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Abstract. A restriction of R-Mingle with the variable-sharing property
and the Ackermann properties is defined. From an intuitive semantical
point of view, this restriction is an alternative to Anderson and Belnap’s
logic of entailment E.
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1. Introduction

The axiom mingle and the restricted axiom mingle are, respectively, the
following theses:

(M) A— (A= A
and
(M) (A— B)— [(A— B) = (A — B)]

The axioms (M) and (M’) are equivalent in the context of Anderson and
Belnap’s relevance logic R (see Proposition 1 in Section 2 below). The
logic R-Mingle RM is the result of adding (M) (or (M) to R.

On the other hand, and as it is well-known, according to Anderson
and Belnap, a necessary property of any relevance logic S is the following

(see [1]):
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DEFINITION 1 (Variable-Sharing Property — vsp). A logic S has the vsp
iff in any theorem of S of the form A — B, A and B share at least one
propositional variable.

Not less well known is the fact that RM lacks the vsp (see [1], §29.5).
The aim of this paper is to define a modal restriction of RM with the
vsp. The idea is essentially to restrict the axiom of assertion

(a) A= [(A—=C)— (]

and (M) to the case where A is an implicative formula; that is, to restrict
(a) and (M) to:

(@) (A= B)—=[[(A— B)—=C)] = (]

and (M'), respectively. The system resulting from this restriction is la-
belled RM™. It will be proved that not only RM" has the vsp, but also
that RM"” has exactly the same properties that are predicable of the
logic of entailment E and of the logic of relevance R (see [1], §22.1.3).

On the other hand, RM" is characterized as “modal” in the sense
that it has the “Ackermann Property”, to wit:

DEFINITION 2 (Ackermann Property — AP). A logic S has the AP iff in
any theorem of S of the form A — (B — (), A contains at least any
implicative formula (A is implicative iff A is of the form X — Y).

According to Anderson and Belnap, the AP is a necessary property
of any logic of entailment. Consequently, the AP, which is predicable of
E but not of R, is the property that makes of E the logic of relevance
and necessity, that is, the logic of entailment, R solely being the logic
of relevance (see [1]). Therefore, and on the one hand, RM" is dubbed
“modal” in Anderson and Belnap’s sense. But, on the other hand, given
that RM™ has the vsp and the AP, from an intuitive semantical point
of view, it can be considered to be an alternative to Anderson and Bel-
nap’s E.

2. The logic RM"

The logic RM can be axiomatized as follows (cf. [1]):
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Azxioms:
(A1) A— A
(A2) (A—-B)—=[(B—C)— (A—C)]
(A3) [A— (A— B)] = (A— B)
(A4) A—[(A— B)— B
(A5) A— (A— A
(A6) (ANB)—+A |/ (ANB)— B
(AT) (A= B)AN(A—=C)] = [A— (BAC)]
(A8) A— (AvB) |/ B— (AVB)
(A9) (A= C)N(B—C)] = [(AVB)— (]
(A10) [AN(BVC)]—=[(AANB)V(ANC)]
(A11) (A— —-B) — (B — —-A)
(A12) (A — B) —» (-B — A)
(A13) (A——-A)—-A
Rules:

Modus ponens (MP): (FA— B &FA)=+B
Adjunction (Adj): (FA&+FB)=FAAB

Then, the logic RM" is the result of substituting (A4) and (A5) by

(A4) (A— B) = [[(A— B) = C] — (]
(A5 (A— B)— [(A— B) = (A— B)]
respectively.

Consider now the following axiom:
(A14) A—=[(A— A) — 4]
labelled “demodalizer” by Anderson and Belnap. It is proved:

PROPOSITION 1. RM and RM" plus (A14) are deductively equivalent
logics.



