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ABSTRACT  

Based on structural dynamics theory, the modal pushover analysis procedure (MPA) 

retains the conceptual simplicity of current procedures with invariant force distribution, now 

common in structural engineering practice. The MPA procedure for estimating seismic demands 

is extended to unsymmetric-plan buildings. In the MPA procedure, the seismic demand due to 

individual terms in the modal expansion of the effective earthquake forces is determined by 

nonlinear static analysis using the inertia force distribution for each mode, which for 

unsymmetric buildings includes two lateral forces and torque at each floor level. These “modal” 

demands due to the first few terms of the modal expansion are then combined by the CQC rule to 

obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic 

systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The 

MPA estimates of seismic demand for torsionally-stiff and torsionally-flexible unsymmetric 

systems are shown to be similarly accurate as they are for the symmetric building; however, the 

results deteriorate for a torsionally-similarly-stiff unsymmetric-plan system and the ground 

motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is 

underestimated by the CQC modal combination rule (which would also limit accuracy of RSA 

for linearly elastic systems). 
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1. INTRODUCTION 

The nonlinear static procedure (NSP) or pushover analysis, as described in FEMA-273 [1] 

and its successor FEMA-356 [2] is now used by the structural engineering profession as a 

standard tool for estimating seismic demands for buildings. In the past few years, several 

researchers have discussed the underlying assumptions and limitations of pushover analysis [e.g., 

Refs. 3-8], proposed adaptive force distributions that attempt to follow the time-variant 

distributions of inertia forces [9, 10], and considered more than the fundamental vibration mode 

[11-13]. Rooted in structural dynamics theory, the modal pushover analysis (MPA) has been 

developed to include the contributions of all modes of vibration that contribute significantly to 

seismic demands [14]. It retains the conceptual simplicity and computational attractiveness of the 

standard pushover procedures with time-invariant lateral force distributions. This procedure has 

been improved, especially in its treatment of P-∆ effects due to gravity loads [15] and its 

accuracy—bias and dispersion—has been evaluated for SAC buildings [15], height-wise regular 

generic frames [16] and irregular generic frames [17]. 

Starting in 1997, various researchers have extended pushover analysis to unsymmetric-plan 

buildings. By applying a height-wise distribution of lateral forces, typical of standard planar 

pushover analysis at the floor centers of mass, an approximate nonlinear static analysis procedure 

was developed [18]; by the authors’ admission the procedure “does not pretend to be very 

accurate.” Another procedure consists of (i) three-dimensional elastic response spectrum analysis 

to determine roof displacement and height-wise distribution of lateral forces for each resisting 

element (frames, walls, etc.), and (ii) planar pushover analysis of each resisting element [19]. 

Some studies have focused on special considerations necessary to consider interaction between 

walls and frames in pushover analysis of wall-frame structures [20]. Another paper investigated 

the accuracy of applying lateral forces at different locations in the plan of unsymmetric buildings 

[21]. The few comparisons of pushover analysis results with nonlinear RHA give the impression 

of limited success. The need for developing improved rational approximate procedures for 

unsymmetric-plan buildings is critical. Current engineering practice [2] is based on judgmental 

extensions of methods initially developed for planar analysis of buildings, which appear 

inaccurate. 
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The principal objective of this paper is to extend MPA to estimate seismic demands for 

unsymmetric-plan buildings. To provide a basis for the MPA procedure, we first develop an 

uncoupled modal response history analysis (UMRHA) procedure, which is shown to be 

equivalent to classical modal response history analysis (RHA) for linearly elastic systems, but 

only an approximate procedure for inelastic systems; the underlying assumptions and accuracy 

are discussed. Subsequently, we present the MPA procedure for unsymmetric-plan buildings, 

demonstrate its equivalence to standard response spectrum analysis (RSA) for elastic systems, 

and identify its underlying assumptions and approximations for inelastic buildings. Finally, the 

accuracy of MPA relative to rigorous nonlinear RHA is evaluated.  
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2. EQUATIONS OF MOTION, SELECTED BUILDINGS, AND GROUND MOTION 

Consider an assemblage of moment-resisting frames that make up an N-story building (Fig. 

1). Its plan shown in Fig. 1a is not symmetric about the x or/and y axes. This implies that the 

floor mass distribution and/or framing plan may be unsymmetric; or the framing plan is 

symmetric but the stiffness properties of symmetrically-located frames differ. Each floor 

diaphragm is rigid in its own plane and has three degrees-of-freedom (DOFs) defined at the 

center of mass (CM); see Fig. 1a. The DOFs of the jth floor are: translation u jx along the x-axis, 

translation u jy along the y-axis, and torsional rotation u jθ  about the vertical axis; u jx  and u jy 

are defined relative to the ground. 

2.1 Equations of Motion 

The displacement vector u of size 3N ×1  for the system includes three N ×1 subvectors 

x , y ,  and  θ ux is the vector of x-lateral floor displacement u jx ; u y is the vector ofu u  u where 

y-lateral floor displacements u jy ; and uθ  is the vector of N-torsional floor displacements: 

TT T
u = u u "u u = u u "u u = u u "ux 1x 2x Nx  y  1y 2 y  Ny  θ 1θ 2θ Nθ 

The differential equations of motion governing the response of the building to the x and y 

components of ground motion are: 

y 
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Figure 1. Multistory building: (a) plan; (b) frames in x and y directions. 
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Mu�� + fs (u, signu� ) = −M ιxu�� gx  (t )−M ι yu�� gy  (t )  (1) 

where M, a diagonal mass matrix of order 3N, includes three diagonal submatrices m, m and 

IO , each of order N; m is a diagonal matrix with m jj = m j , the mass lumped at the jth-floor 

diaphragm; and IO  is a diagonal matrix with I jj = IOj , the polar moment of inertia of the jth-

floor diaphragm about a vertical axis through the CM. The force-deformation relations between 

the displacements ux , u y , and uθ and the x-lateral forces fsx , y-lateral forces fsy , and torques 

fsθ  at the N floor levels are nonlinear and hysteretic. In Eq. (1), the influence vectors associated 

with the x and y ground motions are as follows: 

0 1    
      

x =  0 ι y =  1 (2)ι     
    0 0      

respectively, where each element of the N ×1 vector 1 is equal to unity and of the N ×1 vector 0 

is equal to zero. Although not shown in Eq. (1), damping is included and defined by modal 

damping ratios. 

