
A Model and Framework for
Visualization Exploration

T.J. Jankun-Kelly, Member, IEEE, Kwan-Liu Ma, Senior Member, IEEE, and

Michael Gertz, Member, IEEE Computer Society

Abstract—Visualization exploration is the process of extracting insight from data via interaction with visual depictions of that data.

Visualization exploration is more than presentation; the interaction with both the data and its depiction is as important as the data and

depiction itself. Significant visualization research has focused on the generation of visualizations (the depiction); less effort has focused

on the exploratory aspects of visualization (the process). However, without formal models of the process, visualization exploration

sessions cannot be fully utilized to assist users and system designers. Toward this end, we introduce the P-Set Model of Visualization

Exploration for describing this process and a framework to encapsulate, share, and analyze visual explorations. In addition, systems

utilizing the model and framework are more efficient as redundant exploration is avoided. Several examples drawn from visualization

applications demonstrate these benefits. Taken together, the model and framework provide an effective means to exploit the

information within the visual exploration process.

Index Terms—Visualization exploration process, visualization, visualization systems, history, derivation, collaboration, XML, software

framework, science of visualization.
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1 INTRODUCTION

AS the use of visualization becomes more wide-spread,
methods to support the use and dissemination of

visualization must be developed. A visualization technique
with no means of storing its results is wasted. A visualiza-
tion system which does not communicate to its user where
they have been, where they are, and where they could go is
inefficient. These problems must be addressed before
visualization can become effective for large-scale deploy-
ment. This paper presents our ongoing efforts to address
this problem.

A three-part approach is used to capture and utilize the
information within the visualization process. First, a formal

model of the process is used to capture the salient aspects of

the exploration—what results were generated, how they
were generated, and how they were used to generate new

results. Second, a representation utilizing the model
documents the contents of a visualization session for later

analysis or dissemination to collaborators. Finally, a soft-

ware framework manages instances of the model. These
three components have been refined from our previous

work [1] based upon our experience applying them to
different systems. Specifically, a more complete derivation

calculus is introduced along with a specification of the

representation and framework, neither of which have been
presented before.

It is important to note that a model of the visualization
process alone isnot sufficient todescribe theknowledgeof the
user before or after the visualization. To capture this knowl-
edge and insight, a metadata model for the visualization
process also needs to be developed. The ultimate goal of this
research is to develop such a metadata model using the
process model described here as the basis for the metadata’s
descriptions. For example, metadata annotations of previous
sessions that suggest what results were “good” and which
were not could help the session analysis process. The
metadata-free process model described here is the first step
toward that goal; recent visualization ontology efforts [2]
point the way toward future metadata model development.

There are several benefits of capturing the visualization
process. With our process model, users of visualization
systems are able to record their visualization sessions at a
higher level than simple log systems are able to provide. For
example, graphical representations or analysis of the
process would be difficult or impossible to perform using
a log file due to the lack of information about the process:
Mouse clicks are not sufficient to rebuild the higher
meaning of a parameter change. Our model also allows
visualization systems designers to build systems that can
share results and process information between different
visualization interfaces. Finally, represented with a formal
model, the visualization process is opened up to a variety of
analyses. Examples of these benefits are presented in
Section 6. The process model discussed here addresses
visualization exploration in more depth and with greater
generality than has been previously presented.

The model and framework introduced here are powerful
because they are general—they can be applied to a wide
domain of visualization problems. The parameter space
abstraction and process model can be used in many
visualization tasks. The stored representation can be shared
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and extended. This research will assist users of visualiza-
tion to explore, communicate, and understand their results.
Finally, we see our model as a stepping stone toward a
formal science of visualization. By providing a general and
extensible model of the fundamental process of visualiza-
tion, rigorous discussion, validation, and analysis of
visualizations can be performed.

2 A CHARACTERIZATION OF THE VISUALIZATION

EXPLORATION PROCESS

Visualization exploration involves many interconnected
components (Fig. 1). In this section, we review these
components and how previous researchers have modeled
them. The common feature of these approaches—iterative
interaction during visualization exploration—will lead to a
discussion of how visualization systems support this
interaction. The properties of these systems will be then
distilled to form a fundamental operation of the visualiza-
tion exploration process. This fundamental operation
characterizes the visualization process and is the basis for
our model discussed later.

2.1 Visualization Exploration

Upson et al. describe the scientific visualization process as
an analysis cycle [3]. According to this model, data is
filtered into subsets of interest, mapped onto visual
primitives, and then rendered for the user by a function
called the visualization transform. The visualization gener-
ated by this transform is then used by the user to provide
feedback into the previous steps, restarting the cycle. A
similar cycle of raw data transformation, visual structure
generation, and view rendering with user interaction is
described by Card et al. for information visualization [4].
The key feature of both models is that the visualization
process is an iterative sequence of user controlled transfor-
mations. Thus, elements that change during this interaction
must be the focus of any description of the visualization
process. These elements are arguments to the visualization
transform—the visualization parameters. In Upson’s model,
these parameters control the data filtering process (e.g., by
specifying a data threshold value), the visual primitive
mapping (e.g., by changing colors assigned to data values),
and the actual rendering (e.g., by changing lighting

parameters). In Card’s model, parameters modify the raw
data transformation (e.g., by specifying what parts of a data
table in a database to utilize), the visual mappings (e.g., by
changing the mapping of the nominal variables from color
to shape), and the view transformations (e.g., by changing
the orientation of the view). As parameters are visualization
transformation dependent, a description of this transform is
also important to any documentation of the visualization
process.

