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A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative si-

lencer partially filled with a poroelastic foam is developed. The model takes into account the solid

phase elasticity of the sound-absorbing material, the mounting conditions of the foam, and the pres-

ence of a uniform mean flow in the central airway. The novelty of the proposed approach lies in the

fact that guided modes of the silencer have a composite nature containing both compressional and

shear waves as opposed to classical mode matching methods in which only acoustic pressure waves

are present. Results presented demonstrate good agreement with finite element calculations pro-

vided a sufficient number of modes are retained. In practice, it is found that the time for computing

the transmission loss over a large frequency range takes a few minutes on a personal computer.

This makes the present method a reliable tool for tackling dissipative silencers lined with poroelas-

tic materials. VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3506346]

PACS number(s): 43.20.Mv, 43.28.Py, 43.50.Gf [KVH] Pages: 3308–3320

I. INTRODUCTION

Dissipative silencers are becoming indispensable ele-

ments of modern exhaust systems. In many cases of practical

interest, they consist of an expansion chamber filled with an

absorbent material that dissipates the acoustic energy into

heat. Their frequent use in the automotive industry, in heat-

ing, ventilation, and air-conditioning (HVAC) applications,

or in the aircraft industry necessitates the development of

fast and accurate numerical methods in order to analyze the

effectiveness of these devices under different operating

conditions such as the possible presence of mean flow and

the frequency range of interest. There are now numerous

models for computing sound attenuation through dissipative

silencers each having advantages and drawbacks according

to the configuration in hand. Although this is not the place

for a complete survey, we can refer to a very recent paper of

Kirby1 and the references therein. All these techniques have

in common that they have been developed with the assump-

tions that the lining is either locally reacting, represented by

its normal impedance, or bulk reacting. In this latter, the

absorbing material is assumed to have either zero or infinite

stiffness, only a compression wave is allowed to propagate,

and the material is considered to be an effective fluid charac-

terized by a complex wavenumber and density.2,3 Fibrous

media such as glass fiber or glass wool, for instance, are usu-

ally modelized as bulk reacting materials.

However, if the solid structure of the absorbent material

has a finite stiffness which is the case for a wide range of

poroelastic materials such as foams, it is known that three

type of waves (two longitudinal and one transverse) are

allowed to propagate through the medium.4 This makes the

behavior of foams more complicated and somewhat less pre-

dictable than that of glass fiber. One major reason for this is

that the acoustical behavior of foam treatments having finite

dimensions is known to be very sensitive to the boundary

conditions that exist at its surfaces.5,6 A proper analysis of

these foams is more demanding and the Biot theory of poroe-

lasticity must then be considered.4,7 In this context, there has

been considerable effort in devising finite element (FE) for-

mulations based on the Biot model and we can refer to Refs.

5, 8, and 9 for the most recent advances in this matter. In a

recent communication, Nennig et al.10 have presented a full

three-dimensional (3D) FE model for solving Biot’s equa-

tions using the mixed displacement-pressure formulation of

Atalla et al.8 The model was coupled with the Galbrun equa-

tions for the acoustic displacement in the airway in order to

take into account the presence of a sheared mean flow in the

central duct. Though the method is capable of modeling arbi-

trary shaped silencers, the 3D FE model is still limited by

the computer resources and this can have a negative impact

when, for instance, some efficient optimizations of the

silencers (geometry, material properties, and mounting con-

ditions) are needed.

When dissipative silencers contain an axially invariant

cross-section with a uniform mean flow in the airway, it is

judicious to take advantage of the separability of the wave

equations. In this context, semi-analytical methods such as

the very popular mode matching methods (MMMs) are usu-

ally considered as the ultimate tool. MMMs have been suc-

cessfully applied in many fields when sudden transitions are

present in the waveguide. The discontinuity may be of geo-

metric-type, due to a change in the medium properties or an

abrupt change in boundary conditions. The method first

requires computing the eigenmode basis in each segment of

the waveguide. By expanding the wave field in this basis, a

matching procedure must then be applied in order to respect

the dynamic and kinematical continuity condition at the dis-

continuity interface between two consecutive segments. This
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method is attractive because it leads to an immediate reduc-

tion in the dimension of the problem and can be much

quicker than a full FE model. This is why the method is now

widely used within the engineering community.

In this work we propose a new MMM for dealing with

expansion chambers partially filled with a poroelastic mate-

rial in which two longitudinal and one transverse waves are

present. One crucial step of the method is to find with suffi-

cient accuracy the eigenvalues and the transverse eigenfunc-

tions of the cylindrical chamber. When the silencer contains

an arbitrary cross-section, the eigenmode basis is usually

numerically computed via FE eigenvalue analysis over the

cross-section.11,12 Besides the size of the associated FE ma-

trix, which is expected to grow at least quadratically with

respect to a typical wavenumber, the advantage of such an

approach is that the approximated eigenvalues are obtained

via standard algebraic solvers. In this paper, we shall restrict

ourselves to silencers with circular cross-section. In this

case, eigenmodes admit closed-form solutions in terms of

Bessel functions of integer orders and the key issue is to then

solve the resulting governing eigenvalue equation. This is

not a trivial task though there are numerous available numer-

ical techniques for this purpose.13 It is remarkable that these

techniques largely employed in the field of duct acoustics

have in common the requirement of initial approximations

for the eigenvalues to start the algorithm. Generally the

approach relies on finding asymptotic approximations that

are exact or at least known with sufficient accuracy and then

track the roots in the complex plane with respect to some

parameter which is either the frequency, the Mach number

of the gas flow, or the admittance in the context of a locally

reacting liner. The method can be time-consuming and more

importantly all these root-finding techniques suffer from the

problem of missing roots.14 The complicated frequency de-

pendence of Biot’s coefficients renders asymptotic approxi-

mations in the low frequency limit very tedious if not

intractable. For this reason, we favored another root-finding

technique which does not rely on any initial guess. The

method based on the argument principle has been previously

employed in a somewhat different context15–17 and this is

presented in this paper.

This work begins by deriving the eigenequation for the

modal axial wavenumbers. Each root of the equation corre-

sponds to a mode of the dissipative silencer. This mode has a

composite nature containing both pressure- and displace-

ment-type waves as opposed to modes of bulk reacting lined

duct where only acoustic pressure waves are present. This

will be commented on with respect to their physical interpre-

tation. In particular, we show that different families can be

clearly distinguished. The matching procedure at the inlet

and outlet planes of the silencer is then explained in detail.

We finish the paper by presenting results showing the impact

of elastic resonances of the foam on the transmission loss

(TL) for silencers with typical dimensions encountered in

the automotive industry.