344 GEMMA ROBLES, JOoSE M. MENDEZ, FRANCISCO SALTO

PROOF. (a) It is obvious that RM" is included in RM, (b) We have to
prove that (A4) and (A5) are derivable in RM" plus (A14), as we show
below. Firstly, note that the axiom

(A15) [(A—A) - A — A

is immediate in RM"” by (A1) and (A4"). Next, we prove that (A4) and
(A5) are derivable.
A4. A— [(A— B) — B

(A4) 1. [(A—=A) - Al - {[[(A— A) - A] —» B] - B}
(A14),1 2. A—{[[(A— A) - A] - B] — B}
(A15),2 3. A—[(A— B) — B]

A5. A— (A— A)

(A5") L.L[(A—=A) A =-{[(A—A) = A = [(A— A) = A]}
(A14), (A15),1 2. A= (A— A) -

Note, finally, that (A13) is not independent in RM.

On the other hand, Anderson and Belnap’s Logic of Entailment E
can be axiomatized (cf. [2]) in respect of RM", by dropping (A5') and
changing (A4’) for

(A16) {{A—=ANB—-B)]—->C}—C
Then, it is proved:
PROPOSITION 2. E and RM" are different logics.

PROOF. (a) Consider the following set of matrices where designated val-
ues are starred:

Matriz set I (MSI)

—]0 1 2 3|- AJO 1 23 VvI]0 1 23
033333 00000 010123
o 1 2 3|2 *j0 1 1 1 *|1 1 2 3
200 0 1 3|1  *2]0 1 2 2 *2/2 2 2 3
30 0 0 3|0 *3|0 1 2 3 *3|3 3 3 3
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This set verifies E (that is, it satisfies the axioms and rules of E), but
falsifies (A5') (v(A) =1 and v(B) = 2).

(b) Consider the following set of matrices where designated values
are starred:

Matriz set II (MSII)

-0 1 2 3 4 5| ANlO0O 1T 2 3 4 5
0 |4 4 4 4 4 415 0]j]0 0 0 O O O
10 4 4 4 4 414 10 11 1 1 1
200 0 2 0 4 412 210 1 2 1 2 2
*310 0 0 3 4 413 *310 1 1 3 3 3
*410 0 0 0 4 411 410 1 2 3 4 4
10 0 0 0 0 4]0 *10 1 2 3 4 5
v 0 1 2 3 4 5
0|10 1 2 3 4 5
11 1 2 3 4 5
212 2 2 4 4 5
*313 3 4 3 45
414 4 4 4 4 5
*15 5 5 5 5 5

This set verifies RM" but falsifies (A16) (v(A) = 3, v(B) = 2, and
v(C) =1). !

3. RM" has the variable-sharing property

In fact, and as was pointed out in the introduction, we shall prove a
stronger result: RM™ has exactly the same properties that are predicable
of E and R (cf. [1], §22.1.3).

In order to prove that this is the case, we define (see [1], p. 240) an-
tecedent part (ap) and consequent part (cp) of wif inductively as follows:

DEFINITION 3 (ap and cp of wif). 1. A is a cp of A.
2. If BAC isacp (ap) of A, then both B and C' are cps (aps) of A.
3. If BV Cisacp (ap) of A, then both B and C' are cps (aps) of A.
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4. If B — Cis a cp (ap) of A, then B is an ap (cp) of A and C is a cp
(ap) of A.

5. If =B is a cp (ap) of A, then B is an ap (cp) of A.

Then, the properties we refer to are expressed in the following theo-
rems (cf. [1], §22.1.3).

THEOREM 1. If A — B is provable (in RM"), then some variable occurs
as an ap of both A and B, or else as a cp of both A and B.

THEOREM 2. If A is provable (in RMP) and A contains no conjunctions
as aps and no disjunctions as cps, then every variable in A occurs at least
once as ap and at least once as cp.

The proofs of Theorems 1 and 2 are based upon the ten-elements set
of matrices from Fig. 1, where all values but 0 are designated.
Firstly, it is proved:

PROPOSITION 3. MSIII verifies RM".
PRrROOF. It is left to the reader. =

Next, we proceed into proving Theorem 1. We follow Anderson and
Belnap’s strategy in [1], §22.1.3.