While Upson and Card’s models provide an overview
for the visualization process, they are not fine grained
enough to detail the user’s exploration. Models that
“unravel” the visualization cycle are needed in order to
discuss what the user was doing at any time in the
exploration. Two approaches have been taken: visualization
space paths and derivation models (for a more detailed
comparison, please consult [5]).

Visualization Space Paths: Several novel visualization
user interfaces [6], [7], [8], [9] assume visualization
exploration is equivalent to navigating a multidimensional
parameter space. In these models, each parameter in the
visualization transform corresponds to a dimension in the
parameter space. Thus, a visualization result maps to a
unique point in the parameter space. Users then trace a path
through this space as they explore new results. For example,
the Design Galleries interface [8] displays an overview of
the entire space by random sampling while an Image Graph
[7] follows a more structured path through the space. The
models used by these interfaces provide an explicit tie
between the visualization results (what the user sees) and
the visualization parameters (what the user controls).
However, relations between results beyond simple parent-
child relationships are not explicit in these models.
Derivation models address this limitation.

Derivation Models: Derivation models describe how
new items are created from previous items. For example,
genealogy models the relationships between children and
their parents (and previous generations). Previous to our
work, two major visualization derivation model efforts had
been undertaken: The GRASPARC project [10] and Lee’s
general data exploration (GDE) model for visual database
exploration [11], [12].

The GRASPARC system was designed to assist the use of
a scientific problem solving environments (PSE). Like the
visualization exploration process, PSEs are parameter
driven; in this case, the parameters control variables for
the simulation data in the PSE. A history tree is used to
communicate and manipulate the PSE control state; nodes
in the tree store the solution parameters and related results.
A similar tree-like structure could be used for simple
visualization explorations; however, as discussed later, the
types of interactions a user can have with a visualization
system dictate that a more complex structure is needed.

Lee’s work in visual database exploration provides a
more complete representation of possible derivation rela-
tions. Lee uses a graph structure to model the visualization
process for databases. Vertices in the graph represent the
state of the visualization, while edges are relationships
between states. These relationships are based upon simila-
rities between metadata attributes of the states and the data
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Fig. 1. Components of visualization exploration. During exploration, a
user manipulates parameters which are then applied to a transform to
generate a result; the results are used by the user as feedback to
continue the exploration. Our model describes the salient details of this
iterative process while the software framework manages the storage
and utilization of this information.



contained with the states. In Lee’s work, the metadata
attributes describe structural attributes of the states. A suite
of derivations are defined upon these attributes in order to
capture the different interactions one can have with visual
databases.

Both the visualization space and derivation models
contain elements that are used in our model for visualiza-
tion exploration. An exploration is embedded within a
visualization parameter space; the transitions along the
exploration path can be described with a derivational
model. The derivation model used in this work provides a
formal definition of the relationships between different
results in this visualization space. Instead of using
structural metadata attributes (as in the GDE model),
derivations record the origin of the parameters used in a
result. In other words, derivations describe how a user’s
interaction with a visualization system created the para-
meters that generate a result.

2.2 Modeling User Interaction with Visualization

Visualization user interfaces allow the user to interact with
visualizations. Thus, it is important to understand how a
user interacts with such systems in order to model the
visualization exploration process.

The human-computer interaction (HCI) community has
long been concerned with the low-level mechanics of user
interface interaction. This previous work has focused on the
events generated by user interaction [13] or descriptions of
the user interface elements themselves [14]. The interactions
pertinent to this work are higher level and tailored for
visualization systems—we are not interested in modeling a
visualization control widget; instead, we are interested in
how the parameter controlled by that widget affects the
visualization. Within visualization, taxonomies of visualiza-
tion tasks and operations have been studied [15], [16], [17],
[18], but these taxonomies focus on the goal of the user, not
how the visualization systemwasused to achieve these goals.
Our process model lies between the low-level syntactic
models and high-level semantic models of user interaction.
Specifically, it addresses the ways a user manipulates
parameter values to produce visualization results.

Most visualization interfaces utilize one of two forms of
parameter manipulation: interactive parameter control and
dynamic manipulation [19]. In the former, interactive manip-
ulation of the parameter values does not correspond to
interactive updates to the rendered result; the result is only
rendered upon user request. For dynamic manipulation
interaction, parameter values can vary over a continuous
range during manipulation; this range corresponds to a
range of rendered results. Interactive parameter control
interfaces were the norm in scientific visualization before
the wide-spread availability of accelerated graphics hard-
ware; dynamic manipulation is now common. The only
type of interaction not described by the above taxonomy are
function derivations. In function derivations, parameter
values are derived either by some sort of user-applied
operator (as in the Image Graph [7] and Tory et al.’s parallel
coordinate-based interface [9]) or via a user-defined func-
tion (as in the VisSheet [6]). These three interactions
describe all the interactions a user can have with parameters
controlling a visualization.

