
Purdue University

Purdue e-Pubs

Open Access Theses Theses and Dissertations

Summer 2014

A Model-Based Approach To System-Of-Systems
Engineering Via The Systems Modeling Language
Kevin Hughes Bonanne
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Databases and Information Systems Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

Recommended Citation
Bonanne, Kevin Hughes, "A Model-Based Approach To System-Of-Systems Engineering Via The Systems Modeling Language"
(2014). Open Access Theses. 407.
https://docs.lib.purdue.edu/open_access_theses/407

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/407?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

C Disclaimer (Graduate School Form)

Kevin H. Bonanne

A MODEL-BASED APPROACH TO SYSTEM-OF-SYSTEMS ENGINEERING VIA THE
SYSTEMS MODELING LANGUAGE

Master of Science in Aeronautics and Astronautics

Daniel DeLaurentis William Crossley

Saurabh Bagchi

Daniel DeLaurentis

Tom Shih 06/27/2014

A MODEL-BASED APPROACH TO SYSTEM-OF-SYSTEMS ENGINEERING

VIA THE SYSTEMS MODELING LANGUAGE

A Thesis

Submitted to the Faculty

of

Purdue University

by

Kevin H. Bonanne

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2014

Purdue University

West Lafayette, Indiana

ii

To Tom, Carmella, my friends, and my family

iii

ACKNOWLEDGMENTS

The work in this thesis would not be possible without the guidance of Dr. Daniel

DeLaurentis, who has taught me and fostered my development over many years;

Dr. William Crossley and Dr. Saurabh Bagchi and Bob Kenley, who served on my

committee; Dr. Oleg Sindiy, who mentored me through much of my early career; Dr.

Thomas McVittie and Dr. Otfrid Liepack, with whom I worked at JPL; Marc Sarrel,

who showed me the delicate intricacies of SysML; Kim Simpson, who has acted as

project manager for much of my technical work related to this thesis; and finally

my colleagues at Purdue University, especially those in Dr. DeLaurentis’ research

group, who have furthered my understanding of numerous subjects through technical

discussions and their own research.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . x

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 System-of-Systems . 2
1.3 Model-Based Systems Engineering via the Systems Modeling Language 4
1.4 Research Objectives . 5

2 BACKGROUND . 9
2.1 Systems-of-Systems Engineering Wave Model 9
2.2 Systems Modeling Language . 11
2.3 Previous Work . 13

3 SOS INITIATION & EARLY-PHASE ANALYSIS 16
3.1 SoS Initiation . 17
3.2 Resource Definition . 19
3.3 Develop a Concept of Operations 22
3.4 Application to SoS Types . 26

3.4.1 Directed SoS . 26
3.4.2 Acknowledged SoS . 29
3.4.3 Collaborative SoS . 29

3.5 Evaluation . 32
3.5.1 How does SysML define systems and their features within a

SoS? . 32
3.5.2 How does SysML define the operations and allocate them to

the systems of a SoS? . 34

4 SOS ARCHITECTURE DEVELOPMENT AND EVOLUTION 36
4.1 System Interactions and Networks 36
4.2 Port Definition . 41
4.3 Requirements on Ports . 42
4.4 Integration of System Models . 43

v

Page
4.5 Networking with Different SoS Types 49

4.5.1 Directed SoS . 49
4.5.2 Acknowledged SoS . 52
4.5.3 Collaborative SoS . 52

4.6 Conclusions . 56
4.6.1 How are alternative configurations, system sets, networks eval-

uated in SysML within the SoS scope? 56
4.6.2 How does SysML allow for SoS evolution? 57

5 SOS PLANNING FOR UPDATES & IMPLEMENTATION 59
5.1 System Analysis . 59
5.2 Interface Analysis . 63
5.3 Requirements Analysis . 67
5.4 System Integration & Aggregate Analysis 68
5.5 SoS Analysis . 68

5.5.1 Directed SoS . 69
5.5.2 Acknowledged SoS . 71
5.5.3 Collaborative SoS . 73

5.6 Updates & Implementation . 75
5.7 Conclusions . 76

5.7.1 What analysis methods does SysML provide for the SoS and
how well does SysML execute said analysis methods? 76

6 CONCLUSION . 79
6.1 Systems Engineering vs. SoS Engineering 79
6.2 Is SysML capable of demonstrating the 8 traits of a SoS? 79

6.2.1 Managerial Independence 79
6.2.2 Operational Independence 81
6.2.3 Evolutionary Behavior . 82
6.2.4 Emergent Properties . 82
6.2.5 Geographic Distribution . 83
6.2.6 Heterogeneity . 83
6.2.7 Trans-domain Nature . 83
6.2.8 Networks . 84

6.3 Is SysML capable of modeling different types of SoS? 86
6.4 Future Work . 87

A SYSML TUTORIAL . 89

B MODELING PATTERN . 94
B.1 Developing the Baseline Architecture and Specialized Configurations 94

