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Summary. We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been
widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no
readily available method of making statistical inference on the relationships between abundance and environmental covariates.
Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling
distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has
three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance
in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density.
We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set.
In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the
model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition,
the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set
indicated a transect effect on abundance via Akaike’s information criterion model selection. Further goodness-of-fit analysis,
however, indicated some potential confounding of intensity with the detection function.

Key words: Abundance; Density; Distance sampling; Line transect; Overdispersion; Spatial point process.

1. Introduction
The modern treatment of distance sampling, widely used for
estimating plant and animal density, probably began with
Eberhardt (1967). The history of this field is dominated by
a design-based approach to inference, where the points (loca-
tions) are considered fixed and a detection function requires
modeling and estimation. Inference is derived from random
placement of transects. In contrast, when modeling spatial
point patterns all points are assumed to be observed, rather
than being fixed, they are assumed to be generated by a ran-
dom process. The two literatures have remained largely sep-
arate from each other. The goals of this article are to (1)
combine the ideas of points as coming from a stochastic pro-
cess with the simultaneous modeling of a detection function
in distance sampling and (2) enable inference to abundance
estimates and ecological covariates.

Distance sampling is often used to estimate the abundance
or density of a population. While traversing a line or at a sta-
tionary point, observers record distances from their locations
to an object of interest. The main departure from ideal oc-
curs when detection rate of individuals decays as a function
of distance from the line. Distance sampling methods have
been largely concerned with modeling this decay, termed a
detection function (Buckland et al., 2001). In much of the
literature, the foundation for inference has remained design-
based (e.g., Borchers et al., 1998). Likelihood approaches are
used for inference of detection function parameters; e.g., for
grouped data (Buckland et al., 2001, p. 108), for imperfect

detection on a line (Buckland et al., 2004, p. 108), for double-
observer counts (Borchers et al., 2006), and for detection co-
variates (Marques and Buckland, 2003).

Methods for analyzing spatial point patterns have primarily
been concerned with learning about the nature of the mech-
anism that generated the points (e.g., clustered or regular
patterns). Recent advances in methodology and computing,
however, have focused attention on estimating parameters of
spatial point process likelihoods (e.g., Baddeley and Turner,
2000; Møller and Waagepetersen, 2003), which often have
difficult form. Textbook treatment may be found in Cressie
(1993). In particular, we are interested in the Poisson process
(PP; Cox, 1955).

Development of spatially explicit models for distance sam-
pling data has a number of advantages (Hedley and Buckland,
2004; Royle, Dawson, and Bates, 2004) including: (1) coping
with opportunistic surveys and surveys with unequal sam-
pling coverage, (2) estimating abundances for specified subre-
gions, and (3) providing a framework for ecological inference
for the effects of habitat and other relevant processes on abun-
dance. Schweder (1977) introduced the concept of modeling
line transect sampling as thinned point processes, but consid-
ered animals to be uniformly distributed (i.e., homogeneous
PP). More recently Waagepetersen and Schweder (2006) and
Skaug (2006) used likelihood-based methods for line transect
sampling, but only estimated parameters of the point pro-
cess, assuming that the detection function is known. Likewise,
Hedley and Buckland (2004) fitted models with a detection
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function that was estimated separately with the distance data
(two-stage approach). Simultaneous estimation of detection
and abundance allows the inclusion of the uncertainty in de-
tection estimation to be accounted for in the inference of
abundance. The reverse is also true; modeled variation in
abundance can lead to more efficient detection function in-
ference. Currently, a user of the DISTANCE software (Thomas
et al., 2006) can estimate abundance for different regions (e.g.,
forest/grassland) or ecological treatments (e.g., grazed/not
grazed) accounting for variable detection probability but they
have rather limited options for evaluating differences or im-
pacts while including the uncertainty and covariances induced
from estimation of the detection function.

