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1. Introduction

The axiom mingle and the restricted axiom mingle are, respectively, the
following theses:

(M) A → (A → A)

and

(M′) (A → B) → [(A → B) → (A → B)]

The axioms (M) and (M′) are equivalent in the context of Anderson and
Belnap’s relevance logic R (see Proposition 1 in Section 2 below). The
logic R-Mingle RM is the result of adding (M) (or (M′)) to R.

On the other hand, and as it is well-known, according to Anderson
and Belnap, a necessary property of any relevance logic S is the following
(see [1]):
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Definition 1 (Variable-Sharing Property – vsp). A logic S has the vsp
iff in any theorem of S of the form A → B, A and B share at least one
propositional variable.

Not less well known is the fact that RM lacks the vsp (see [1], §29.5).
The aim of this paper is to define a modal restriction of RM with the
vsp. The idea is essentially to restrict the axiom of assertion

(a) A → [(A → C) → C]

and (M) to the case where A is an implicative formula; that is, to restrict
(a) and (M) to:

(a′) (A → B) → [[(A → B) → C)] → C]

and (M′), respectively. The system resulting from this restriction is la-
belled RM�. It will be proved that not only RM� has the vsp, but also
that RM� has exactly the same properties that are predicable of the
logic of entailment E and of the logic of relevance R (see [1], §22.1.3).

On the other hand, RM� is characterized as “modal” in the sense
that it has the “Ackermann Property”, to wit:

Definition 2 (Ackermann Property – AP). A logic S has the AP iff in
any theorem of S of the form A → (B → C), A contains at least any
implicative formula (A is implicative iff A is of the form X → Y ).

According to Anderson and Belnap, the AP is a necessary property
of any logic of entailment. Consequently, the AP, which is predicable of
E but not of R, is the property that makes of E the logic of relevance
and necessity, that is, the logic of entailment, R solely being the logic
of relevance (see [1]). Therefore, and on the one hand, RM� is dubbed
“modal” in Anderson and Belnap’s sense. But, on the other hand, given
that RM� has the vsp and the AP, from an intuitive semantical point
of view, it can be considered to be an alternative to Anderson and Bel-
nap’s E.

2. The logic RM�

The logic RM can be axiomatized as follows (cf. [1]):
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Axioms:

A → A(A1)

(A → B) → [(B → C) → (A → C)](A2)

[A → (A → B)] → (A → B)(A3)

A → [(A → B) → B](A4)

A → (A → A)(A5)

(A ∧ B) → A / (A ∧ B) → B(A6)

[(A → B) ∧ (A → C)] → [A → (B ∧ C)](A7)

A → (A ∨ B) / B → (A ∨ B)(A8)

[(A → C) ∧ (B → C)] → [(A ∨ B) → C](A9)

[A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)](A10)

(A → ¬B) → (B → ¬A)(A11)

(¬A → B) → (¬B → A)(A12)

(A → ¬A) → ¬A(A13)

Rules:

Modus ponens (MP): (⊢ A → B & ⊢ A) ⇒ ⊢ B

Adjunction (Adj): (⊢ A & ⊢ B) ⇒ ⊢ A ∧ B

Then, the logic RM� is the result of substituting (A4) and (A5) by

(A → B) → [[(A → B) → C] → C](A4′)

(A → B) → [(A → B) → (A → B)](A5′)

respectively.

Consider now the following axiom:

(A14) A → [(A → A) → A]

labelled “demodalizer” by Anderson and Belnap. It is proved:

Proposition 1. RM and RM� plus (A14) are deductively equivalent
logics.
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Proof. (a) It is obvious that RM� is included in RM, (b) We have to
prove that (A4) and (A5) are derivable in RM� plus (A14), as we show
below. Firstly, note that the axiom

(A15) [(A → A) → A] → A

is immediate in RM� by (A1) and (A4′). Next, we prove that (A4) and
(A5) are derivable.