PROOF OF THEOREM 1. Suppose that A — B is a wif in which no vari-
able occurs as an ap of both A and B or as a cp of both A and B.
Then, the following six situations exhaust the possibilities in which each
variable p occurring in A — B can appear in A and/or B:

A B
p-|¢cp -
ap -
~ ap
- ¢p
¢p ap
ap ¢p

Read first row: p occurs as cp in A but does not occur in B. The
rest of the rows are read similarly.

According to these six possibilities and given MSIII, the following
assignation is defined for each variable p in A — B:



347

A MODAL RESTRICTION OF R-MINGLE ...

oo~ © 10 " AN —H O
DDA DDIDIDIDIDIOD DD
00| = b= b= D= D= D= D= D= O
IS N S S A =)
NNl S S N o No - No o N
Tol Tor il S S e i Y I Yo Sl e B o i e B e}
A= S S e R I N o N o B e Ne)
NI~ O OO MmO OO
[ I S S el e M el Mo e N
—HloOI~- 0O 00000 OO
=l lo i eiolN ool ollolNollolo
%0123456789

DO AN <F 1O O - 0 D DO O O O O O O O O O
0 (O AN < 1O © - 0 0O |CO OO OO 0O OO OO OO OO 0 O
~ | N o O I~ D~ D~ D~ |~ I~ I~ I~ I~ I~ D~ D~ 00 O
Nejl fa] AN M AN O O O O OO © © M I~ I~ O I~ 00 O
0[O AN AN 0 N0 0 0 OO 1O O D~ <H 10 D~ b~ 00 O
<t | A AN < AN << |t <f < I~ <f O D~ D~ 00 O
(el L] AN M A ANMmMmOM M| N MO N D~ D~ © I~ 0 D
N o AN AN NN NN NN NN <D O~ 0O
— | — o o o~ = = Sl = AN M <t 1O O I~ 00 O
jevl fan) SO O OO O oo S| = AN N <H 10 © - 0 O
<|lo N F O O~ 00D SO~ M < © M~ 0D

Figure 1. Matrix set IIT (MSIII)
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A B
p:lcp — |3
ap — |6
- ap | 4
- ¢cp| b
cp ap |9
ap cp | O

Then, Theorem 1 is immediate from the following two lemmas.

LEMMA 1. For every ap C of A, v(C) € {0, 3, 6}; and for every cp C of
A, v(C) € {3, 6, 9}.

LEMMA 2. For every ap C of B, v(C) € {4, 5, 9}; and for every cp C of
B, v(C) €10, 4, 5}.

The proofs of Lemma 1 and Lemma 2 are by induction on the length
of C' and they are easy by inspection of MSIII. In this sense, notice that
fragments {0, 3, 6, 9} and {0, 4, 5, 9} are closed under —, A, V and —.

Then, the proof of Theorem 1 is immediate. Given that each formula
is a cp of itself, by Lemma 1 and Lemma 2, v(A) € {3, 6, 9} and
v(B) € {0, 4, 5}, whence by MSIII, v(A — B) = 0, that is, A — B
is not a theorem of RM”. Consequently, if A — B is a theorem of
RM", then some variable occurs either as an ap or else as a c¢p of both
A and B. =

The following is an immediate corollary of Theorem 1.
COROLLARY 1. RM" has the vsp.

Next, we proceed to the proof of Theorem 2.

PROOF OF THEOREM 2. Suppose that A is a wif in which some variable,
say p, occurs only as a cp. Assign, then, the value 0 to p and the value
4 to the rest of the variables (distinct from p) appearing in A. Then
according to MSIII, it is proved:

LEMMA 3. If B is any part of A in which p does not occur, then v(B) €

(4,5},
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PRrROOF. Induction on the length of B. As it was the case with lemmas
1 and 2, the proof is easy by inspection of MSIII. In this sense, remark
that the {4,5} fragment of MSIII is closed under —, A, V and . -

LEMMA 4. If B is any part of A in which p does occur, then (a) if B is
an ap of A, v(B) =9 and (b) if B isa cp of A, v(B) = 0.

