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We consider the courier delivery problem (CDP), a variant of the vehicle routing problem with time win-
dows (VRPTW) in which customers appear probabilistically and their service times are uncertain. We

use scenario-based stochastic programming with recourse to model the uncertainty in customers and robust
optimization for the uncertainty in service times. Our proposed model generates a master plan and daily sched-
ules by maximizing the coverage of customers and the similarity of routes in each scenario, while minimizing
the total time spent by the couriers and the total earliness and lateness penalty. To solve large-scale problem
instances, we develop an insertion-based solution heuristic, called master and daily scheduler (MADS), and a
tabu search improvement procedure. The computational results show that our heuristic improves the similarity
of routes and the lateness penalty at the expense of increased total time spent when compared to a solution of
independently scheduling each day. Our experimental results also show improvements over current industry
practice on two real-world data sets.
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1. Introduction
In this study, we consider the courier delivery
problem (CDP), a variant of the vehicle routing prob-
lem with time windows (VRPTW) with uncertain ser-
vice times and probabilistic customers. This problem
is motivated by the operations of a courier deliv-
ery/pickup company that serves a dense urban area.
In this situation, travel times between locations are
relatively short, and therefore can be assumed con-
stant when compared to the variation in service times
at each location. In a business district, for example, a
driver might have several drops and pickups in mul-
tiple offices at the same address. We therefore con-
sider a routing problem with uncertainty because of
unknown service times and the probabilistic nature of
the customers, i.e., daily delivery requests from poten-
tial customers are not known beforehand, but they
usually become available in the morning.
For many practical reasons, it seems beneficial to

create regular or consistent routes for the CDP that
assign the same driver to the same set of customers
to serve them at roughly the same time. Such con-
sistent routes are easy to adapt to the realization of
the daily uncertainty and help courier companies real-
ize the important goal of personalization of services,
making the driver the contact person whenever the

customer needs service. This regularity in schedules
also increases driver familiarity with their own routes
and territories, which improves driver efficiency.
A simple solution for the CDP, referred to as

independent daily schedules, is to solve the routing
problem each day based on that day’s requirements,
when the customer locations and service times are
revealed at the beginning of the day (Savelsbergh and
Goetschalckx 1995; Beasley and Christofides 1997).
However, because there is no consideration of geo-
graphical area or regularity of service in such solution
methods, it may not provide the level of consistency
or regularity that real practice needs (Malandraki et al.
2001). One method used to obtain consistent routes is
territory planning, which assigns service territories to
drivers over a certain planning horizon (Zhong, Hall,
and Dessouky 2007). The variations in demand are
accommodated by adjusting the border of the terri-
tories. However, adjusting driver territories efficiently
is not trivial and usually only a limited number of
drivers share their capacities through territory adjust-
ments. Recently (Groër, Golden, and Wasil 2008) intro-
duce the Consistent VRP (ConVRP), and the objective
is finding routes in which the same drivers visit the
same customers at roughly the same time on each day
the customers need service. This differs from the CDP
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in that matching drivers to customers is not an explicit
objective of CDP and ConVRP does not consider time
window constraints or uncertain service times.

1.1. Scientific Contribution
In this work, we present a mixed-integer program
(MIP) model that aims to obtain a master route
or plan and develop an iterative heuristic solution
method for it. This master route is then used as a
basis to construct daily schedules for couriers to meet
the delivery requests at minimum cost. Thus the mas-
ter plan eliminates significant replanning in each day
and increases the similarity between daily schedules
and the familiarity of drivers with the daily routes,
thereby potentially improving driver productivity.
Compared with territory planning, the master plan

model should allow additional flexibility in building
daily schedules as more drivers can share their capaci-
ties in the daily adjustment. Likewise, the master plan
model also should be more flexible in constructing
daily routes than ConVRP, as there is no explicit objec-
tive to match drivers to customers. We compare the
performance of the master plan method with existing
methods in the computational section of this paper.
To formulate the CDP, we adapt an uncapaci-

tated VRPTW formulation and use a combination of
robust optimization in a first phase master problem
and stochastic programming with recourse for daily
schedules to address the uncertainty in service times
and customer occurrence. Given historical demand
data, we consider each day in the planning horizon as
a scenario and generate a robust master plan for cus-
tomers who are most likely (ML) to occur. The objec-
tive of the recourse actions is, for each scenario, to
maximize the coverage of customers, to minimize the
total time spent by the couriers and the total earliness
and lateness penalty, and to maximize the similarity
of the daily routes with the robust master plan.
In formulating a master plan, a variety of ap-

proaches could be used in addressing uncertainty in
service times and customers. However, because one
of the primary goals in generating the master plan is
to improve similarities in daily schedules, which vary
with the uncertainty outcome, an intuitive approach
is to use a method that would result in a master plan
that would stay good for all possible realizations of
the uncertainty, and thus would require few modifi-
cations to adapt to the daily schedules. This suggests
using a robust optimization approach to plan the mas-
ter schedule, as it would exhibit little sensitivity to
data variations. Likewise, considering the customers
ML to occur when constructing the master plan should
improve the similarity of daily schedules, because the
master plan would be tailored toward these customers
who appear in most days.
To solve the CDP, we develop a two-phase approx-

imate solution procedure, called master and daily

scheduler (MADS), to obtain solutions for large-scale
real-life problems. This insertion-based heuristic gen-
erates a master plan, which is then used to gener-
ate daily schedules using the recourse actions and
improved with a tabu search. Tabu search has been
used with good results on vehicle routing problem
(VRP) (Cordeau and Laporte 2004).

1.2. Organization of the Paper
In the remainder of this introductory section, we
present a related literature review. In §2, we present
the CDP formulation for problems with service time
uncertainty and probabilistic customers. In §3, we pro-
pose the two-phase heuristic for MADS and present
the tabu search improvement procedure. We present
our computational results in §4. These include a com-
parison of MADS to solutions obtained by indepen-
dently scheduling each day without a master plan, to
current industry practice that executes territory plan-
ning, and to ConVRP on benchmark problems. We fin-
ish the paper with a summary and conclusions in §5.