2.3 The Fundamental Operation of Visualization
Exploration

From the previous discussion, several key properties of the
visualization exploration process can be distilled. Visualiza-
tion exploration is cyclic—parameters are modified repeat-
edly until the results of interest are generated. The
parameter values are generated in one of three ways: A
parameter value can be generated from an old parameter
value (through interactive parameter control); a range of
parameter values can be generated from an old parameter
value (through dynamic manipulation); or a set of para-
meter values can be derived from a different set of
parameter values via some operator (through a function
derivation). This parameter generation is the essence of
visualization exploration:

The fundamental operation of the visualization exploration
process is the application of a set of parameter values to the
visualization transform to generate a visualization result.

The fundamental operation defines the visualization ex-
ploration process; the user applies parameter sets to create
results in order to derive insight. By describing how the
user performs this fundamental operation, the entire
visualization process is recorded.

3 THE P-SET MODEL OF VISUALIZATION

EXPLORATION

During visualization, a user repeatedly forms sets of
parameter values which, when applied to a visualization
transform, produces a result. To understand how this new
result is related to previous results, a model of this
interaction is used. The P-Set Model of visualization explora-
tion encapsulates the interactions a user can have with a
visualization system and how these interactions are part of
the greater exploration session.

Four major elements form a visualization session: The
visualization transforms used to create results, the para-
meter values generated by user interaction, the results
created by applying sets of parameter values (p-sets) to
visualization transforms, and the derivations that describe
how the results are related to previous results. The model
describes each of these (and their related elements) formally
(see Appendix A for the details). The salient details are:

. A visualization transform is identified by the para-
meter types it takes as arguments and the result type
it generates (these form its signature). Since two
transforms may share the same signature but use
different methods, each is also identified by a unique
label.

. A visualization parameter is identified by its type
(such as a color map) and its value (the actual color
and data values). Data sets are an important class of
parameter values. Nonempty groups of parameter
values with unique parameter types form p-sets; if
the set of types match that of a visualization
transform’s signature, the p-set can be used to
generate a result. Parameters from a specific p-set
are bound parameters; bound parameters are impor-
tant in describing how results are related.
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. Visualization results are uniquely identified by the p-
set and visualization transform which generated
them; since transform signatures may not be unique,
both p-sets and transforms are needed to identity a
result. Results also identify their actual value (e.g., a
raster image) and their corresponding result type
(e.g., the set of all raster images). It is important to
note results do not store derivations, since it is
possible to create the same result multiple times in a
visualization session through different interactions.

. Derivations are the most detailed portion of the
model and are the focus of the rest of this section.
The four important pieces of a derivation are the
timestamp detailing when the results were created,
the parameter derivations (how the user created new
parameter values from old parameters), the p-set
derivations (how the new parameter values were
applied to previous p-sets to create a new p-set), and
the results generated (which of the new p-sets where
combined with which transforms to create the actual
results). Fig. 2 illustrates this derivation process.

It is important to note that our model does not specify the
components of the visualization transform (i.e., it does not
provide a visualization transform model to break it down
into suboperations [3], [15], [20]); neither does it describe
the form of the parameter and result values (i.e., it does not
provide a data model for the values [4], [21], [22]). These
elements are beyond the scope of this work. Transform and
data models may be utilized in concert with our work to
provide additional detail or as schemas for values in the
XML representation in Section 4. For example, a transform
model could be used to discuss how the transforms in the
session were derived from each other, as in recent work by
Kreuseler et al. [23] and Bavoli et al. [24].

The relationships between results, p-sets, and other
results and p-sets are described by the model’s derivations.
As mentioned, there are four components of the derivation:
A timestamp, the parameter derivations, the p-set deriva-
tions, and the results generated. Informally, derivations can
be written using a three part derivation calculus expanded
from our previous parameter derivation calculus [1] (Fig. 3):

Parameters : s1 n1½ �; . . . ; si nj

� �� �

�!
�p

p1; . . . ; pkð Þ;

P�Sets : p1; . . . ; pmf gjsin �!
�s

sout;

Results : t soutð Þ�!
�r

r:

A parameter derivation indicates that bound input para-
meters si nj

� �

from p-sets si were manipulated by the user to

create new output parameters pk; nj represents the parameter
type used from the p-set. A p-set derivation describes how a
subset of these new parameters (the applied p-set) were used
to replace the parameter values in an existing input p-set sin
to create an output p-set sout. Finally, the results derivation
lists the actual results r created during the user’s interac-
tion. These are identified by the transform t and output p-
set used (the output p-set is drawn from one of the p-set
derivations). There can be multiple parameter, p-set, or
result derivations created by a single user interaction; this
can occur if a function is used to generate a sequence of
results in a single timestep.

The following examples illustrate how user interactions
are represented using the derivation calculus; Fig. 3 depicts
these examples using a simple visual language. In the first
example (Fig. 3a), the focus node for a focus+context graph
visualization (a MoireGraph [25]) was changed. The
corresponding derivation describing this change has one
parameter derivation, one p-set derivation, and a single
generated result. The parameter derivation uses the focus
node of the previous graph (bound to that result’s p-set) as
its input parameter and the new focus node selected by the
interaction as the output parameter. The p-set derivation’s
applied p-set contains only the new focus node; this
parameter value replaces the old focus node in the previous
result’s p-set to create the output p-set. Finally, this output
p-set is applied to the visualization transform to create the
result of interest. The derivation clearly encapsulates that
the focus node of the last result was the only difference
between the last and current graph.