PRrOOF. Induction on the length of B. If B is a propositional variable,
then B is p and it occurs only as a cp. So, v(B) = 0.

Regarding the rest of the cases, we prove that of the conditional and
leave the others to the reader.

B is of the form C — D:

(a) B is a ¢cp: Then C is an ap and D is a cp.

al. p occurs in C and in D:

By hypothesis of induction (HI), v(C) =9 and v(D) = 0. so, v(C —
D) =0 by MSIII.

a2. p occurs in C but not in D:

By HI and Lemma 3, v(C') = 9 and v(D) € {4,5}. By MSIII, v(C —
D) =0.

a3d. p occurs in D but not in C-

By HI and Lemma 3, v(C) € {4,5} and v(D) = 0. So, v(C — D) =0
by MSIII.

(b) B is an ap: Then C is a cp and D is an ap.

bl. p occurs in C' and in D:

By HI, v(C) =0 and v(D) = 9. so, v(C — D) =9 by MSIII.

b2. p occurs in C but not in D:

By HI and Lemma 3, v(C') = 0 and v(D) € {4,5}. By MSIII, v(C —
D) =09.

b3. p occurs in D but not in C-:

By HI and Lemma 3, v(C) € {4,5} and v(D) = 9. So, v(C — D) =9
by MSIII.

With b3 ends the proof of the conditional case. The proof of the
conjunction, disjunction and negation cases is similar. (Recall that con-
junctions can only appear as cps and disjunctions only as aps). =

The proof of Theorem 2 is now immediate. As each formula is a cp of
itself, it follows from Lemma 4 that v(A) = 0. That is, A is not a theorem
of RM". Consequently, if A is a theorem of RM" without conjunctions



350 GEMMA ROBLES, JOoSE M. MENDEZ, FRANCISCO SALTO

as aps and disjunctions as cps, then every variable in A occurs at least
once as ap and at least once as cp. —

4. RM" has the Ackermann Property

We prove that RM" has the Ackermann Property (cf. Definition 2).
Consider the following set of matrices where all values but 0 are
designated:

Matrixz set IV(MSIV)

- 10 1 2 3 4]~ A0 1 2 3 4
03 3 3 3 3|4 010 0 0 0 O
170 3 0 0 3|3 110 1 2 3 1
2 |0 3 3 0 3|2 210 2 2 3 2
310 3 3 3 3|1 310 3 3 3 3
4 {0 0 0 0 310 410 1 2 3 4
vio 1 2 3 4
010 1 2 3 4
111 1 1 1 4
212 1 2 2 4
313 1 2 3 4
414 4 4 4 4

Firstly we have (the proof is left to the reader):
PROPOSITION 4. MSIV verifies RM".

And then:
PROPOSITION 5. RM" has the AP.

PROOF. Let A — (B — C) be any wif in which — does not appear
in A. Then, assign all the variables in A the value 2. According to
MSIV, v(A) = 2, and so, v(A — (B — C)) = 0. Therefore, RM" has
the AP. o
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RM" has then both the vsp and the AP. Consequently, RM" is an
alternative to E from an intuitive semantical point of view, as was pointed
out in the introduction of this paper.

We end the paper with a problem: what is the semantics for RM™?
If we think in terms of the Routley-Meyer ternary relational semantics,
corresponding postulates for each one of the axioms of RM", except for
(A4") and (A¥'), are well-known for at least thirty years (see [2]). So,
the problem can be reformulated as follows: which are the correspond-
ing semantical postulates for (A4") and (A5’) or, equivalently, for (A4”)
[(A— A) — B] — B and (A¥5)?
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