1.3. Literature Review
The VRP variants related to our work are VRP with
stochastic demands (VRPSD), with stochastic cus-
tomers (VRPSC), and with stochastic service and
travel times (VRPSSTT). A major contribution to
VRPSD comes from Bertsimas (1992), where a priori
solutions use different recourse policies to solve the
VRPSD and bounds, and asymptotic results and other
theoretical properties are derived.
A number of models and solution procedures for

VRPSD and VRPSC allow recourse actions to adjust
an a priori solution after the uncertainty is revealed.
Different recourse actions have been proposed in
the literature, such as skipping nonoccurring cus-
tomers, returning to the depot when the capacity is
exceeded, or complete reschedule for occurring cus-
tomers (Jaillet 1988; Bertsimas, Jaillet, and Odoni 1990;
Waters 1989). Recent work by Morales (2006) uses
robust optimization for the VRPSD with recourse. It
considers that vehicles replenish at the depot, com-
putes the worst-case value for the recourse action by
finding the longest path on an augmented network,
and solves the problem with a tabu search heuris-
tic. Sampling methods are also popular in solving
stochastic VRP (Birge and Louveaux 1997). Recently,
Hvattum, Løkketangen, and Laporte (2006) develop
a heuristic method to solve a dynamic and stochas-
tic VRP problem, where sample scenarios are gen-
erated, solved heuristically, and combined to form
an overall solution. Compared with stochastic cus-
tomers and demands, the VRPSSTT has received less
attention. Laporte, Louveaux, and Mercure (1992) pro-
pose three models for VRPSSTT: chance constrained
model, three-index recourse model and two-index
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recourse model, and present a general branch-and-
cut algorithm for all three models. The VRPSSTT
model is applied to a banking problem and solved
with an adaptation of the savings algorithm (Lambert,
Laporte, and Louveaux 1993). Jula, Dessouky, and
Ioannou (2006) develop a procedure to estimate the
arrival time to the nodes in the presence of hard
time windows. These estimates are embedded in a
dynamic programming algorithm to determine the
optimal routes.
Recent work on the CDP has modeled customer

service for fixed route delivery systems under
stochastic demand (Haughton and Stenger 1998).
Later, Haughton (2000) develops a framework for
quantifying the benefits of route re-optimization,
again under stochastic customer demands. Zhong,
Hall, and Dessouky (2007) propose an efficient way of
designing driver service territories considering uncer-
tain customer locations and demand. Their method
uses a two-stage model to construct core service
territories in the strategic level and assigns cus-
tomers in the noncore territories on a daily basis
to adapt to the uncertainty in the operational level.
The territory model is based on approximation equa-
tions of the distance traveled. The operational level
makes it possible for all drivers to share their capac-
ities by introducing the concept of “flex zone.” This
approach, however, does not consider customer time
windows. Groër, Golden, and Wasil (2008) introduce
the ConVRP model. The objective is to obtain routes
such that the same drivers visit the same customers at
roughly the same time on each day that the customers
need service. They develop an algorithm, ConRTR
(ConVRP Record-to-Record travel), which first gener-
ates a template and from it generates daily schedules
by skipping nonoccurring customers and inserting
new customers.
Robust optimization methodology was intro-

duced by Ben-Tal and Nemirovski (1998, 1999) and
El-Ghaoui, Oustry, and Lebret (1998) for convex
programs, which is recently extended to integer
programming by Bertsimas and Sim (2003). The gen-
eral approach of robust optimization is to optimize
against the worst instance because of data uncer-
tainty by using a min-max objective. This typically
results in solutions that exhibit little sensitivity to
data variations and are said to be immunized to this
uncertainty. Thus, robust solutions are good for all
possible data uncertainty. Robust solutions are likely
to be efficient, because they tend not to be far from
the optimal solution of the deterministic problem and
significantly outperform the deterministic optimal
solution in the worst case (Goldfarb and Iyengar 2003;
Bertsimas and Sim 2004).
The robust optimization methodology assumes the

uncertain parameters belong to a given bounded

uncertainty set. For fairly general uncertainty sets and
optimization problems, the resulting robust counter-
part can have a comparable complexity to the orig-
inal problem. This nice complexity result, however,
does not carry over to robust models of problems
with recourse, where linear programs with polyhedral
uncertainty can result in NP-hard problems (Ben-Tal
et al. 2004). An important question, therefore, is how
to formulate a robust problem that is not more dif-
ficult to solve than its deterministic counterpart. In
particular, Sungur (2009) and Sungur, Ordóñez, and
Dessouky (2008) show that obtaining robust solutions
for VRP with demand and travel time uncertainty
is not more difficult than obtaining the deterministic
solutions.

2. CDP Formulation
In this section, we formulate the CDP as a MIP model.
The delivery requests arrive daily from potential cus-
tomers with known time windows but uncertain ser-
vice times at the beginning of each day. The locations
of the customers are known, but it is not known a
priori whether a particular customer requests a deliv-
ery at a given day. There are a limited number of
couriers to route for a limited time period each day.
The first goal is to construct an a priori master plan
for the planning horizon to be used in constructing
daily schedules by adapting to the daily customer
requests. The second goal is to modify the master
plan to construct daily schedules for couriers to serve
as many customers as possible, while maintaining
route similarity and at the same time minimizing ear-
liness/lateness penalties and the total time spent by
the vehicles in each day, which accounts for travel,
waiting, and service times.
We measure the similarity of a route on the daily

schedule and a route on the master plan by counting
the number of customers of the daily route that are
within a given distance of any customer on that mas-
ter plan route. The similarity of the daily schedule is
given by assigning each daily schedule route to a mas-
ter plan route, to represent the same driver, so that the
overall similarity measure is maximized. The larger
the measure, the more nodes are within a given dis-
tance of the corresponding master route, and accord-
ingly, the more nodes are visited by the same driver.
This measure captures some important aspects of ter-
ritory familiarity and the visiting frequency to a cus-
tomer by the same driver (Zhong, Hall, and Dessouky
2007). They describe a driver learning model, which
shows that when the number of visits to a partic-
ular cell by the same driver increases, the average
time spent to serve each stop in this cell approaches
a lower limit. In addition, when a customer is visited
by the same driver, the service quality also improves.
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Given a total of D days of historical data, we con-
sider each past day (scenario) as a realization of uncer-
tainty, and we construct scenario-based uncertainty
sets for service times and customer occurrence. In con-
structing the master plan, we address the probabilistic
nature of the customers by attempting to serve only
the customers with high frequency of occurrence and
use a robust optimization approach to represent the
uncertain service times; both ideas aim to improve the
similarity in daily schedules. Hence we obtain robust
a priori routes for the master plan, which are then used
as the starting point to construct the daily routes to
serve the observed demand optimizing the combined
time, penalty and similarity objective. The goal is that
the robust master plan that has been trained by the
past data or scenarios can then be used to generate
future daily schedules. The implicit assumption is that
the scenarios considered are representative of future
demand.
We formulate the CDP based on the uncapacitated