Simultaneous estimation will also be useful for sampling
of small areas or complex habitats (Ramsey and Harrison,
2004) such as surveys of river dolphin (Vidal et al., 1997)
or narwhal (Innes et al., 2002) in large bays and narrow
fjords. In those cases, rectangular transects with a constant
width can extend outside the survey region and the stan-
dard uniform distribution assumption for estimation of the
detection function is no longer valid. Those situations can
be partially accommodated by allowing variation in tran-
sect width and using spatial stratification (Dawson et al.,
2004) or by adjusting the likelihood for fitting the detec-
tion function (Laake et al., 2008), but simultaneous estima-
tion is a more natural formulation. Royle et al. (2004) pro-
posed an integrated likelihood for simultaneous estimation
of detection and abundance from point count data but it
only allowed site-based effects on average detection proba-
bility. In this article, we take a full likelihood-based approach
for simultaneous estimation of parameters of the detection
function and the (in)homogeneous point process, which pro-
vides a framework for ecological inference from distance sam-
pling data and accommodates sampling of small or complex
habitats.

The remainder of the article is organized as follows. In Sec-
tion 2, we lay out the basic models and notation. In Section 3,
we consider inhomogeneous point patterns and concentrate
on inference for covariates and abundance, including the ex-
pected abundance and realized abundance. Section 4 gives
some simulated and real examples. We conclude with a dis-
cussion in Section 5.

2. Likelihood Formulation for Distance Sampling
For the sake of exposition, let us assume we are talking about
ecological inference on abundance in a single contiguous study
area, say A, with distinct spatial boundaries. The theory for
sampling A with transects versus points as observation plat-
forms are equivalent; without loss of generality we will con-
sider sampling individuals from transects.

2.1 Modeling Ecological Influences on Abundance
To begin a model-based approach, we assume that locations
s = (sx , sy) of all individuals in A, say S+ = (s1, . . . , sN ),
is a realization of a PP with intensity function λ(s, β) =
exp{x(s)′β}, where x(s) is a p-vector of concomitant environ-
mental variables (x1(s) ≡ 1) measured at s and β a p-vector of
parameters. Other forms of λ can certainly be used depending
on the situation.

If all of the individuals could be located within A, then
inference about β could be made by maximizing the PP log
likelihood

�P P (β;S+) =
N∑
i=1

x(si )′β −
∫

A

exp{x(u)′β} du. (1)

This is not the case, however, either A cannot be surveyed in
entirety or individuals are missed during survey. Usually both
of these departures from an ideal census are assumed. Next,
we incorporate these into the analysis.

2.2 Incorporating Uncertain Detection
To make use of the PP model for inference with distance sam-
pling data we modify the standard PP likelihood (1) to allow
for the fact that A is not surveyed in its entirety and individu-
als are not detected with certainty. This can be accomplished
by viewing the line transect sampling procedure as thinning
the original location process S+ to obtain the locations of
observed individuals S = (s1, . . . , sn ). Thinning the location
process involves a supplementary function q(s) : A → [0, 1].
For a given realization of locations S+ one thins the process by
retaining each point with probability q(si ) and discards the
rest to obtain the subset S. The resulting intensity function
of the thinned PP S is q(s)λ(s; β) (Cressie, 1993, p. 691).
To formulate the thinning notion for distance sampling, we
assume, without loss of generality, that A is surveyed in dis-
joint regions Ck ⊂ A; k = 1, . . . , K . Herein, we will deal with
straight line transect corridors with width 2wk .

In distance sampling methodology the individuals present
in the corridors are detected at a rate g(s; ·). We assume the
following general form for the detection function,

g(s; αk , γ) = exp
[
− {zk (s)/αk }1/γ

]
, (2)

where, for s ∈ Ck , zk (s) is the perpendicular distance from a
location at s to the transect center line, otherwise, g(s; αk ,
γ) ≡ 0. This form encompasses many traditional functions
in Buckland, Anderson, et al. (1993) (Gaussian, γ = 0.5; ex-
ponential γ = 1; uniform γ → 0). By defining (2) for every
location in A, we obtain the necessary thinning function,

q(s; η) =
K∑

k=1

g(s; αk , γ),

where η = (α1, . . . , αK , γ)′.
Using the thinning function we can now define a full likeli-

hood for distance sampling by multiplying λ(s, β) by q(s, η)
to obtain the likelihood for the observed data S,

�D S (θ;S) =
K∑

k=1

n k∑
j=1

[
x(sj )′β − {zk (sj )/αk }1/γ

]

−
K∑

k=1

∫
C k

exp
[
x(u)′β − {zk (u)/αk }1/γ

]
du,

(3)

where nk is the number of animals detected in Ck and θ =
(β′, η ′)′.