The right side of Eq. (1) can be interpreted as effective earthquake forces 

m1  0  
    

eff ( ) = −su�� ( ) = −  0  u��gx  and − m1   u�� ( )p t g t   ( )t  gy  t (3) 
   0 0    

associated with the x and y components of ground motion, respectively. 

2.2 Selected Structural Systems 

The structural systems considered in this paper are variations of the 9-story steel frame 

building designed for the SAC Steel Project. Although not actually constructed, this structure 

meets seismic code and represents typical medium-rise buildings for Los Angeles, California. 

This building is described in several publications [e.g., Refs. 14 and 22]. Described in Appendix 

A for convenience, it is one of six symmetric-plan buildings used as examples to determine the 

bias and dispersion in the MPA procedure [15]. 
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Figure 2. Plan of selected unsymmetric-plan buildings. 

This symmetric-plan building was modified to create three systems that are unsymmetric 

about the y-axis but symmetric about  x-axis. While the stiffness properties were preserved, the 

center of mass (CM) was defined eccentric relative to the center of stiffness (CS), also the 

geometric center. The eccentricity between the CM and CS was chosen to be along the x-axis, 

equal to 10% of the plan dimension (Fig. 2). The ratio between the floor mass, m j , and its 

moment of inertia, IO j (about a vertical axis through CM), was varied to create three different 

unsymmetric-plan systems with different degrees of coupling between lateral and torsional 

motions as characterized by different values of the ratio of uncoupled lateral and torsional 

vibration periods. 

1. Unsymmetric-Plan 1 (U1): The IO j  m  ratio at the CS was taken to be the same as for 

the symmetric-plan building. Figure 3a shows the natural vibration periods and modes of 

system U1. Lateral displacements dominate motion in the first mode, whereas torsional 

rotations dominate motion in the second mode, indicating weak coupling between lateral 

and torsional motions. Because the period of the dominantly-torsional mode is much 

shorter than that of the dominantly-lateral mode, which is representative of buildings with 

moment-resisting frames located along the perimeter of the plan, this system will be 

referred to as a “torsionally-stiff” system. 
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2.  Unsymmetric-Plan 2 (U2): The IO j  value for every floor was increased by a factor of 

2.95 relative to Case U1 and was chosen to achieve very close modal periods. Figure 3b 

demonstrates that the periods of the first two modes are indeed close and that the lateral 

and torsional motions, which are similar in magnitude, are strongly coupled in the first 

two modes. This system with similar periods in these two modes will be referred to as a 

“torsionally-similarly-stiff” system. 

3.  Unsymmetric-Plan 3 (U3): The IO j  value for every floor was increased by a factor of 

6.0 relative to case U1. Figure 3c shows the natural vibration periods and modes of 

system U3. Torsional rotations dominate motion in the first mode, whereas lateral 

displacements dominate motion in the second mode, indicating weak coupling between 

lateral and torsional motions. Because the period of the dominantly-torsional mode is 

much longer than that of the dominantly-lateral mode, this system is said to be 

“torsionally-flexible.” 

These three unsymmetric-plan systems will undergo coupled y-lateral and torsional 

motions due to the y-component of ground motion, which is the focus of this paper. The purely 

lateral response along the x-axis due to the x-component of excitation is not considered, as it has 

been the subject of previous investigations [10, 11]. 

2.3 Ground Motion 

The ground motion selected for this investigation is the LA25 ground motion shown in Fig. 

4. This is one of the 20 ground motions that were assembled for the SAC project representing 

exceedance probability of 2% in 50 years, or a return period of 2475 years. It is derived from the 

free-field motion recorded at Rinaldi Receiving Station during the 1994 Northridge earthquake. 

Recorded at a distance of 7.5 km from the causative fault, it contains a forward directivity pulse 

(Fig. 4), which is common in many near-fault motions. This intense ground motion enables 

testing of the approximate procedures developed herein under severe conditions. 
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Figure 3.  Natural periods and modes of vibration of 9-story unsymmetric-plan 
systems: (a) unsymmetric-plan system U1; (b) unsymmetric-plan system 
U2; and (c) unsymmetric-plan system U3. 
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3. APPROXIMATE ANALYSIS PROCEDURES  

3.1 Modal Expansion of Effective Forces 

The spatial distribution of the effective forces [Eq. (3)] over the building is defined by the 

u tg �� ( ) . This force distribution can bevector s and the time variation by �� ( ) = u t or u��gy (t )gx 

expanded as a summation of modal inertia force distributions sn  [Ref. 23, Section 13.3] 

3N 3N 

s =∑ s =∑ Γ Mφ  (4)n n n 

n=1 n=1 

where φ  is the nth natural vibration mode of the structure consisting of three subvectors,n 

φ xn, φ yn, and φ θn , and 

Τ
L φxnm1 for u��gx ( )t 

Γ =  n M = φΤ 
Mφ L = (5)n n n n n 

M  
 
Τ u�� ( )tn  φynm1 for gy 

The effective earthquake forces can then be expressed as 

3N 3N 

( )t = p ( )t = -s u tp  �� ( ) (6)eff  ∑ eff,n ∑ n g  

n=1 n=1 

The contribution of the nth mode to p (t ) and s areeff 

peff,n (t ) = −sn g�� (t ) sn = ΓnMφ  (7)u n 

The sn  vectors associated with the x and y components of ground motions are given by the same 

equation: 

s  mφ  
xn xn    

sn = s yn  = Γn mφ yn  (8) 
    
sθn  I pφθn  

However, Γ  depends on the component of ground motion, as is evident from Eq. (5).n
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Figure 5 shows the modal expansion of = ιys m  for system U2 associated with the y-

component of ground motion. These modal contributions s define the force distributions thatn 

will be used in pushover analyses to be presented later. Observe that the contribution s of eachn 

mode to s includes lateral forces and torque at each floor level, and that the direction of forces is 

controlled by the algebraic sign of the modal displacements and φ θ  (where j denotesφ jxn j n  

floor level). Hence, for the first pair of modes, the lateral forces and torques all act in the same 

direction; however, for the second and higher modal pairs, the lateral forces and torques change 

direction as one moves up the structure. The lateral forces are in the positive y-direction in the 

first pair of modes, whereas the torques are in the positive θ- (counter clockwise) direction in the 

first mode, but in the clockwise direction in the second mode. The contribution of the first modal 

pair to the force distribution = ιys m  of the effective earthquake forces is largest, and these 

modal contributions decrease progressively for higher modal pairs. 
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3.2 Basic Concept 