VRP with soft time windows. Similar to the classic
VRPTW, given a network of customers and the loca-
tion of the depot, the objective is to route the fleet of
vehicles to serve the maximum number of customers
based on their service times and time windows. We
allow a vehicle to arrive before or after the time win-
dow at a given penalty and consider the uncapac-
itated problem because packages are small relative
to vehicle capacity. The lack of capacity constraint
implies that every customer will be served by only
one vehicle. The vehicles start and end their routes at
the depot. The length of a route, or total time spent, is
composed of travel, waiting, and service times. There
is a common due date for the vehicles to return to
the depot, which is a hard constraint. We consider
one routing problem for the master plan that serves
high frequency customers and worst-case (WC) ser-
vice times, and one routing problem for each of D sce-
narios of daily schedules. These D + 1 routing prob-
lems are related by keeping track of the similarity of
daily routes to the master plan. Thus the size of the
CDP is D+ 1 times the size of a VRPTW.
We now introduce the mathematical formulation of

the CDP, which is given below in problem 1. We begin
by setting the notation. The depot is located at node 0.
Let K be the set of couriers, and ND the set of inte-
gers from 0 to D to indicate scenarios, including mas-
ter plan as scenario 0. There are a total of n customers
indexed by C = �1�2� � � � �n	, a depot node 0, and
�K� artificial nodes indexed by A= �n+ 1� � � � �n+ �K�	.
The frequency of occurrence of customer i, pi, is
defined as the ratio of the number of days customer i
appears over the total number of days D, which is also
referred to as the probability of occurrence of this cus-
tomer. Let Cd be the set of customers who occur in a
given scenario d, and V d the set of all the nodes that

occur in a given scenario d, V d =Cd∪A∪ �0	. The time
to traverse the arc from node i to node j is given by
tij and sdi is the service time of node i in scenario d. In
particular, ∀d ∈ND the following is true: sd0 = 0; ∀ i ∈A,
k ∈ K, ti0k = t0ik = sdi = 0; ∀ i ∈ A, ∀ j ∈ Cd, tij = t0j , and
tji = tj0; and ∀ i, j ∈ A, i �= j , tij = tji = 0. We let R be
the time threshold to consider two nodes near each
other, and keep track of which nodes are near with the
parameter vij = 1 if tij ≤ R; otherwise 0. The value of
adi represents the earliest start time and bdi is the lat-
est start time to serve customer i in scenario d. The
common due date for all vehicles is L, which is also
referred as the route length. Let M be a sufficiently
large number.
If the arc from node i to node j is traversed by vehi-

cle k in scenario d, then the binary variable xdijk = 1;
otherwise 0. If customer i is visited by vehicle k in
scenario d, then binary variable zdik = 1; otherwise 0.
The continuous variable ydik is the arrival time to node
i in scenario d by vehicle k except the depot in which
case it is the departure time, i.e., yd0k = 0. In particu-
lar, ydik for i ∈A corresponds to the arrival time to the
depot of vehicle k. Note that ydik = 0 for a customer i,
which is not served by vehicle k, i.e., when zdik = 0. The
continuous variable edik is the earliness penalty and ldik
is the lateness penalty of customer i for vehicle k in
scenario d; similarly edik = ldik = 0 when zdik = 0.
To measure the similarity between the daily sched-

ule of scenario d and the master plan, we assign
each daily schedule route to a master route (same
driver) and count how many of the nodes in each
daily schedule route are within R of some node
on their assigned master route. We use the assign-
ment that maximizes the overall similarity. For this,
we need to use two auxiliary sets of binary vari-
ables, md

kl and ril. If route k of scenario d is assigned
to the master plan route l, then variable md

kl = 1;
otherwise 0. If customer i is near any node of master
route l, then ril = 1; otherwise 0. In other words, ril = 1
if and only if vij = 1 for at least one node j in route l.
We say node i is good if the vehicle k serving it (i.e.,
zdik = 1) is assigned to a master route l (i.e., md

kl = 1),
for which the node is near (i.e., ril = 1). That is, the
binary variable gd

ikl = zdikm
d
klril = 1 if i is good; other-

wise 0. Only when all of md
kl, z

d
ik, and ril are 1, gd

ikl is 1.
We linearize the expression of gd

ikl in the model. The
similarity measure is the total number of nodes that
are good. Problem 1 is presented below.
The CDP objective function is

min
∑
d∈ND

∑
k∈K

(
−!1

∑
i∈Cd

zdik+!2
∑
i∈A

ydik+!3
∑
i∈Cd

ldik+!4
∑
i∈Cd

edik

)

− ∑
d∈ND\�0	

!5
∑
i∈V d

∑
k∈K

∑
l∈K

gd
ikl� (1)
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Routing constraints are

s.t.
∑

j∈V d� i �=j
xdjik = zdik i ∈Cd� k ∈K� d ∈ND� (2)

∑
j∈V d� j �=i

xdijk = zdik i ∈Cd� k ∈K� d ∈ND� (3)

∑
i∈V d\�0	

xd0ik = 1 k ∈K� d ∈ND� (4)

∑
i∈V d\�0	

xdi0k = 1 k ∈K� d ∈ND� (5)

xdi0k = 1 i ∈A� k ∈K� d ∈ND� (6)

Time and time window violation definitions are

s.t. ydik + tij + sdi ≤ ydjk +M"1− xdijk#

i ∈ V d� j ∈ V d\�0	� i �= j� k ∈K� d ∈ND� (7)

adik≤ydik+edik+M"1−zdik# i∈Cd� k∈K� d∈ND� (8)

ydik ≤ bdik + ldik i ∈Cd� k ∈K� d ∈ND� (9)

ydik ≤ Lzdik i ∈Cd� d ∈ND� (10)

Similarity measure constraints are

s.t.
∑
j∈V d

vijz
0
jl ≥ ril i ∈Cd� l ∈K� (11)

∑
j∈V d

vijz
0
jl ≤Mril i ∈Cd� l ∈K� (12)

gd
ikl ≥ zdik +md

kl + ril − 2
i ∈ V d� k ∈K� l ∈K� d ∈ND\�0	� (13)

gd
ikl ≤ "zdik +md

kl + ril#/3

i ∈ V d� k ∈K� l ∈K� d ∈ND\�0	� (14)∑
k∈K

md
kl = 1 l ∈K� d ∈ND\�0	� (15)

∑
l∈K

md
kl = 1 k ∈K� d ∈ND\�0	� (16)

Domain constraints are

s.t. edik ≥ 0 i ∈Cd� k ∈K� d ∈ND� (17)

ldik ≥ 0 i ∈Cd� k ∈K� d ∈ND� (18)

xdijk ∈ �0�1	 i� j ∈ V d� i �= j� k ∈K� d ∈ND� (19)

ydik ≥ 0 i ∈ V d� k ∈K� d ∈ND� (20)

zdik ∈ �0�1	 i ∈Cd� k ∈K� d ∈ND� (21)

ril ∈ �0�1	 i ∈ V d� l ∈K� (22)

md
kl ∈ �0�1	 k ∈K� l ∈K� d ∈ND\�0	� (23)

gd
ikl∈�0�1	 i∈V d� k∈K� l∈K� d∈ND\�0	� (24)

