0



which are constrained to be true at exactly one node in any model. It is easy to use
the machinery developed above to prove that the satisfiability problem for LN is also NP

fact there is almost nothing new to be done. Given a LN model M, a node.
v in M, and-.,an LN wff 0. we.: define M r nodes(, v) exactly as described above. Both
the selection and size lemmas hold,. thus we are almost through. There is only one snag:
M rnodes(o, v) is not guaranteed to be an LN model as some nominals may be not denote
any node at all. But this problem is more apparent than real. By adjoining a brand new
node (say *) to -M rnodes(o,v) and insisting that all `unassigned nominals' denote * we
convert, Mlnodes(o, v) into an LN model [Mrnodes(0, v)] *. Of course to maintain the truth
of the selection lemma we have to be careful where we place *, but there are two obvious
safe' choices. The simplest choice is to, insist that * is unrelated (by any of the relations)
to any of- the points in M r nodes(5, v). The second, which is slightly more elegant, is to
insist that * is related to v by some relation, but that none of the points in S is related to
*; choosing this second option means that'* point generates [Mrnodes(O, v)]*. Either way it
it clear that the addition of * is harmless: we still have. that that, [M[nodes(c;v)]`- 0[v];.

And [M[nodes(o,v)]*. is still small, having at most Thus by precisely the
same argument as for .L we have:

Theorem 2.2_ Let LN be -a, language. with; nominals of signature (,C, A, --ICI > 2

and, both A and S ,, arecountably satisfiability,.,problem,.fonLN:°is,.NP
complete, =.

Finally we turn The satisfiability..problem for this language is. also NP complete,
but how are we to show this? Our definition of nodes says nothing about occurrences of
path equations. Actually the easiest way to proceed is not to extend the definition of nodes,
but rather to first transform LKR,wffs into a certain special, form. The following example
shows what is involved.

Suppose we have a model M which verifies (a) (b) at a node v. This means there is
a node v' such that vRav' and vRbv'. But as nodes((a) (b), v) is undefined, in general
we will not have that v.' is apart: of the small model we build. However if we first rewrite
(a) (b) into a logically equivalent form that makes explicit the existential demands of the
path equations, everything proceeds smoothly. Rewrite (a) . (b) as (a) (b) A (a)T A (b)T.
Clearly this formula is logically equivalent to the original; however the new syntactic form
is very useful: the two new conjuncts make the the modalities (a) and (b) available to
nodes. Consider what happens when we apply nodes to this new formula at v. As nodes
commutes over n, we must calculate nodes((a) r~ (b), v), nodes((a)T, v) and ` nodes((b)T, v).
As before, we can't do anything further with nodes((a) - (b), v), but we can evaluate both
nodes({a)T, v) and nodes((b)T, v), as nodes is defined for such expressions. Evaluating these
formulas will produce the point v ' that we need to build an equivalent small model.

Let's make this precise. Any path equation (A) (B) is logically equivalent to (A)
(B)A(A)TA(B)T. For any path equation (A) (B) well call (A) (B) A (A)T A (B)T its
explicit form. Given an LKR wff ¢ which we seek to satisfy, we'll first form a new LKR wff
0* by simultaneously substituting, for each occurrence of a.path equation in 0, its explicit
form. Note that 0* is logically equivalent to ¢, and that the length of 0* is linear in the
length of 0. The effect of this rewriting of 0 means that our existing definition of nodes
suffices to produce all the points needed for the small model: precisely as illustrated in the
above example, when we apply nodes the occurrences of the new subformulas of the form...-;a]s

(A)T and (B)T ensure that all the needed evaluation points are selected. Thus we can make
M rnodes(o, v), as before and both the .selection and size lemmas hold. So, by exactly the
same argument we have that:
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Theorem 2.3` Let ' LKR be a Kaspar Rounds ° language of signature (C, A) where JGJ > 2'
and A is countably infinite. Then the satisfiability problem for LKR is NP complete.

In the -above proofs ;was assumed that we' had a _ countably infinite supply of atomic
symbols at our disposal. However: most Attribute Value -formalism use a finite number of
atomic symbols. Given that the number of atomic symbols is some fixed finite number,
might this not permit us to evade the NP hardness result? (As is well known, for both
propositional logic and for S5, such a restriction lowers the complexity of the satisfiability
problem to P.) However this is not the case here: the satisfiability problem for L (and thus
for LN and LKR) remains NP-hard, even if we use only one propositional variable, and
one modal operator. This can be seen as follows. Consider the following set of L formulas:
{p, (a)p, (a)(a)p, ... , (a)kp}. The values of these formulas are all independent, that is, for
any sequence of truth values bo,... , bk, there exists a model such that M J (a)`p iff bi is
true. Now define function f from propositional formulas to L-formulas as follows:

f is polynomial time computable,.. and 0 is satisfiable iff f (0) is L satisfiable.
Thus, we can summarise the complexity results of this section as follows:

Theorem 2.4 If JCJ > 1 and JAI > 1, the satisfiability problems` for L. LN, and LKR are
NP-complete..

Actually, if we look at the previous encoding -carefully, we can see that if your language
contains at least two modalities; we don't need any propositional variables to encode propo-
sitionai satisfiability in -an L formula; all we need is a primitive constant truth symbol T.
Define:

f 0((b)T, (a)(b)T, (a)(a)(b)T, (a)k(b)T). -

'Obviously, f is polynomial time. computable, and 0 is satisfiable iff f(0) is L Satisfiable,
which leads .to the following theorem:

Theorem 2.5 If ILI > 2 and JAI > O, 'the satisfiability problems for L,, LN_, and LKR are
1V1-'-complete.- -

.Let's summarise our results so far. The satisfiability problem for the core AV language'
L is NP complete. Adding either of two re-entrancy forcing mechanisms nominals or
the Kaspar Rounds path equality - does not increase the complexity: satisfiability remains
NP complete. These results hold even if we have only one modal operator and one atomic
symbol _at our disposal. There is a result from the literature worth noting here: Kaspar
and Rounds [42] show, using a disjunctive normal form argument, that the negation free
fragment of LKR is NP complete. Our model theoretic argument for LKR thus shows that
the situation doesn't get worse if full Boolean expressivity is allowed.-

,- can be said at. a more general level about' these results? From the point of view
of modal logic they're somewhat unexpected: with the exception of S5 most familiar modal
logics are PSPACE complete. To put it loosely,' usually adding modalities to a-language of
propositional logic makes matters worse, but here it hasn't. The reason, of course, is due to
the fundamental constraint on our models, namely that all the relations be partial functional:
Its this requirement which enabled us to build small models and thus kept the complexity
to that .of propositional logic., Its worth adding that this constraint seems to be peculiar
to the representational formalisms used in computational linguistics. Various representation
formalisms used in AI, such: as KL-ONE, can be viewed from a modal perspective, and as
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Schild [43] has recently observed, terminological logics are also modal logics. But from the
point of view of complexity there is a difference: the modal logics inspired by AI typically
don't usually obey the partial functionality constraint. Usually they are multimodal versions
of K, the modal logic which puts no constraints on accessibility relations. As is. well known,
the satisfiability problem for. this -logic is PSPACE .complete. [29].