II. PROBLEM STATEMENT

A. Constitutive equations and continuity conditions

The silencer considered here consists of a cylindrical

chamber duct of length L surrounded by a sound-absorbing

poroelastic material (region II in Fig. 1). In the airway, a

mean flow of speed U0 is present. The inlet and outlet pipes

(regions I and II) are identical, each having a circular cross-

section with rigid walls.

In the airflow domain (0 < r < r1), the acoustic pressure

p obeys the convected wave equation

Dp� 1

c2
0

D2p

Dt2
¼ 0; (1)

where D=Dt � @=@tþ U0ð@=@zÞð Þ stands for the material

derivative along the mean flow. Here, t is time, c0 denotes

the sound speed, and equations are written in the usual cylin-

drical coordinate system (r, h, z). It is convenient for the

analysis to introduce the particle perturbation displacement

w within the fluid. Assuming homogeneous flow of density

q0, this is given via the linearized momentum equation as

q0

D2w

Dt2
¼ �rp: (2)

Though these relations are commonly used within the

assumption of uniform flow,18 the displacement perturbation

formalism remains valid for more general flow fields.19

In the expansion chamber, the wave propagation in the

sound-absorbing media (r1 < r < r2) is described via Biot’s

model.4 This model is grounded on the superposition of a

fluid phase and a solid phase which are coupled together

and, respectively, described by the fluid phase displacement

U and the solid phase displacement u. For time-harmonic

representation (e�ixt), we have the following coupled

system:4

r � r s þ x2ðq11uþ q12UÞ ¼ 0; (3)

r � r f þ x2ðq12uþ q22UÞ ¼ 0: (4)

FIG. 1. (Color online) Geometry of

the silencer.
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Solid and fluid phase stress tensors are given by

r s ¼ ðAr � uþ Qr � UÞIþ 2Nes; (5)

r f ¼ ðQr � uþ Rr � UÞI; (6)

where es ¼ l=2(ru þ (ru)T) is the usual strain tensor, and I

is the identity matrix. The total stress tensor r t is, by defini-

tion, the sum of r f and r s. Biot’s coefficients A, N, Q, and R
are related to the material properties (given in Table IV) by

the Johnson-Champoux-Allard model. Their expressions can

be found in the literature or in the reference textbook7 as

well as the other quantities introduced in this section. These

quantities are all complex and frequency-dependent; A and

N correspond to the Lamé coefficients, R is the effective

bulk modulus of the fluid phase, and Q indicates the cou-

pling of the two phases’ volumic dilatation. The imaginary

part of A and N includes the structural damping and in Q and

R this part includes the thermal dissipation. The imaginary

parts of the effective density coefficients q11, q22, and q12

take into account viscous damping.

At the air-porous interface (denoted by C in Fig. 1), the

following compatibility conditions must be verified:

rtn ¼ �pn; (7a)

pp ¼ p; (7b)

/U � nþ ð1� /Þu � n ¼ w � n; (7c)

where / is the porosity and the pore pressure pp is obtained

from the fluid phase tensor as �3/pp ¼ tr r f. These condi-

tions are classical in the non-flow case20–22 though the last

one is sometime expressed in terms of the normal volume

velocity. The advantage of keeping the displacements as

primitive variables is that condition (7c) remains valid when

flow is present in the airway. On the hard surface (bold solid

line Cr), the poroelastic layer is assumed to be clamped, that

is, the solid phase displacement as well as the normal fluid

phase displacement are set to zero,

u ¼ 0 and U � n ¼ 0 (8)

In conditions (7) and (8), it is understood that n denotes the

normal unit vector at the boundary of the porous domain

which can then be either along the axial or the radial direc-

tion. For the sake of illustration, we restricted our attention

to the “clamped” conditions (8) but other mounting configu-

rations where, for instance, the foam is sliding may be

treated by simply changing Eq. (8) accordingly.23,24 The

presence of a perforated sheet at the air-porous interface can

also be taken into account. In this case, the condition (7c)

remains unchanged but conditions (7b) and (7a) are modified

with the addition of the pressure jump between both sides of

the perforated plate.

B. Helmholtz decomposition

Because the previous wave equations are written in

terms of the physical variables, these are not appropriate for

a modal analysis. Instead, we shall rewrite each quantity in a

potential form using the Helmholtz decomposition. In the

porous media, both displacement fields are then written as

u ¼ ruþr ^ w and U ¼ rvþr ^H: (9)

After equations decoupling, we have

u ¼ u1 þ u2; v ¼ l1u1 þ l2u2; (10)

where

li ¼
Pk2

i � x2q11

x2q12 � Qk2
i

; i ¼ 1; 2; (11)

are the waves amplitude ratios between the two phases in the

porous material. Similarly, the vector potential H is simply

obtained as

H ¼ l3w with l3 ¼ q12=q22: (12)

Under this form, each potential u1, u2, and w fulfills

the Helmholtz equation with the associated complex

wavenumbers

k2
1 ¼

x2

2ðPR� Q2Þ ðPq22 þ Rq11 � 2Qq12 þ
ffiffiffiffi
D
p
Þ; (13)

k2
2 ¼

x2

2ðPR� Q2Þ ðPq22 þ Rq11 � 2Qq12 �
ffiffiffiffi
D
p
Þ; (14)

k2
3 ¼

x2

N

q11q22 � q2
12

q22

� �
; (15)

where P¼ Aþ 2N, D stands for the discriminant of a quadratic

equation and D ¼ ðPq22 þ Rq11 � 2Qq12Þ2 � 4ðPR� Q2Þ
ðq11q22 � q2

12Þ. Physically, there are two compressional waves

associated with u1, u2 and one rotational (shear) wave associ-

ated with w. They all propagate in the two phases and their

relative contribution is given by li. In elastodynamics, one

compressional wave and one rotational wave are already pres-

ent, but for poroelastic materials, the presence of two phases

adds a fluid-borne compressional wave.

Similarly, we can treat the displacement w in the fluid

domain using a similar decomposition. Now, since the flow

is uniform, we can look for purely acoustic modes by setting

w ¼ ru0: (16)

Thus the rotational terms which are known to be associated

with the hydrodynamic modes are discarded in the present

analysis. Note that Eq. (16) is valid within the assumption

that the mean flow is uniform as acoustic and hydrodynamic

modes are found to be decoupled in this particular case.