A4. A → [(A → B) → B]

1. [(A → A) → A] → {[[(A → A) → A] → B] → B}(A4′)

2. A → {[[(A → A) → A] → B] → B}(A14), 1

3. A → [(A → B) → B](A15), 2

A5. A → (A → A)

1. [(A → A) → A] → {[(A → A) → A] → [(A → A) → A]}(A5′)

2. A → (A → A) ⊣(A14), (A15), 1

Note, finally, that (A13) is not independent in RM.
On the other hand, Anderson and Belnap’s Logic of Entailment E

can be axiomatized (cf. [2]) in respect of RM�, by dropping (A5′) and
changing (A4′) for

(A16) {[(A → A) ∧ (B → B)] → C} → C

Then, it is proved:

Proposition 2. E and RM� are different logics.

Proof. (a) Consider the following set of matrices where designated val-
ues are starred:

Matrix set I (MSI)

→ 0 1 2 3 ¬

0 3 3 3 3 3
*1 0 1 2 3 2
*2 0 0 1 3 1
*3 0 0 0 3 0

∧ 0 1 2 3

0 0 0 0 0
*1 0 1 1 1
*2 0 1 2 2
*3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3
*1 1 1 2 3
*2 2 2 2 3
*3 3 3 3 3
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This set verifies E (that is, it satisfies the axioms and rules of E), but
falsifies (A5′) (v(A) = 1 and v(B) = 2).

(b) Consider the following set of matrices where designated values
are starred:

Matrix set II (MSII)

→ 0 1 2 3 4 5 ¬

0 4 4 4 4 4 4 5
*1 0 4 4 4 4 4 4
*2 0 0 2 0 4 4 2
*3 0 0 0 3 4 4 3
*4 0 0 0 0 4 4 1
*5 0 0 0 0 0 4 0

∧ 0 1 2 3 4 5

0 0 0 0 0 0 0
*1 0 1 1 1 1 1
*2 0 1 2 1 2 2
*3 0 1 1 3 3 3
*4 0 1 2 3 4 4
*5 0 1 2 3 4 5

∨ 0 1 2 3 4 5

0 0 1 2 3 4 5
*1 1 1 2 3 4 5
*2 2 2 2 4 4 5
*3 3 3 4 3 4 5
*4 4 4 4 4 4 5
*5 5 5 5 5 5 5

This set verifies RM� but falsifies (A16) (v(A) = 3, v(B) = 2, and
v(C) = 1). ⊣

3. RM� has the variable-sharing property

In fact, and as was pointed out in the introduction, we shall prove a
stronger result: RM� has exactly the same properties that are predicable
of E and R (cf. [1], §22.1.3).

In order to prove that this is the case, we define (see [1], p. 240) an-
tecedent part (ap) and consequent part (cp) of wff inductively as follows:

Definition 3 (ap and cp of wff). 1. A is a cp of A.

2. If B ∧ C is a cp (ap) of A, then both B and C are cps (aps) of A.

3. If B ∨ C is a cp (ap) of A, then both B and C are cps (aps) of A.



346 Gemma Robles, José M. Méndez, Francisco Salto

4. If B → C is a cp (ap) of A, then B is an ap (cp) of A and C is a cp
(ap) of A.

5. If ¬B is a cp (ap) of A, then B is an ap (cp) of A.

Then, the properties we refer to are expressed in the following theo-
rems (cf. [1], §22.1.3).

Theorem 1. If A → B is provable (in RM�), then some variable occurs
as an ap of both A and B, or else as a cp of both A and B.

Theorem 2. If A is provable (in RM�) and A contains no conjunctions
as aps and no disjunctions as cps, then every variable in A occurs at least
once as ap and at least once as cp.

The proofs of Theorems 1 and 2 are based upon the ten-elements set
of matrices from Fig. 1, where all values but 0 are designated.

Firstly, it is proved:

Proposition 3. MSIII verifies RM�.

Proof. It is left to the reader. ⊣

Next, we proceed into proving Theorem 1. We follow Anderson and
Belnap’s strategy in [1], §22.1.3.