The .,universal, modality

In this section we are going to examine the complexity of the satisfiability` problems for
three stronger modal languages, L°, LNG andLKRO These languages are, respectively, L,,,
LN and LKR augmented by the universal modality. - The universal modality is a modal
operator written as C which has the following semantics: for all models M, all nodes w, and
all wffs

M [w] iff for all nods w, in M.

That, is, ¢ holds iff 0 is: true at all nodes. Note-that. all three enriched 'languages are
fragments of 1 , the first order language of AVSs, as adding the following (truth preserving)
clause to the standard translation correctly deals with occurrences of the universal modality:

SZ'(C10) by([y/x]-ST(0)).

For a detailed discussion of the logical consequences of enriching modal languages with the
universal modality, see [17]. The authors know of only one explicit application of the univer-
sal modality to linguistic theorising, namely Evan's [8] analysis of the feature specification
defaults of GPSG, which we shall consider shortly. However, as we shall see, the. universal#,;,
modality seems to have been implicitly used on other occasions.

But why should linguists be interested in L°, LN° and LKR°? One answer is as fol-
lows. Underlying much work in Attribute Value grammar is an idea that can loosely be
described as `grammar equals feature. logic'. Somewhat more precisely, the use of the ap= 3

paratus of unification formalisms is attractive to many linguists because it enables them
to view, grammars of natural languages as theories in some. sort of calculus of attributes
and values. According to. such a view, linguistic structure can be adequately modelled by
Attribute Value Structures (possibly augmented by the notion of phrase structure), and the
linguists' business,,is. to_ state general constraints about which AVSs are admissible. Such
views are discernible in some of the earliest work in attribute value grammar, namely Lex-
ical Function Grammar (LFG) [24]. Generalised Phrase Structure Grammar (GPSG) [14],
explicitly espouses such views, and its work on feature co-occurrence restrictions remains
one of the best examples of the approach in action. More recently, Head Driven Phrase
Structure Grammar (HPSG)[34], has taken this approach even further. Whereas in both
GPSG and LFG the idea of unification was only one component (albeit an important one)
of the systems, in HPSG the unificational apparatus completely dominates.

It is these ideas that motivate the work of the present section. As we have seen the
most common unificational formalisms are nothing but modal languages. However as they
stand these languages aren't strong enough to -express generalisations, and indeed as the
`grammar equals feature logic' equation has become more widely accepted, work in Attribute
Value grammar has tended to abandon the simple languages we have considered so far in
favour of increasingly powerful formalisms. The work of this section is an exploration of the
computational consequences of adding. just enough- power..to- the base languages to enable
generalisations to be expressed..

M,< xr
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Let's consider matters more concretely. Suppose we strengthen our languages-by, adding'
the universal modality: what linguistic principles can we -now express? Consider a typical
GPSG feature co-occurrence restriction, for example -

[VFORM FIN] = [-N, +V].

This states that if a node has the value FIN for the attribute then that node has
the properties of being -N and +V. In other words; only a verb can have tense.

The important thing about this constraint is its generality. Its not something which
happens to hold of this or that piece of linguistic structure, its a pervasive fact of English.
Any AVS which doesn't satisfy this generalisation can't represent an English sentence. We
can express this generalisation in Lc as follows:

-nA+v).

(Here fin, -n and +v are propositional symbols and is a modality.) In short we
can view the notation of GPSG as what modal logicians have, traditionally` called strict
implication. Viewing 0 in this way accounts for the generality of feature co-occurrence
restrictions.

Evans [8] also makes use of the universal modality in connection`' with GPSG, but to
express defaults, not generalisations. Evans uses Lc and mostly works with the dual of the
universal modality (O¢ = 0-,0), which he gives- an autoepistemic reading: 00 means-that
0 is consistent with all known information. For example he uses the wff O(CASE)dat ->
(CASE)dat to express the feature specification default: If it is consistent with all known
information that case is dative, then case is dative'. - The idea of using a modal operator
to express linguistic defaults is interesting, though we would argue that such an operator
would need to be added in addition to the generalisation expressing' universal modality. But
this is to argue over details. There are many ideas worth pursuing in Evans work, and the
underlying philosophy is in harmony with that of the present paper: indeed in, a footnote
Evans raises the possibility of formalising all of GPSG in a modal language.

Let's consider the use of LKRc. This language is powerful enough to capture the content
of the Head Feature Convention of GPSG (or indeed HPSG). The essence of the GPSG
version is that for any phrasal constituent; the value of its head attribute is shared with the
value of the head attribute of its head daughter. For a discussion of what this terminology
means, and why its linguistically useful the reader is referred to [14]; here well be content
to indicate how the constraint can be expressed:

13 (phrasal --> (HEAD) -DTR)(HEAD)).

Once again- note that this, is-, a strict implica,tion;'we-could rewrite it as:

phrasal (HEAD) Pt (HEAD-DTR)}(HEAD).

Further experimentation convince the reader that a language capable of express=
ing interesting linguistic constraints. However it has also crossed an important complexity-
boundary; as we shall now show its satisfiability problem is undecidable. To prove the unde-
cidability result it suffices to give a reduction from a lh hard problem to LK° satisfiability.
As is shown in [19], tiling problems; provide a particularly elegant method of proving lower
bounds for modal logics, so well use such. an approach here.