The objective function (1) maximizes the number of
customers served and minimizes the total time spent

by the vehicles as well as the total earliness and late-
ness penalty, for each scenario, including the master
plan. In addition, the weighted similarity of the sce-
nario routes with the master plan is also maximized.
We consider a set of positive weights !1� � � � �!5 to
balance these competing objectives. Although the spe-
cific values of the weights depend on the problem and
the planner’s objectives, it is reasonable to consider
a higher value of !1, so that not visiting a customer
to avoid travel time or earliness or lateness penalties
would not be desirable. Note that in many real-life
cases, !4 = 0 because there is no explicit penalty for
waiting time, but it indirectly increases the total time
spent.
Constraints (2)–(5) are the routing constraints. Con-

straint (6) forces every artificial node to be visited at
the end of the route to keep track of the time spent
by the vehicles. Constraint (7) defines ydjk, the arrival
time at j when customer j is served right after cus-
tomer i for vehicle k in scenario d. The increasing time
would also guarantee that there are no subtours in
the solution. Constraints (8)–(9) impose the earliness
and lateness penalty. Constraint (10) imposes the com-
mon due date of the vehicles. Constraints (11)–(12)
ensure that only when the distance between node i
and at least one of the nodes in master route l is less
than R, ril = 1; otherwise 0. Constraints (13)–(14) is the
linearization of gd

ikl = zdikm
d
klril. Constraints (15)–(16)

ensure every daily route is assigned to a different
master route. Last, constraints (17)–(24) are bounds on
the variables. Note that constraints (11)–(16) are the
linking constraints, relating each scenario d with the
master plan. Removing these constraints separates the
CDP problem into D+ 1 unrelated VRPTW.
For the master plan (scenario 0) in the CDP, we

need to define the set of customers C0 and the value
of uncertain service time s0i for each customer i in this
set. For the former, we select the customers with high-
est probability of occurrence pi. For the latter, we use
robust optimization to construct WC service time val-
ues for the master plan. For customer i, we assume
that the possible realizations of service times are in the
convex hull of the scenario realizations �sdi 	d∈ND

. With
this model of uncertainty, the WC service time consid-
ered by robust optimization is simply s0i =maxd∈ND

sdi .
A general treatment of robust optimization for VRP
with scenario-based uncertainty appears in Sungur,
Ordóñez, and Dessouky (2008).
The formulation is different from the conventional

VRP in that (1) to get a robust master plan, the service
time we are using is the worse-case service time; (2)
the model has multiple objectives, because it consid-
ers not only the number of customers served, total
time spent, earliness penalty and lateness penalty, but
also the similarity of the daily routes with the mas-
ter routes; and (3) the solution of problem 1 includes
both daily routes and a master plan.
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3. MADS Heuristic
Because VRP is NP-hard, it is clear that the formula-
tion of CDP (problem 1) is NP-hard since the VRP is
a special case when !1 = !3 = !4 = !5 = 0. To address
the challenge of solving a large-scale real-life CDP, we
develop a heuristic solution procedure, MADS, based
on insertion and tabu search. The approach is to sep-
arate the CDP into D+ 1 problems by removing con-
straints (11)–(16) and using an insertion heuristic to
solve each of these problems. We coordinate the solu-
tions of the master plan and scenarios in a two-phase
iterative process. The master plan is used to construct
routes for each scenario with a partial rescheduling
recourse. This partial rescheduling recourse combines
skipping customers not present in the scenario and
inserting the new customers. The MADS output is a
robust master plan and daily schedules for the given
set of scenarios. This master plan can then be used
to generate daily schedules, once the uncertainty of a
given day is realized, through the partial rescheduling
recourse; the daily schedule is then improved with a
tabu search heuristic.
When inserting customers to routes, we use an

insertion routine (Algorithm 1) that greedily min-
imizes the cost of insertion. That is, the cheapest
among all feasible insertions is done at each step.
When scheduling the master plan, the cost of insertion
of customer j in the route of vehicle k is determined
by the increase in the time spent and the increase in
the total penalty of all the customers served by that
vehicle, i.e., %"!2

∑
i∈A y0ik + !3

∑
i∈H0 e0ik + !4

∑
i∈H0 l0ik#,

where Hd is the set of scheduled customers for d ∈
ND. When scheduling daily routes, however, the cost
of insertion is determined by not only the increase
in the time spent and the total penalty, but also the
decrease of similarity, i.e., %"!2

∑
i∈A ydik+!3

∑
i∈Hd edik+

!4
∑

i∈Hd ldik − !5
∑

i∈Hd rik#. Without loss of generality,
we are constructing daily route k according to master
route k.

Algorithm 1 (Insertion routine)
Require: Initial routes, set of unscheduled

customers
Calculate insertion cost of possible insertion
locations for nonscheduled customers

repeat
Pick the cheapest insertion
Update routes
Update insertion cost

until All customers inserted or no feasible
insertion possible

return The resulting routes

The first phase (Algorithm 2) is the construction
of an initial solution. An initial robust master plan
is constructed by starting with empty routes and
making insertions of customers using Algorithm 1.

Then, the routes of the master plan are updated by
each scenario following the recourse actions to con-
struct daily schedules. Each scenario starts to adapt
the robust master routes by omitting (not visiting)
the customers who do not occur in that particular
scenario and visiting the remaining customers fol-
lowing the same sequence as in the master routes.
Then greedy insertion, Algorithm 1, is used to insert
the new customers of that particular day that do not
occur in the master routes.

Algorithm 2 (Phase One)
Require: Distance matrix, master data,

scenario data, maximum route length
Call insertion routine for master plan starting
with empty routes

for Each scenario d do
Drop nonoccurring customers from
master routes

Call insertion routine for new customers
end for
Calculate the objective value and save the
current solution

return The current solution

The second phase (Algorithm 3) is iterative. At
each iteration, first, the scenarios give feedback to the
master plan about the customers who could not be
scheduled in their daily routes; second, based on this
feedback, the master plan prioritizes these unsched-
uled customers by the number of scenarios that they
appear but could not be scheduled. Then, the master
plan updates its routes by performing feasible max-
imum priority insertions in the cheapest way. Note
that the selection of customers is based on the priority
not on the cost of insertion. However, once a customer
is selected, the cheapest possible insertion is done for
this particular customer. Then, the new master plan is
re-dispatched to the scenarios, which construct their
daily schedules with respect to the recourse action as
before. At the end of each iteration, the objective func-
tion is evaluated as

∑
d∈Nd\�0	

∑
k∈K

(
−!1

∑
i∈Hd

zdik+!2
∑
i∈A

ydik+!3
∑
i∈Hd

edik +!4
∑
i∈Hd

ldik

)