B.1.1 The use of directed associations 96
B.1.2 Applying generalizations and redefinition 97

B.2 Definition of System Interactions 98

vi

LIST OF REFERENCES . 100

vii

LIST OF TABLES

Table Page

1.1 Comparison of Systems and Acknowledged SoS [9] 7

2.1 Key SysML Elements . 14

2.2 Key SysML Diagrams . 14

3.1 ROPE-Scope Table for Distributed Sensor Problem 18

3.2 Overview of SoS Initiation & Analysis tasks in SysML 35

4.1 Overview of SoS Architecture Evolution tasks in SysML 58

5.1 Overview of SoS Plan for Updates tasks in SysML 78

6.1 Systems Engineering vs. SoS Engineering 80

6.2 Overview of SoS Traits in SysML . 85

viii

LIST OF FIGURES

Figure Page

1.1 Wave model for System-of-Systems Engineering 5

2.1 The Vee process model for systems engineering 9

2.2 A breakdown of the various viewpoints within SysML 12

3.1 Block definition diagram showing the baseline hierarchy of systems within
the SoS . 20

3.2 Value properties and default values defined for a Radar Sensor block . 21

3.3 Example requirement on the avg. transmitted power of a Radar Sensor
block, satisfied by its value property 21

3.4 Functional decomposition developed for CONOPS 23

3.5 Example activity flow: the allocation and flow of key activities 24

3.6 Example activity flow: actions required for a radar sensor to take a mea-
surement . 25

3.7 Hierarchy of resources for the directed SoS architecture 27

3.8 Sensor management for the directed SoS 28

3.9 Hierarchy of resources for the acknowledged SoS architecture 30

3.10 Hierarchy of resources for the collaborative SoS architecture 31

3.11 Allocation of activities to the communication node 32

4.1 Logical network diagram for the acknowledged SoS architecture 38

4.2 Physical network diagram for the acknowledged SoS architecture 39

4.3 Relation between activity diagrams and logical ports 40

4.4 Requirement specifying the output of measurement data by a radar plat-
form . 42

4.5 Structural decomposition of the independent radar model. 44

4.6 Use case diagram showing three key use cases: search, track, and discrim-
inate. 45

4.7 Activity flows for key operational modes: search, track, and discriminate 46

ix

Figure Page

4.8 New radar model (ExperimentalRadar) integrated into the Acknowledged
SoS. 47

4.9 Acknowledged SoS logical network with a radar platform replaced with an
experimental radar system. 48

4.10 Directed SoS logical network . 50

4.11 Directed SoS physical network . 51

4.12 Collaborative SoS logical network . 53

4.13 Collaborative SoS physical network . 54

5.1 Parametric diagram showing the calculation of SNR for two sensors on a
single target . 61

5.2 Signal-to-noise ratio and other derived performance values for a single
radar and a single target . 62

5.3 Physical network diagram displaying the state of each physical connection 66

5.4 Look directions for all sensors in the Directed SoS simulation 70

5.5 Look directions for all sensors in the Acknowledged SoS simulation . . 72

5.6 Measurement rate plots for a sample Collaborative SoS simulation . . . 74

B.1 Block definition diagram showing the baseline hierarchy of systems within
the SoS . 95

B.2 Internal Block Diagram showing the interactions between internal elements 96

x

SYMBOLS

PT average power transferred

n number of pulses integrated

τp pulse width

GT transmitted gain

λ wavelength

Fn receiver noise

Ls system loss

To operating temperature

k Boltzmann’s constant

σ cross sectional area perpendicular to the sensor

R sensor’s range from the target

σθ angular standard deviation of measurement

σR range standard deviation of measurement

c speed of light

PD probability of detection

PFA probability of a false alarm

xi

ABBREVIATIONS

bdd Block Definition Diagram

BMDS Ballistic Missile Defense System

C2 Command and Control

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

CONOPS Concept of Operations

FEA Finite Element Analysis

ibd Internal Block Diagram

MBSE Model-Based Systems Engineering

RF Radio Frequency

SoS System-of-Systems

SoSE System-of-Systems Engineering

STK Satellite Tool Kit

xii

ABSTRACT

Bonanne, Kevin H. M.S., Purdue University, August 2014. A Model-Based Approach
to System-of-Systems Engineering via the Systems Modeling Language. Major
Professor: Daniel DeLaurentis.