III. MODE CALCULATION

A. Eigenvalue equation

In this section, the silencer chamber is assumed first to

be infinite in length. The eigenvalue analysis is performed
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by assuming that all perturbative quantities (call it X) have

the same dependence in both z and t, so we write

Xðr; h; z; tÞ ¼ ~Xðr; hÞeiðbz�xtÞ: (17)

The vectorial nature of the Helmholtz equation for the poten-

tial w renders the h-dependence a bit more tricky, as its three

components in the cylindrical vector basis do not behave

with the same azimuthal parity. Following a similar work on

hollow elastic cylinders as in Ref. 25, we find that the gen-

eral form for the potentials splits into two independent fami-

lies of modal solutions. Symmetric modes in the poroelastic

media are given explicitly by

~u1 ¼ ½A1Jmða1rÞ þ B1Ymða1rÞ� cos mh; (18a)

~u2 ¼ ½A2Jmða2rÞ þ B2Ymða2rÞ� cos mh; (18b)

~wr ¼ ½A3Jmþ1ða3rÞ þ B3Ymþ1ða3rÞ� sin mh; (18c)

~wh ¼ �½A3Jmþ1ða3rÞ þ B3Ymþ1ða3rÞ� cos mh; (18d)

~wz ¼ ½A03Jmða3rÞ þ B03Ymða3rÞ� sin mh; (18e)

where Jm and Ym are, respectively, the first and second kind

of Bessel functions. Antisymmetric modes are found by sim-

ply swapping the trigonometric functions cos mh and sin mh
and by removing the minus sign for the azimuthal compo-

nent ~wh. Note the radial and azimuthal components are de-

pendent via their coefficients. This is the gauge condition

borrowed from Ref. 25 stemming from the non-unicity of

the Helmholtz decomposition. Radial wavenumbers ai are

obtained from the dispersion relation as

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i � b2

q
; i ¼ 1; 2; 3; (19)

where the choice of the branch cut for the square root opera-

tor is irrelevant here, as we are not dealing with radiation

conditions (which would then imply a careful examination

of the behavior of each physical quantity as r goes to infin-

ity). The different branch cuts may, at most, alter the sign of

the transverse wavenumber, which has no physical signifi-

cance, as they are not associated with other modes. If a pre-

cise definition of the square root can sometimes be judicious

for reasons of symmetry,26 this cannot be followed in the

present study due to the presence of the mean flow.

Similarly, the acoustic displacement scalar potential is

given by

~u0 ¼ A0Jmða0rÞ cos mh ðor sin mhÞ; (20)

and from Eq. (16) the acoustic pressure is recovered as

~p ¼ q0c2
0X

2 ~u0. Here, the transverse wavenumber is obtained

from the associated dispersion relation and we take

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � b2

q
; (21)

where X ¼ k0 � Mb, M ¼ U=c0 is the Mach number, and

k0 ¼ x=c0 denotes the usual acoustic wavenumber.

The last step is to express the components of the total

stress tensor rt, the displacements u, U, w, as well as the

fluid pressures p and pp in terms of the displacement poten-

tials and their derivatives. After substitution in the boundary

conditions (7) and (8), we find that the modal vector contain-

ing the wave potential amplitudes,

V ¼ ðA0;A1;B1;A2;B2;A3;B3;A
0
3;B

0
3Þ

T ;

must be a non-trivial solution of the 9 � 9 algebraic system

Mða0; a1; a2; a3; bÞV ¼ 0: (22)

In this work, we shall focus on purely axisymmetric solutions

(m ¼ 0). In this particular case, both axial and radial compo-

nents of the vector potential are discarded, and the 7 � 7

matrix coefficients are given explicitly in the Appendix.

At this point, we shall observe that the matrix M depends

solely on the axial wavenumber b once the dispersion rela-

tions have been inverted via Eqs. (19) and (21). Thus, finding

the modes amounts to finding the zeros of the complex func-

tion f (b) ¼ det M(b), i.e., we have the following eigenvalue

equation in b:

f ðbÞ ¼ 0: (23)

B. Root-finding

The accurate computation of the roots of Eq. (23) repre-

sents a crucial stage as it provides the incident and reflected

axial wavenumber as well as the associated eigenmode trans-

verse profiles obtained from Eq. (22). There are numerous

available numerical techniques for this purpose. Although this

is not the place for a complete survey, we can cite the

Newton–Raphson method, Muller’s method, the Secant

method (see discussion on this topic in Ref. 13), and the

Nelder–Mead simplex method.27 All these techniques have in

common that they all require initial approximations for the

zeros to start the algorithm. To avoid any missing roots, appli-

cation of the argument principle is commonly favored.28 This

fundamental result, based on Cauchy’s theorem, allows one

to compute the number of zeros (including its multiplicity) of

f from the following integral relation:

S0 ¼
1

2pi

þ
C

f 0 bð Þ
f bð Þdb ¼

XNb

k¼1

nk; (24)

where Nb is the number of zeros and nk the corresponding

multiplicity of the kth zero lying in the interior of the closed

curve C. Note f is chosen to be analytic for the result to hold

but the presence of poles may be included by modifying the

formula accordingly. In the present work, none of the root-

finding techniques cited above will be used. Instead, we shall

employ an analytic method that does not require knowledge

of initial guesses. This is a classical procedure based on the

generalization on the previous relation to any monomial bn,

that is,29
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Sn ¼
1

2pi

þ
C

f 0 bð Þ
f bð Þ bndb ¼

XNb

k¼1

nkb
n
k ; (25)

where bk denotes the position of the kth zero. To simplify

further the analysis, function f is assumed to have only sim-

ple zeros so the integral in Eq. (24) is exactly the number of

zeros contained in the interior of C. Note this is not a strin-

gent assumption as the occurrence of multiple zeros is highly

improbable (in a somewhat different context, it is known

that multiplicity may exist for specific material properties set

for which simple zeros are merging30). We now introduce

the associated polynomial P for the interior of C, that is a

polynomial having the same zeros as f, i.e.,

P bð Þ ¼
YNb

k¼1

b� bkð Þ ¼
XNb

n¼0

Cnb
n: (26)

Of course the zeros are not known yet, but the polynomial

coefficients Cn can be efficiently computed from the follow-

ing recursive algorithm16,17:

Cn ¼
1 if n ¼ S0

1

n� S0

XS0�n

j¼1

SjCnþj if n ¼ S0 � 1; …; 0;

8><
>: (27)

where Sn (n ¼ 0, 1, 2, … , Nb) denotes the values of the inte-

gral in Eq. (25). Once P is known, finding its zeros simply

requires computing the eigenvalues of the companion ma-

trix,31 which is a very fast procedure for moderate size matri-

ces. In fact, the most time-consuming operation is the

numerical evaluation of Bessel functions with complex argu-

ments at some quadrature points when computing integrals

in Eq. (25). Since these are integrals of an analytic periodic

function over a complete period, the trapezoidal rule is the

optimal quadrature rule. Let C be defined from a regular

function c(s) over the interval s [ [0, 2p], then the q-point

trapezoidal rule approximation to Sn is given by

Sn �
1

iq

Xq�1

i¼0

cn

f̂

df̂

ds

 !
ði=qÞ; (28)

where we set f̂ sð Þ ¼ f c sð Þð Þ. Though the s-derivative of f̂
may be obtained formally via symbolic software, it is far

more efficient to evaluate the derivative using a high order

central finite difference scheme, that is,

df̂

ds
ði=qÞ � 1

i=q

XJ

j¼�J

a jj j f̂
iþ j

q

� �
: (29)