A tile T is a 1 x 1 square fixed in orientation with coloured edges right(T), left(T), up(T),
and down(T) taken from some denumerable set. A tiling problem takes the following form:
given a finite set of T of tile types, ,can, we cover a certain part of Z x Z, using only tiles
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of. this type, in, such a way that adjacent tiles have the. same colour on the common edge,
and such that the tiling obeys certain constraints?. One of the attractive- features of tiling
problems is that they are very easy to visualise. As an example, consider the following
puzzle. Suppose T consists of the following :four types of tile:

M
Can an 8 by 4 rectangle be tiled using all and only .the tile types of T?_ Indeed it can;

I/N

I/N

*N
MO

M
N

I/N M
I/N

There exist complete tiling problems for many complexity classes. ;In. the proof that
follows we make use of a, certain II° complete tiling problem.

Theorem 3.1 If ]CI > 2, and A is .countably infinite then' the satisfiability problem for
LxR is HO hard.

Proof:
As shown in [3] [39], the" following problem is II' complete:

That is, does there exist a function t from, ,N x N to T 'such that:

N x N tiling: Given a finite set T of tiles, can T the N x N.

right(t(n,m)) left(t(n+1,m)), and
_up(t(n, m)) ,down(t(n, m + 1))?

Let T "_ {Ti,... T,,,} be a set of tiles. We construct a formula such that:

T tiles N x N, ff0 is satisfiable.

First of all we` will ensure that, if is satisfiable in M, then M contains a gridlike structure,
the nodes of M (henceforth W), play the role of points in a grid, R, is the right successor
relation, and R. is the upward successor relation. Define:

O .,-d = D((r)(u) (u)(r))

Suppose: M cig,.td[wo]. Then there exists a function f from.Nx, N to W such that:
f(0,0).=-wo, f(n_,m)R,,f(n+1,m), and f(n,rn,)Ru°f(n,m+1)
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Next' we n i u s t tile the model. To do t h i s - we use propositional variables ti, ... , tk, such
that ti is true at some-node w, iff tile Ti is placed at w. To force a proper tiling, we need to`,
satisfy the following three requirements: _.

There is exactly one tile placed at each node.

2. If T, is the tile, at w, and T' the tile at the right successor of ib, then right(T) = left(T).

Y'z (t, A (r)t5))
right(T;);6 left(T;)

3. If T is the tile at w, and T' the tile at the' up successor of w, then up(T

( V -'.(ti A (u)ti ))
iip(T;.)o down(!;:)

Putting this all together, we define 0 toregrid yl A biz We will prove that T tiles ;.
N X N iff 0 is satisfiable.,

First suppose t : N x N T is atiling of N x N. " We construct the satisfying model
for C.ass follows: M (W, R,, Rte, V) such kthet

W = {wn,m : n, m E N}
-R,. (wn,m, wn,rn+1) : n, m E N}

Rn { (wn,m, wn+l,m) :'n, m E N}

V(ti) {u ;m n,m!EN and t(n, m) = Ti}

Clearly, 0 holds at any node w of-M. To see that the converse also holds, suppose that
M H t[wo]. Let f from N ,x N to W be such that f (0, 0) = wo, f (n, m)R, f (n + 1, m) and
An, m)R.f (n, m + 1). Define the tiling t : N x N --} T by t(n, m) = Ti iff M [= ti [ f (n, m)].

Note that t is well-defined and total by 01. Furthermore, if t(n, m) = Ti and t(n+1, m) = Ti,
then f (n, m)R,. f (n, m + 1),-M = ti[ f (n, m)], and` M J ti [ f (n, m + 1)]. Since M satisfies
02, we can conclude that right(Ti) = left(Tj,). Similarly, if t(n, m) = Ti and t(n, m+1) = Ti,
then ¢3 ensures that up(Ti) douin,(Tj). Thus, T tiles N

Thus the satisfiability problem for LKRO undecidable. Note; however, that the above
proof depends on having access- to: an =unlimited supply of propositional variables. (The,
above, argument shows how any tiling ;problem. can be reduced to LKRO satisfiability by
representing tiles as,propositional symbols. But there is no pre-determined size limit on the
set of tiles T that we may be given,) This problem will be dealt with later.

The satisfiability problem for LKRO is in fact 110 complete. Given the previous result;
all we need to to show is that the LKRO validities can be recursively enumerated. One way,
of doing this is to give a recursive axiomatisation of LKRO. This can be done by building
on the completeness proof for LKR. given in [6], ,but it has the drawback of requiring the
introduction of .the (otherwise irrelevant) machinery of modal completeness theory. Fortu-
nately correspondence theory comes to the rescue with a general argument showing (at least
for the case of finite G) that LKRO validity is a r.e. notion. The argument is due to van.
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Benthem.[2, page; 175] who, observes that =when= orking with- elementary classes .of frames
(that is, frames defined by a single Ll formula) it is not. necessary to give an explicit axioma;
tisation to show that modal validity is r.e.: , if co is the Li wff that defines the elementary
class, and if 0 is a modal formula such that IST(¢) E Ll then ¢ is a validity iff cp t/xST(¢).
But here denotes the first order consequence-relation, and as this is the

would be through if we could show that the multiframes underlying our Kripke models form
an elementary class. This is trivial;-, we are working with, the class of multiframes that are
partial functional. Given that ,,C is finite.. we need merely define:

A 'dxyz(xRty A xR,z r}r :,

1E C

Thus we are working with, an elementary class namely Ptheclass that satisfies gyp. Thus we
conclude:

Theorem 3.2 If ]Gj > 2 _.=d A is coicattabl infinite ten he satisfiability problem; for LKR°
is lh complete.` -

What are we to make: of this undecidability result? -The-"key technical point is that
it is genuinely due to the interaction between the ability to state generalisations and the
ability to enforce re-entrancy. The subsequent results elaborate on this theme and reveal
an interesting difference between'LN° aind-=LKR°: ?We begin by showing,- using a filtration,
argument, that the satisfiability problems for L° and L1° are decidable.`

Theorem 3.3 If 0 is a satisfiable L° or LNO formula, then-/ issatasfiable' im a modet wit`
at most 22101 nodes.

Proof
Suppose that 0 is an L° wff, M (W, {Rl}jE- V), and M t[wo]. Let CI(O) be the

smallest set that contains 0, and is 'closed under subformulas and single negations. Define
an equivalence relation s on W as follows:

w iff VIP E Cl(¢)(M Ifi[w] q Ni H IP[w'])

Let WF C 'W ,be, such that WF contains exactly from each equivalence class
Let VF be the restriction of V to WF, and define-.Rf as follows:

wR w' iff 2w"(wRiw" A W' W").