− ∑
d∈Nd\�0	

!5Sd�

where Sd (the similarity of scenario d) is obtained by
solving a maximum assignment problem. The prob-
lem is to assign the daily routes to the master routes
optimally to get maximum similarity. The iterations
of the second phase, and thus the overall two-phase
algorithm stop when there is no improvement in the
objective.
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Algorithm 3 (Phase Two)
Require: Solution of Phase One, maximum

route length
repeat
Calculate priorities of customers not served
in the scenarios

repeat
In decreasing priority order, pick a customer
and call insertion routine to insert it in
master route

until No priority customer or no feasible
insertion possible

for Each scenario d, do
Take the master routes as initial solution
Drop the nonoccurring customers
Call insertion routine for new customers

end for
Calculate the objective value
if The objective value is improved, then
Save the current solution

end if
until The objective value is not improved
return The current solution

Note that, for the master plan, the first phase is cost
driven, whereas the second phase is priority driven.
For the scenarios, both phases are cost driven based
on the current master plan. The maximization of the
number of customers served is mainly because of the
recourse action of partial rescheduling of the routes;
the minimization of the time spent and total penalty
is mainly because of the greedy insertions; and maxi-
mization of the similarity of routes is because of gen-
erating daily schedules based on a common master
plan and the feedback procedure between the master
plan and daily schedules to prioritize the customers
in the iterative second phase.
The structure of the algorithm prioritizes serving

all customers, and then focuses on similarity, time
spent, and penalties when making insertions in the
construction of routes. The algorithm makes all fea-
sible insertions possible regardless of the impact on
cost. This behavior corresponds to considering the
weight !1 much larger than !2� � � � �!5 in the CDP
(problem 1). The setting of the remaining weights is
problem dependent and not structural to the algo-
rithm. Although the algorithm builds the daily sched-
ules by modifying the master route, the degree to
which this favors similarity is given by the weights
used in the insertion.
We also consider a buffer capacity between Phases

One and Two of the algorithm. In the first phase,
we reserve a buffer capacity by decreasing the com-
mon due date of the vehicles. This slack time is later
used in the second stage to schedule additional cus-
tomers. This parameter of the algorithm is actually a

tool to balance the cost-driven stage and the priority-
driven stage in constructing the master plan, which
indirectly effects the daily schedules as well. The algo-
rithm must also identify a subset of the customers to
be considered in the master problem (C0) during the
first phase, because in a real-life instance, the total
number of customers is too large to be feasibly sched-
uled. In the computational section, we explore exper-
imentally the effect of these algorithmic decisions on
the quality of the solution.
The description of MADS is given by Algorithms

1–3. Note that the output is a master plan that depends
on the given set of scenarios. This master plan is used
to create daily schedules using the partial reschedul-
ing recourse: dropping nonoccurring customers and
then using Algorithm 1 to insert the remaining cus-
tomers. We then use a tabu search algorithm (Algo-
rithm 4) to improve the daily routes obtained by the
MADS heuristic. The tabu search algorithm is not
applied to the master plan. This implementation of
the tabu search considers the neighborhoods obtained
from the standard two-opt exchange move and the (-
interchange move. The algorithm evaluates solutions
based on the objective function of the CDP (problem
1), i.e., the weighted sum of the number of customers
served, time spent, earliness penalty, lateness penalty,
and similarity.

Algorithm 4 (Tabu search algorithm)
Require: Solution of Phase Two
for Each scenario d, do
repeat
Randomly choose two routes from
the solution

Generate )max neighbors from (-interchange
operator

Generate *max neighbors from two-opt
operator

Choose the best solution and make
the move

Randomly generate tabu tenure + from
a uniform distribution U"+min, +max);

if The move is (-interchange, then
Make moving the exchanged nodes
tabu for + iterations

else
Make removing the new arcs tabu for +
iterations

end if
until No improvement in Imax iterations

end for
Calculate the objective value and save the
current solution

return The current solution

At each iteration, the tabu search generates )max
(-interchange neighbors and *max two-opt neighbors

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Sungur et al.: Model and Algorithm for the Courier Delivery Problem with Uncertainty
200 Transportation Science 44(2), pp. 193–205, © 2010 INFORMS

of the current solution. These neighborhoods are cre-
ated forbidding certain moves, referred to as tabu, for
a given number of iterations +. In our implementa-
tion, the number of tabu iterations is randomly (RD)
generated uniformly in "+min� +max#. For (-interchange
move, feasible moves from a solution consider that
up to P and Q nodes are exchanged between two
routes of the solution. The tabu search at each itera-
tion moves to the best neighbor, temporarily allow-
ing a move to a worse solution to escape the local
optima. The tabu status is overridden if the new solu-
tion is better than the best solution so far and the
algorithm terminates if there is no improvement in
Imax iterations.

4. Experimental Analysis
We present two sets of experiments. In the first set of
experiments, we analyze the sensitivity of the MADS
algorithm to the problem data and algorithm settings.
Specifically, we present results that show how the
algorithm varies with changes in the number of cus-
tomers of the master problem, the type of master
problem considered, the sample size for training the
master plan, the service time distribution, the prob-
ability distribution of customer occurrence, and the
weight of similarity !5. We compare the quality of
the solution of the MADS algorithm with a solution
obtained by independently scheduling scenarios with-
out a master plan, which we refer as the independent
daily insertion (IDI) algorithm.
The IDI algorithm treats each scenario as an inde-

pendent CDP and there is no master plan created. The
insertion routine, Algorithm 1, is executed for each
day with initially empty routes, without reserving a
buffer capacity, and with the cost of insertion given
by the increase in time spent and penalties. Then
the tabu search, Algorithm 4, is executed to improve
the solution obtained from Algorithm 1. Therefore the
IDI algorithm does not make any considerations in
increasing the similarity of the resulting independent
daily schedules, but maximizes the number of cus-
tomers served while minimizing the sum of time
spent and penalties for each day.
In the second set of experiments, we evaluate the

performance of MADS in obtaining solutions to two
large-scale real-world CDP instances from UPS. We
compare the solution of the MADS algorithm with
the current practice of a courier delivery company.
In addition, we analyze the sensitivity of the algo-
rithm to different settings of the buffer capacity. We
also compare the results of a modified version of
MADS with ConRTR over a set of ConVRP bench-
mark problems.
Regarding the objective function weights of the

CDP problem considered in the formulation, we fol-
low two guidelines: (1) we consider that satisfying

all customers is an overriding objective, therefore we
set !1 much higher than !2� � � � �!5 and (2) we con-
sider similarity more important than time spent and
penalties. The idea is to study the trade-off between
the similarity and other operational costs, and the
IDI solution provides a benchmark with a solution
that does not include similarity. In the computational
results, we set the objective function weights as !1 =
10�000, !5 = 5, !2 = !3 = 1, and !4 = 0 because our
application does not consider an explicit earliness
penalty.
Throughout the experimental analysis, we separate

the scenarios available in two groups. We use the data
for the first group to train the master plan and we use
the remaining scenarios to evaluate the performance
by treating it as future outcomes. In addition, the val-
ues of the parameters for the tabu search algorithm
(Algorithm 4) are as follows: Imax = 200; )max = *max =
100; P =Q= 2; +min = 10; and +max = 20. The threshold
for computing the route similarity is set as R = 0�1
mile. Finally, all experiments are performed on a Dell
Precision 670 computer with a 3.2 GHz Intel Xeon
processor and 2 GB RAM running Red Hat Linux
9.0, and all the solutions could be obtained within
one hour of CPU time.