The next example (Fig. 3b) describes a dynamic para-
meter manipulation interaction, in this case the synchro-
nized rendering caused by a view-drag operation in a flow
visualization. Depending on the visualization system,
multiple results may be generated during this rotation.
However, this rotation is considered a single user interac-
tion and, thus, all of these rotations occur within one
timestep. Each “subderivation” within the single timestep is
a single parameter derivation where the view parameter is
the only parameter that changes. It is up to the visualization
system to determine which of the interactively generated
results are stored within the session (besides the final view
position); good candidates are those the user hovers over
during interaction or where the axis of rotation changes.

The final example (Fig. 3c) demonstrates that the model
is not restricted to derivations involving a single parameter.
In the VisSheet, it is possible to combine parameter values
from multiple results to create a new result; for example, it
is possible to create a derivation where the view position
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Fig. 2. Depiction of a derivation using the P-Set Model. When a user creates a visualization result, three steps occur: (a) A new parameter value is
derived from an existing parameter, (b) this new parameter is applied to an existing parameter set (p-set) to create a new parameter set, and (c) this
new parameter set is applied to the visualization transform to create the result. In this example, the date parameter for the network visualization
discussed in Section 6 was changed.



from one result was combined with the zoom factor from
another result and applied to the p-set of a third result to
create the result of interest. As demonstrated, there are two
input parameter values (the view and zoom parameters)
which are also the output parameters (no transformation is
applied to them). The applied sub-p-set consists of these
two parameter values which replace the view and zoom
position in the input p-set; the resulting image combines the
four parameters of interest into a single image. The P-Set
Model derivations allow complex visualization derivations
to be built from simple atomic blocks.

Considerable information can be extracted from the
derivations and other elements in a visualization session.
The number of parameters generated give a heuristic for how
deeply the parameter spacewas explored. Results are related
by the p-sets used, the bound parameters used in the
parameter derivations (the p-set containing a bound para-
meter is a “parent” to the new result), its input p-set (another
parent), andby the timestamp(whichgivesahistory recordof
interactions). In a metadata model based upon this work, all
of these elements could be annotated with the meaning of
these relations. It is a fruitful area of futurework to determine
how these relations can be fully utilized.

4 REPRESENTATION

In order to share visualizations captured by the P-Set
Model, a common data format is required. To be effective,
the format must be extensible to different visualization
applications. It is also desirable that the representation can
be used by data-mining or analysis tools. These goals are
accomplished by using XML (the Extensible Mark-Up
Language [26]) to express the visualization process. By
expressing the visualization session with XML, the session
can be easily shared with collaborators. Specific systems can
translate their internal representation into the P-Set Model
(via XML) which can then be translated again into a
representation usable by some other system.

The XML representation of the model is partitioned into
seven sections (see Appendix B for a full schema); these
sections correspond to the five main components of the
process model and additional supporting information:

. Parameter Types are stored first. A parameter type is a
unique label; each type is given an identifier which is
used to refer to the parameter type elsewhere in the
XML document.

. Result Types are stored next. Like parameter types,
each is a unique label and given an id.

. Visualization Transforms follow result types, and are
stored by listing their signatures (parameter and
result type references) and name. Transforms are
given a unique identifier for referral by results
created using the transform.

. Parameters are next. Each parameter records its
value, its type (by id), and a unique parameter
identifier.

. P-Sets are stored after parameters. Each p-set
contains a list of id references to parameter values
composing the p-set and a unique identifier.

. Results are next. For each result, a reference to the
transform and p-set which generated it, a reference
to its type, an identifier, and the result itself are
recorded. Note, for interactive systems which can
generate results continuously over a range, only the
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Fig. 3. Example derivation calculi using the P-Set model; the parameter
derivation is listed first, then the p-set derivation, and finally the results.
The images give a visual description of the derivations: The left image
corresponds to the input p-set, the right to the output p-set, and the icons
to the parameter types involved in the derivation. In cases where there
are multiple derivations in a single timestep, the resulting images are
chained (b). In cases where parameter values from pre-existing p-sets
were used, their images are displayed next to the parameter icon (c). In
the three images, a focus for a graph visualization was changed (a), a
series of view positions were explored (b), and a view and zoom
parameter from different results were applied to another result to create
a composite result (c).



first and last result in that range must be stored, the
others only if desired.

. Derivations are stored in the last section. Each
derivation stores a timestamp, parameter, and p-set
derivations, and references the results generated.

When generating the XML session document, there are
different approaches to how parameters and results are
stored. It is possible to embed a representation of these
items directly into the XML representation; such inline
storage is especially appropriate for items with native XML
formats such as vector graphics [27]. For large or binary
elements, such as the data set used or the results
themselves, this approach is inadvisable. Instead, each
parameter or result element in the XML document could
provide a URL describing where the actual parameter or
result may be obtained. Linking can be used to reference
large data sets over the network while accessing image files
locally, avoiding costly transfers. The data set would then
be downloaded only when needed. The actual schema for
storing parameter and results is left up to the visualization
system designer; for maximum interoperability, collabora-
tors should agree on the same open schemas.

Note that the main purpose of the XML description of
the model is for transport, not analysis. Analysis is
performed on the information encoded by XML (the
visualization session from this model), not on the XML
document itself. Given an XML document representing a
visualization session, tools are expected to parse the
document into their own internal structures before operat-
ing on the visualization session information.