Two procedures for approximate analysis of inelastic buildings will be described next: 

uncoupled modal response history analysis (UMRHA) and modal pushover analysis (MPA). Not 

intended for practical application, the UMRHA procedure is developed only to provide a 

rationale and motivation for the MPA procedure. In the UMRHA procedure, the response history 

of the building to p t , the nth-mode component of the excitation is determined by eff,n ( )

nonlinear RHA of an inelastic SDF system, and superposition of these “modal” responses gives 

the total response. In the MPA procedure, the peak response to peff,n (t )  is determined by a 

nonlinear static or pushover analysis, and the peak “modal” responses are combined by modal 

combination rules to estimate the total response. 
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4. UNCOUPLED MODAL RESPONSE HISTORY ANALYSIS 

4.1 Elastic Systems 

The classical modal analysis procedure for elastic systems may be interpreted as finding 

the response of the structure to peff,n (t ) for each n and superposing the responses for all n. The 

response of the system to peff,n ( )t  is entirely in the nth mode, with no contribution from other 

modes, which implies that the modes are uncoupled. Then the floor displacements are given by 

u ( )  (t )   (9)  t = φ qn n n 

where the modal coordinate is governed by 

2q��n + 2ζ ωn nq�n +ωnqn = −Γ  nu�� g (t ) (10) 

in which ωn  is the natural frequency and ζ n  is the damping ratio for the nth mode. The solution 

n ( ) of Eq. (10) is given byq t

q t( ) = Γ D (t ) (11)n n n 

where n ( )  is the deformation response of the nth-mode linear SDF system, an SDF system D t

with vibration properties—natural frequency ωn  (natural period T = 2π ω ) and damping ratio n n 

ζ n —of the nth mode of the MDF system, subjected to u t( ) . It is governed by:��g

D�� + 2ζ ω  D� +ω2D = −u�� (t ) (12)n n n n n n g 

Substituting Eq. (11) into Eq. (9) gives the lateral displacements in the x and y directions 

and torsional rotations of the floors: 

uxn ( ) = Γnφ xn Dn ( )t u yn (t ) = Γnφ yn Dn (t ) uθn (t ) = ΓnφθnDn ( )  t (13)t 

The story drifts in x and y directions defined at the CM are given by 

t ( )  t (14)∆ jxn ( ) = Γn (φ jxn −φ j−1,xn )Dn ( )t ∆ jyn t = Γn (φ jyn −φ j−1, yn )Dn ( )  
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These equations can be generalized to define the story drifts for any frame, e.g., a frame at the 

edge of the building plan. Equations (13) and (14) represent the response of the MDF system to 

p t . Therefore, the response of the system due to total excitation p t iseff,n ( ) eff ( )

3N 

( ) =∑ n ( )  r t  r t  (15) 

n=1 

This is the UMRHA procedure for exact analysis of elastic systems, which is identical to 

the classical modal RHA. Equation (10) is the standard equation governing the modal coordinate 

q t , Eqs. (13) and (14) define the contribution of the nth mode to the response, and Eq. (15) n ( )  

combines the response contribution of all modes. However, these standard equations have been 

derived in an unconventional way. In contrast to the classical derivation found in textbooks (e.g., 

Ref. 23), we have used the modal expansion of the spatial distribution of the effective forces. 

This concept will provide a rational basis for the modal pushover analysis procedure to be 

developed later. 

4.2 Inelastic Systems 

Although modal analysis is not valid for an inelastic system, its response can be usefully 

discussed in terms of the modal coordinates of the corresponding elastic system. Each structural 

element of this elastic system is defined to have the same stiffness as the initial stiffness of the 

same structural element of the inelastic system. Both systems have the same mass and damping. 

Therefore, the natural vibration periods and modes of the corresponding elastic system are the 

same as the vibration properties—referred to as natural “periods” and “modes”—of the inelastic 

system undergoing small oscillation. 

The response of an inelastic system to excitation peff,n (t ) will no longer be described by 

Eq. (9) because “modes” other than the nth “mode” will also contribute to the response, implying 

that the vibration modes of the corresponding elastic system are now coupled; thus the floor 

displacements are given by the first part of Eq. (16): 

3N 

( )t =∑φ r r  q ( )  ≈ φ q t( ) (16)u tn n n  

r=1 
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However, because for linear systems qr (t) = 0  for all modes other than the nth mode, it is 

reasonable to expect that qr ( )t  may be small and the nth “mode” should be dominant even for 

inelastic systems, implying that the elastic modes are, at most, weakly coupled. 

This above-mentioned expectation is confirmed numerically in Fig. 6 for the original 

symmetric-plan building. Its response to excitation peff,n (t )  was determined by nonlinear RHA 

and the resulting roof displacement history was decomposed into its modal components. This 

building yields extensively when subjected to the selected ground motion and modes other than 

the nth “mode” contribute to the response. Other modes start responding as soon as the structure 

yields; however, their contributions to the roof displacement are generally very small, only a few 

percent, of the nth-“mode” contribution (Fig. 6a, c and e), implying weak coupling of elastic 

modes after the system yields. However, this is not always the case, as seen in the response to 

excitation peff,2 ( )t in Fig. 6b. Although the contribution of the second mode is dominant, the 

first mode contribution is no longer very small, but is close to 25%.  