4.1. Problem Data and Uncertainty
The CDP data obtained concerns operations of a large
courier company (UPS) in an urban area with known
customer locations. At the beginning of each day,
any of these potential customers can put a delivery
request with an uncertain service time. The travel
time is considered deterministic and to convert the
distance measures to time units, it is assumed that
the couriers travel at an average speed of 35 mph in
the city. We have two data sets for this application,
which are described in Table 1.
We now analyze the service time characteristics and

customer frequency distribution for data set 1. Simi-
lar trends are observed for data set 2. As it is com-
mon in the routing literature and in industry, service
times follow a lognormal distribution, see Dessouky
et al. (1999). In our particular case, we observe that

Table 1 Description of the Two Data Sets

Variables Data set 1 Data set 2

Number of potential 3�715 5�178
customers

Average number of 472 610
customers/day

Total number of days 29 42
Planning horizon 14 or 15 days 21 days
Number of couriers 4 5
Operation time of couriers 9:00 a.m.–8:00 p.m. 9:00 a.m.–9:00 p.m.
Total number of service 13�688 25�631

requests
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the service times of the customers in data set 1 are
closely approximated with a shifted and scaled lognor-
mal distribution with mean 0.0953 and standard devi-
ation 0.25. The mean and the standard deviation of
the actual service times are, respectively, about six and
four minutes. The frequency of occurrence distribu-
tion for the customers of data set 1 is depicted in line
P2 of Figure 1. The line P4 is its continuous approxi-
mation, which is a shifted power function. Note that
there are customers with probability 1 (i.e., occurring
in all of the scenarios). In addition, we present two
more continuous distributions, P1 and P3, which are
generated by modifying P4. In P1, the probabilities of
occurrence are decreased with respect to the original
P2; and in P3, they are increased. These three distribu-
tions, P1, P2, and P3, are used in our experiments to
sample scenarios.

4.2. Sensitivity of MADS
In this first set of experiments, we only focus on data
set 1 for space considerations. We explore the effect
of changing algorithmic parameters and problem data
on the MADS algorithm and we compare the qual-
ity of the solutions with the IDI algorithm. For the
current experiments, we fix the value of the buffer
capacity and the set of customers to be scheduled in
the master plan during Phase One of the MADS algo-
rithm. We set the buffer capacity to 50%, meaning that
only half of the total allowed time for the couriers
is considered during the first phase. In this way, we
weigh the cost-driven first phase and priority-driven
second phase equally. For the set of master plan cus-
tomers, we refer to the distribution P2 in Figure 1 and
define a cut to select the customers with high prob-
ability of occurrence. Customers with a probability
higher than the cut value are selected.
For the uncertainty in service time and probabilistic

customers, we consider a base case with respect to our
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Figure 1 Actual and Modified Probability Distributions of the
Occurrence of Customers

fitted lognormal distribution and the probability dis-
tribution P2 in Figure 1. For each problem instance,
we sample data of scenarios for the planning hori-
zons with respect to these two distributions. First,
the occurrence data of each scenario is generated by
RD selecting customers according to P2 until 472 cus-
tomers are selected in each scenario. Then, each cus-
tomer is assigned a random service time following
the lognormal distribution. Recall that the time win-
dows and travel times are deterministic. Thus all the
required data for a problem instance is generated by
this process. Also, recall that for the MADS algorithm,
only the first half of the total data (15 days) is used to
generate the master plan for a planning horizon and
the remaining half (14 days) is used to evaluate its
performance; whereas for the IDI algorithm, only the
second half is used as future outcomes.
A set of experiments is done to choose a cut value

for the MADS algorithm and the results are shown in
Table 2. For each case, we generate 30 random prob-
lem instances and report the average of the solutions.
The instances generate customers following the P2
distribution in Figure 1 and with service times follow-
ing the fitted lognormal distribution with standard
deviation 0s = 0�250. The column “Cut” in Table 2
indicates the cut value to determine the set of cus-
tomers to be initially scheduled in master plan. The
remaining five columns report the average solution
results: “NS” is the total number of customers who
could not be served in the daily schedules; “Time”
is the total time spent by the couriers in the daily
schedules (composed of travel, waiting, and service
times); “Penalty” is the total lateness penalty in the
daily schedules; “Sim” is the node similarity measure
(i.e., the total number of nodes that are good); and
“Obj” is the value of the CDP objective function. From
the table, we can see that the solution is best when the
cut is 0.5. When the cut value changes, the weighted
change in similarity is larger than the change in time
spent and penalties, therefore similarity plays a much
larger role in the objective value. When the cut is too
low, the master plan schedules a lot of low proba-
bility customers, resulting in low similarity, therefore
the objective value is high. However, when the cut is
too high, most customers are inserted in Phase Two,

Table 2 MADS Sensitivity to the Cut Value

Cut NS Time Penalty Sim Obj

0.10 0 95�884 6 6�034 65�699
0.30 0 97�037 1 6�328 65�402
0.50 0 97�108 0 6�426 64�987
0.70 0 97�027 0 6�328 65�400
0.90 0 97�125 0 6�188 66�214

Note. Customers follow distribution P2; standard deviation of service times
�s = 0�250.
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which is priority driven, resulting in fewer total cus-
tomers in the master plan and accordingly low simi-
larity, so the objective value increases again. Therefore
we use a cut of 0.5 in later experiments.
When the tabu search algorithm is applied in this

first set of experiments, we observe that the time
spent of the initial solution is reduced by about 5%.
The tabu search also reduces the penalty by about
99%, making the penalty almost negligible. The rea-
son is that it changes the positions of the customers
with high penalty in the initial solution through
(-interchange moves or two-opt moves, so that almost
all time windows are satisfied. Last, we observe that
the tabu search also improves the similarity. Overall,
we can see that the tabu search is effective in improv-
ing the initial solution. Similar effects are observed in
later experiments.
Another set of experiments is done to explore the

effect of using different methods to choose initial cus-
tomers for the master plan, and calculate service time
of these customers. We compare three methods of
choosing initial customers: choosing ML customers,
choosing customers RD, and choosing customers with
the longest service time (LS). In terms of service time,
we compare two methods: using WC service time and
average service time (AVG). This leads to six possible
combinations of how to define the master plan. We
refer to these combinations with the acronyms above,
for example, WC-ML means using WC service time
and choosing ML customers.
The results are shown in Table 3. The column “SD”

gives the standard deviation of the objective value
over the 30 instances. From the results, we conclude
that solutions with WC service times have less vari-
ance than those with AVG service times for the same
method of choosing initial customers. The reason is
that considering WC service times in the master plan
builds routes with more slack that are better suited
to adjust to different scenarios, giving less variance.
In addition, the objective value for WC-ML is better
than that for AVG-ML, and the ML method yields bet-
ter results than both RD and LS. Therefore, in later
experiments, we use WC-ML.

Table 3 MADS Sensitivity to Different Methods for Master Plan

Method NS Time Penalty Sim Obj SD

WC-ML 0 97�108 0 6�426 64�987 562
WC-RD 0 97�592 1�008 6�132 67�916 808
WC-LS 0 96�510 2 6�104 65�967 517
AVG-ML 0 98�146 67 5�726 69�881 1�604
AVG-RD 0 98�209 911 5�334 70�067 964
AVG-LS 0 96�308 200 6�216 65�404 721

Note. Customers follow distribution P2; standard deviation of service times
�s = 0�250.