Let MP = (W F,{RF}ZE-C,VF). MF is a filtration of M through CI(O) in the sense of
Hughes and Cresswell [23], thus it follows immediately that 'MP satisfies 0. Since the size
of CI(O) is at most 201, the size of WF is bounded by'22101. Furthermore, MP is an L°
model, since the definition of RI ensures that, RI is a partial function for any modality 1.

Essentially the same argument works for wffs 0 of LNO. We need only observe that for
all nominals i in Cl(qS), if V(i) = {w} then w'- w' iff w' = w. In short, all nominals in
CI(O) denote singletons in the filtrations, and all other nominals can be assigned arbitrary
singletons of WF, thus we again have a small model for 0.

From theorem °3.3, it 'follows immediately that the satisfiability problems for L° and
L1° are both decidable in nondeterministic exponential time. But we can improve these
results. Using methods similar to [36] and [18] we sketch a construction of a deterministic
exponential. .lgorithm for both L°= and, LN° satisfiability.
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Theorem 3:4 The satisf ability; problems forsL°.°and. LN° are,4ecidable if °EXPTLME

Proof:
Let Cl(0) be defined as in the proof of the previous theorem.. Let S be _the -set of-

all subsets r of Cl(o) that are maximally propositionally consistent, and are closed under
reflexivity of D; that is, if 137P E r then is` also in T. Suppose'c- is satisfiable in -,model
M. Let SM be the set of subsets of Cl(¢) that actually occur in M, that is, SM = {rxE
S : M '= r[w], for some w E M}. Obviously;. SM C S, but we can say more about SM.
First of all, note that every element of SM contains the same D formulas. Furthermore, if
0 contains a nominal m, there is exactly one set in SM that contains in. Let E C Pow(S),
consisting of all maximal S' C S such that:

1. vr,r'ES,\D0ECl(o):noEr4*Drk EF,and

2 For every nominal Sri occurring in 0 there is, exactly one set r E S ich that °m E r.

If ¢ is satisfiable in M, then there exists a set 'S' E E such that SM C S'. What can we
say about the size of E? Since Cl(0) contains at most 2]¢1 elements, there exist at most
22101 maximal sets S C S fulfilling the first condition. If 0, contains k nominals, at most 1S1k

subsets of S occur in E. Since k is bounded by 1,01, the size of F, is exponential in the length
of ¢.

:

For every Si E E, we-,,will construct. a sequencof sets Si S3 such that: if
0 is satisfiable in a model -M, and SM C Si, then 5M C Si.

Suppose we have defined Si. Call a set r,E Si inconsistent iff oii'e-, of the following
situations occurs:

1. -,Oz/i E IF, but for all r E,Si; Eli -r, or

- 2. For some modality 1, -there is no r,,E Si such that V(1)z/i E Cl(0)((l)b) E I` q o E r').

If there are inconsistent -sets in Si, then we let Si+1 consist of all sets of Si that are" not
inconsistent. Otherwise, 0 is satisfiable iff 0 E r for some set r E St, and for every nominal
m occurring in 0, there is exactly one set41 e Si ,that contain °in .°

,Since 51:°is;, of exponential size, arid, Si+1 is strictly included in" Si the algorithm ,teinii-
nates after at most exponentially many cycles. =Determining which sets in Si are inconsistent,,
takes polynomial time in the length of the representation of Si. Thus, for every member of ,,,

E, the algorithm takes at most deterministic exponential' time.' Since 'E is of exponential
size, we can determine if if 0 -is satisfiable in EXPTIME.

However, as the next result showsthere is a clear sense in which thisresult cannot be
improved.;

Theorem 3.5-'.The satisfiability problems for L° and LN° are,EXPTIME complete for
J,C > 2°, and A countably infinite.

Proof:
The upper bounds follows from theorem 3.4. To prove the corresponding lower bounds, it

suffices to give a polynomial time computable reduction from an EXPTIME hard set to L--°- 'i

satisfiability. We will use a suitable subset of Propositional Dynamic Logic. Let PDL(a,-*).,
be the bimodal propositional language with modalities (a)_,and1 (a#). We interpret, wffs: of
PDL(a, *) on Kripke models M = (W, Ra, V), where Ra_ is an arbitrary binary relatio }. on
W, in the usual way, the key

M = (a*)b[w] iff 3w'(ibR6w & M[ =4[ o']).-
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where- Rd denotes the ;reflexive, transitive -closure_ of Ra. In [10], it is proven that the°
satisfiability problem for PDL(a, *) is EXPTIME-hard. In fact, from careful inspection of
this proof, we can conclude that even the following set is EXPTIIVIE-hard: Let C consist, of
all PDL(a, *) formulas .g5 suchhthat: _ 01 A [a*)gz,. and

:1. ,are *-less and have modal depth< 1,,

2_. g5 is satisfiable in amodel~where-every node has at most two successors."

Define the reduction f from C to L°-satisfiability as follows:

1. If 0 is not of the form 014 [a*]g52i where 01 and=4t2`are'*-less- and of modal depth <"1
then f (0) = 1

2. For _51,¢2 *-less and of modal depth,< 1, fj(g,1 /\ [a*]e52) =s(g51) A s is
defined on *-less formulas as follows:

s(p)

s(zp V 0 -s(0) V s(E)

Sl(a)Y) .. (di)S`(Y ).V (a2)s(S)

Since s.-is polynomial time computable on *-less formulas _ofr=modal depth < 1,-1 f is
polynomial time computable. Now, it is straightforward to prove.the following fact by
induction. If M = (.W a.PDL=.model, and M' = (WRa.1,Raz,7t) is an L'.-model,
such that Ra = Ral U Raz, then for all *-less PDL(a)-formulas 0, and for all nodes w E W,
M [_ g5[w] iff M' ,I,-_ s(o)[iv]. By making use of this it is easy to prove that f is indeed a
reduction from C to L°satisfiability.