The procedure is extremely fast since the discrete values of f̂
on the regular grid are already calculated. Here we used ei-

ther the fifth- or ninth-order scheme. The corresponding

coefficients are displayed in Table I. The choice of the curve

C must depend upon the region of the complex plane where

eigenvalues are searched. Since eigenvalues are expected to

be symmetric with respect to the origin (at least in absence

of mean flow), choosing the circular path c ¼ aeis appears to

be a good compromise. To avoid possible round-off errors, it

is then preferable to factorize the term an and exclude it for

the trapezoidal summation of Eq. (25). Now, as most of the

zeros corresponding to very evanescent fields in the axial

direction are located near the imaginary axis, elliptical con-

tour integration may also be used. In this case we take c ¼ a
cos s þ ib sin s with b > a.

If f has many zeros in the search area, then the map

from the Sn’s to the polynomial coefficients computed from

Eq. (27) is likely to be ill-conditioned. Moreover, the loca-

tion of the zeros of the associated polynomial is also very

sensitive to its coefficients. The reasons for this are discussed

in Ref. 29 but the nature of the problem can be identified

from Eq. (26). It suffices to observe that CNb=C0 ¼
QNb

k¼1 bk

can be extremely large as some of the bk’s are located far

from the origin. The consequences on the roots location may

be significant. In addition our numerical tests have shown

that the lowest attenuation modes are the most affected by

this problem, leading to a discernible frequency shift on the

TL. One way to overcome this is to use high precision arith-

metic,32 which is not convenient and time-consuming. A

simple trick to avoid this is to reduce the search area so that

the number of zeros is kept to a reasonable value.33 The so-

lution employed here is to split the integration path into con-

centric circular (or elliptical) rings. In order to illustrate the

procedure, we take the silencer A, which dimensions are

given in Table III, filled with an XFM foam (see Table IV).

We consider computing roots located in the interior of a

circle of radius a ¼ 180. In the first approach, we take one

circular ring. We find that the search region contains 20

roots. By increasing the number of quadrature points q, the

numerical value of a specific root chosen to be associated

with one of the lowest propagation mode and for which error

was maximum is given in Table II. This shows poor conver-

gence due to round-off errors. In this example, increasing

the number of points does not yield a better solution. In the

second approach, we take two circular rings. The search

region is then divided into two subregions each containing

ten roots. The improvement is clearly shown as 2500 quadra-

ture points on each ring provides up to 12 digits of accuracy.

Here the number of points is chosen so that the numerical

cost remains comparable for both approaches.

In practice, we found that very good accuracy was

obtained if (i) there are no more than ten or 15 roots within

each search area in order to avoid conditioning problems and

possible round-off errors and (ii) a sufficient number of

quadrature points on each ring must be taken. In the work

presented in this paper, the root-finding algorithm is entirely

automated. For a given frequency, the first step is to identify

the largest search area (or the radius of the largest circle) in

the complex plane containing approximately 2K modes (K is

TABLE I. Finite difference scheme coefficients.

a0 a1 a2 a3 a4

Fifth order 0 2=3 �1=12 — —

Ninth order 0 4=5 �1=5 4=105 �1=280
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the number of modes in each direction of propagation and is

prescribed by the user). This is done heuristically by first

considering that the chamber is empty, that is, we consider

classical acoustic modes in a rigid cylinder of radius r2. In

this case the relation between the number of roots and the ra-

dius is an easy task since zeros of Bessel functions are al-

ready known. In the presence of a poroelastic material, there

are other types of modes (see discussion in Sec. III C) and it

was observed that the number of modes in each search area

is approximately four times larger. Given this, the largest ra-

dius can be found. Now, since roots are distributed rather

regularly in the complex plane, the largest search area is

then divided using regularly spaced concentric circles with

the condition that each search area contains, say 10–15 roots.

Finally, the number of quadrature points on each circular

path points is found on the basis that between 500 and 1000

points for a circle of radius a ¼ 100 should provide a suffi-

cient accuracy (see Table II). For a given radius, the number

of points is chosen accordingly as to grow linearly with the

radius.

C. Eigenmodes

Without flow, the roots distribution in the complex

plane is remarkable as shown in Fig. 2. Concentric rings

used in our calculation have also been displayed for the sake

of illustration. Two families of roots can be identified.

The first set comprises roots located near and along the

imaginary axis. These are essentially associated with fluid

modes which are also present when considering equivalent

fluid models.30 Here, the fluid embedded in the foam pore is

strongly coupled with the one in the airway, whereas the

solid frame displacement is nearly zero. This is illustrated in

Figs. 3 and 4 where the pressure and displacement modes

profiles are plotted for three roots identifiable with the corre-

sponding marker in the complex plane of Fig. 2 (note that in

all examples described in this section, results are obtained

with silencer A with an XFM foam). The eigenmode profiles

are computed once the root has been found by simply invert-

ing the one-rank deficient system (22) and applying the

Helmholtz decomposition (9) and (16).

In the second set of modes, the skeleton motion is

strongly coupled with the airway and their presence in the

modal series is essential in order to respect the clamped

boundary conditions on the hard wall of the silencer; this

fact is illustrated in Sec. IV C. The fact that the associated

wavenumbers do not lie on the real or imaginary axis is due

to the shear modulus and not to the dissipative properties of

the material (see for instance, Ref. 34 in the case of the elas-

tic cylinder). In the low frequency limit, Biot’s coefficients

tend to be real quantities and the non-dissipative case is

recovered. In this regime, eigenvalues occur in pairs with the

same negative conjugate wavenumber and are associated

with the same eigenmode. Thus their sum yields standing

wave vanishing when z ! 61. It is worth noting that

FIG. 2. Roots in the complex b-plane at 400 Hz for XFM foam with

silencer A.

FIG. 3. Modulus of modal pressure profile related to markers shown in Fig.

2 at 400 Hz for silencer A filled with XFM foam: , ,

. For r < r1, acoustic pressure p and for r1 < r < r2 pore pressure pp.

The amplitude max is scaled to 1.

TABLE II. Numerical computation of a specific root at 1730 Hz with one circular ring (center) and two circular

rings (right). Bold character indicates the correct digits.