Table 4 MADS Sensitivity to the Sample Size for Training the
Master Plan

Sample NS Time Penalty Sim Obj

7–22 0 97�117 1 6�412 65�039
15–14 0 97�108 0 6�426 64�987
22–7 0 97�124 0 6�384 65�205

Note. Customers follow distribution P2; standard deviation of service times
�s = 0�250.

A set of experiments is done to explore the effect
of the sample size to train the master plan. We com-
pare three variants: 7–22, 15–14, and 22–7, where the
first number is the number of days used to train the
master plan, and the second number is the number
of days used to evaluate the master plan. The results
are shown in Table 4. From the table, we can see that
15–14 produces the best result. It means that a sample
size of 15 days is enough to produce a good solution.
Thus we use 15–14 in later experiments.
When comparing MADS with IDI, we generate

additional cases by deviating from the base case
in two ways. First, we change the standard devi-
ation 0s of the lognormal distribution to see the
effect of increased service times, with 0s = 0�500,
and decreased service times, with 0s = 0�125. Second,
instead of P2, we sample customers from P1 and P3
in Figure 1. When moving from one case to another,
we modify only one parameter at a time keeping the
rest of the problem instance the same, which allows
observing the sole effect of changing this particu-
lar parameter. Table 5 provides these experimental
results. The left part is the input parameters and the
right part is the output measures. Because the IDI
algorithm does not generate a master plan, we calcu-
late the similarity of its solution based on the master

Table 5 Comparison of MADS with IDI

Alg Prob Std NS Time Penalty Sim Obj

MADS P1 0�125 0 94�391 0 6�314 62�854
MADS P1 0�250 0 97�067 0 6�412 64�979
MADS P1 0�500 12 107�741 18 5�544 80�035
MADS P2 0�125 0 94�874 39 6�146 64�168
MADS P2 0�250 0 97�108 0 6�426 64�987
MADS P2 0�500 12 107�821 12 5�600 79�827
MADS P3 0�125 0 95�716 74 6�314 64�247
MADS P3 0�250 0 97�158 0 6�272 65�824
MADS P3 0�500 9 107�897 5 5�810 78�818

IDI P1 0�125 0 93�553 23 5�040 68�369
IDI P1 0�250 0 96�090 20 5�222 69�905
IDI P1 0�500 3 107�001 6 4�354 85�081
IDI P2 0�125 0 93�503 23 5�446 66�329
IDI P2 0�250 0 96�097 14 5�194 70�135
IDI P2 0�500 3 107�104 5 4�256 85�616
IDI P3 0�125 0 93�491 13 4�886 69�096
IDI P3 0�250 0 96�160 10 4�718 72�518
IDI P3 0�500 3 107�066 10 3�836 87�845
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plan of MADS. Note that we do not include the cost
associated with NS in Obj to prevent it from being
dominated by this cost.
First, we compare MADS with IDI. Table 5 sug-

gests that MADS improves the route similarity at
the expense of time spent. Another general comment
is that high values of 0s result in customers who
could not be served in the solution. In such cases, IDI
performs better in covering customers than MADS
because there is no effort done in creating similarity in
scenarios, which provides flexible schedules to serve
more customers.
When we analyze Table 5, in particular, for MADS,

we see that, in general, increasing the probability of
occurrence for a given standard deviation increases
time spent. However, there is no general trend for
the effect of the probability of occurrence on simi-
larity. In most cases, increasing the standard devia-
tion for a given probability of occurrence increases
time spent, and decreases similarity, with the addition
that high values result in unserved customers, making
the objective value worse. This is expected because
increased and dispersed service times make the prob-
lem worse with respect to time spent and similarity.
Last, when we analyze Table 5, in particular, for IDI,

we find that, in general, increasing the standard devi-
ation for a given probability of occurrence increases
the objective value, again because increased and dis-
persed service times increases time dramatically and
decreases similarity.
A set of experiments is done to explore the sensi-

tivity of !5. The results are shown in Table 6. From
the table, we can see that as !5 increases from 5, the
solution is slightly worse. The reason is that in the
tabu search, the solution is trapped in local optima
early because of the large value of !5. As !5 decreases
from 5, the solution degenerates quickly. When !5 =
0�025, the solution is similar to the solution of IDI (the
row for IDI with P2 and 0s = 0�250 in Table 5). When
!5 = 0, the solution is different from IDI because the
initial daily schedules are constructed differently.

Table 6 MADS Sensitivity to the Weight of Similarity �5

�5 NS Time Penalty Sim

0 0 96�330 0 4�718
0.025 0 96�164 1 5�250
1.000 0 96�796 0 6�258
2.500 0 97�307 0 6�328
5.000 0 97�108 0 6�426
7.500 0 97�212 0 6�421
INF 0 97�244 0 6�414

Note. Customers follow distribution P2; standard deviation of service times
�s = 0�250.

4.3. MADS vs. Real-Life Solution
In this second set of experiments, we both explore the
effect of changing parameters of the MADS algorithm
and compare the quality of its solution with the cur-
rent practice. We run the experiments for both data
sets, and we explore the following range of percent
buffer capacity: 0%, 20%, 40%, 60%, 80%, 100%. For
data set 1, the first half of the real-life data (15 days)
is treated as past realizations for the MADS algorithm
and the second half (14 days) as future outcomes to
evaluate and compare the solutions. For data set 2,
similarly, the first 21 days of the real-life data are used
to train the master plan, and the remaining 21 days
are used to evaluate the solutions.
Tables 7 and 8 show the solutions on the real-life

data instances for different buffer capacities of our
heuristic for data set 1 and data set 2, respectively.
The new heading is BF for the percent buffer capac-
ity. We can omit the column for unserved customers,
because in both data sets, all the customers can be
feasibly served in each day of the planning horizon.
In addition, we provide the solution obtained by the
IDI algorithm and the real-life solution. The real-life
solution is obtained by a proprietary state-of-the-art
routing algorithm of a courier delivery company, and
the algorithm is based on territory planning. Routes
are planned according to predefined service territo-
ries. Each service territory corresponds to a single
driver’s route. The service territories may be modi-
fied and adjusted daily to accommodate fluctuations
in drivers’ work load because of the varied package
volume.
From the results, we can see that the solutions

obtained by MADS are better than the real-life
solution and the solution by IDI in objective value.
Compared with IDI, MADS increases the similarity at
the expense of increased time spent. Compared with
the current practice, the best solution obtained by
MADS is better in all measures for both data sets. This
suggests that our heuristic can be tuned to provide
improvements over the current practice. We believe
that one advantage of MADS is that it does not con-
strain a route to be within a certain territory. As a
result, a route may cross several territories, which pro-
vides more flexibility. When we analyze the effect of