The above-mentioned expectation is also confirmed numerically for unsymmetric-plan 

systems in Figs. 7 through 9, where the displacement of the frame at the right edge of the plan 

(Fig. 2) is plotted. The degree of modal coupling for the torsionally-stiff unsymmetric system U1 

(Fig. 7) and for the torsionally-flexible unsymmetric system U3 (Fig. 9) is similar to that for the 

symmetric-building (Fig. 6). For system U1 modal coupling is seen to be insignificant for 

p t with n = 1, 2, and 4 (Fig. 7a, b, and d), but not for n = 3 (Fig. 7c), which denotes theeff,n ( )

mode similar to the second lateral vibration mode of the symmetric system. Although the 

contribution of the third mode is dominant, the first mode contribution is about 25%. For system 

U3, modal uncoupling is seen to be insignificant for n =1, 2, and 3 (Fig. 9a, b, and c), but not for 

n = 4 (Fig. 9d), which again denotes the mode similar to the second lateral vibration mode of the 

symmetric system. Although the contribution of the fourth mode is dominant, the second mode 

contribution is almost 25%.  However, this modal coupling for n = 2 turns out to be stronger, as 

expected, for the unsymmetric system U2 (Fig. 8b), because it has very similar periods in pairs 

of torsionally-coupled modes; but, the modal coupling remains negligible for n = 1, 3, and 4 

(Fig. 8a, c, and e). 

14  



 

    

 

 

 

  

     

0 

150 

150 

150 

150 

0.001 

(a) p  = −s × LA25 (b) p  = −s × LA25 (c) p  = −s × LA25 (d) p  = −s × LA25
eff,1 1 eff,2 2 eff,3 3  eff,4 4

30 10 2
Mode 1 Mode 1 

0.007

(c
m

)

0.009 
0 0 0 

Mode 1 

73.962 

Mode 1 

4.107r1
u

 

−150 −30 −10 −2 

30 10 2
Mode 2 

16.516 

Mode 2 Mode 2 Mode 2 

(c
m

)

4.428 0.027 
0 0 0 0 

r2
u

 

−150 −30 −10 −2 

30 10 2
Mode 3 

2.097 

Mode 3 Mode 3 Mode 3 

3.020 

2.393 0.006 
0 0 0 0(c

m
) 

r3
u

 

−150 −30 −10 −2 

30 10
Mode 4 

0.387 

2
Mode 4 

1.151 

Mode 4 

0.008 

Mode 4 

0.608 

(c
m

)

0 0 0 0 

r4
u

 

−150 −30 −10 −2 
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 

Time (sec)  Time (sec) Time (sec) Time (sec) 
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p = −s ×LA25 ; and (d) p = − ×LA25  ground motion. eff ,3 3  eff ,4 s4 

These observations suggest that approximate analysis procedures based on the modal 

uncoupling approximation are expected to be as accurate for torsionally-stiff and torsionally-

flexible buildings as they were for symmetric–plan buildings [15], but they may be less accurate 

for unsymmetric-plan buildings with very closely-spaced natural vibration periods. For many 

cases then, it is justified to approximate the structural response due to excitation peff,n (t )  by the 

second half of Eq. (16) where q t  is governed byn ( )

Fsnq�� + 2ζ ω   q� +  = −Γ  u�� t (17)n n n n 
M 

n g ( )  
n 

and Fsn is a nonlinear hysteretic function of qn : 
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If the smaller contributions of other modes had not been neglected, F  would depend onsn 

all modal coordinates, implying coupling of modal coordinates because of yielding of the 

structure. 

With the above-stated approximation, the solution of Eq. (17) can be expressed as Eq. (11) 

where n ( )D t  is governed by 

��  sn2 q� + F 
= −u��  ( )   (19)D + ζ ω   tn n n n g

Ln 
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ground motion. 
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ground motion. 

D t( )may be interpreted as the deformation response of the nth-“mode” inelastic SDF system, n

an SDF system with (1) small-oscillation vibration properties—natural frequency and damping 

−ratio ζ —of the nth mode of the corresponding linear system; and (2) F L  D relationn  sn n  n

between resisting force and deformation, where 

( ,sign D� ) = φ T
f D ,sign D� ) (20)F = F D   (sn sn n n n s n n 

which will be determined by nonlinear static or pushover analysis of the system using a modal 

force distribution based on Eq. (8). This procedure will be described later. Introducing the nth-

mode inelastic SDF system permitted extension of the well-established concepts for elastic 

systems to inelastic systems; compare Eq. (10) to (17), Eq. (12) to (19), and note that Eq. (11) 

applies to both systems. 
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Figure 9.  Modal decomposition of roof displacement at right frame of torsionally-
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Solution of the nonlinear Eq. (19) provides D t , which substituted into Eqs. (13) andn ( ) 

(14) gives floor displacements and story drifts. Equations (13) and (14) approximate the response 

of the inelastic MDF system to peff,n (t ) , the nth-mode contribution to peff (t ) . The 

superposition of responses to peff,n (t ) , according to Eq. (15) to obtain the total response to 

p t , is strictly valid only for linearly elastic systems; however, it has been shown to be eff ( )

approximately valid for symmetric-plan inelastic systems [15]. This is the UMRHA procedure 

for approximate analysis of inelastic systems. When specialized for linearly elastic systems, it 

becomes identical to the rigorous classical modal RHA described earlier. 

However, UMRHA is only an approximate analysis procedure for inelastic systems. To 

identify the underlying assumptions and approximations in UMRHA of inelastic systems, the 
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key equations in UMRHA for both classes of structural systems are compared. The striking 

similarity between the equations for the elastic and inelastic systems in apparent. Equations (11), 

(13), and (14) apply to both systems; Eqs. (10) and (12) differ from Eqs. (17) and (19) only in the 

resisting force; Eqs. (9) and (15) are exact for elastic systems but only approximate for inelastic 

systems. As is evident from Eq. (16), a principal approximation comes from neglecting the 

coupling of elastic modal coordinates [recall Eq. (18)] in computing the response of the inelastic 

system to p t . Supported by the numerical results of Figs. 7 through 9, this approximation eff,n ( )

is reasonable only because the excitation is the nth-mode contribution to the total excitation 

p t  [see Eq. (6)]. It would not be valid for an excitation with lateral force distribution eff ( )

different than sn , e.g., the total excitation peff (t ) . 

To test this approximation, the response of three unsymmetric systems to 

eff,n = −s u t  , where u t  is the same ground motion as the one selected earlier, was p ( )t n g�� ( )  ��g ( )

determined by two methods and compared: (1) rigorous nonlinear RHA by solving the governing 

coupled equations [similar to Eq. (1) except that the right side is peff,n (t ) ]; and (2) approximate 

UMRHA procedure. Such comparison for roof-displacement and top-story drift is presented in 

Figs. 10-12 and Figs. 13-15, respectively. The quality of the approximate results from UMRHA 

is seen to be uniformly good for the three systems: torsionally-stiff, torsionally flexible, and 

torsionally-similarly stiff. The errors in UMRHA results are slightly larger in drift than in 

displacement, but the errors in either response quantity seem acceptable for approximate 

methods to estimate seismic demands for unsymmetric-plan buildings. 