The likelihood in equation (3) is a generalization of the
likelihood given by equation (2.9) in Hedley and Buckland
(2004). Hedley and Buckland use a thinned PP likelihood with
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the additional assumptions that (1) λ(s, β) is a function of s
only in terms of the parallel length along the transect cen-
terline (“waiting time till detection”), (2) transect width is
constant within and between all transects. In addition, Hed-
ley and Buckland do not simultaneously estimate intensity
and detection parameters.

3. Ecological Inference
There are two types of inferences that one would like to make
with the distance sampling model given in Section 2.2, de-
termination of the relationship between ecological covariates
and distribution of individuals in A and estimating the abun-
dance of individuals in a region B ⊆ A. First, we will exam-
ine the former via parameter inference, then, the latter via a
prediction-type inference.

3.1 Parameter Estimation
Using the likelihood (3) derived in Section 2.2, we consider
maximum likelihood estimation (MLE), which generally pro-
vides asymptotically normal and efficient estimators. This is
also the case in equation (3). Suppose the number of tran-
sects K is allowed to become large such that ∪K

k=1Ck → R
2,

and elements of x(s) are not highly collinear with zk (s) on all
transects. Then, the sampling distribution of the MLE θ̂ ap-
proaches normality with the process generating parameters,
say θ∗, as the mean and variance equal to

Σ=

[
K∑

k=1

∫
C k

hk(u)hk (u)′ exp
[
x(u)′β∗ −

{
zk (u)

/
α∗

k

}1/γ ]
du

]−1

,

where hk (s) = [x1(s), . . . , xp (s),d′
k (s)]′ and dk (s) is a K-

vector with zeros at all entries but the kth which is equal
to {zk (s)/α∗

k }1/γ /γα∗
k . This is a result of Theorem 1 in Guan

and Loh (2007). Here, for ease of exposition, we assumed γ
to be fixed and let it be used as a model definition. Typi-
cally equation (3) has to be maximized numerically, but if
λ(s, β) = λ (i.e., a homogeneous PP), then estimates can be
found analytically and correspond to some traditional design-
based distance sampling estimators (see Web Appendix). In
addition to efficient estimation, ecological inference on covari-
ate selection can be made using model selection methods, such
as Akaike’s information criterion (AIC; Burnham and Ander-
son, 2002).

3.2 Estimating Abundance
In addition to the parameters themselves, another quantity
of interest is the abundance in a particular subregion B ⊆
A. Because the distribution of individuals is random under
the model-based paradigm, there are two types of abun-
dance that we will consider. First, is the expected abundance,
μ(B; β) =

∫
B

λ(u, β) du. The second type is the realized abun-
dance N (B) = S+ ∩ B for a given realization of S+ from
λ(s, β). The value N(B) is a Poisson random variable with
mean μ(B; β). Over several surveys one would expect to see,
on average, μ(B; β) individuals in B. For a single survey, how-
ever, there were N(B) individuals present at that particular
time. The quantity N(B) is analogous to prediction of an ob-
servation and μ(B; β) is a trend.

We begin with expected abundance estimation. Through
standard theory, the MLE of expected abundance is

μ(B; β̂) =
∫

B

exp{x(u)′β̂} du.

Using the delta method (Dorfman, 1938), the large sample
variance of μ(B; β̂) is approximately

Var{μ(B; β̂)} ≈ b′Σb, (4)

where the ith entry of b is

bi =
∫

B

xi (u) exp {x(u)′β∗} du, i = 1, . . . , p,

for p covariate parameters and bi = 0 for the remaining K
α-parameters. The most straightforward variance estimator
results from substituting θ̂ for θ∗ in equation (4).