Table 7 Comparison of MADS with Real-Life Solution for Data Set 1

Alg BF Time Penalty Sim Obj

Real life — 109�010 5�092 4�116 93�522
IDI — 97�927 94 2�520 85�421
MADS 0 98�739 57 4�694 75�325
MADS 20 98�635 13 4�702 75�138
MADS 40 98�026 55 4�689 74�636
MADS 60 98�727 1 4�944 75�017
MADS 80 99�873 255 4�640 76�928
MADS 100 98�549 6 3�409 81�511
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Table 8 Comparison of MADS with Real-Life Solution for Data Set 2

Alg BF Time Penalty Sim Obj

Real-life — 195�795 16�994 9�114 167�219
IDI — 192�060 12 7�728 153�432
MADS 0 195�503 4 10�147 144�772
MADS 20 195�452 11 9�990 145�513
MADS 40 195�861 3 10�347 144�129
MADS 60 195�545 5 10�628 142�410
MADS 80 195�036 3 10�493 142�574
MADS 100 195�106 4 12�027 134�975

the buffer capacity, we can see that the solution is best
when BF = 40% for data set 1, and when BF= 100%
for data set 2. The difference in the solutions is obvi-
ous when BF is different. BF provides a flexible tool
that can be adjusted to provide good solution. One
should try different values of BF and select the best
solution. Note that the similarity measure of IDI and
real-life solution is based on the master plan of the
best solution of MADS, i.e., the master plan of BF=
40% for data set 1 and the master plan of BF= 100%
for data set 2.
Last, when it comes to the similarity measure, it

is possible to derive an upper bound: the total num-
ber of customers occurring in the scenarios that are
used to evaluate the solution. For data set 1, the sim-
ilarity measure of the best solution is 4,689, and the
total number of customers is 6,489; therefore the ratio
of the similarity measure over the upper bound is
4�689/6�489= 72%. Similarly, for data set 2, the ratio
is 12�027/12�798= 94%. It means 72% and 94% of the
customers are within 0�1 mile of their assigned master
routes for data sets 1 and 2, respectively.

4.4. MADS vs. ConVRP Solution
We run MADS over a set of ConVRP benchmark
problems (Groër, Golden, and Wasil 2008) to get
a solution with consistent routes, and compare it
with the solution of ConRTR. We choose data set 2,
which is available at: http://www.rhsmith.umd.edu/
faculty/bgolden/vrp_data.htm. We have to make
some adjustments to MADS because ConVRP has dif-
ferent constraints than our problem, and the bench-
mark problems are generated differently. ConVRP
does not consider time windows, but it requires a
customer to be always served by the same vehicle,
the precedence constraints are satisfied (if customers
i and j are both served by the same vehicle on a spe-
cific day and i is served before j , then customer i
must be served before j by the same vehicle on all
days that they both require service), and service time
difference is minimized. In the benchmark problems,
all customers have a probability of 0.7 of occurring
in a day. Each instance has five days of data. In the
master plan, the initial set of customers C0 includes

Table 9 Comparison of MADS with ConRTR for a ConVRP Data Set

ConRTR MADS
Node

Problem number Time Avg Max Time Avg Max

1 50 2�282�14 8�36 24�38 2�281�05 6�15 24�27
2 75 3�872�86 6�85 34�26 3�954�99 4�90 30�00
3 100 3�626�22 8�21 22�87 3�636�66 8�79 43�24
4 150 4�952�91 4�93 27�53 4�993�26 4�15 29�73
5 199 6�416�77 3�32 26�93 6�370�41 3�59 37�15
6 50 4�084�24 19�19 63�47 3�967�06 19�54 71�58
7 75 7�126�07 14�19 83�96 7�062�52 16�25 60�88
8 100 7�456�19 22�70 73�04 7�461�98 20�53 67�49
9 150 11�033�54 22�19 106�43 10�872�44 20�10 74�87
10 199 13�916�80 18�47 60�17 13�646�84 18�98 59�48
11 120 4�753�89 4�78 16�10 4�899�94 6�25 23�69
12 100 3�861�35 3�00 17�58 3�938�11 3�59 16�82

Average — 6�115�25 11�35 46�39 6�090�44 11�07 44�93

all customers who occur two or more times in the
five days. We use C0 to train the master plan, and
use all five days to evaluate the master plan. It turns
out that all customers in C0 can be scheduled in the
master plan. For each day, we simply drop nonoccur-
ring customers, and insert customers who are not in
the master plan. The tabu search is run for the mas-
ter plan, but is skipped for daily routes. In this way,
in the final solution, a customer is always visited by
the same vehicle, and all the precedence constraints
are satisfied. The results are shown in Table 9. The
column “Problem” in the table indicates the problem
instance number; “Node number” is the total number
of customers; “Time” is the total travel time; “Avg” is
the average arrival time difference; and “Max” is the
maximum arrival time difference. The last row “Aver-
age” shows the average result of the 12 instances. We
can see that the average result of our solution is better
than ConRTR in all three measures. We believe that
there are two reasons: (1) the buffer capacity can be
tuned to provide different solutions from which we
can choose the best and (2) the tabu search is very
effective in improving the master plan.

5. Conclusions
In this study, we consider a real-life CDP, a variant
of the VRPTW with uncertainty in customer occur-
rence and service times. We present a problem for-
mulation and develop an efficient two-phase heuristic
based on insertion and tabu search. Our model rep-
resents the uncertainty in service times using robust
optimization and the probabilistic nature of customers
using scenario-based stochastic programming with
recourse. Thus we benefit from the simplicity of a
robust model and the flexibility of recourse actions.
We first adapt a nominal VRPTW model for the

CDP. We then define a problem-specific recourse
action of partial rescheduling of routes by omitting

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Sungur et al.: Model and Algorithm for the Courier Delivery Problem with Uncertainty
Transportation Science 44(2), pp. 193–205, © 2010 INFORMS 205

nonoccurring customers and rescheduling new cus-
tomers. Our model includes a master plan prob-
lem, which represents the uncertainty in service times
using robust optimization (WC service times), and
the subset of possible customers ML to appear. The
master plan routes created take into account the sim-
ilarity with the daily schedules to serve a given num-
ber of scenarios. To solve large-sized instances of
this CDP model, we develop a two-phase heuristic,
MADS, based on insertion. The daily schedules that
are obtained from the master plan are improved using
a tabu search algorithm.
We explore experimentally the sensitivity of our

heuristic to uncertain problem parameters as well as
to some control parameters. We also compare the
quality of the solution with an IDI algorithm, which
does not provide a master plan, and to an indus-
try standard solution, obtained using a territory plan-
ning method. We observe that the MADS heuristic
improves, in general, the similarity measure at the
expense of increased time spent and that it is possi-
ble to outperform the current industry practice in all
measures. We obtain consistent routes with a slightly
modified MADS, and compare them with the solution
of ConRTR over a set of ConVRP benchmark prob-
lems, and the average result of our solution is better
than that of ConRTR.
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