One possible concern regarding our approach is the
growth of the XML representation as visualization sessions
become longer. In the worst case, the size of the file can
increase quadratically with the number of results (if every
new result is derived from all previous results—an unlikely
case). In practice, the XML document does not approach
anywhere near the size of the original data set and can be
effectively compressed if needed. This growth is controlled
by using externally linked binary representation for results
such as images. For example, a visualization session with
about 20 results represented as binary PNG images can be
stored in about 1 MB (18 kB for the XML, and 920 kB for the
images). For the same visualization system and an explora-
tion session with more than 5,500 results, the storage
requirements are 285 MB (3 MB for the XML file, and
282 MB for all the images). Both sizes grow linearly. While
more data points are necessary to gain a formal under-
standing of this growth, it is consistent with intuition.
Overall, if disk space is an issue for extremely long sessions,
only landmark results (chosen by the user) need to be stored
at high fidelity (or at all); other results could be regenerated
given an implementation of the transforms used since the
information to recreate it is provided by the model.

5 SOFTWARE FRAMEWORK

The P-Set Model provides a conceptual framework to
describe the relationships between results in a visualization
exploration session. The representation provides amethod to
store and transfer these sessions between collaborators in a
standard way. Through our experiences with the model and
representation over the years (described in Section 6), we
have created a common software framework to assist in
utilizing the model and representation in different visualiza-
tion systems.

The framework is a set of software components for
managing the results and relations within a visualization
session; it is also responsible for storing and loading this
information from XML representations. Our framework is
designed as a flexible library to be added onto newor existing
visualization systems. To be general, the framework is
decoupled from any particular visualization method or
systems. Thus, any system that uses the framework must
communicate its specific behavior (e.g., what transforms it
supports) to the framework. The framework has many
applications. It can be used as part of a caching mechanism
to optimize exploration, as part of a visualization analysis
toolkit, or as part of a logging mechanism for usability
studies. This wide range of operational use is accomplished
by using a three layer approach (Fig. 4).

The core layer possesses the data structures vital to the P-
Set Model: Session, VisualTransform, VisualParameter,
PSet, VisualResult, and Derivation. The transform, para-
meter, and result classes are abstract interfaces to be
implemented by system developers to describe actual
transforms, parameters, and results. To assist in their usage,
factory classes for these types are provided; once a
developer creates a subclass and registers it with the
factory, instances of the class (e.g., a parameter value) are
created through the factory.

Derivation instances are constructed by calling the
Session.addDerivation method with the appropriate para-
meter and p-set derivations and the generated results; the
resulting derivations are added to the session (and new p-
sets or other values are added as needed). The Session
instance can also be queried for state information. This
capability is vital, especially for speeding up responsive-
ness; the Session instance acts as a cache such that
previously generated results can be returned immediately
without going through a possibly expensive regeneration.

The representation layer builds upon the core tier by
allowing Session instances to be serialized and deserialized
via our XML representation. Like the core tier, the
representation tier provides customization hooks for serial-
izing parameters and results. These objects, once registered,
are automatically generated when result or parameter
values are stored or loaded from session files.

Finally, the interaction layer supplies interactive systems a
method to be notified when the session changes. An
InteractiveSession object, a subclass of Session, is provided
which allows other objects to register for notification of new
derivations. This notification is facilitated via a standard
Observer pattern [28]. This form of notification is useful
when multiple views of the session are used. In addition,
interface classes for parameter and result renderers (to
display result and parameter values to the user) and
parameter editors (to manipulate the parameters) are
provided to simplify uniform implementation over several
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Fig. 4. The three layers in the visualization exploration framework. The

Core provides a basis for the other two frameworks; the representation

and interaction frameworks are independent of each other.



alternate user interfaces. These interface classes should be
customized by system developers to suit their specific
parameter and result types.

The framework benefits system designers by providing a
common base for recording the information within the
visualization process. To adapt the framework to a new
visualization method, only classes describing the visualiza-
tion transform, parameters, and results need to be created.
Result and parameter types may be common to several
transforms and could thus be reused. Earlier versions of this
framework were integral in the examples discussed next; it
is hoped that future systems will utilize the framework to
gain similar benefits.

6 EXAMPLES

Our visualization exploration framework has been used in
several successful projects. Its main benefits are that the
entire visualization session can be analyzed and reused,
promoting dissemination and system efficiency. The fol-
lowing three examples illustrate these points. The first
example demonstrates the basic use of the model—the
encapsulation of a small but complex visualization session.
The next example demonstrates how the framework was
used to improve the effectiveness of a network infrastruc-
ture visualization; it also demonstrates visualization analy-
sis enabled by the model. The final example discusses the
integration of the framework into a grid-computing
environment for remote collaboration.