We now turn our attention to estimation of the realized
abundance, N(B). Before obtaining the proposed estimator,
we first note that N (B) = n(B) + Nu(B), where Nu(B) is
the number of undetected individuals in B and n(B) is the
number of observed individuals. The number of unobserved
animals is a Poisson random variable with expectation

ξ(B; θ∗) =
∫

B

{1 − q(u; η∗)} exp{x(u)′β∗} du. (5)

Moreover, given any value θ∗, Nu (B) is independent of n(B).
The first predictor of N(B) that comes to mind turns out to

be asymptotically efficient. By substituting θ̂ for θ∗ in equa-
tion (5) one obtains the predictor N̂ (B) = n(B) + ξ(B; θ̂).
The mean square prediction error (MSPE) for N̂ (B) is given
by

MSPE{N̂ (B); θ∗} = E[{N̂ (B) − N (B)}2; θ∗}]

= ξ(B; θ∗) + Var{ξ(B; θ̂); θ∗}

+ Bias{ξ(B; θ̂); θ∗}2

≈ ξ(B; θ∗) + c′Σc, (6)

where the ith element of c is

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
B

xi (u){1− q(u; η∗)} i = 1, . . . , p,

× exp{x(u)′β∗} du;

K∑
k=1

∫
B ∩C k

1
γα∗

k

{
zk (u)
α∗

k

}1/γ

i = p + 1, . . . , p + K.

× exp
[
x(u)′β∗ − {zk (u)/α∗

k}1/γ
]
du

The last step in equation (6) results from the fact that asymp-
totically Var{ξ(B; θ̂); θ∗} → c′Σc and θ̂ is a consistent esti-
mator. Again, replacing θ∗ by θ̂ in equation (6) provides an
estimator of the MSPE.

There are two notes concerning equation (6). First, appli-
cation of Theorem 1 in Nayak (2002) shows that the last line
is the lower bound for MSPE. Therefore, N̂ (B) is asymp-
totically most efficient. Second, as B ∩ Ck → B and α∗

k →
∞ for all transects, then we count all animals in B, and
MSPE{N̂ (B); θ∗} → 0, as it should. Thus, a finite population
correction factor is automatically embedded in the variance
estimator. This bypasses the issue of an ad hoc decision on a
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finite population correction factor as discussed in Buckland,
Anderson, et al. (1993, p. 96).

3.3 Overdispersion
Small-scale variation in the intensity function that is unex-
plained by the spatial covariates may affect local abundance
estimates as well as variance estimates. Overdispersion of
count-like data is a common occurrence in ecological data sets.
Waagepetersen and Schweder (2006) and Skaug (2006) pro-
pose a point process model specifically designed for clustered
data. Both make use of a Cox process (Diggle, 2003) to model
clustering behavior, which leads to overdispersed abundance.
Waagepetersen and Schweder (2006) use computationally in-
tensive sampling algorithms to obtain parameter estimates for
a homogeneous Cox process (single average intensity for the
entire study area).

We investigate another, admittedly ad hoc, procedure for
accounting for overdispersion that is much less computation-
ally intensive. Our proposal involves calculation of the overdis-
persion factor

ĉ = min

⎧⎨
⎩1,

[
K∑

k=1

{n(Ck ) − Êk }2

Êk

/
(K − m)

]−1/2
⎫⎬
⎭

= min
{
1, (χ2/df )−1/2

}
, (7)

where m is the number of parameters and Êk =∫
C k

gk (u; α̂)λ(u; β̂) du is the estimated expected number of
observed animals in transect k = 1, . . . , K . This is motivated
by the overdispersion correction for a Poisson generalized lin-
ear model (McCullagh and Nelder, 1989, p. 127). All standard
errors can then be divided by ĉ to inflate them and corre-
spondingly widen the associated confidence intervals. There
are two main benefits to this method: (1) computation is very
simple after the model has been fitted via MLE and (2) the
correction is nonparametric in that no model for a Cox process
is necessary. The choice of transects as the basis for measuring
overdispersion is somewhat arbitrary. But, it is a well-defined
unit in every distance sampling analysis and is often the unit
used for increasing “sample size.” See Sections 4.2 and 5, how-
ever, for alternatives and discussion.