One ring Two rings

q b q b

500 18.1310333520 þ 17.2414041458 i 250 17.1619265538 þ 15.2060360731 i

1000 17.6094544451 þ 14.9503659291 i 500 17.6293456921 þ 15.0650726700 i

5000 17.6308169754 þ 15.0352734983 i 2500 17.6294474640 þ 15.0651513163 i

20 000 17.6362164376 þ 15.0289704442 i 10 000 17.6294474640 þ 15.0651513164 i
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standing waves do not carry energy, so the decrease in am-

plitude does not correspond to energy dissipation. In our

case, because of the dissipation, the zeros are not negative

conjugate as illustrated in Fig. 5 especially when the fre-

quency increases (i.e., when the dissipation increases). In

addition, the eigenmodes are not identical: The solid phase

displacement remains almost unchanged but the fluid phase

pressure is different as illustrated in Figs. 3 and 4. One may

also observe in Fig. 5 that, for both families of mode, some

zeros may cross the imaginary axis as the frequency

increases. This behavior which is attributed to the dissipation

has already been observed by Nilsson and Brander30 for bulk

reacting liner.

The evolution of the roots, location with respect to the

Mach number is conveniently displayed in Fig. 6. We can

see that eigenvalues of the second family are not affected by

the presence of the mean flow, whereas roots of the first

family (the fluid modes) are very sensitive. Now, the pres-

ence of another mode of a different nature can also be identi-

fied. This mode, only present with gas flow, has deep

connection with the stability of the vortex sheet (of infinitely

small thickness) that exits in the vicinity of the deformable

boundary C. A quick inspection of the radial profiles shows

that displacement and pressure fields tend to be confined to

within a small neighborhood of the boundary and decrease

exponentially away from it. In the context of a locally react-

ing liner, this mode is sometimes called “surface wave

mode.”35,36 This surface mode has been kept in the matching

procedure (see Sec. IV) but its presence was found to have

no noticeable effect on our applications.

IV. MODE MATCHING

A. Matching conditions

The classical set of matching conditions for bulk mate-

rial37,38 is extended to poroelastic material. For a brief no-

menclature, we note w ¼ (wr, wz), u ¼ (ur, uz), and U ¼ (Ur,

Uz), the vectorial displacements in the cylindrical basis. In

the airway (r � r1), we have the continuity of pressure

as well as the normal acoustic displacement over the inlet

plane C1:

pI ¼ pII; (30a)

wI
z ¼ wII

z ; (30b)

where the superscript (i ¼ I,II) indicates the associated

region in which the physical quantity of interest is defined.

On the lateral hard wall (r1 � r � r2), the kinematic condi-

tion yields

uII
r ¼ uII

z ¼ UII
z ¼ 0; (31)

and similar conditions hold on the exit plane C2. The condi-

tion (31) expresses the fact that the foam is clamped on the

FIG. 5. Trajectory of the roots in the complex b-plane with respect to

the frequency ranging from 100 ( ) to 2500 Hz (	) for XFM foam without

flow.

FIG. 6. Trajectory of the roots in the complex b-plane at 400 Hz with

respect to the Mach number ranging from 0 ( ) to 0.8 (	) for XFM foam

with silencer A.

FIG. 4. Modulus of modal displacement profile related to markers shown in

Fig. 2 at 400 Hz for silencer A filled with XFM foam: , ,

. For r < r1, acoustic axial displacement wz and for r1 < r < r2 solid

phase axial displacement uz. The amplitude max. is scaled to one.
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lateral side of the silencer chamber. If continuity conditions

(30a) and (30b) are standard in the no-flow case, the trans-

mission problem becomes far less trivial when a uniform

flow is present. In this latter case, the pressure and displace-

ment fields exhibit some singular behavior at the plane of

discontinuity which must then be taken into account in the

matching procedure. The difficulty is partially solved and

discussed in a recent paper from Gabard and Astley39 in the

case of a locally reacting liner with impedance discontinu-

ity. In the present scenario, involving a transition with a

poroelastic material, it is expected that the physical mecha-

nisms that are taking place are a hard problem deserving a

proper analysis. Therefore, we will leave this point for fur-

ther studies.

B. Numerical implementation

In regions i ¼ I, II, III, each quantity is expanded via its

truncated modal decomposition. For instance, the acoustic

pressure in the airway is expressed as (the time dependence

is omitted for clarity)

pi ¼
XK

k¼1

eibi;þ
k

zUi;þ
p;k rð ÞAi;þ

k þ eibi;�
k

zUi;�
p;k rð ÞAi;�

k

� �
: (32)

In the above summation, the origin of the duct axis coordi-

nate is arbitrary, and in this work, we chose to fix it at the

inlet plane C1. In the dissipative silencer (i ¼ II), none of the

eigenvalues lies on the real axis and we took the convention

that superscript 6 stands for the sign of the imaginary part

of the axial wavenumber. If Jm b > 0, the mode is said to be

right running, otherwise the mode is said to be left running.

In the inlet and outlet pipes, some modes are propagative;

right (þ) and left (�) running modes are then defined in the

usual way as follows:

bi;6 ¼
�k0M6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � ð1�M2Þðai
0Þ

2
q

1�M2
; (33)

where i ¼ I or III and transverse wavenumbers ai
0 are

obtained from the rigid wall condition: J1ðai
0r1Þ ¼ 0. Coeffi-

cients Ai;6
k are the modal amplitudes, Ui;6

p;k ðrÞ are the corre-

sponding radial eigenfunctions, and subscript p indicates the

physical quantity (here the pressure) it is associated with. A

similar decomposition holds for the displacements wr, wz, ur,

uz, Ur, and Uz. For the sake of simplicity, the number of

modes K of the truncated modal series is taken identical in

each region, but this might be changed if necessary.13 More

importantly, the correspondence k $ bII;þ
k is given by order-

ing the imaginary part of the eigenvalues is ascending order

so that lowest attenuation modes are always included in the

series. This is also done for the left running modes. In

regions I and III, the same ordering holds once purely propa-

gative modes have been taken into account. Now, to clarify

the analysis further, we introduce the line vector Ui;6
p con-

taining the radial eigenfunctions

Ui;6
p ¼ Ui;6

p;1 ; … ;Ui;6
p;K

� �
; (34)

and similarly for the other variables. With this definition, we

have at the inlet plane

pII ¼ UII;þ
p AII;þ þUII;�

p AII;� (35)

and

pI ¼ UI;þ
p AI;þ þUI;�

p AI;� (36)

where Ai,6 is the column vector containing the modal ampli-

tudes. At the exit plane (z ¼ L), the same formula holds with

the addition of the phase factors.