6.1 Session Encapsulation

The first example (Fig. 5) demonstrates the use of the
model; it expands and corrects the similar example used in
our previous work [1] using the updated model. In the
example, an Image Graph-based volume visualization of
blood vessels in the brain is described (top of figure). The
first derivation recorded (�0, result a) is not actually a user
initiated derivation—it is the initial result of the system
composed of default parameters for the zoom magnifica-
tion, viewing position, and the color and opacity maps. For
the first user initiated derivation, the user zoomed into a
region of interest (derivation �1, result b). Two rotations
were then used to display different views of the vessel (�2=c
and �3=d). After zooming in again ð�4=eÞ, the user decided to
apply the final zoom magnification to the earlier images.
This was accomplished by dragging the zoom edge over the
previous zoom edge; this change propagates through the
Image Graph ð�5Þ. The images using the new magnification
(e, f , and g) replaced the old images (from d, b, and c,
respectively) to produce the Image Graph shown in the top
right image in the figure. During the exploration, the
session results were recorded (middle portion of the figure);
these results explicitly state how the zoom parameter value
zoome from p-set se was applied to p-sets sb and sc to derive
p-sets sf and sg, respectively (the first two entries for
derivation �5). Due to the propagation, the same p-set se
was generated twice: First, during the initial user interac-
tion ð�4Þ and next during the propagation (last entry for �5).
This interrelation of parameters, p-sets, and results is
clearly indicated via the visual language introduced in
Section 3 (bottom of figure).

6.2 System Analysis and Development

To manage packet traffic on the Internet, groups of hosts
sharing portions of their IP addresses are partitioned into

clusters of machines called autonomous domains (ASes). The
problem of packet routing then simplifies to routing data
between these larger entities. To assist network analysts, a
tool to visualize AS changes was developed [29] (Fig. 6a).
The tool uses a quadtree decomposition to represent IP
addresses and colored lines drawn from the edge of the
quadtree to represent ASes claiming the IP address. The
lines represent transfer of IP address ownership and color
represents the type of change. The purpose of the tool is to
expose anomalies in these transfers via correlated line
patterns discovered via visual scanning of the data.

To better understand how users utilized the AS visualiza-
tion, the system was augmented with the framework
presented here. One visualization transform was suppor-
ted—the quadtree-based event browser—with parameter
types including the event type(s) used (chosen from eight
types) and the date to display. Once augmented, the system
stored the result and how the user generated the result for
each visualization created during the visual data mining
process. Several explorations were instrumented this way,
and their corresponding visualization sessionswere stored in
XML for further analysis. Previously, we demonstrated how
we could quickly augment the VisSheet to allow exploration
of these explorations by using the framework [1]; here, we
demonstrate graph-based analysis of the explorations.

To analyze the sessions, a graph summarizing the
visualization process was used (Fig. 6b). The graph utilizes
the process model directly in its construction. This graph
depicts the similarity of results within the graph; each self-
connected cluster indicates a subspace of the exploration
containing results that differ by only one parameter value.
The enlarged result in the graph corresponds to the result
displayed in Fig. 6a—the result where the first routing
anomaly occured. By analyzing this and other similar
graphs (see [30] for details), it was concluded that in regions
of interest, the user spent significant time toggling the
different event type displays on and off in order to reduce
the occlusion of the other lines in the displays. This
information was used to redesign the AS event browser;
the redesign uses a focus+context method to show all events
and each event individually at the same time to remove the
need for the “toggling” behavior [31] (Fig. 6c). This new
depiction allows for a streamlined exploration.

The above example depicts how the model can be used to
analyze visualization sessions and visualization interfaces.
As validation of visualization techniques becomes more
important, the need to capture how a user interacts with an
interface increases. Our framework provides the means to
collect this information during user studies inmore complete
manner than transaction logs. Augmented by video capture
and user interviews, stored representations can be used to
pinpoint exactlywhat a user did at a given time andwhy they
performed that action. Since the representation is a complete
record of the exploration, the session could then be replayed
at a later time, simplifying further analysis.

6.3 Result Dissemination and Collaboration

This last example discusses the deployment of the frame-
work within a visualization portal created by Lawrence
Berkeley National Laboratory (LBNL) [32]. The purpose of
the portal is to provide a Web-accessible single access point
for Grid-enabled visualization resources operated by LBNL.
Scientists worldwide have access to the portal, and thus it is
important that their explorations be stored for their
collaborators. In addition, since the visualization server
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could be on a separate network than the portal, it is
important that the visualization be efficient and not require
extraneous rendering requests of previous results. Our
framework fulfills both of these needs.

The portal uses a Web-based implementation of the
VisSheet (the WebSheet, Fig. 7, left) as its interface. When a
user requests a result, the Web browser translates the action

into a Web server request. This request is treated as query
upon the contents of themodel—theURL contains references
to the parameters in the p-set being used to create the result
(the parameters are stored on the server). If the result already
exists (if it is stored in the session), it is returned to thebrowser
immediately, reducing computation. Only if a result is not
found in the cache is a render request sent to the visualization
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Fig. 5. Representation of a brain vessel visualization performed using an Image Graph. The feature of interest is the bulge in the lowest vessel in

image e (top left image, captions added for clarity). During the visualization, the user dragged the zoom edge going to image e over the edge to b to
zoom the other images in the Image Graph (top right). These derivations, including the propagation of the zoom factor from e to results f and g, are
recorded using the derivation calculus (middle). The session can also be represented visually (bottom).



server. These new result is stored by the model to reduce
computation time on later requests.

During explorations with the WebSheet, the framework
captures the entire session. This session is stored using the
representation. This allows scientists to return to their
explorations at a later date or view and extend explorations
performed by others (Fig. 7, right). In addition, since the
exploration is encapsulatedwithin an XML file and the result
image files, a user can opt to download these files for offline
examination. The complete representation of visualization
sessions provided by our framework is vital to the scientist’s
workflow—it provides a means for collaborating remotely
and provides documentation for validation purposes.