4. Examples
In this section, we present a simulation experiment, as well
as analysis of the Dubbo weed data originally analyzed by
Melville and Welsh (2001). All of the simulated data genera-
tion and analysis in this section were performed using a pack-
age called DSpat that we have developed to implement point
process modeling of distance sampling data in the R language
(R Development Core Team, 2008). DSpat will be available
on CRAN (http://cran.r-project.org/) and it contains the
weed data and the analysis we present here. The DSpat pack-
age depends heavily on the package spatstat (Baddeley and
Turner, 2005, see http://www.spatstat.org) and to a lesser
degree the packages gpclib, RandomFields (Schlather, 2001),
and mgcv (Wood, 2006). All are available at http://www.r-

project.org. DSpat uses the quadrature scheme of Berman
and Turner (1992) for calculation of the likelihood (3).

4.1 A Simulation Experiment
We conducted a simulation study to validate the analysis tech-
nique and the R package we developed using simulated data
from a systematic sampling design with known model struc-
tures for process intensity and detection. We also evaluated
confidence interval coverage under scenarios with and without
overdispersion and compared the results to a conventional dis-
tance sampling (CDS) estimator (Buckland et al., 2001) with
assumption of random line placement (CDS-R2) and a modi-
fied, more appropriate, version (CDS-O1) for systematic line
placement (Fewster et al., 2009).

We simulated point data over a square 100 × 100 study
area with a homogeneous PP and an inhomogeneous PP (IPP)
with and without overdispersion. The structure for the IPP
included three habitat types with varying intensity and a ver-
tical linear feature (e.g., river) in the center of the study area
with decreasing intensity to the east and west of center. The
habitat features were constructed by generating a smooth
Gaussian random field across the study area and then defining
the habitats based on quantiles of 33.3% and 66.7% to pro-
vide an approximately equal area for each habitat (Figure 1).
The log of intensity across the surface was defined as x(s)′β,
where β = (β1, 1, 2,−1) and x1(s) = 1, x2(s) and x3(s) are
0/1 dummy variables for habitats 2 and 3, and x4(s) = |sx −
50|/100, a scaled horizontal distance from s to the center.
The vertical transect lines were systematically spaced and
the grid was given a random starting position relative to the
study area. The width of each transect was computed as wk =
100P/K , where P is the proportion of the study area sampled
and K is the number of transects. Any portion of the tran-
sect that extended outside of the study area was excluded, so
transect width could vary for at least one transect depending
on the coverage and random placement of the grid. A half-
normal detection function (equation (2); γ = 0.5) was used for
observation of points. The scale parameter α was computed
such that the average detection probability, say ḡ was either
0.25 or 0.6 in a simulation scenario. Overdispersion was incor-
porated by modeling the intensity with a log-Gaussian Cox
process (LGCP), log λ(s; β) = x(s)′β + ε(s), where ε(s) was
a Gaussian random field with correlation function cov[ε(s),
ε(s +h)] = τ 2exp(−||h||2/φ), τ = 0.5, and φ = −52/
log (0.05). These values give a range of spatial correlation
of approximately five units (correlation ≤ 0.05 beyond five
units) and variance of 0.25 for the ε(s) process. For all sim-
ulated data sets the intercept β 1 was adjusted so that the
expected number of observed individuals E(n) = E(N )P ḡ =
75 or 400 depending on the scenario.

For each of the 48 scenarios (homogeneous Poisson, in-
homogeneous Poisson with and without overdispersion; P =
0.04, 0.50; K = 10, 20; ḡ = 0.25, 0.60; E(n) = 75, 400), 1825
replicate simulations were conducted in which intensity (habi-
tat), point locations, lines, and detection were randomized for
each replicate. The number of replicate simulations was cho-
sen so the empirical confidence interval coverage should be
within ±1% of the actual 95% coverage.