The UMRHA procedure is based on Eq. (16), which restricts the deformations due to 

peff,n ( ) th mode. This is exactly valid for linear elastic systems but is t  to be proportional to the n

an approximation for inelastic systems. This approximation is avoided in the MPA procedure, 

which is presented next, but a modal combination approximation must be introduced as will be 

seen later. To provide a proper context, MPA is first presented for linear systems. 
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Figure 10. Comparison of approximate roof displacement of the right-frame of 
unsymmetric-plan system U1 from UMRHA and exact solution by 

�� ��nonlinear RHA for p t = −s u t  ( )  , n = 1, 2, 3, and 4, where u t( )  =eff , n ( )  n g  g

LA25 ground motion. 
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Figure 11. Comparison of approximate roof displacement of the right-frame of 
unsymmetric-plan system U2 from UMRHA and exact solution by 

nonlinear RHA for p t = −s u t  ( )  , n = 1, 2, 3, and 4, where u t =�� �� ( )eff , n ( )  n g  g

LA25 ground motion. 
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unsymmetric-plan system U3 from UMRHA and exact solution by 
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Figure 13. Comparison of approximate top-story drift in right frame of unsymmetric-
plan system U1 from UMRHA and exact solution by nonlinear RHA for 

p u t  u tt = −s �� ( )  , n = 1, 2, 3, and 4, where �� ( )   = LA25 ground motion. eff , n ( )  n g  g
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Figure 14. Comparison of approximate top-story drift in right frame of unsymmetric-
plan system U2 from UMRHA and exact solution by nonlinear RHA for 

p t = −s u t  ( )  , n = 1, 2, 3, and 4, where u t( )   = LA25 ground motion. �� ��eff , n ( )  n g  g
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5. MODAL PUSHOVER ANALYSIS 

5.1 Elastic Systems 

Consider the lateral forces fxn and fyn in x and y directions and torques fθn  defined as: 

fxn = sxn An fyn = s yn An fθn = sθn An (21) 

where sxn , s yn , and sθn  are given by Eq. (8), An =ωn 
2Dn and Dn  is the peak deformation of 

the nth-mode linear SDF system, determined by solving Eq. (12) for D t  . Note that A  is alson ( ) n

the ordinate ( n ,ζA T  ) of the earthquake pseudo-acceleration response (or design) spectrum forn 

the nth-mode SDF system. Static analysis of the structure subjected to forces defined by Eq. (21) 

will provide the peak value rn  of the nth-mode contribution n ( ) to r tr t ( )  [Ref. 23, Section 

13.9]; recall that the n ( )  for floor displacements and story drifts is given by Eqs. (13) and (14).r t

Alternatively, this peak modal response can be obtained by static analysis of the structure 

subjected to lateral forces and torques defined by the modal force distribution s* 
n : 

 m 

* sn = 
 

mφ
φx

yn 

n 


 

(22) 
 

I φ p nθ  

with the structure pushed to the roof (or Nth floor) displacement: 

urxn = ΓnφrxnDn uryn = ΓnφrynDn urθn = ΓnφrθnDn (23) 

*where the subscript “r” denotes the roof . For elastic structures, sn  is the only force distribution 

that produces displacements proportional to the nth vibration mode. Therefore, the three 

components of roof displacement of an elastic system will simultaneously reach the values given 

by Eq. (23). 

The peak modal response rn , each determined by one modal pushover analysis, can be 

combined by the Complete Quadratic Combination (CQC) Rule [Ref. 23, Section 13.7], a rule 

suitable for unsymmetric-plan buildings, which may have closely-spaced frequencies of 
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vibration. This MPA procedure for linear elastic systems is identical to the standard response 

spectrum analysis (RSA) procedure. 

5.2 Inelastic Systems 

In the MPA procedure, the peak response rn  of the inelastic building to effective 

earthquake forces peff,n ( )t  is estimated by a nonlinear static analysis of the structure subjected 

*to lateral forces and torques distributed over the building height according to sn  [Eq. (22)] with 

the forces increased to push the structure up to roof displacements urxn , uryn , urθn . These 

values of the roof displacement components are determined from Eq. (23), as for elastic systems, 

but Dn  is now the peak deformation of the nth-“mode” inelastic SDF system, determined by 

solving Eq. (19) for n ( ) DD t  . Alternatively,  can be determined from inelastic response (or n

design) spectrum [Ref. 23; Sections 7.6 and 7.12] or the elastic response (or design) spectrum in 

conjunction with empirical equations for inelastic deformation ratio [24]. At this roof 

displacement, nonlinear static analysis provides an estimate of the peak value rn  of response 

quantity n ( ) : floor displacements, story drifts, and other deformation quantities. r t  

For an inelastic system, no invariant distribution of forces will produce displacements 

proportional to the nth elastic mode. Therefore, the three components of roof displacement of an 

inelastic system will not simultaneously reach the values given by Eq. (23). One of the two 

lateral components will be selected as the controlling displacement; the choice of the component 

would be the same as the dominant motion in the mode being considered. 

*Nonlinear static analysis using force distribution sn  leads to the nth-“mode” pushover 

curve, a plot of base shear Vbn  versus roof displacement urn  in the appropriate (x or y) direction. 

Such pushover curves for the first four modes of the three unsymmetric-plan systems are shown 

in Figs. 16-18, wherein the roof displacements at the right and left frames are identified, 

indicating significant inelastic action in the right or the left frame for the more significant modes: 

first and third modes of system U1, all four modes of system U2, and second and fourth modes 

of system U3. The first-“mode” pushover curve and its bilinear idealization are shown in Fig. 19; 

at the yield point the base shear is V
bn
y 

 and the roof displacement is urn
y . 
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Figure 16. “Modal” pushover curves of unsymmetric-plan system U1 with target 
displacements at the roof CM in the UMRHA and MPA analyses identified; 
also identified are the peak roof displacement at the right and left frames. 
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Figure 17. “Modal” pushover curves of unsymmetric-plan system U2 with target 
displacements at the roof CM in the UMRHA and MPA analyses identified; 
also identified are the peak roof displacement at the right and left frames. 
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Figure 18. “Modal” pushover curves of unsymmetric-plan system U3 with target 
displacements at the roof CM in the UMRHA and MPA analyses identified; 
also identified are the peak roof displacement at the right and left frames. 