In the field of Systems Engineering, a movement is underway to capture the aspects

of a system in a centralized model format instead of various documents. This is the

basis of Model Based Systems Engineering (MBSE). In order to better formalize this

change, the Systems Modeling Language (SysML) was developed to characterize an

ontology for MBSE. Despite the growth of both MBSE practices and SysML tools,

they have yet to be rigorously analyzed as to their applicability to the field of System-

of-Systems (SoS). This thesis applies SysML to a methodology for System-of-Systems

Engineering (SoSE) known as the Wave Model, which focuses on an iterative approach

to SoS development. Each applicable step in the Wave Model is performed within

SysML. Three different SoS types – directed, acknowledged, and collaborative – are

studied within the domain of a distrubuted sensor management problem. As each

SoS is established, evaluated, and updated, the applicability of SysML to each step

is discussed. It is found that SysML is capable of defining, analyzing, and evolving a

SoS via the processes described in the Wave Model. SysML excels at strictly defining

and organizing the elements and features of a SoS while requiring more development

in the analysis portions of the SoSE process.

1

1. INTRODUCTION

1.1 Motivation

Systems Engineering (SE) has been around for hundreds of years, but truly began

evolving as a field in the 1950s [1]. At this time, the growing space, missile, and nuclear

warhead races were requiring a higher quality of systems planning, integration, and

testing than in the past. Shortly after SE processes reached the commercial industry.

Most notably, the Japanese automobile industry quickly adopted SE planning and

design processes to see their vehicles lowering in cost and increasing in reliability. This

change saw the growth and eventual dominance of Japanese automobile companies

worldwide from the 1970s onward [2].

As systems became increasingly complex and more network-centric, the concept of

a System-of-Systems (SoS) arose – encompassing that complex group of distributed,

independent, and interacting systems [3]. This classification of a system-of-systems

required a methodology to design, manage, and analyze a SoS and thus System-of-

Systems Engineering (SoSE) was born [4].

The current state of affairs in SE and SoSE involves a document-centric approach

to development of systems [5]. In this process, each phase of system development

may require a review (e.g., Preliminary Design Review, Test Readiness Review) and

a related document or set of documents. This approach provides structure to the

systems engineering process; it is not a bad thing. However, a document-centric ap-

proach leads to having various sources of information, which may have conflicting

information, and can be tedious to manage. Moving away from a document-centric

approach and towards a model-centric approach can be highly beneficial [6], as all

information is located in a single-source-of-truth, navigable model. The same informa-

tion is portrayed, but in a more intelligent manner. This shift towards Model-Based

2

Systems Engineering (MBSE) echoes the changes from pen-and-paper engineering to

the computer-aided design that is ubiquitous today in many engineering disciplines.

As there is a difference in how an engineer designs a system and how an engineer

designs a SoS, there is also a difference in how one would model a system versus a SoS.

However, few groups applying MBSE have examined its applicability to SoSE (see

2 for literature review). This research rigorously examines the current applicability

and future challenges of utilizing MBSE techniques, specifically the Systems Modeling

Language, for SoSE.

1.2 System-of-Systems

Systems-of-Systems involve a group of systems collaborating towards a common

goal. The constituent systems of a SoS may be of varying levels of complexity with

varying degrees of autonomy and pursuant of separate individual goals. However,

there must remain a semblance of global desire to reach a designated goal.

Mark Maier establishes that two primary traits are necessary for a group of systems

to be established as a SoS: operational independence and managerial independence [3].

Operational independence establishes that each system is capable of performing a set

of functions without any interaction from the other systems; the systems are not so

closely integrated that they are operationally co-dependent. Managerial independence

states that the systems manage themselves to a purpose that is separate from the

overarching purpose of the SoS. For example, a Aegis Combat System may be operated

by the US Navy for a specific set of functions, including monitoring an airspace for

missiles threats. The system has the authority and ability to perform these functions.

However, its role in a SoS, such as the Ballistic Missile Defense System (BMDS),

expands upon these functions to serve the need of the SoS by taking information

from the Aegis system and utilizing it to influence other systems (e.g., sensors, missile

batteries). Since the Aegis system and other systems in the BMDS have the capability

to operate and manage themselves independently, the BMDS is considered a SoS [27].

3

Three other properties identified by Maier and often associated with SoS’s, though

not necessary for the classification, are geographic distribution, evolutionary behavior,

and emergent behavior. Geographical distribution states that all systems cannot be

collocated. The capability for a SoS to change over time – adding, replacing, and

altering its systems and network – is established in its evolutionary behavior. The

emergent behavior property describes the fact that by integrating the constituent

systems into a SoS, capabilities and behaviors will arise that are not possible with

the systems on their own.

Daniel DeLaurentis [7] identified three implications from the properties identi-

fied by Maier. He attributes heterogeneity of systems, a trans-domain nature, and

a network to connect the systems to the SoS problem. Of all eight traits, the most

important as noticed by Maier and DeLaurentis are managerial and operational in-

dependence. Though the other traits may exist, the driving factors in defining a SoS

are the capabilities of the constituent systems to exist and act on their own (oper-

ational independence) while also fulfill new purposes when interacting (managerial

independence) [8].