Here, we present results for the estimation of the expected
abundance μ(A) only. The results were nearly identical for
estimation of the realized abundance N(A). In each of the 48
scenarios, the estimated bias never exceeded 1.5% and the
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Figure 1. Example simulated intensity surface (top) and es-
timated (bottom) surface with habitat and river feature and
K = 10, ḡ = 0.25, P = 4%, and E(n) = 75.

average across all scenarios was 0.9% and 0.08% for E(n) =
75 and 400, respectively. We expect that any small amount
of bias that does exist would occur from the resolution of the
quadrature points for integration. Figure 1 illustrates that
even with sparse transect sampling, informative gridded en-
vironmental covariates can lead to an accurate prediction of
intensity over the entire region with a known model.

The confidence interval coverage for the homogeneous Pois-
son scenarios was within the expected range for both the CDS
and model-based (IPP) estimators (Figure 2). For the IPP
scenarios without overdispersion, the confidence interval cov-
erage for the model-based estimator was within the expected

range but the observed coverage for CDS was too high ex-
cept for the case with small sample size (E(n) = 75) and
larger number of lines (K = 20). When overdispersion was
added, the observed coverage was even higher for CDS. For
the model-based estimator the ad hoc adjustment for overdis-
persion was not sufficient and coverage was too low except
with the larger number of lines (K = 20) and 4% sampling
coverage. For most real applications, sampling coverage is less
than 4%, so the ad hoc adjustment may be adequate as long
as K is sufficiently large.

The average estimated coefficient of variation for the CDS-
O1 variance estimator was 24% larger than the coefficient
of variation for the model-based estimator for the IPP pro-
cess without overdispersion. This reflected the bias in the es-
timated standard error for CDS-O1, which was 23% larger
than the standard deviation of the replicate values of μ(A).
The CDS-O1 variance estimator provided a reduction of 25%
in comparison to the CDS-R2 estimator but was still larger
than the true variance. Thus, as long as overdispersion can be
accommodated, the model-based estimator can provide sub-
stantial gains in precision in comparison to CDS even with
the more recently developed systematic variance estimators.

4.2 Application to the Dubbo Weed Data
Melville and Welsh (2001) collected and analyzed line transect
sampling data with n = 479 observed devil’s claw weeds in
a farming paddock from eight 150 m wide parallel transects.
These data are analyzed here as an example because the en-
tire population was enumerated and the data highlight prob-
lems that can occur in some unusual circumstances. Melville
and Welsh (2001) stated that signed perpendicular distance
(zk (s)) and the distance along each transect were measured;
however, only the signed perpendicular distances were pro-
vided and they make no mention of the transect length in
their paper. To analyze these data in a spatial context we have
assumed that the paddock was square (1200 m by 1200 m)
and we generated a restricted random uniform sy coordinate
for each object such that no weeds had the exact same coor-
dinate. There were 742 weeds in the paddock with 99, 136,
90, 102, 54, 66, 101, and 91 in transects 1–8, respectively
(Melville and Welsh, 2001). They stated that sheep were only
present on transects 5–8 and they ate the leafy part of the
weed so they expected that the weeds would be harder to
detect on those transects. Using the known positions of all
weeds and the observed weeds, we can describe the actual
distribution of all perpendicular distances and the propor-
tion detected within intervals of distance for transects with
sheep absent and present (Table 1). Detection probability
was slightly lower where sheep were present, but also the
frequency of perpendicular distances decreased with distance
where sheep were absent and increased with distance where
sheep were present. This resulted in declining numbers ob-
served with distance where sheep were absent and a roughly
constant number observed for each interval where sheep were
present.