Matching conditions in the airway are imposed in a

weighted sense, i.e., we proceed by choosing a weighting

function and then integrating over the cross-sectional area of

the inlet (or outlet) pipe,

ðr1

0

pI �Wpr dr ¼
ðr1

0

pII �Wpr dr; (37a)

ðr1

0

wI
z
�Wwz

r dr ¼
ðr1

0

wII
z

�Wwz
r dr: (37b)

Clamped conditions on the hard wall of the silencer must be

imposed with more care. Indeed, through early numerical

experiments, it was found that imposing Eq. (31) separately

for each quantity is likely to produce ill-conditioned systems.

It is therefore preferable to relax the constraints by summing

the three conditions giving the weighted form

ðr2

r1

uII
r

�Wur
þ UII

z
�Wuz
þ uII

z
�WUz

� �
r dr ¼ 0; (38)

where weighting functions Wp, Wwz
, Wur

, Wuz
, and WUz

are

chosen among the radial eigenmodes associated with each

physical variable. We will discuss the most appropriate

choice further on.

Now, after modal substitution we obtain a classical scat-

tering system with unknowns AI,�, AII,6 and AIII,þ whereas

the known incident field given by the values of A
I,þ and

AIII,� is placed on the right-hand side. The inversion of such

a system is unfortunately subject to round-off errors due to

the presence of strongly evanescent waves. Because of these

limitations, we consider an alternative procedure that was

proposed by Cummings and Chang.40 The idea is to treat

each matching condition separately by considering all incom-

ing waves as known quantities. The system is then solved for

the outgoing waves. This yields, using the same formalism as

in Refs. 39 and 40, the following coupled scattering system:

X1
AI;�

AII;þ

� �
¼ Y1

AI;þ

AII;�

� �
; (39a)

X2EX
AIII;þ

AII;�

� �
¼ Y2EY

AIII;�

AII;þ

� �
; (39b)

where EX and EY are diagonal matrices containing the phase

factors at the exit plane z ¼ L,
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EX ¼ diag eib
III;þL
1 ;… ; eib

III;þL
K ; eib

II;�L
1 ;… ; eib

II;�L
K

� �
; (40)

EY ¼ diag eib
III;�L
1 ;… ; eib

III;�L
K ;eib

II;þL
1 ;… ; eib

II;þL
K

� �
: (41)

The scattering matrices have the following form:

X1 ¼
PI;� �PII;þ

WI;� �WII;þ

0 �Ŵ
II;þ

0
@

1
A; Y1 ¼

�PI;þ PII;�

�WI;þ WII;�

0 Ŵ
II;�

0
@

1
A; (42)

X2 ¼
PIII;þ �PII;�

WIII;þ �WII;�

0 �Ŵ
II;�

0
@

1
A; Y2 ¼

�PIII;� PII;þ

�WIII;� WII;þ

0 Ŵ
II;þ

0
@

1
A; (43)

where block matrices Pi,6, Wi,6, and Ŵ
II;6

are computed

from the overlap integrals

Pi;6 ¼
ðr1

0

Wp

� �†
Ui;6

p r dr for i ¼ I; II; III; (44)

Wi;6 ¼
ðr1

0

Wwz
ð Þ†Ui;6

wz
r dr for i ¼ I; II; III; (45)

and

Ŵ
II;6 ¼

ðr2

r1

Wur
ð Þ†UII;6

ur
r dr þ

ðr2

r1

Wuz
ð Þ†UII;6

uz
r dr

þ
ðr2

r1

WUz
ð Þ†UII;6

Uz
r dr; (46)

where Wp, Wwz
, Wur

, Wuz
, and WUz

are the line vectors con-

taining the corresponding weighting functions, and symbol †

means that we take the transpose conjugate of these vectors.

As pointed out by Gabard and Astley,39 the choice of these

functions can have a significant impact on the performance

of the method. In order to enhance the conditioning of the

scattering matrices Xi (i ¼ 1, 2), it is preferable to use appro-

priate weighting functions in order to maximize their diago-

nal terms. Thus the eigenfunction of each diagonal block of

Xi (i ¼ 1, 2) is chosen as weighting functions. For example,

rigid wall modes are used for the matrices P
i,6, i.e., we take

Wp ¼ UI;�
p and Wp ¼ UIII;þ

p (these are in fact the same in

this study since the inlet and outlet pipes are identical),

respectively, in matrices X1 and X2. Modes in the expansion

chamber are used for the matrices Wi,6 with Wwz
¼ UII;þ

wz

and Wwz
¼ UII;�

wz
, respectively, for matrices X1 and X2. The

same procedure is followed for the other matrices.

Finally equations corresponding to the continuity of dis-

placements are all multiplied by the factor (xq0c0)2 in order

to be of comparable magnitude with the ones corresponding

with the pressure. Overlap integrals along the radial coordi-

nate are performed using classical Gaussian quadratures,

though analytical form could possibly be found as in Ref.

13. In practice, between 20 and 50 points were found suffi-

cient in our applications shown in Sec. IV C.

The system is then solved iteratively. At the first itera-

tion, AII,� is fixed at zero and the system (39a) is inverted.

This produces an initial value for the right going waves A
II,þ

which is then used at the exit plane system (39b) and so on.

The pseudo-inverse of the scattering matrix is performed

using the PINV command in MATLAB. Note that the factoriza-

tion of the diagonal matrix EX is one of the main advantages

of this iterative process. Indeed its condition number is very

large and can exceed ten40 due to the combination of right

going and left going “evanescent” waves. By inverting EX

analytically, effects of possible round-off errors are therefore

minimized.

C. Results and validation

In order to investigate the robustness of the proposed

methodology, we present here some results with MMM in

comparison with FE calculations carried out by the authors

and presented in Refs. 10 and 23. The silencers, configura-

tions from Table III have the same dimensions as in Ref. 37

and poroelastic material properties can be found in Table IV.

In the airway, the density and the celerity of sound are q0

¼ 1.213 kgm�3 and c0 ¼ 342.35 m/s. As the frequency range

of interest is considered below the first cut-on mode of the

rigid pipes, only the plane wave propagates in these regions

and the TL for the silencer is simply given by (we take

A
I;þ
1

		 		 ¼ 1)

TL ¼ �20 log10 A
III;þ
1

		 		: (47)

In Fig. 7, the convergence of the MMM is presented for the

silencer A by taking successively 5, 7, 13, and 15 modes in

each propagation direction. The XFM polymer foam has been

chosen to illustrate the effects of the strong coupling between

fluid and solid phases that exists in the poroelastic material.23

We can see that 15 modes yield good agreements with FE

results. The significant number of required modes, especially

near the elastic resonances identifiable at the peaks, is attrib-

uted to the clamped conditions on the exit planes C1 and C2.

In particular, modes of the second family associated with the

solid phase are unavoidable in the matching procedure,

TABLE III. Silencer dimensions (Ref. 37) in meters.