"Note that once again this reduction depends on having an unlimited supply of preposi-
tional variables.. The following theorem will dispose of this issue` once-and for all:

Theorem 3.6 (Single variable -reduction theorem) :.If ELI > 1, then there exist polyno-
mial otime .reductions from the satisfiability problems for L° and LKR° over signature (L, A)
to the corresponding satisfies ility.-problems over signature- (L, {p}):

Proof: RecallG that--we used the following reduction from to: L
satisfiability over signature ({a}, {p}) in theorem 2.4:_,.,-,

o, ... , p ) = (p, (a)p, (a) (a)p,.... , (a) kp)

If 0 is satisfied in w., we build the corresponding model for f (0) by replacing w by a list
of nodes. woRa2iwiRa ... Rawk. such that p is true in wi, iff pi is true in w. We will use a
similar encoding to to prove the theorem. Fix a signature (L, A), L 0 O. Well use a fixed
element a E L to encode worlds. Suppose M = (W, {RI}IE.C, V) is a model, and we use
propositional variables po,... , pk. As a first attempt to obtain an equivalent model with
one prepositional variable, look at the encoding given above: replace each world' w by a
list of worlds woRawlRa ... Rawk such that p is true in wi iff pi is true in w. This doesn't
quite work: consider for instance the formula The obvious translation would be (a)p.
But, this would "mean that (tc)p has to be satisfied in every world wi. This is too strong a
requirement: we just want (a)p to be satisfied' in every world of the form wo. We therefore
need to be able to determine if we are at a world of the form wo. We can't use a propositional
variable. for this: we have Alre dy,used.our sole, propositional variable p. The solution is to
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use a slightly different encoding: we will replace each. world w by a list of 2k + 3 worlds
woRaWiRa... R6w2k+2 such that: p is true in wi iff either i < k and pi is true in w, or
i = 2k + 2. Define:.

9k ((a)')

Then vo,k is true in every world WO, and we will ensure that for `every i > 0, ao,k is false in
wi. Now we will show how to define the relations R'I. If 10 a, this is easy: we let Ri consist
of all pairs (wo, wo) such that (w, w') E RI. We can't do this for Ra, since every world w0
already has wi as its Ra successor. If (w, w) E Ra, we will add (w2k+2, wo) to Rd, that is,
we add an Rd edge from the last node of the encoding of w to the first node of the encoding
of w'.
,_ Now we are ready to define the reduction:

fMpo,---,pk)) =

Where gk is inductively defined as follows:

9k((l)''b)

9k(-,0)

9k(i n',2):

9k (D',')

9k ((A) ^ (B))

2k+1

00,k = / (a}}+' p-^ (a)2k+2 p.

i-k\/+1

(a)zp

__19k (C ,

A 9k(Ib2)

(1) (ao,k AAA( )) for 14 a
(a)2k+3(O'0

k Agk(5)) ,
M

'&(ao,k --> 9( ))

(A) ^ (B)[(a) : (a)2k+3]:A gk((A)T) A9k((B)T).

(The notation [(a) := (a)2k+3] denotes the result of substituting (a)2k+3 for (a).) Obviously;
f is polynomial time computable. Furthermore, if 0 does, not contain path formulas, then
neither does f (0). It remains to prove that 0 is satisfiable iff f (0) is satisfiable.

Let M-= (W,{RI}IEZ,V). Define the corresponding model Mk = as
follows:

W _ {wEW:M ao,k.}

RI = RI [(W' x W') for 10 a
Ra (Ra)2k+3I(W' x W')
V(Pi)

With induction the structure of , it is easy that for all formulas 'with propjosi
tional variables in {po, .. )pk and for all w E W r

M` 9k.()[w]'iff Mk ?/b[w]

Now suppose M f (q5)[w] Then w, E W', since M ,j Therefore, Mk'= 0[
and' hence. 0 is satisfiable.

For the converse, suppose that ¢ is satisfiable. Let M = (W, {RI}IEC, V) be a model"
such that M j q5[v]. Let M' = (W,{R'I}IEL,V) be the corresponding model with one
propositional variable, as sketched vefore the definition of

V'(p) {wi : i =.2k.,+2 or_(&.E V (pi) and i< k)}
Ra = {(wi wi+l) i 2k+i }lJ.{(w2k+2iw0wRaw

.-,{w6...;;w2k+2 : w E,W}>.

Rt = {(wo,w') : wRiw'}( for l a)
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It is easy to see that Mk is isomorphic toM °and therefore M' H°QO,k n gO,[vo].

As in theorem 2.5, we can prove that if L contains at least two modalities, we can dispense
with propositional variables all together,. Recall- that we used the following reduction in
theorem 2.5:

fWpo,...,pk)) _ 0((b)T,(a)(b)T,(a)(a)(b)T,..,,(a)k(b)T). V

We can strengthen this. It is easy to see that the techniques of the previous theorem can be
applied to prove the analog of theorem 2.5. We leave the details to the reader.

Theorem 3.7 If ILK > 2,- then there exist ,polynomial, time reductions from ,the satisfiability .,

problems for L° and"LKR° over signature (G, A) to the corresponding satisfiability problems
over signature (,CIO) .

<.
.

Combining the previous theorem with the "earlier obtained lower bounds, we can sum-
marise the complexity results` of this section as follows:,

Corollary 3.1 If I I > 2, and JAI > 0 the satisfiability problems for L° and LNO are
EXPTIME complete, and the, satisfiability problem for LKRO is III complete::.v

"

An interesting aspect of the results, of this section is the wedge they drive-- between
LNO and LKRO. At first sight the difference seems puzzling: after all, both are languages in
which generalisations can be stated, and. re-entrancy forced. A closer look shows that the two
languages work very differently. We might say that whereas in LKR° we can state genuine
generalisations involving re-entrancy, in LN° there is a clear sense in which re-entrancy is
only expressed within a given model. LN° isn't .powerful enough to force labelings. An
example will make this clear. Consider the GPSG head feature convention again. We've
already seen that its force is captured "in-LKROby the following wff:

(phrasal (HEAD) (HEAD-DTR) (HEAD)).

But when we,attempt-to capture its force using nominals we run into a"probleni how can
we label the desired re-entrancy point? It seemswe. must step beyond the boundaries of
LN° and write an expression such as the following:`-

(phrasal'--> 3i((HEAD)i A (HEAD-D.TR)(HEAD)i))

Now, this expression clearly captures what is required, but unfortunately its not an LNO
wff but a wff of a more powerful language in which explicit quantification over nominals is
possible. Such"languuages `have been investigated before; in fact Bull's paper on the subject
seems to have been the first technical investigation of nominals [7]. Moreover Reape [38] has
used such language to investigate problems in unification based grammar. However when
used together with the universal modality, explicit quantification over nominals is (from the
point of view of complexity theory at any rate) rather uninteresting: it is straightforward
to show that strengthening LN° to allow explicit quantification over nominals results in a
notational variant of Li, the first order language of AVSs. Such a language thus has a III
satisfiability problem, just as LKR° does.'