Four different types of SoS have been identified (especially for defense-related

content): virtual, collaborative, acknowledged, and directed [9]. In a virtual SoS, the

systems lack any sort of central management or unifying purpose, but voluntarily in-

teract to some effect. Virtual SoS’s are not controlled by standard engineering means

due to their abstract nature and complexity; thus, this type of SoS is not examined

in this thesis. A collaborative SoS keeps the voluntary interaction and establishes

rules for interaction and inclusion to the SoS. These rules are often controlled by

central members of the SoS and are the primary means of controlling and evolving

the SoS. For example, the Internet is the most popular example of a collaborative SoS

and operates by a set of rules such as the Internet Protocol. With an acknowledged

SoS, there is the addition of a designated systems engineering manager, dedicated

resources, and a mechanism for shared governance of the SoS while the constituent

systems, ultimately maintain their independence. Finally, a directed SoS is specifi-

4

cally managed for a set of objectives and is centrally managed. Often a directed SoS

is nearly indistinguishable from a “complex system” due to their shared monolithic

nature. SysML applications to directed, acknowledged, and collaborative SoS’s are

presented in later chapters.

1.3 Model-Based Systems Engineering via the Systems Modeling Lan-

guage

MBSE involves capturing the various aspects of an integrated system or system-of-

systems and incorporating them into a single model. A model will consist of various

graphical viewpoints that describe the characteristics of a system. Many of these

viewpoints are commonplace within systems engineering – bearing resemblance to

flowcharts, state machine diagrams, and structural or functional decomposition dia-

grams. Furthermore, the model ideally can be connected to various other computer-

based engineering tools (e.g., CAD, CFD, FEA, STK) [10] [11], though this research

will not delve into this capability.

The Systems Modeling Language (SysML) is based on the Unified Modeling Lan-

guage (UML) [12] but caters in both semantics and usage specifically towards systems

engineering as opposed to UML’s focus on software development. Many of the basic

elements, interactions, and views from UML are included or extended within SysML.

A key difference between the two graphical languages is a shift from UML’s Class

definition to SysML’s Block definition, which is used to represent systems and their

components. A set of views is also included in SysML to allow for constraint and

requirements analysis. These provide for a parametric analysis [13] and requirements

traceability capabilities, respectively.

There are four sets of viewpoints that are captured in SysML – structural, be-

havioral, requirements, and parametrics [14]. Structural viewpoints establish the

definition of elements – the composition of systems, their properties, and organiza-

tional grouping. Behavioral viewpoints describe how these elements function, their

5

Figure 1.1. Wave model for System-of-Systems Engineering

operational states, and their interactions. The requirements viewpoint allows for a

systems engineer to create, relate, trace, and analyze the formal requirements within

the SoS. Finally, parametric viewpoints allow for the application of constraints on

systems via logical and mathematical expressions. Each of these sets of viewpoints is

used and discussed in this thesis.

1.4 Research Objectives

The goal of this research is to assess the applicability of SysML to perform key

activities in SoS Engineering. To do this, the Wave model for SoSE is followed (see

Figure 1.1, as outlined by Dahmann [15] and summarized in Chapter 3 of this thesis.

To examine a full scope of SoS’s, each phase of the SoSE Wave model will be executed

for directed, acknowledged, and collaborative examples of SoS:

SoS Initiation and Early-Phase Analysis

Establish the foundational information to begin the SoSE process and analyze

the SoS operations and structure in order to form a baseline for SoS evolution.

1. How does SysML define systems and their relations within a SoS?

6

2. How does SysML represent the behavior of constituent systems and allo-

cate them to the systems of a SoS?

SoS Architecture Development and Evolution

Create the framework to allow for SoS evolution and develop a migration plan.

1. How are alternative configurations, system sets, and/or networks estab-

lished and evaluated in SysML within the SoS scope?

2. What methods within SysML exist for examining the evolution of the SoS?

SoS Planning for Updates and Implementation

Evaluate the SoS in order to plan for the next SoS upgrade cycle and implement

changes to the SoS.

1. What analysis methods does SysML provide for the SoS?

2. How well does SysML execute these analysis methods?

The focus of this thesis is to analyze SysML for its ability to define, evaluate,

and evolve a SoS model. All steps of the SoSE Wave model are carried out within

SysML, both stressing the capabilities of the language and analyzing its effectiveness.

Within each step, directed, acknowledged, and collaborative examples of a SoS are

examined. Though the Wave model is designed for use with the acknowledged SoS

type, the processes in each step are adapted for the directed and collaborative types.

Two of the Wave model steps are not carried out in SysML: Initiation and Im-

plementation. SoS Initiation deals with problem definition, outlining what the SoS

is and establishing its scope. This abstract definition is most easily done outside of

SysML with a pen-and-paper approach as a conceptualization step for the modeling

effort. At the end of the Wave model, the Implementation step solely deals with

executing the changes examined in previous steps; no additional SysML modeling is

required for this step.