30  



 

  
 

 

 

      

        

 

(b) F / L  − D Relationship(a) Idealized Pushover Curve sn n n

u 

V
 b
n

 

V
y 

bn 

Actual 

Idealized 

1 

k 
n 

1 
α 

n 
k 

n 

D 

F
 s
n
 /

 L
 n
 

V
y 

bn
 / M 

* 

n 

1 
ω 

n 

2 

1 
α 

n 
ω 

n 

2 

rn n 
u

y 
D

y 
= u

y 
/ Γ φ 

rn n rn n rn 

Figure 19. Properties of the nth-“mode” inelastic SDF system from the pushover  
curve.  

The force deformation (F Ln − D ) relation for the nth-“mode” inelastic SDF system is sn n 

required to determine Dn , whether it is determined by solving Eq. (19) for D tn ( ) or 

alternatively by response spectrum methods mentioned above. Based on the theory presented 

earlier [14] for symmetric-plan buildings, the Vbn − urn pushover curve is converted to the 

desired Fsn L − D  relation, as shown in Fig. 13b, where the yield values of F Ln and Dnn n sn 

are 

y y yF V usn bn  y rn  = D = (24)
*Ln Mn 

n Γnφrn  

*in which M = L Γ  is the effective modal mass. The two are related through n n n 

yFsn 2 y=ω D (25)n n
Ln 

Knowing F y L  and D
y 

from Eq. (24), the elastic vibration period T  of the nth-“mode” sn n n n

inelastic SDF system is computed from 
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1/ 2 
y L Dn nT = 2π   (26)n  y 

 Fsn 

In an unsymmetric-plan building the nonlinear static procedure leads to two pushover 

curves corresponding to the two lateral directions, x and y. In principle, both pushover curves 

will lead to the same Fs Ln − Dn relation; thus, either one may be used. However, it would ben 

natural to use the x (or y) pushover curve for a mode in which x (or y) component of 

displacements are dominant compared to their y (or x) component. 

The response value r  determined by pushover analysis is an estimate of the peak value of n

r t  of the inelastic structure to ; but it is not identical to another the response n ( )  peff,n (t )  

estimate determined by UMRHA. As mentioned earlier, r  determined by pushover analysis of  n

an elastic system is the exact peak value of r t( ) , the nth-mode contribution to response r t( ) .n

Thus we will refer to rn  as the peak “modal” response even in the case of inelastic systems. 

However, for inelastic systems the two estimates of the peak “modal” response are both 

approximate and different from each other; the only exception is the controlling component of 

the roof displacement. They differ because the underlying analyses involve different 

assumptions. UMRHA is based on the approximation contained in Eq. (16), which is avoided in 

MPA because the displacements, drifts, and other deformations are determined by nonlinear 

*static analysis using force distribution sn . As a result, the floor displacements are no longer 

proportional to the mode shape, as implied by Eq. (16). In this sense, the MPA procedure 

represents the nonlinear behavior of the structure better than UMRHA. 

However, the MPA procedure contains a different source of approximation, which does 

not exist in UMRHA. The peak “modal” response r , each determined by one pushover analysis, n

are combined by the CQC rule, just as for elastic systems. This application of modal combination 

rules to inelastic systems obviously lacks a rigorous theoretical basis, but seems reasonable 

because the modes are weakly coupled. 
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5.3 Summary of MPA 

A step-by-step summary of the MPA procedure to estimate the seismic demands for an 

unsymmetric-plan multistory building is presented as a sequence of steps: 

1. Compute the natural frequencies, ω  and modes, φn , for linearly elastic vibration of the n 

building. 

2. For the nth-mode, develop the base shear-roof displacement, Vbn  urn , pushover curve by 

*nonlinear static analysis of the building using the force distribution, sn  (Eq. 22). Between the 

two pushover curves obtained corresponding to two lateral directions, x and y, preferably 

choose the pushover curve in the dominant direction of motion of the mode. Gravity loads, 

including those present on the interior (gravity) frames, are applied before pushover analysis. 

Note the value of the lateral roof displacement due to gravity loads, urg . 

3.  Idealize the pushover curve as a bilinear curve. If the pushover curve exhibits negative post-

yielding stiffness, the second stiffness (or post-yield stiffness) of the bilinear curve would be 

negative. 

4. Convert the idealized Vbn  urn  pushover curve to the force-displacement, Fsn L  D ,n n

y *relation for the nth-“mode” inelastic SDF system by utilizing F
y 

L =V Mn andsn n bn 

D
y = u

y Γ φ (Eq. 24) in which φ  is the value of φ  at the roof in the direction of then  rn  n rn   rn n 

selected pushover curve; and M n 

* and Γn  correspond to the direction of ground motion 

under consideration (x or y). 

5. Compute the peak deformation D  of the nth-“mode” inelastic single-degree-of-freedom n

(SDF) system defined by the force-deformation relation developed in Step 4 and damping 

1/ 2 
yratio ζ n . The elastic vibration period of the system is T = 2π n

y 
n (L  D  n Fsn  ) . For an SDF 

system with known Tn  and ζ , Dn  can be computed from nonlinear RHA, inelastic design n 

spectrum, or elastic design spectrum in conjunction with empirical equations for the ratio of 

deformations of inelastic and elastic systems. 
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6. Calculate peak roof displacement urn  in the direction of the selected pushover curve 

associated with the nth-“mode” inelastic SDF system from u = Γ φ D .rn n rn n 

7.  From the pushover database (Step 2), extract values of desired responses rn g+  due to the 

combined effects of gravity and lateral loads at roof displacement equal to urn + urg . 

8.  Repeat Steps 3-7 for as many modes as required for sufficient accuracy. 

9.  Compute the dynamic response due to nth-“mode”: rn = rn+g − rg , where rg  is the 

contribution of gravity loads alone. 