In short, it is asking a, lot to be able to express generalisations involving re-entrancy. The
nearest we can get to it in a decidable framework seems to be LNO. However, while gen-
eralisations are expressible in this language, these generalisations don't involve re-entrancy
in any strong sense. Its precisely for this reason that were not able to force a tiling in
this language, but (alas) its also precisely for this reason that it is not able express some
linguistically" useful principles such as the head -feature convention. , v
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4 The master m o dalty

In this section we- consider the complexity of the -satisfiability problems for LN, LN[*] and
LKR[*], our base languages extended with the master modality [*]. Gazdar et al. [15] define
the master modality as follows:

M [*]0[w] - :iiff M O[w] and".
M J [*]cb[w'], for all w' : wRiw', for some l E G.

As they only work with finite AVSs this definition is not circular, indeed it has the advantage
of making the intended use of [*] particularly clear: [*] expresses recursive constraints over
AVSs. However it will make the following technicalities more straightforward if we extend
the definition to cover arbitrary AVSs. We do this as follows. For. all. models M, and all
nodes w E M, let W' be {w E W : w(UiEc Rz)*w'). That is, W' is the set of all nodes w'
that are reachable by any finite sequence of transitions (including the null transition) from
w. Then we define: s a x

M [*]0[w] iff M J O[w], for all w'E W'.

Clearly this definition reduces to the previous one for finite AVSs. Its also worth mentioning
that we have introduced a notational change; Gazdar et al. use for the master modality.
We prefer to reserve this for the universal modality.

The most important thing to note about both semantic definitions given °above is their
infinitary force: Ll is not the correspondence -language for [*]. As with PDL, the natural
correspondences are with classical languages in which infinite conjunctions are allowed; in
effect we are working with a fragment of infinitary logic.

A number of logical results for LN, including the construction of a complete tableaux-
system, have been proved by Kracht [28]. However his methods only yield a nondeterministic
exponential time upper bound for the satisfiability problem; we improve on this below,
Neither LN[*1 nor LKR[*] seem to have been treated in the literature, though Gazdar et al.
note that some re-entrancy coding mechanism would be desirable, and Kaspar and Rounds
mention the possibility of combining the two approaches. LKR[*] is this combination..

We begin our investigation with a lemma which enables us to utilise results from the
previous section.

Lemma 4.1 Let 0 be a formula that contains no occurrences of CQ. of [*}. Then ,¢b., is
satisfiable iff [*]O is satisfiable:

Proof:
First suppose M = (W, {Ri}tec, V), and M [_ D0[wo]. Then for, all w E W, M J ¢[w},

and therefore certainly M __. [*]¢[wo].

Conversely suppose M = (W,{RI}jec,V), and M J [*]¢[wo]."Let W' equal {w E W :
wo(U.ie and let M' be the restriction of M. to W'. It follows by the usual generated
submodel argument that for all formulas b without.,Ej<or [*], and for all w E W': M- = V;[w]
iff°M' J z[i[tv]: It follows that M' J O[w], for all w-E W'. But then M' J .O[wo] O

From this lemma, and the form of the. reductions, in the, proofs of theorems 3.1 and 3.5,
it follows immediately that the lower bounds for languages with .D go through for the cor-
responding languages with [*]:

Corollary 4.1 The'"s¢tisfi¢bilzty problems for L1 ] an._d LN[*] are EXPTIME-Bard. The

satisfiability problem for LKR[*] is IIi hard.
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But do we have the the same upper bounds?. The answer'is almost always `yes', but there is
one notable exception. If L is finite, and contains at least two elements, the complexity of the
satisfiability problem for LKR[*] is much higher than that of the corresponding satisfiability
problem for LKRO: we will show that in this case I satisfiability is Ei. complete instead
of `just' to complete.

Lemma 4.2 If 0 is satisfiable in M, then 0 is. satisfiable in a countable submode-l- of M.

Proof: Suppose M ¢[w]. LetW' be {w' E'W : RI) *w'}. It follows by induction
on the degree of 0 that M[W' H.q.[w]. But as all our relations are partial functions, and as
we only have countably many of them, W .must be countable.

Theorem 4.1 If C'is finite, and ILI > 2,. the satisfiability"problem fog
complete.

Proof. The upper bound follows directly from lemma 4.2. To prove the corresponding lower
bound, we will construct a reduction from the following Ei-complete tiling problem [20}:

N x N recurrent tiling: Given a finite set T of tiles, and a tile Ti E T, can T tile N x N
such that Ti occurs in 'the tiling infinitely often on the first row.

That is, does there exist a function t from N to T such that: right(t(n, m)) left (t(n+
1,m)), up(t(n,m)).= down(t(n, m-+ 1)), and the set {i : t(i,0) =To} is infinite?

Let T = {Ti, ... , Tk }_ be a set of tiles. We construct a formula Ort such that:

(T, Ti) E N x N' recurrent tiling iff O,t is satisfiable.

To ensure that Ort forces a tiling of N x N, we use' the formula 0 constructed in the proof
of theorem 3.1. Let 0' be the result of replacing every occurrence of by [*] in 0. Then, as
in theorem 3.1, the following holds:

1. If ,q' is not satisfiable,- then. T. does not tile -N= x N.

2.- If M I q'[wo], then there exists a tiling t of N x N, and a function f from N x N to
W be such that f (0, 0) = wo, f (n, m)R,. f (n + 1, m) and f (n, m)R,,, f (n, m + 1), and. =

M = ti[ If (n, m)] iff t(n, m) = Ti.

Now we force the recurrence: we will use°a new propositional variable rowo, which can only
be true at worlds of the form f (n, 0), and we will ensure that there exist an infinite number
of worlds where rowo holds and tile Ti is placed. Define:

rec = ([*]
A. [l][*]-rowo) A rowp'A [*](rowo,-4.>(*)(rovio./A t1))^

Let Ort be the conjunction of 0' and q,. . In the same way ashi theorem
prove that (T, Ti) E N x N recurrent tiling iff Ort is satisfiable, 0.