The DoD Systems Engineering Guide for Systems of Systems identifies some of

the key differences between systems and SoS. A comparison of these two fields across

7

Table 1.1 Comparison of Systems and Acknowledged SoS [9]

8

various environments is displayed in Table 1.1. Because SysML is designed for SE

practices, specific modeling patterns are used to extend the language for SoSE use.

The conclusions from this examination are presented in a similar table found in Chap-

ter 6.

9

2. BACKGROUND

2.1 Systems-of-Systems Engineering Wave Model

As mentioned earlier, Systems-of-Systems Engineering grew from the previous use

of Systems Engineering. The SE process, primarily utilized for a single system, goes

through a series of steps from the conceptualization of the system through its creation,

testing, and product lifecycle. Beginning with a need for a system, provided by

customers and other stakeholders, requirements are generated. A conceptualization

of the system is developed from these requirements, often through the use of various

formalized techniques (e.g., brainstorming, QFD) [16]. Narrowing down a set of

conceptual designs results in the design to be implemented. Before the system is

deployed for operation, it is iteratively tested and redesigned until a final design is

used for production. This entire sequence has been captured in a variety of process

models: the waterfall model, the spiral model, and the Vee process model being some

of the most popular.

Figure 2.1. The Vee process model for systems engineering

10

The Vee process model, seen in Figure 2.1, follows a decomposition from high-

level requirements to the system design and then a series of test and evaluation steps

that parallel the earlier steps. Each of these latter steps functions as a verification

or validation of the design steps preceding it. The System-of-Systems Engineering

process used in this research, known as the Wave model, has much in common with

the Vee process model.

The Wave model [15] exists as a way to outline the necessary steps for engineering

a SoS. Built from the “trapeze model” [9], which details several of the necessary

elements required for SoSE, the Wave model linearizes this process into a set of

repeated steps that occur over time. Similar to the Vee process model, the Wave

model shows a process that includes analysis, development, and implementation, with

feedback between these steps. However, unlike the Vee process depicted in Figure 2.1,

the Wave model explicitly depicts the analysis and resulting feedback throughout the

entire process. The temporal aspect of the Wave model best captures the evolutionary

nature of a SoS with its repeated iterations of analysis on the SoS. Changes may

come from within the engineering process or from the external environment, which

has continual influence on the SoS. Finally, the fact that the Wave model is forward-

moving through time allows for practitioners to directly adapt a representation of the

SoS – in this case, the model – to a specific development plan.

The Wave model is broken into five major steps. First, the SoS is initiated,

establishing the foundational information of the SoS – key users, objectives, and

systems. After the initiation of the SoS, there exists an ongoing effort to analyze the

SoS. This step evaluates the current state, or baseline, of the SoS and establishes initial

plans for evolution. During this step, a technical baseline, performance measures,

requirements, and planning elements are all established. The SoS architecture is then

developed or evolved. The first time this step is performed, the SoS architecture

is created by developing the systems and functions as well as the relationship and

interactions between them. When evolving the SoS architecture, these elements are

re-defined or expanded. The next step is to plan SoS updates; the SoS is evaluated

11

and a baseline is created. A plan involving risk mitigation and testing is created in

order to facilitate the evolution of the SoS from one state to the next. This plan is then

implemented while SoS engineers (or related team members) facilitate and monitor

the process. This results in a new SoS baseline that feeds into the SoS analysis step

again, repeating the process throughout the SoS lifecycle.

This research follows each of these steps through a MBSE approach in SysML.

Each step is performed with a notional SoS and evaluated. Though the Wave model

was developed for use with an acknowledged SoS, the key elements of each step are

adapted and applied to directed and collaborative SoS demonstration architectures

as well.

2.2 Systems Modeling Language

SysML was created from the Unified Modeling Language (UML), version 2.0, with

the express intent of creating an extendable, visual language with which systems en-

gineers could work. From UML, many objects, relations, and views were adopted,

while other aspects of SysML were created to capture common products during sys-

tems development. Specifically, the requirements and parametric views and all related

elements are new in SysML, providing a systems engineer with methods for analyzing

systems and the requirements that must be fulfilled by them [14].

The Block is the base structural element of SysML. It is commonly used to rep-

resent a system, component, or an aggregation of either element. Blocks are allowed

to have several different properties including: part properties denoting the compo-

sition of a Block, value properties specifying parameters of the block, and reference

properties to elements that are utilized by the Block. Relations between Blocks are

displayed via block definition diagrams (bdd) while the properties of a single block

and their interactions are displayed via internal block diagrams (ibd).

The behavioral aspect of a system or SoS is captured with SysML activity and

action elements. These elements establish the operations that are carried out by

12

Figure 2.2. A breakdown of the various viewpoints within SysML

13

systems and can be related with activity diagrams. Activity diagrams are similar to

Functional Flow Block Diagrams from Systems Engineering [17] and show the process

flow within an activity. This flow can be composed of other activities with their own

internal processes or actions, which are singular processes. Sequence diagrams may

also be used to show logic- or time-based sequences of message exchanges between

system components.