10. Determine the total response (demand) by combining gravity response and the peak “modal” 

responses using the CQC rule:  

 1/ 2  J J  
r ≈ max r ±  ρ r r      (27)   

g ∑∑ in i  n  
 

    
= =   i n1 1    

in which the correlation coefficient  ρin  is given by:  

3/ 2  8 ζ ζ  (β ζ  +ζ )βi n in i n inρ = 
2  

(28)in 
2  2 2 2 21− β + 4ζ ζ  β  1+ β + 4 ζ +ζ β( in ) i n in ( in ) ( i n ) in  

where βin = i / n  is the ratio of the ith and nth modal frequencies, and ζ i  and ζ n ω ω   are the 

damping ratios for these modes. 
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6. EVALUTION OF THE MPA PROCEDURE  

The MPA procedure was implemented for the original symmetric building and the three 

unsymmetric systems for the selected ground motion. To estimate the seismic demands, the 

contribution of the first three ‘modes” were included in analysis of the symmetric building and 

the first three “modal” pairs for the unsymmetric systems. The combined values of floor 

displacements and story drifts were computed including one, two, or three “modal” pairs (or 

modes for symmetric building). Figure 20a shows the floor displacements and story drift 

demands at the CM for the symmetric building together with the exact value determined by 

nonlinear RHA of the system. Figures 20b, c, and d show similar results for the three 

unsymmetric systems, but the demands are now for the frame at the right edge of the plan. These 

results lead to the following observations for unsymmetric systems, which also apply to 

symmetric buildings provided that all reference to “modal” pair(s) is replaced by mode(s). 

As may be expected, the first “modal” pair alone is inadequate in estimating the story 

drifts, especially in the upper stories of the building (Fig. 20). Including the response 

contributions of higher “modal” pairs significantly improves the story drifts, but the floor 

displacements are unaffected, implying that contributions of the higher modal pairs to floor 

displacements are negligible. Two “modal” pairs suffice, implying that the contribution of the 

third “modal” pair is negligible. 

Figure 20 shows that higher “modal” pairs contribute significantly to the seismic demands 

for the selected systems and MPA is able to capture these effects. With sufficient number of 

“modal” pairs included, the height-wise distribution of story drifts estimated by MPA is 

generally similar to the “exact” results from nonlinear RHA, and much superior to the first 

“modal” pair result. However, because MPA is an approximate method, it does not match the 

“exact” demands determining by nonlinear RHA. Instead MPA has the goal of estimating 

seismic demands to a useful degree of accuracy for practical application with the advantage of 

much less effort than required for nonlinear RHA.  

For the excitation considered, the MPA results are accurate for two unsymmetric systems, 

U1 and U3, to a similar degree as they were for the symmetric building, which is apparent by 

comparing Figs. 20b and d with Fig. 20a; however, the results are less accurate for system U2. 

This loss of accuracy could be due to two reasons: The first plausible reason could be that the 
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system has very close modal periods and strong coupling of the lateral and torsional motions in 

each mode of vibration. However, in spite of the resulting stronger modal coupling (Fig. 8), the 

approximate UMRHA procedure was shown to be valid for this system (Fig. 11). Thus, strong 

lateral-torsional coupling does not seem to be the source of the entire discrepancy. Another 

plausible reason is that the roof displacement of system U2 due to the selected ground motion is 

considerably underestimated in the MPA procedure (Fig. 20c). This discrepancy occurs because 

the individual “modal” responses attain their peaks almost simultaneously (Fig. 11b), a situation 

for which the CQC modal combination rule is not valid. For such a case, the absolute sum 

(ABSSUM) rule (see Ref. 23, Section 13.7.2) may be more appropriate. To explore this 

possibility, Fig. 21 shows the floor displacements and story drifts determined by the MPA 

procedure using two different modal combination rules, CQC and ABSSUM, and compares these 

two estimates of seismic demand with its “exact” value determined by nonlinear RHA. The 

“exact” demand is generally bounded by the two estimates. The ABSSUM rule provides a 

conservative estimate of the roof displacement, as it should, and overestimates displacements at 

most floors and drifts in most stories. In contrast, for elastic systems, the ABSSUM rule would 

be conservative for all response quantities. 

The preceding scenario points to the need for evaluating the MPA procedure considering 

an ensemble of ground motions and documenting the bias and dispersion in this procedure 

applied to unsymmetric buildings, as has been accomplished for symmetric buildings [15]. Such 

a statistical investigation is necessary for two reasons: First, the SRSS and CQC modal 

combination rules are based on random vibration theory and the combined peak response should 

be interpreted as the mean of the peak values of response to an ensemble of earthquake 

excitations. Thus, the modal combination rules are intended for use when the excitation is 

characterized by a smooth response (or design) spectrum. Although modal combination rules can 

also approximate the peak response to a single ground motion characterized by a jagged response 

spectrum, the errors are known to be much larger. Second, accurate estimation of roof 

displacement is necessary for the success of any pushover procedure and this usually is not 

possible for individual ground motions, as has been observed for the six SAC buildings [25]. For 

the Los Angeles 9-story building, the ratio of roof displacement values determined by MPA and 

nonlinear RHA varied from 0.66 to 1.70, with a median value of 1.21, over the 20 ground 

motions mentioned earlier. 
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Figure 20. Floor displacements and story drifts determined by MPA with variable 
number of “modal” pairs (or modes) and nonlinear RHA: (a) symmetric 
building; (b) unsymmetric-plan system U1; (c) unsymmetric-plan system 
U2; and (d) unsymmetric-plan system U3. 
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Figure 21. Floor displacements and story drifts at the right frame of unsymmetric-
plan system U2 determined by MPA using CQC and ABSSUM combination 
rules and nonlinear RHA. 

38  



 

 

 

 

 

 

 

 

 

7. CONCLUSIONS  

The Modal Pushover Analysis (MPA) procedure for estimating seismic demands has been 

extended to unsymmetric-plan buildings. Based on structural dynamics theory, the MPA 

procedure retains the conceptual simplicity of current procedures with invariant force 

distribution, now common in structural engineering practice. 