We fitted models in which weed intensity differed (1) for
sheep absence/presence, (2) for each of the eight strips, and
(3) as a thin-plate regression spline (Wood, 2006) of the east–
west coordinate sx . We modeled detection probability within
the strip as a half-normal function (equation (2); γ = 0.5)
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Figure 2. Confidence interval coverage (nominal 95%) for 1825 replicates with the IPP and CDS-O1 estimators for each
scenario with ḡ = 0.25. Results for ḡ = 0.60 were very similar. Vertical bars show expected range of simulation error.

Table 1
Known number of weeds (N) and the proportion (p) and number (n) observed in 10 equal distance bins for transects 1–4 (sheep

absent) and transects 5–8 (sheep present)

Sheep [0,7.5] (7.5,15] (15,22.5] (22.5,30] (30,37.5] (37.5,45] (45,52.5] (52.5,60] (60,67.5] (67.5,75]
Absent N 57 90 32 43 37 49 54 27 11 30

p 1.00 0.97 1.00 0.81 0.86 0.86 0.63 0.37 0.18 0.33
n 57 87 32 35 32 42 34 10 2 10

Present N 11 21 16 17 36 48 46 49 31 37
p 1.00 0.81 0.75 0.76 0.50 0.42 0.35 0.31 0.26 0.22
n 11 17 12 13 18 20 16 15 8 8

and considered a model with constant α and another in which
α differed based on sheep presence and absence. The model
with minimum AIC included a separate α for sheep pres-
ence/absence and intensity varying across strips (Table 2).
The known population size was within one standard error
of the estimated value of 774. However, the model was un-
able to reflect the true spatial distribution of weeds across
the paddock (Figure 3). The estimated number of weeds in
transects 1–4 (sheep absent) were too high and the estimates
were too low for transects 5–8 (sheep present). This occurred
because the true spatial intensity was not constant within
the strips and it varied based on presence of sheep. The esti-
mated value α̂ was 23.6 where sheep were absent and was sub-
stantially larger at 56.5 where sheep were present. The latter

value should have been smaller because detection probability
declined more rapidly where sheep were present. This is ap-
parent by examining the observed and expected distributions
for perpendicular distance (Figure 4). Using the distance bins
in Figure 4 instead of transects, a χ2 statistic can be calcu-
lated as in equation (7). There is a substantial lack of fit (χ2 =
51.5, df = 10, p < 0.001) and the residuals reflect the increas-
ing frequency of weeds with distance for transects with sheep
present. The distance bin calculated ĉ approximately doubles
the standard errors for the abundance estimates in Table 2.

Even though the modeled intensity surface showed substan-
tial lack of fit in an absolute (but not qualitative) sense, we
chose the Dubbo data to illustrate not only the ability to
compare environmental treatments with the IPP method, but
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Table 2
Models fitted to Dubbo weed data and resulting estimates and

precision of weed abundance in the entire paddock

Intensitya Detection # parameters ΔAIC N̂ Std. error

∼Sheep ∼1 3 38.1 755 46
∼Sheep ∼Sheep 4 15.8 773 47
∼Strip ∼1 9 22.4 755 46
∼Strip ∼Sheep 10 0.0 774 47
∼s(x) ∼1 11 18.9 760 47
∼s(x) ∼Sheep 12 5.2 769 47

as(x) denotes thin-plate regression spline model.

1 2 3 4 5 6 7 8

True.N

Est.N

N–S lines model 4

0
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0
1

0
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1
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Figure 3. True (dark) and estimated (light) number of weeds
in each strip using the minimum AIC model for the Dubbo
weed data.

also the ability to explore where or why a hypothesized rela-
tionship may not fit as expected. We refrain from speculation
here, but a researcher using this data can now explore the lack
of fit and possibly look for other covariates which might be
associated with this discrepancy. Certainly sheep presence is
not enough to fully explain abundance patterns in this data.