Two other aspects of SysML are discussed: requirements and parametrics. Both

are additions to UML included in SysML to meet SE needs. Requirement elements

and the related requirements diagrams allow practitioners to create requirements and

tie them to model elements for verification and test planning. Analysis can be per-

formed on these requirements to ensure that the systems represented by model ele-

ments adhere to defined constraints and that all requirements defined are met. Para-

metric elements allow for calculations to be performed on system properties, useful

for performance analysis.

For reference, an overview of the SysML elements and diagrams used in this thesis

are summarized in Tables 2.1 and 2.2.

2.3 Previous Work

Currently, SysML is mostly being utilized for Systems Engineering, as it was de-

signed [18]. However, as stated in the Introduction, systems are becoming more com-

plex and network-centric, exhibiting the managerial and operational independence

traits required to categorize them as SoS’s [3]. Efforts to utilize SysML for SoS have

focused on a singular problem or on limited aspects of SysML. Though this thesis

follows a single problem domain (distributed sensor management), that domain is ex-

plored in various ways to ensure that the key aspects of each SoS type are evaluated

for SysML’s applicability.

Lane and Bohn have written about utilizing SysML for SoSE, but keep to a strictly

limited usage of SysML and focus solely on a single acknowledged SoS problem [19].

14

Table 2.1 Key SysML Elements

Table 2.2 Key SysML Diagrams

15

They conclude that SysML cannot meet all of the needs of SoSE but is a useful tool

for organizing and integrating information from across a SoS design space. However,

their use of SysML is limited and restricts its capability. An improvement upon the

methods of Lane and Bohn is to move away from the use of sequence diagrams, which

limit the adaptability of a model to meet a changing system by tightly coupling the

behavioral and structural definition of interactions between systems. This restricted

definition, along with Lane and Bohn’s assertion that SysML cannot dynamically

execute models, result in their conclusion that SysML cannot perform all SoSE tasks.

The research proposed in this thesis expands on many of the methods of Lane and

Bohn. First, a different approach to defining system interactions is proposed, which

allows for more flexibility in definition and application of behaviors among structural

elements (systems and components). Secondly, by utilizing software plugins to extract

information from a model and interpret it, an execution of the model is capable. Other

areas of research that have dealt with SysML and SoS focus on how to perform a single

task within SysML, for example requirements engineering [20] and cost modeling [22].

These two areas are briefly discussed but are not key to the scope of this thesis as

they both function as a parallel and independent query of a SysML model.

16

3. SOS INITIATION & EARLY-PHASE ANALYSIS

The goal of SoS Initiation is to establish the foundational information with which to

begin the SoSE process. Initiation generates the objectives, key users, and systems

of the SoS. This step also provides the scope of the SoS that will be examined in

this thesis – a regional distributed sensor architecture. The other step discussed

in this chapter is the recurring SoS Analysis, which establishes the “as-is” baseline

architecture for the SoS. As SoS Analysis is an ongoing process during each iteration

of the Wave model, this chapter focuses on the early-phase analysis as the SoS is first

defined. A Concept of Operations (CONOPS) is created, keys systems are modeled,

and the structure of the SoS is defined.

To examine the applicability of SysML to SoS, an example problem domain is

examined to explore several facets of SoSE. The problem deals with the management

and operation of multiple distributed sensors by multiple command nodes. Key to

these elements are how the functionality of controlling the sensors is allocated among

the constituent systems and how the systems are networked together to allow for

information exchange while operating independently. This problem domain will be

examined in the context of directed, acknowledged, and collaborative SoS’s.

In each SoS type, individual radar sensors independently operate to detect and

track various targets. The overall goal of each SoS is to generate high-accuracy

tracks on all targets in the field. Radars and their Command & Control (C2) nodes

communicate in order to improve their performance and the overall performance of

the SoS. In the cases of the directed and acknowledged SoS’s, higher level objectives

require the radars and C2 nodes – organized into control groups – to alter their

behavior. In the case of the collaborative SoS, the higher level objective is realized

through rules placed on the interactions of control groups.

17

3.1 SoS Initiation

To initiate the SoS, the problem domain must first be defined. Each SoS example

(directed, acknowledged, and collaborative) incorporates many of the same systems

and activities, but differ in how the systems operate and interact. Specifically, each

SoS example focuses on the interactions between radar sensor platforms – a physical

entity housing one or more radar sensors and the necessary subsystems to operate

them (note: these subsystems are not within the scope of the model). These radars are

capable of independently measuring and tracking targets and interact with Command

& Control (C2) nodes in order to improve the radars’ performance. Each group of

radar platforms managed by a C2 node are organized into control groups. With the

interaction of control groups, the behavior of radar systems may change based on the

higher-level objects of the SoS. Though this is a basic example, it retains the key

features of a SoS and allows for these features to be explored within SysML.