The MPA estimate of seismic demand due to an intense ground motion (including a 

forward directivity pulse) has been shown to be generally accurate for unsymmetric systems to a 

similar degree as it was for a symmetric building. This conclusion is based on a comparison of 

the MPA estimate of demand and its exact value determined by nonlinear RHA for four 

structural systems: Los Angeles 9-story steel frame building designed for the SAC project and 

variations of this symmetric-plan building to create three unsymmetric-plan systems with 

different degrees of coupling between lateral and torsional motions, as characterized by different 

values of the ratio of uncoupled lateral and torsional vibration periods: torsionally-stiff system 

U1, torsionally-flexible system U3, and torsionally-similarly-stiff system U2. For the excitation 

considered, the MPA estimates for two unsymmetric systems, U1 and U3, are similarly accurate 

as they were for the symmetric-plan building; however, the results deteriorated for system U2 

because of (a) stronger coupling of elastic modes and (b) underestimation of roof displacement 

by the CQC modal combination rule, which occurs because the individual modal responses attain 

their peaks almost simultaneously This implies that for system U2 and the selected ground 

motion the CQC modal combination rule would not give an accurate estimate of the peak 

response even if the system were linearly elastic. 

This points to the need for evaluating the MPA procedure considering an ensemble of 

ground motions and documenting the bias and dispersion in the procedure applied to 

unsymmetric buildings, as has been accomplished for symmetric buildings [11]. Such future 

work will also evaluate the MPA procedure when earthquake hazard is defined by a design 

spectrum—typical of building codes and building evaluation guidelines—a situation for which 

modal combination rules were intended. 
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APPENDIX A: LOS ANGELES 9-STORY SAC BUILDING  

The 9-story structure, shown in Fig. A-1, was designed by Brandow & Johnston 

Associates
*
 for the SAC

**
 Phase II Steel Project. Although not actually constructed, this structure 

meets seismic code requirements of the 1994 UBC and represents typical medium-rise buildings 

designed for the Los Angeles, California, region. 

A benchmark structure for the SAC project, this building is 45.73 m (150 ft) by 45.73 m 

(150 ft) in plan, and 37.19 m (122 ft) in elevation. The bays are 9.15 m (30 ft) on center, in both 

directions, with five bays each in the north-south (N-S) and east-west (E-W) directions. The 

building’s lateral force-resisting system is composed of steel perimeter moment-resisting frames 

(MRFS). To avoid bi-axial bending in corner columns, the exterior bay of the MRF has only one 

moment-resisting connection. The interior bays of the structure contain frames with simple 

(shear) connections. The columns are 345 MPa (50 ksi) steel wide-flange sections. The levels of 

the 9-story building are numbered with respect to the ground level (see Fig. A.1) with the ninth 

level being the roof. The building has a basement level, denoted B-1. Typical floor-to-floor 

heights (for analysis purposes measured from center-of-beam to center-of-beam) are 3.96 m (13 

ft). The floor-to-floor height of the basement level is 3.65 m (12 ft) and for the first floor is 5.49 

m (18 ft). 

The column lines employ two-tier construction, i.e., monolithic column pieces are 

connected every two levels beginning with the first level. Column splices, which are seismic 

(tension) splices to carry bending and uplift forces, are located on the first, third, fifth, and 

seventh levels at 1.83 m (6 ft) above the center-line of the beam to column joint. The column 

bases are modeled as pinned and secured to the ground (at the B-1 level). Concrete foundation 

walls and surrounding soil are assumed to restrain the structure at the ground level from 

horizontal displacement. 

The floor system is composed of 248 MPa (36 ksi) steel wide-flange beams in acting 

composite action with the floor slab. The seismic mass of the structure is due to various 

components of the structure, including the steel framing, floor slabs, ceiling/flooring, 

* Brandow & Johnston Associates, Consulting Structural Engineers, 1660 W. Third St., Los Angeles, CA 90017. 
** SAC is a joint venture of three non-profit organizations: The Structural Engineers Association of California 

(SEAOC), the Applied Technology Council (ATC), and California Universities for Research in Earthquake 

Engineering (CUREE). SAC Steel Project Technical Office, 1301 S. 46th Street, Richmond, CA 94804-4698. 
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mechanical/electrical, partitions, roofing and a penthouse located on the roof. The seismic mass 

of the ground level is 9.65×10
5
 kg (66.0 kips-sec

2
/ft), for the first level is 1.01×10

6
 kg (69.0 kips-

sec
2
/ft), for the second through eighth levels is 9.89×10

5
 kg (67.7 kips-sec

2
/ft), and for the ninth 

level is 1.07×10
6
 kg (73.2 kips-sec

2
/ft). The seismic mass of the above ground levels of the entire 

structure is 9.00×10
6
 kg (616 kips- sec

2
/ft). 

The three-dimensional building model, implemented in OpenSees
+
, consists of four 

perimeter MRFs (Fig. 2), two in each direction, connected by rigid floor diaphragms at each 

floor level; Fig. A1 shows details of a typical frame. Such a three-dimensional model has three 

DOFs per floor: two translational in the x- and y-directions, and one rotational about the vertical 

axis. The translational and rotational degrees-of-freedom at CM of the ground floor level are 

restrained to represent effects of stiff basement walls.  

The model is assigned translational masses in the x- and y-directions equal to m j and a 

rotational mass (or moment of inertia) equal to IO j  about a vertical axis at CM of the each floor 

level; IO j  is computed by assuming that the mass m j  is uniformly distributed over the floor 

plan. The model is based on centerline dimensions of the bare frames in which beams and 

columns extend from centerline to centerline. The beams and columns are modeled with 

nonlinear beam-column elements in OpenSees with fiber sections; this element considers spread 

of plasticity across the section depth and the element length. The effects of gravity loads on 

interior gravity-load carrying frames are modeled by including a P-∆ column at the geometric 

center of the model. The strength, dimension, and shear distortion of panel zones are neglected 

but large deformation (P–∆) effects are included. 

+ Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L., and Jeremic, B. (2003). Open System for Earthquake 

Engineering Simulation (OpenSees): Command Language Manual, Pacific Earthquake Engineering Center, 

University of California, Berkeley, http://opensees.berkeley.edu.   
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Fig. A-1. Nine-story building [adapted from Ohtori, Y., Christenson, R. E., Spencer, 
B. F., Jr., and Dyke, S. J. (2000). Benchmark Control Problems for 
Seismically Excited Nonlinear Buildings, http://www.nd.edu/~quake/, 
Notre Dame University, Indiana.] 
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