5. Discussion
Casting distance sampling into a full likelihood formulation
for the spatial point process and the observation process (de-
tection) provides a natural model selection framework to eval-
uate impacts of ecological processes and experimental manip-
ulations (e.g., grazing) on animal abundance and distribution.
Simultaneous fitting of the detection function copes with the
potential influence of those same ecological variables and oth-
ers (e.g., observer) on the point process parameter estimates

(0,7.5] (15,22.5] (37.5,45] (60,67.5]

Sheep absent

0
2

0
6

0

(0,7.5] (15,22.5] (37.5,45] (60,67.5]

Sheep present

0
5

1
5

Figure 4. Observed (light) and expected (dark) numbers of
weeds in perpendicular distance intervals for transects with
sheep absent and present.

and uncertainty resulting from the estimation of the detection
parameters.

Use of this model-based approach does not require random
transect placement so it will work as well with systematic de-
signs, platforms of opportunity, and more optimal designs that
are not restricted to designs with transects parallel to the den-
sity gradient. However, some degree of caution is warranted
and design considerations cannot be completely ignored. It
is possible to pose models in which the detection parame-
ters are completely confounded with the intensity parameters.
For example, a model in which the underlying point process
is a symmetric function of the perpendicular distance from
the line is completely confounded with the detection process.
Confounding of detection probability and intensity with this
model-based approach can be avoided in a variety of ways.
Melville and Welsh (2001) proposed estimation of detection
from a calibration strip in which all objects were delineated
and detection or nondetection was determined for each object.
Detection probability would then be assumed to be constant
across all of the strips. This is a rather strong assumption
and the method would be impractical and inefficient in most
situations. An alternative and more efficient approach would
be a pattern of perpendicular strips as described by Buckland
et al. (2007), which would enable detection of objects in both
the sx and sy directions with certainty. Another alternative is
to survey with two independent observers allowing detection
probability to be independently assessed with the capture–
recapture data (Laake and Borchers, 2004; Borchers et al.,
2006). This latter approach was used in migration counts of
gray whales (Buckland, Breiwick, et al., 1993) in which the
true offshore distribution (intensity) is confounded with the
detection process in the context of distance sampling. Alter-
natively, aerial surveys perpendicular to shore could be used
to model the intensity process as a function of distance from
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shore which would eliminate any confounding as suggested by
Buckland et al. (2007).

Models for the spatial point process can be limited to use
spatial coordinates like the one-dimensional spline used in the
Dubbo weed example. Similar models can be created to pro-
vide a smooth two-dimensional surface for the point process
intensity. However, many practitioners will want to include
habitat covariates or experimental treatments and such mod-
els can be easily created. There is one drawback in using spa-
tial covariates when the goal is estimation of total abundance.
Unlike design based methods, the spatial covariates need to
be known for the entire region and not just in the sampled
region. Sometimes specifying the spatial covariates is a triv-
ial exercise like the sheep treatment in the Dubbo weed data
example. But in most cases, the spatial covariate values will
need to be defined from a raster grid applied to layers of a
geographical information system. The tools needed to manip-
ulate geographical information system layers are available as
packages for the R statistical software (R Development Core
Team, 2008) that can be integrated with the DSpat package.

There are two nontrivial extensions to the present work
that would enhance the model-based method. First, our ad
hoc approach for overdispersion is admittedly not a perfect
solution because it will depend on the choice of scale and is
limited by the degrees of freedom which can be nonpositive if
too many parameters are fitted. The computationally inten-
sive approach of Waagepetersen and Schweder (2006) is also
limited by scale and can only measure overdispersion at the
level of half of the transect width as well as requiring a Cox
process model be specified. A potential modification would be
to use a one-dimensional K-function along the line to increase
the potential scale for overdispersion measurement. Second,
extensions of this work to include marked point processes
would be useful for handling animals in groups (e.g., pods,
flocks, or herds) and to examine species interactions. Using
Markov point process models might be useful for this case.
Markov models can be fitted using a pseudo-likelihood func-
tion with little change to equation (3). If ecological inference
is the primary goal, then this may suffice; however, it is non-
trivial to incorporate interaction into abundance estimation.
The same is true of the Cox process. Clearly, this is an area
that needs further research.

6. Supplementary Material
The Web Appendix referenced in Section 3.1 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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