In the previous proof it, is essential that we can force a propositional variable to be true
at w only if w is reachable, from wo in a finite number of Rr steps. We can't force this in
LKR°, nor in LKR[*l if C is infinite. (Indeed the' previous proof -doesn't go through for C
infinite as then g5rec is not a formula.) As we shall now see, in the case where C is infinite,-
the satisfiability problem for a language with, [*] is never more complex than the satisfiability ,.

problem for the corresponding language with .

.1, we,can now,'
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Theorem 4.2 If L is- infinite, then -

1. The. satisfiability problems for L[*] and LN[*] are EXPTIME complete.

2. The satisfiability problem for LKR[*l is III complete.

Proof:
The lower bounds follow` from corollary `4.1. For the' upper bounds, we will reduce'

the satisfiability problems for L[*], LN[*] , and LKR[*] to the satisfiability problems for the
corresponding languages with . The claim then follows from theorems 3.5 and 3.1. To get
rid of occurrences of [*], we define function g from -less formulas to formulas without or

[*] as follows:

g(p) = p X- C _ -g( b) g(b V 0 = gob) v g(0
(l)g(%) g([*]'t&) p[*],G g((A) ^ (B)) = (A) zt: (B')

We have to ensure that p(*).b mimics the behaviour of [*]ib. In particular, if gyp[*],y holds
at some world, this world should have a (multi-step) successor where g(-,5) -holds. We
introduce new modalities (-iq) for all formulas [*]5 E Cl(q5), and we will force that for
every world w satisfying gyp[*lp, there exists a world w' such that and g(n5) holds
at w. Let L' consist of the modalities occurring in ¢, and' the new modalities (-i5) for
[*]'0 E Cl(¢). Since L is infinite, we may assume that L' C L. Our reduction f is defined
as- follows:

f(0) = g(o) A (p[*] -- g(o) A A
1EL'

Obviously, f is polynomial time computable. Furthermore, if q doesn't contain nominals
and/or path equations, then- neither does f (q5). It remains to prove that 0 is satisfiable iff
f O is satisfiable.

First suppose 0 is satisfiable. By lemma 4.2, countable- model M
21

(W, {RI}IEL,V), and a world wo E W, such that M.. ,¢[wo].-Define a model M- as fol-

lows: M,,=.(W, {RI}1EL,V), such that: -

l:
rRl..=`RI

for l occurring in 0; .RI.= 0 for l ,C'

2. For [*]Ik E Cl(¢),'IZ is such' that

'Wk-low-1 M and w(UZEL RI)*w'; and

3w' : wR-,pw'.iff 1VI

V (1?) ° V (p). for. p occur gin-
-:w, V(p[*j+G)'

fF M += [*]q5[u']

Obviously, if M q5[wo], then M is: well defined, and M f (¢)[too].
For the converse, suppose f (0) is satisfiable. let M = (W, {RI}'1Ej, V), and °wo E W be

such, that f (0) [wo]. We may assume that R1 = 0 for d O'G. It is easy to prove that for
all formulas q5 E Cl(o . and for all .w e W, .M 0[w] iff M [= g(o)[w], and thus is indeed
satisfiable.

It "remains- to,prove EXPTIME upper bounds for L[*l .and'LN[*] for finite G.

Theorem 4;3f If -is finit .,and, If-[ >.2,; ,then the satisfiability -problem forL[*] is EXP.-,?
TIME complete'*
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The lower bound follows from corollary 4.1. For the corresponding upper bound, we
a reduction from this satisfiability problem to the satisfiability problem for a suitable subset
of Deterministic Propositional Dynamic Logic (DPDL): This proves the theorem, since the
satisfiability problem for DPDL is in EXPTIME DPDL subset is the mt)lti-,,modal
propositional language with modalities (1) for all l E .C, and ((UIEG l)*), which we will
abbreviate as (*). We interpret wffs of this language on Kripke models M = (W, {RI}IEL, V)°,`
where is a partial functional binary relation on W, in the usual-. way, the key clause being:

(*)O[wj iff 3w'(w(U R).*w'. & M"[w']) -
LEG

Let 0 be an L[*1 formula. It is obvious that 0 is a satisfiable L[*1 formula iff 0 is a satisfiable
DPDL formula. ._
Theorem 4.4 If L is finite, and I,CI > 2, then the satisfiability problem for LN[*] is EXP-
TIME complete.

The lower bound follows from corollary 4.1:"°For; the corresponding upper bound; we""will'.
give a reduction from the satisfiability for-LN[*] to the corresponding satisfiability`'
problem for L[*i.. The theorem then foll'ows;from.theorem 4.3. Suppose o His an LN[*14ormula
and ml, . , mk are all the -nominals- inq5:- We can as -ordinary
propositional variables, with the extra: requirement that each nominal is satisfied exactly
once. We can't quite force that, but it turns out that forcing the following requirements for
every nominal m that occurs in 0 are enough to obtain the required reduction.

1. All nodes where m holds are equivalent with respect to Cl(o)

2. If m is true, and -[*J5, b; hold at w., for, some [*]-0 E Cl (q5), then there exists ,an node
reachable from w by, a non-:m path such that -rq. holds at w'

To force the second requirement, we introduce new propositional variables for each
[*]?,b E Cl(q5), and each occurring nominal m. m(*).,.r will be true if -n has to be fulfilled
by a world reachable by a non-m. path :Now define the reduction f:

f(q)'= q' A ` A0_EC1(0)([*](m_-. ) V [*](m
A n[*IoECI(o)([*](m n -'[*] n', `VIEG (l)m(*) .)

[*](m(*)- AP . VIEG (l)m(*>. )A

rl5))
, .

It is obvious that if O'is "satisfiable in -a-model where every nominal m [occurs exactly once,
then f (¢) is satisfiable.

For the converse, suppose f (0) is a satisfiable L[*] formula. Let M = be
a model such that M f (q5)[w]. Define relation - such that: w - w' . (w = w') or M =
m[w] and M m[w'] for some nominal m occurring in 0. It is easy to see that - is an
equivalence relation,. and filtrating over - (compare theorem 3.3) yields a satisfying model
for Qr.

As in the case of languages with. , we can reduce the number of propositionaLvariables.`
Define 9k ([*]0) _ [*](00 k g(r/i)) in the construction of theorem 3.6, and define -

/

. ,

( 2k+2

f(0(po, ..,Pk)) _ q5n0o,k A A[l]0o k71 A a) (-ido°,k A A [l] 1 ))
l Iida

'26
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to get the analogue of theorem 3:6 for languages with [*]. The extra conjuncts in f z force more
similarity between the original" model and the encoded model:--[*] can force more structure
than . In a similar we, we-, can, get the analogue of theorem 3.7. Details are left to the
reader.