Silencer L r1 r2

A 0.315 0.037 0.0762

B 0.330 0.037 0.1016

TABLE IV. Materials properties used in numerical tests (Refs. 20, 43).

With the resistivity r, the tortuosity ainf, the viscous and thermal characteris-

tic lengths K and K0, the Poisson coefficient v, and the effective skeleton

density q1. The effective skeleton density q1 ¼ (1 � /)qs, where qs is the

density of the material of the frame.

Foam /
r

(kN m�4 s) ainf

K
(lm)

K0

(lm)

q1

(kg m�3)

N
(kPa) v

FM4 0.99 65 1.98 37 121 16 18

(1–0.1i)

0.3

XFM 0.98 13.5 1.7 80 160 30 200

(1�0.05i)

0.35

RGW2 0.99 9 1 192 384 16.3 200

(1�0.1i)

0
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whereas the highly attenuated modes of the first family (fluid

modes) may be ignored. In the low frequency range (below

500 Hz) and in the no-flow case, it was found that only the

lowest attenuation fluid mode could be kept in the modal se-

ries without deteriorating the results. Table V shows the con-

vergence analysis (in K) for the TL (dB) for three frequencies

500, 900, and 1000 Hz. The frequency 900 Hz with the XFM

foam corresponds to a resonance peak and the convergence is

slower in this case. At 500 Hz, and more generally below the

first resonances, the TL converges rapidly to one or two deci-

mal places and this is in line with the TL predictions of

Kirby1 using analytical mode matching.

It is worth noting that if Eq. (38) is added to Eq. (37b),

as it is generally done when dealing with bulk reacting mate-

rials,37 the convergence is not as good and 15 modes in the

series were found to produce up to 3 dB error between 700

and 1300 Hz. This is particularly relevant for foams present-

ing strong solid phase resonances. However, for soft foams

like FM4 (Table IV), accurate results can still be obtained

with this “condensed” formulation.

Calculations on silencer B, which presents a strong

area ratio (r2=r1)2 � 7.5, also compare very favorably

with FE results as illustrated in Fig. 8. Here again, resonance

effects due to the skeleton elasticity are clearly visible below

1000 Hz.

The presence of the mean flow slightly affects the quality

of the results especially with the RGW2 wool (see Fig. 9),

though the error does not exceed 1 dB. In particular,

discernible discrepancies are visible in the low frequency

regime (say below 1000 Hz) and these differences cannot be

explained on the basis that the FE model is underdiscretized

with respect to a typical wavelength. The physical reason for

the nature of the solution to this difficult problem is not clear

and the authors are reluctant to speculate in this paper as to

its cause. We shall just mention, in passing, two remarks: (i)

No particular care has been taken for the edge conditions at

the inlet and outlet planes and (ii) hydrodynamic modes

which can be generated and discretized in the FE model are

deliberately discarded in the present modal approach.

Figure 10 shows the TL predictions for different Mach

number: M ¼ �0.3, �0.1, 0, 0.1, and 0.3. The mean flow

modifies the apparent acoustic wavelength in the airway and

changes the number of oscillations in the absorbing material.

The flow is found, in general, to reduce the attenuation for the

downstream propagation and to increase it for the upstream

propagation. However, near the resonance peaks the behavior

may be different due to some spatial coincidence. Note that

FIG. 7. TL for silencer A without flow and XFM foam, 78 000 degrees

of freedom (DOFs) 3D FE calculation (Ref. 10), MMM with 5, 7, and

13 modes, � � �MMM with 15 modes.

TABLE V. Convergence of TL predictions (in decibels) with respect to the

number of modes K.

K 500 Hz 900 Hz 1000 Hz

1 14.5333 17.8914 23.2962

2 13.9663 16.6979 15.5509

5 15.5231 30.2493 26.2362

7 15.7968 27.0677 25.0583

10 15.8620 25.9387 24.6308

13 15.9510 26.2165 24.8859

17 15.9862 25.5172 24.3866

22 15.9857 25.1448 24.2645

FIG. 8. TL for silencer B without flow and XFM foam, 100 000 DOFs

3D FE calculation (Ref. 10), � � �MMM with 16 modes.

FIG. 9. TL for silencer A with an M ¼ 0.2 flow and RGW2 wool,

78 000 DOFs 3D FE calculation (Ref. 10), � � � MMM with 16 modes,

14 000 DOFs Limp model FE calculation (Refs. 2, 23).
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comparisons with FE results were found to be in good agree-

ment in all cases (for the sake of illustration, a comparison is

shown in Fig. 11 for M ¼ 0.2).

The behavior of the RGW2 wool, which corresponds to a

more common material in dissipative silencers for HVAC

applications, is depicted in Figs. 9 and 12. We also present a

comparison with FE calculations23 using the limp model2; that

is, an equivalent fluid model which considers infinitely soft

frame and takes into account only skeleton inertial effects. For

rigid frame materials, this model gives similar results as the

rigid frame model.41 These results indicate that properly mod-

eling the skeleton can lead to significant improvements of a

few decibels on the TL even for wool-like materials. The

result is not too surprising as it was already reported that an

edge-constrained fibrous sample placed in a standing wave

tube can exhibit shearing resonances.5 Thus, a precise descrip-

tion of the mounting conditions can have serious consequen-

ces on the effectiveness of the acoustic treatment.

Before we conclude this section, we shall comment on

the computational efficiency of the MMM. All previous

results were obtained using four integration circles each con-

taining 500–1000 quadrature points. In MATLAB implementa-

tion, it takes approximately 5 s to find the roots for a given

frequency. When 15 modes are included in the modal series,

about 20 s are needed for the overall matching procedure on

a Pentium IV personal computer. Note that the central proc-

essing unit (CPU) time can be largely reduced (say by a fac-

tor of 5–10) with compiled languages such as FORTRAN or C

and this renders the present method an efficient one. The

authors are aware that the root-finding algorithm presented

here was favored because it does not suffer from missing

roots. The method is certainly slower (in terms of number

of function evaluations) than other techniques such as the

popular Newton–Raphson method and we think that the

computational time could be further reduced by judiciously

exploiting the benefit of the two methods.

V. CONCLUSIONS AND PROSPECTS

In this paper, we have presented a new MMM for acous-

tic propagation through circular dissipative silencers partially

filled with a poroelastic material. The model, based on the

Helmholtz decomposition of Biot’s equations, takes into

account the solid phase elasticity of the sound-absorbing ma-

terial as well as the mounting conditions of the foam. In the

no-flow case, comparisons with a full FE model show good

agreements even at the resonance peaks corresponding to

elastic resonances of the foam which is assumed to be

clamped on the hard wall of the silencer. It is also shown that

wool materials which are usually described via fluid equiva-

lent models can, when the elastic phase is included, exhibit

some resonance effects clearly visible on the TL curves.