7 CONCLUSIONS

The visualization exploration process contains a wealth of
information; our work demonstrates a model to describe
this information and a representation to share the informa-
tion. Both the visualization technique performed and the
process used to generate visualization results are captured
by the model and representation. The framework discussed
brings these benefits to visualization systems developers
quickly and effectively.

This work impacts the user of visualization in several
ways. Systems utilizing the process model assist in reuse
since they clearly track where a user has been, where they
are, and possibly suggest where to go. Visualizations
represented using this formalism can be used in hetero-
geneous visualization interface environments, enabling
large-scale collaboration. The salient details of the visuali-
zation process are documented, allowing others to repro-
duce the process. The model captures more than just the
order of derivation; it describes how the parameters used in
those results are related to the parameters of other results.
Finally, others can use the formal model to operate upon or
analyze their results in a rigorous manner.

This work also contributes to the understanding of the
visualization process. A characterization of user interactions
with parameters during the visualization process has been
performed. This characterization has led to the development
of a derivation calculus to describe the relationships between
results created during a visualization session. Information
stored using this calculus can be analyzed and further
visualized to gain insight into the visualization process itself.

7.1 Future Work

This research can be extended in several ways. The
derivation calculus represents a wealth of information that
has not been fully exploited. Different graphical visualiza-
tions and metrics based upon the calculus need to be
investigated. The visual language used in Fig. 3, the
relationship graphs used in our previous work [1] and in
Section 6 are initial examples of this effort. These sorts of
visualizations may help users or designers gain insight into
previous visualization sessions.

Another important aspect in many scientific visualization
sessions is the change of visualization transforms. Thismodel
does not currently store any information aboutmodifications
to the transform beyond what transforms were used. A
“visualization transform derivation” model is needed. How-
ever, before this can be realized, more research unifying
scientific and information visualization transform represen-
tations should be performed to assure that any subsequent
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Fig. 6. Analysis and evolution of the AS Event browser. The original
interface (a) uses colored lines connected to the edges of a square to
detect AS ownership changes. Our framework was used to capture user
interaction with the tool, and these sessions were analyzed in order to
improve the interface (b). The redesigned interface (c) makes the
exploration more efficient by displaying all event types individually and
combined.



work were to be general. Currently, efforts specialized for
data-flow scientific visualizations are underway [24].

As visualization matures, it becomes important to under-
stand how it fits into the workflow of actual users. User
studies and validation thus become important. As demon-
strated, our model can capture the interactions the user had
with the visualization system. A more complete coupling
with other validation tools (audio and video logs) to create a
robust user validation framework is worth investigating.

Finally, the model does not currently store any metadata.
Metadata can be used to annotate any portion of the model,
including results, parameter settings, or the steps in the
process. A scientist’s notes about a particular result or the
operation performed during a state transition are all
examples of metadata to store. The video and audio logs
for validation is another example of useful metadata.
Metadata would provide important semantic information
about the visualization process and help capture the
visualization user’s insight gained from the process. Like
the current model, the metadata model needs to be flexible,
allowing users to customize it to their specific application.
More work in visualization specific and application specific
ontologies—such as the effort by Duke et al. [2]—needs to
be conducted before this goal can be reached.

APPENDIX A

FORMAL P-SET MODEL DEFINITION

A visualization exploration session E ¼ T; P ; S;R;�ð Þ con-
sists of sets ofvisualization transformsT , parameter valuesP ,
parameter value sets (p-sets) S, result values R, and result
derivations�. For such a session, the following holds:

. Transforms: T ¼ tjt ¼ nt; Np; nr

� �� �

such that nt; nr;
2 N;nt 6¼ nr, are the transform and result names,
respectively (N is a set of unique identifiers/labels),
and Np � N are the names of the parameter types
usedby the transform.Thenonempty set ofparameter

types and the result type form the transform’s
signature (i.e., t Np

� �

7! nr). As it is conceivable that
multiple transformsmay share the same signature but
utilize different rendering methods, the transform’s
name provides a unique identifier for the transform.

. Parameters: P ¼ pjp ¼ np; vp
� �� �

, where np 2 N
specifies the parameter’s type and vp 2 V is the
parameter’s value. V is the universe of possible
values for parameters and results.

. P-Sets: S ¼ sjs � Pf ðP Þ, where there exists a trans-
form t ¼ nt; Np; nr

� �

2 T such that there exists a
bijective map f : s 7! Np, where fðsÞ ¼ nijni 2 pif for
each pi 2 sgg. A p-set s is a set of parameters. There
is a one-to-one correspondence between parameter
types within the p-set and the parameter types of a
transform in the session. A sub-p-set relaxes this
constraint such that some parameter types are
missing (though a single parameter type is not
repeated within a different parameter value); sub-p-
sets are used in p-set derivations.

. Results: R ¼ rjr ¼ t; s; nr; vrð Þf g, where t 2 T , s 2 S,
nr 2 N is the result type, and vr 2 V is the result’s
value. Both a p-set s and the transform t used with
that p-set are needed to uniquely identity a result.
Like parameter types, result types are unique labels.