First and foremost, the operational and managerial independence of the systems

are established. Each system is defined with the ability to operate by itself and has

some level of governance over its own actions. Each radar by itself retains the ability

to scan an area and track an object if one is found. However, when it is combined with

other radars and C2 nodes, it gains the added knowledge of the other sensors and can

seek out objects to track, displaying emergent properties. Each group of radar sensors

and their interacting C2 node is defined as a control group. These control groups each

maintain their own managerial independence, though their behavior may be impacted

by high-level objectives. Systems are all geographically distributed, networked, and

may be defined heterogeneously. Finally, the Wave model approach focuses on the

evolutionary nature of this SoS as this feature will be examined in particular for its

relation to SysML in the next chapter. The latter parts of this chapter will focus

on how SysML may be used to capture the definition of these systems and their

interactions.

18

Table 3.1 ROPE-Scope Table for Distributed Sensor Problem

19

Common in the SoS field is the creation of a ROPE-Scope table to outline the

resources, operations, policies, and economics of the SoS at various levels of abstrac-

tion [21]. The ROPE-Scope table for the distributed sensor SoS is shown in Table

3.1. Each level of abstraction builds upon the level below it (e.g., sensors and C2

nodes are aggregated into control groups). The scope of this research will focus on

the α, β, and γ levels of abstraction for simplicity. Furthermore, the resource and

operations aspects of the SoS are the focus of much of the SoS engineering in this

thesis. Policies are discussed briefly due to their relationship to requirements; this dis-

cussion is brief due to the ease of implementing SoS requirements in SysML [20]. The

economics of the architecture definition and integration effort for software-intensive,

net-centric SoS’s are covered in the work on the Constructive SoS Integration Model

(COSOSIMO) [22].

3.2 Resource Definition

Proceeding directly from the ROPE-Scope table (see Table 3.1), the resources used

in each SoS are first defined. In SysML, this type of hierarchical system definition is

done within a block definition diagram (bdd). Various blocks are created for various

systems at different levels of abstraction and relations may be drawn between them

to establish the composition of one level with the ones below it.

Figure 3.1 establishes the hierarchy of systems. As is the case in the ROPE-Scope

table, the SoS architecture is composed of control groups, which have sensors and

C2 nodes. This top level block exists to encapsulate the different systems in order

to allow them to interact. It follows the ROPE-Scope table closely, but deviates in

certain aspects for modeling purposes. For example, communication (comm.) nodes

are established directly below the SoS architecture block; this is due to the fact that

a comm. node can exist and interact at any level in the SoS. Similarly, the targets

to be tracked are created under the SoS architecture block, despite being external

20

Figure 3.1. Block definition diagram showing the baseline hierarchy
of systems within the SoS

21

Figure 3.2. Value properties and default values defined for a Radar Sensor block

Figure 3.3. Example requirement on the avg. transmitted power of a
Radar Sensor block, satisfied by its value property

elements to the SoS. This is done to later allow calculations between the radar sensor

and target blocks.

Blocks can be imbued with various properties to further define their attributes.

For the applications of this research, the value property is most important. Value

properties allow a variable to be defined with a specific numerical value. In this way,

attributes of a system (e.g., location, radar aperture, measure rate, comm throughput)

can be parameterized for analysis.

A single default value can be established for each value property on a block.

However, this default value applies to every instance of the block. To allow for

heterogeneity among systems of the same block type, specific configurations of a

22

block are created via generalization relations between the “general” block and its

“specific” instantiation. Any properties, ports, and relations that the general block

contains are inherited by the specific block. The set of value properties for a radar

sensor block are seen in Figure 3.2 and are later used in calculations for signal-to-noise

ratio on measurements.

For traceability of system requirements, value properties are linked to Requirement

blocks through the satisfies relation. Based on when a model is being created within

the SoS SE process, a set of system requirements may already exist or a set may be

created from the model. If a set already exists, they should be imported to generate a

set of requirement blocks. The imported requirements can then be attached to model

elements via a satisfies relationship in order to later perform requirement analysis

on the current set. If a set does not exist, requirements should be created to satisfy

system and SoS properties. An example requirement and its satisfies relationship are

shown in Figure 3.3. The use of requirements and their analysis capabilities will be

discussed further in Chapters 4 and 5.

3.3 Develop a Concept of Operations

The next major step in analyzing the SoS is to develop a Concept of Operations

(CONOPS). This step defines the details of the operations outlined in the ROPE-

Scope table. This is accomplished in SysML via the use of activities and their respec-

tive diagrams.

A Block Definition Diagram (bdd) of activities is generated to lay out the hierarchy

of operations. This can be seen in Figure 3.4 and details a functional decomposition.