We can summarise the complexity results of this section as follows:

Corollary 4.2 If ILI > 2, and JAI > 0 the satisfiability problems for L°" and'LNO are
EXPTIME complete, and the satisfiability problem for. LKRO is Iii complete for L infinite,
,and Ei complete for G finite.

Clearly the results of this section are does this "mean such infinitary extensions
should be abandoned? We believe not: an interesting case for their linguistic interest is
made by Keller [27], who works with a language even, stronger than LKR[*l, namely PDL
augmented with the Kaspar Rounds path equality. Among other things Keller shows how
this language can give a neat account of the LFG idea of functional uncertainty. Thus the"
idea seems linguistically interesting: the "pressing task becomes the search for well behaved
fragments.

Finally it should be remarked that Gazdar et `al. emphasize-a°different application'"for
L[*]. Instead of viewing it as a grammar specification formalism, they use it to define
syntactic categories; indeed the greater part of their paper is devoted to showing how a wide
variety of treatments of syntactic category can be modelled and compared using L[*l. An
interesting corollary of this is that they are not particularly interested in the satisfaction
problem: the problem of most concern to them is how expensive it is to check a category
structure against some fixed category description 0. Cleary this is a''very much simpler
problem; in fact they show that it is solvable in linear time if ¢ is a wff of L[*1. Their result
extends to wffs of LNG*1 and LKR[*1

Concluding remarks .

In this paper we have investigated,--the- satisfiability problem for. a variety of modal lan- :.
guages of AVSs. The following table summarises the results for the case` of most :interest in
computational linguistics: both C, and,< ,finite ([CJ >.2,,J,AJ ? 0).

LN" ° 'LKR

NP complete NP complete NP complete
"EXPTIME complete EXPTIME complete II1 complete

[*] EXPTI1VfE complete
.
'"EXPTIME complete El complete

As a fnal remaik,let's see what`happens if [GI 1. "Intuitively, this should make things
easier, and indeed it -does. Consider for instance the languages with only [*] and (a) as
modalities. It is easy to see-that a formula in these languages is satisfiable iff it is satisfiable
on -a (possibly "infinite ) model of the form WORQ,w1RaW2R,, - or on a model of the form
woRawlRa RdwkRawk+lRa RawmRQwk. In this situation path equations or nominals
don't make the situation more complex that LN.

In fact LN is very like propositional linear temporal logic with°'operators X (next time)
and G (always in the future). Formulas of this language are interpreted on N, the natural
numbers in their usual order, as follows: X0 holds at i if 0. holds at i + 1, and Go holds
at i iff for all ¢ holds at i. Usingthe fact that satisfiability for this language is
PSPACE-complete [451, t" easy to prove that'th'e satisfiability problems for the languages
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with only (a) and [*] as modalities are PSPACE complete as well. Using similar methods,'
we get the same results for ,the corresponding languages with EL We leave the details to the
reader. Combining these remarks with theorem 3.6, and theorem 2.4, wean summarise'the°
results for ELI = 1 as follows:

Theorem 5.1 If ILI = 1, and JAI > 1, the satisfiability problems, for L, LN, and LKR are
NP complete, and the satisfiabilityprob-lems, for L°, Ln'o, LARD, LI*1, L 'i*L, and LKR1*]
are_PSPACE complete.. ,.

There remains much to do. In this paper we have confined ourselves to= languages with full
Boolean expressivity; hence the results of this paper are essentially limitative.. An important
problem to turn to next is the exploration of weaker fragments. Obvious ` choices would be
fragments with .only conjunction as a, Boolean. operator, fragments with only? conjunction',
and disjunction, or fragments with only conjunction the negation of atoms. Results for such
fragments exist in the literature, but a more detailed examination seems both, possible and
desirable. Further, it would be interesting to look for tractable fragments involving or [*].
A good way of -approaching this topic would be" to add- strict implication -as a primitive
symbol to various fragments of L, 1 N .or LKR (as we saw earlier, it the -implicit combination
of D .and,.-.r provided. by that is the most important use of the, universal, modality), and
then to look for, restricted forms of strict implication that are useful but tractable. Obvious
forms to explore include atom .(A) ti (B) and atom, = -iatomz..

It is. the belief of the authors, however, that modal logic has more ;to offer` computational
linguistics than an analysis of unification formalisms.. We've already seen a _h nt -of this
in Evan's. use of, D to look, at feature aspecification'defaults; and in:- the the use of= Lt*]
to specify grammatical categories. Moreover modalities figure in-recentwork-lin:-categoriai
grammar; see [40] for example. However there seem to be further possibilities. A particularly
interesting one concerns the organisation of computational lexicons. An important task in
this application is the developed of formalisms for representing- and manipulating lexical
entries. DATR [9] is such a formalism, and an examination of its syntax and semantics
suggests that it is `open to modal` analysis. What sort of benefits might result from such
an analysis? Complexity 'results and inference systems are obvious answers, but there is
another possibility that might be more important:, modal logic might provide `logical maps'
of possible extensions.

This point seems to be of wider relevance. In recent years modal logicians have ex-
plored a wide variety of enriched systems, some of which clearly bear on issues of knowledge
representation.- As has already mentioned, Schild [43] has made use of correspondences be-
tween core terminological logic and modal logic to obtain a number of complexity results
for terminological reasoning. However more correspondences are involved. For example,
terminological reasoning may also involve the `counting quantifiers'; that is, we may want to
perform numerical comparisons. The modal logic of such counting quantifiers (and a great
deal more besides) has been investigated by van der Hoek and de Rijke [22]. Their work
covers such topics as completeness, normal forms and computational complexity and is of
obvious relevance to the knowledge representation community.

Finally, there may be deeper 'mathematical reasons for taking the modal, connection
seriously. Modal logic comes equipped not only with a Kripke semantics, but with an
algebraic semantics; and duality theory, the study of the connections between the algebraic
semantics and the 'Kripke semantics, is a highly developed branch of model logic; see [16]
for a detailed recent account. While some use of the algebraic semantics has been made
in connection with Attribute Value structures (Reape [38] for, example, uses it to make
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connections with Smolka's work, and Schild [43] utilises an algebraic approach to `simplify
his presentation) in general it seems that a tool' of potential value has been neglected.
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