Proof of Theorem 1. Suppose that A → B is a wff in which no vari-
able occurs as an ap of both A and B or as a cp of both A and B.
Then, the following six situations exhaust the possibilities in which each
variable p occurring in A → B can appear in A and/or B:

A B

p : cp –
ap –
– ap
– cp
cp ap
ap cp

Read first row: p occurs as cp in A but does not occur in B. The
rest of the rows are read similarly.

According to these six possibilities and given MSIII, the following
assignation is defined for each variable p in A → B:
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→ 0 1 2 3 4 5 6 7 8 9 ¬

0 9 9 9 9 9 9 9 9 9 9 9
1 0 7 7 7 7 7 7 7 7 9 8
2 0 0 7 7 7 7 7 7 7 9 7
3 0 0 0 6 0 0 6 7 7 9 6
4 0 0 0 0 5 5 0 7 7 9 5
5 0 0 0 0 4 5 0 7 7 9 4
6 0 0 0 3 0 0 6 7 7 9 3
7 0 0 0 0 0 0 0 7 7 9 2
8 0 0 0 0 0 0 0 0 7 9 1
9 0 0 0 0 0 0 0 0 0 9 0

∧ 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1
2 0 1 2 2 2 2 2 2 2 2
3 0 1 2 3 2 2 3 3 3 3
4 0 1 2 2 4 4 2 4 4 4
5 0 1 2 2 4 5 2 5 5 5
6 0 1 2 3 2 2 6 6 6 6
7 0 1 2 3 4 5 6 7 7 7
8 0 1 2 3 4 5 6 7 8 8
9 0 1 2 3 4 5 6 7 8 9

∨ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 1 2 3 4 5 6 7 8 9
2 2 2 2 3 4 5 6 7 8 9
3 3 3 3 3 7 7 3 7 8 9
4 4 4 4 7 4 4 7 7 8 9
5 5 5 5 7 5 5 7 7 8 9
6 6 6 6 6 7 7 6 7 8 9
7 7 7 7 7 7 7 7 7 8 9
8 8 8 8 8 8 8 8 8 8 9
9 9 9 9 9 9 9 9 9 9 9

Figure 1. Matrix set III (MSIII)
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A B

p : cp – 3
ap – 6
– ap 4
– cp 5
cp ap 9
ap cp 0

Then, Theorem 1 is immediate from the following two lemmas.

Lemma 1. For every ap C of A, v(C) ∈ {0, 3, 6}; and for every cp C of
A, v(C) ∈ {3, 6, 9}.

Lemma 2. For every ap C of B, v(C) ∈ {4, 5, 9}; and for every cp C of
B, v(C) ∈ {0, 4, 5}.

The proofs of Lemma 1 and Lemma 2 are by induction on the length
of C and they are easy by inspection of MSIII. In this sense, notice that
fragments {0, 3, 6, 9} and {0, 4, 5, 9} are closed under →, ∧, ∨ and ¬.

Then, the proof of Theorem 1 is immediate. Given that each formula
is a cp of itself, by Lemma 1 and Lemma 2, v(A) ∈ {3, 6, 9} and
v(B) ∈ {0, 4, 5}, whence by MSIII, v(A → B) = 0, that is, A → B

is not a theorem of RM�. Consequently, if A → B is a theorem of
RM�, then some variable occurs either as an ap or else as a cp of both
A and B. ⊣

The following is an immediate corollary of Theorem 1.

Corollary 1. RM� has the vsp.

Next, we proceed to the proof of Theorem 2.