When a uniform mean flow is present in the airway, the

problem remains separable and the modal analysis still holds.

However, a mode of a different nature is also present. This

mode has connection with the stability of the flow in the vi-

cinity of the permeable surface separating the gas flow and

the foam. It was found, however, that the inclusion of this

mode in the modal series has no noticeable effects regarding

the numerical examples shown in this work. Comparisons

FIG. 10. TL for silencer A with a filled with the XFM foam, no-flow

case, upstream propagation, downstream propagation with jMj
¼ 0.1 and jMj ¼ 0.3.

FIG. 11. TL for silencer A with an M ¼ 0.2 flow and XFM foam,

78 000 DOFs 3D FE calculation (Ref. 10), � � �MMM with 15 modes.

FIG. 12. TL for silencer A with an M ¼ 0 flow and RGW2 wool,

78 000 DOFs 3D FE calculation (Ref. 10), � � � MMM with 16 modes,

14 000 DOFs limp model FE calculation (Refs. 2, 23).
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with FE results showed small but discernible discrepancies.

In all cases, it is believed that this is not a major issue for en-

gineering applications, as the error on the TL does not exceed

1 dB. In practice, the present method is shown to be very effi-

cient as the time for computing the TL over a large frequency

range takes a few minutes on a personal computer. Thus, this

new MMM remains very competitive compared with classi-

cal mode matching techniques in which the sound-absorbing

material is assumed to be bulk reacting.

Now, there is still room for some improvement of the

method. As computational time is essentially spent in com-

puting Bessel functions with complex arguments, the use of

asymptotic expansion could possibly be utilized for suffi-

ciently large arguments. Another route of particular interest

to us is to investigate bi-orthogonality relations42 that exist

for poroelastic media in order to extend it to our configura-

tions. It is hoped that this could then yield a better under-

standing of the matching procedure at the interface leading

to better conditioned scattering matrices. Work is ongoing to

include the effect a perforate plate at the air-porous interface

so that more realistic silencers could be studied. In principle,

following previous studies,30,37 this is not a major task once

the transmission properties of the plate are known.
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APPENDIX: MATRIX M COEFFICIENTS

The V vector is given by

V ¼ ðA2;B2;A3;B3;A1;B1;A0ÞT; (A1)

and the nonvanishing M coefficients are

M1;1 ¼ �H2J0ða2r1Þ þ
2 Na2 J1ða2r1Þ

r1

; (A2)

M1;2 ¼ �H2Y0ða2r1Þ þ
2 Na2 Y1ða2r1Þ

r1

; (A3)

M1;3 ¼
2 iNbða3J0ða3r1Þr1 � J1ða3r1ÞÞ

r1

; (A4)

M1;4 ¼
2 iNbð�Y1ða3r1Þ þ a3Y0ða3r1Þr1Þ

r1

; (A5)

M1;5 ¼ �H1J0ða1r1Þ þ
2 Na1J1ða1r1Þ

r1

; (A6)

M1;6 ¼ �H1Y0ða1r1Þ þ
2 Na1Y1ða1r1Þ

r1

; (A7)

M1;7 ¼ q0c2
0X

2 J0 a0r1ð Þ; (A8)

M2;1 ¼ �J1 a2r2ð Þa2; (A9)

M2;2 ¼ �Y1 a2r2ð Þa2; (A10)

M2;3 ¼ ib J1 a3r2ð Þ; (A11)

M2;4 ¼ i bY1 a3r2ð Þ; (A12)

M2;5 ¼ �J1 a1r2ð Þa1; (A13)

M2;6 ¼ �Y1 a1r2ð Þa1; (A14)

M3;1 ¼ �2 iNb J1 a2r1ð Þa2; (A15)

M3;2 ¼ �2 iNb Y1 a2r1ð Þa2; (A16)

M3;3 ¼ NJ1 a3r1ð Þ �b2 þ a2
3

� �
; (A17)

M3;4 ¼ NY1 a3r1ð Þ �b2 þ a2
3

� �
; (A18)

M3;5 ¼ �2 iNb J1 a1r1ð Þa1; (A19)

M3;6 ¼ �2 iNb Y1 a1r1ð Þa1; (A20)

M4;1 ¼
k2

2J0 a2r1ð Þ Rl2 þ Qð Þ
/

; (A21)

M4;2 ¼
k2

2Y0 a2r1ð Þ Rl2 þ Qð Þ
/

; (A22)

M4;5 ¼
k2

1J0 a1r1ð Þ Rl1 þ Qð Þ
/

; (A23)

M4;6 ¼
k2

1Y0 a1r1ð Þ Rl1 þ Qð Þ
/

; (A24)

M4;7 ¼ �q0c2
0X

2J0 a0r1ð Þ; (A25)

M5;1 ¼ ib J0 a2r2ð Þ; (A26)

M5;2 ¼ ib Y0 a2r2ð Þ; (A27)

M5;3 ¼ �a3 J0 a3r2ð Þ; (A28)

M5;4 ¼ �a3 Y0 a3r2ð Þ; (A29)

M5;5 ¼ ib J0 a1r2ð Þ; (A30)

M5;6 ¼ ib Y0 a1r2ð Þ; (A31)

M6;1 ¼ �l2 J1 a2r2ð Þa2; (A32)

M6;2 ¼ �l2 Y1 a2r2ð Þa2; (A33)

M6;3 ¼ il3 b J1 a3r2ð Þ; (A34)

M6;4 ¼ il3 b Y1 a3r2ð Þ; (A35)

M6;5 ¼ �l1 J1 a1r2ð Þa1; (A36)

M6;6 ¼ �l1 Y1 a1r2ð Þa1; (A37)

M7;1 ¼ �J1 a2r1ð Þ a2 /l2 � /þ 1ð Þ; (A38)

M7;2 ¼ �Y1 a2r1ð Þa2 /l2 � /þ 1ð Þ; (A39)
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M7;3 ¼ ib J1 a3r1ð Þ /l3 � /þ 1ð Þ; (A40)

M7;4 ¼ ib Y1 a3r1ð Þ /l3 � /þ 1ð Þ; (A41)

M7;5 ¼ �J1 a1r1ð Þ a1 /l1 � /þ 1ð Þ; (A42)

M7;6 ¼ �Y1 a1r1ð Þ a1 /l1 � /þ 1ð Þ; (A43)

M7;7 ¼ J1 a0r1ð Þa0; (A44)

with

Hi ¼ ððRþ QÞli þ Qþ AÞk2
i þ 2Na2

i : (A45)
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