. Derivations: � ¼ �j� ¼ �;�P;�S;R�ð Þf g where for
a given derivation �, � is the derivation’s unique
timestamp, �P are the parameter derivations, �S
are the p-set derivations, and R� are the results
generated by the derivation such that

- � 2 lR. Timestampsaremonotonically increasing.

- �P ¼ �pj�p ¼ Pin; Poutð Þf g such that Pin � P
ðP � SÞ, where 8 pi; sið Þ 2 Pin, pi 2 si; and Pout �
PðP Þ � ;g. A parameter/p-set pair ðpi; siÞ 2 P
ðP � SÞ,wherepi 2 si is calledaboundparameteras
it directly references the p-set from which the
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Fig. 7. The WebSheet (left) uses our framework to store visualization sessions for collaborators. Sessions can be viewed and extended online or
downloaded (right).



parameter was used—bound parameter are vital
to understanding which results were the genesis
of the derived results. Note, it is possible for
Pin ¼ ;; this occurs when the parameter was not
derived from any other parameter.

- �S ¼ f�sj�s ¼ ðsa; sin; soutÞg, where sa ¼ fp¼
ðnp; vÞ j9ðPin; PoutÞ 2 �P such that p 2 Pout and
6 9p0 ¼ ðn0

p; v
0Þ 2 sa such that np ¼ n0

pg is a sub-p-
set formed about of output parameters, sin 2
S [ ;, and sout 2 S such that sout ¼ fp ¼ ðnp; vÞ
jp 2 sapplied _ ðp 2 sin ^ 6 9p0 ¼ ðn0

p; v
0Þ 2 sa such

that np ¼ n0
pÞg. The parameters in sa replace the

parameters in sin to generate sout. Like in the
parameter derivations, sin ¼ ; only if the no
previous p-set was used to generate the result; in
this case, sa ¼ sout.

- R� � PðRÞ � ;, where 8r ¼ t; sout; nr; vð Þ 2 R� ;
9�s ¼ sa; sin; soutð Þ such that �s 2 �S. R� repre-
sents all the results r derived from the various
output p-sets sout created by the derivation.

APPENDIX B

XML REPRESENTATION SCHEMA

The following provides a Document Type Definition (DTD)
[26] schema forXMLrepresentationsofvisualization sessions
using the P-Set Model. The XML namespace name for the
representation is http://vis.cse.msstate.edu/vex/core.

<!ELEMENT visualization (parameterTypes, resultTypes,

transforms, parameters, parameterSets, results,

derivations)>

<!ELEMENT parameterTypes (parameterType)+>

<!ELEMENT parameterType name>

<!ATTLIST parameterType

id ID #REQUIRED>

<!ELEMENT name #CDATA>

<!ATTLIST name
shortName CDATA #IMPLIED>

<!ELEMENT resultTypes (resultType)+>

<!ELEMENT resultType name>

<!ATTLIST resultType

id ID #REQUIRED>

<!ELEMENT transforms (transform)+>

<!ELEMENT transform (name, ptypeRef+, rtypeRef)>

<!ELEMENT ptypeRef EMPTY>

<!ATTLIST ptypeRef

ref IDREF #REQUIRED>

<!ELEMENT rtypeRef EMPTY>
<!ATTLIST rtypeRef

ref IDREF #REQUIRED>

<!ELEMENT parameters parameter*>

<!ELEMENT parameter (ptypeRef, value)>

<!ATTLIST parameter

id ID #REQUIRED>

<!ELEMENT value #PCDATA>

<!ATTLIST value

href CDATA #IMPLIED >

<!ELEMENT parameterSets parameterSet*>

<!ELEMENT parameterSet parameterRef+>

<!ATTLIST parameterSet

id ID #REQUIRED>

<!ELEMENT parameterRef EMPTY>

<!ATTLIST parameterRef

ref IDREF #REQUIRED >

<!ELEMENT results result*>

<!ELEMENT result (rtypeRef, psetRef, transformRef,

value)>

<!ATTLIST result

id ID #REQUIRED>

<!ELEMENT psetRef EMPTY>

<!ATTLIST psetRef

ref IDREF #REQUIRED >

<!ELEMENT transformRef EMPTY>

<!ATTLIST transformRef

ref IDREF #REQUIRED >

<!ELEMENT derivations derivation*>

<!ELEMENT derivation (timestamp, parameterDeltas,

psetDeltas, resultsGenerated)>

<!ELEMENT timestamp #PCDATA>

<!ELEMENT parameterDeltas parameterDelta+>

<!ELEMENT parameterDelta (inputParameters,

outputParameters)>

<!ELEMENT inputParameters (boundParameter*|

undefined)>

<!ELEMENT boundParameter (parameterRef, psetRef)>

<!ELEMENT undefined EMPTY>

<!ELEMENT outputParameters parameterRef+>

<!ELEMENT psetDeltas psetDelta+>

<!ELEMENT psetDelta (appliedPset, inputPset,

outputPset)>
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<!ELEMENT appliedPset parameterRef+>

<!ELEMENT inputPset (undefined | psetRef)>

<!ELEMENT outputPset psetRef>

<!ELEMENT resultsGenerated resultRef+>

<!ELEMENT resultRef EMPTY>
<!ATTLIST resultRef

ref IDREF #REQUIRED >
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