Proof of Theorem 2. Suppose that A is a wff in which some variable,
say p, occurs only as a cp. Assign, then, the value 0 to p and the value
4 to the rest of the variables (distinct from p) appearing in A. Then
according to MSIII, it is proved:

Lemma 3. If B is any part of A in which p does not occur, then v(B) ∈
{4, 5}.
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Proof. Induction on the length of B. As it was the case with lemmas
1 and 2, the proof is easy by inspection of MSIII. In this sense, remark
that the {4, 5} fragment of MSIII is closed under →, ∧, ∨ and ¬. ⊣

Lemma 4. If B is any part of A in which p does occur, then (a) if B is
an ap of A, v(B) = 9 and (b) if B is a cp of A, v(B) = 0.

Proof. Induction on the length of B. If B is a propositional variable,
then B is p and it occurs only as a cp. So, v(B) = 0.

Regarding the rest of the cases, we prove that of the conditional and
leave the others to the reader.

B is of the form C → D:

(a) B is a cp: Then C is an ap and D is a cp.

a1. p occurs in C and in D:

By hypothesis of induction (HI), v(C) = 9 and v(D) = 0. so, v(C →
D) = 0 by MSIII.

a2. p occurs in C but not in D:

By HI and Lemma 3, v(C) = 9 and v(D) ∈ {4, 5}. By MSIII, v(C →
D) = 0.

a3. p occurs in D but not in C:

By HI and Lemma 3, v(C) ∈ {4, 5} and v(D) = 0. So, v(C → D) = 0
by MSIII.

(b) B is an ap: Then C is a cp and D is an ap.

b1. p occurs in C and in D:

By HI, v(C) = 0 and v(D) = 9. so, v(C → D) = 9 by MSIII.

b2. p occurs in C but not in D:

By HI and Lemma 3, v(C) = 0 and v(D) ∈ {4, 5}. By MSIII, v(C →
D) = 9.

b3. p occurs in D but not in C:

By HI and Lemma 3, v(C) ∈ {4, 5} and v(D) = 9. So, v(C → D) = 9
by MSIII.

With b3 ends the proof of the conditional case. The proof of the
conjunction, disjunction and negation cases is similar. (Recall that con-
junctions can only appear as cps and disjunctions only as aps). ⊣

The proof of Theorem 2 is now immediate. As each formula is a cp of
itself, it follows from Lemma 4 that v(A) = 0. That is, A is not a theorem
of RM�. Consequently, if A is a theorem of RM� without conjunctions
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as aps and disjunctions as cps, then every variable in A occurs at least
once as ap and at least once as cp. ⊣

4. RM� has the Ackermann Property

We prove that RM� has the Ackermann Property (cf. Definition 2).

Consider the following set of matrices where all values but 0 are
designated:

Matrix set IV(MSIV)

→ 0 1 2 3 4 ¬

0 3 3 3 3 3 4
1 0 3 0 0 3 3
2 0 3 3 0 3 2
3 0 3 3 3 3 1
4 0 0 0 0 3 0

∧ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 1
2 0 2 2 3 2
3 0 3 3 3 3
4 0 1 2 3 4

∨ 0 1 2 3 4

0 0 1 2 3 4
1 1 1 1 1 4
2 2 1 2 2 4
3 3 1 2 3 4
4 4 4 4 4 4

Firstly we have (the proof is left to the reader):

Proposition 4. MSIV verifies RM�.

And then:

Proposition 5. RM� has the AP.

Proof. Let A → (B → C) be any wff in which → does not appear
in A. Then, assign all the variables in A the value 2. According to
MSIV, v(A) = 2, and so, v(A → (B → C)) = 0. Therefore, RM� has
the AP. ⊣
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RM� has then both the vsp and the AP. Consequently, RM� is an
alternative to E from an intuitive semantical point of view, as was pointed
out in the introduction of this paper.

We end the paper with a problem: what is the semantics for RM�?
If we think in terms of the Routley-Meyer ternary relational semantics,
corresponding postulates for each one of the axioms of RM�, except for
(A4′) and (A5′), are well-known for at least thirty years (see [2]). So,
the problem can be reformulated as follows: which are the correspond-
ing semantical postulates for (A4′) and (A5′) or, equivalently, for (A4′′)
[(A → A) → B] → B and (A5′)?
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