Not all of these cases may be used in every scenario, depending on the configuration

or situation, but they are meant to span the full space of operations. The set defined

in this research only deals with nominal operation and will be used with each SoS

type.

23

Figure 3.4. Functional decomposition developed for CONOPS

24

Figure 3.5. Example activity flow: the allocation and flow of key activities

The hierarchical decomposition of activities shows that the overall function of the

SoS is the regional command of assets. This top-level activity includes tasking sensors,

generating tracks, fusing tracks, and coordinating information throughout the various

systems. In order to task a sensor, an operational mode must be selected and look

directions must be determined. Tracks are generated by generating measurements

and fusing them into tracks.

At this point, a certain flow of activities can be seen as necessary. Measurements

have to be generated first and fused together to make tracks. Tracks can be fused

together to inform sensor tasking and much of this information can be coordinated

between sensors and/or command & control nodes. How this activity flow occurs and

how the activities are allocated to systems are defined through Activity Diagrams.

Figure 3.5 shows the activity diagram for the top-level sensor management activ-

ity. Within this diagram, the flow of activities within the scenario is established as

previously described. The directed, dashed lines between activities are control flow

connections and convey the procession of activities.

25

Figure 3.6. Example activity flow: actions required for a radar sensor
to take a measurement

In SysML there exists a methodology for allocation of elements to one another via

a stereotyped dependency relationship. Therefore, in order to allocate capabilities to

systems, an allocation relationship is established between activities and the systems

performing those relationships. This relationship is also created with the use of

allocation swimlanes, visible in Figure 3.5, where the activities within the swimlane

of each block are allocated to that block.

How these activities are allocated to the various system blocks is a key factor in

determining the type of SoS being modeled. High functionality for low-level resources

is more likely to result in a collaborative or virtual SoS, with little to no centralized

control over systems. On the other hand, allocating more functionality at a high-level

system yields a more centralized, directed SoS. Section 3.4 discusses the different

functional allocations and configurations for each SoS type.

Along with control flows, object flows (solid directed lines) show the flow of infor-

mation through activities. The Radar Measurement activity, whose activity diagram

is seen in Figure 3.6, dictates that a radar will start the measurement activity by

sending out a pulse in a specific look direction. To complete this action, it receives

26

a Look Direction object – an abstraction of the information that signals the radar

to point in a specific direction. Such an abstraction can be further defined by spe-

cializing or defining its composition (both are relations in SysML). After receiving

signals, a radar signature is generated and then analyzed to create measurements. An

activity is analogous to a function block within a set of code; it has a self-contained

definition with inputs and outputs to allow it to string together with other activities.

3.4 Application to SoS Types

Having defined the basic structural and functional building blocks, it is possible

to create specific SoS architectures. Different configurations of the base architecture

are generated for each of the three SoS types used in this research: directed, ac-

knowledged, and collaborative. The resources and operations defined earlier in this

chapter are assembled and characterized for each SoS type differently to emphasize

the properties of that SoS.

In order to allow the properties and behavior of each block to be individually des-

ignated, allowing for variants on each of the systems defined, “redefinition properties”

are utilized. A redefinition property allows for a property of a block to override an in-

herited property (required due to SysML’s strict definition of inheritance). Due to the

loose definition of the base architecture (non-specific multiplicities and an all-inclusive

block hierarchy), part properties are redefined to designate the exact configuration of

systems involved in a specific SoS. Value properties are redefined in order to set the

default value of a property within a configuration. To make the views in this section

more readable, the redefinition context (a tag containing the name of the redefined

property) is hidden; all relations will look the same as standard relations.

3.4.1 Directed SoS

For the directed SoS, two control groups are specified, each with two single-sensor

radar platforms and a C2 node. One control group is built upon radar sensors built for

27

Figure 3.7. Hierarchy of resources for the directed SoS architecture

searching and detection while the other focuses on tracking detected targets. Because

the directed SoS type specifies a central managing entity that can directly influence

systems, an addition system is included to represent this high-level command. These

resources are first uniquely defined and then related to the operations allocated to

them.

To establish the hierarchy of systems for each SoS type, unique blocks are devel-

oped for each architecture. By creating these blocks separately for control groups,

sensor groups, C2 nodes, and different sensor types, activities may be allocated in-

dependently to each block (i.e., not all C2 nodes are forced to operate identically).

These unique blocks each inherit from their pre-defined block types to allow common

properties, ports, and requirements to apply. This inheritance is done through the

use of the generalization relationship between the two blocks. Figure 3.7 shows the

newly defined block definitions for the directed SoS.

28

Figure 3.8. Sensor management for the directed SoS

The high-level command block is created directly under the top-level SoS block

to give it the ability to interact at the top-most level with other systems. Despite the

fact that all systems in this SoS are managed by a centralized manager, this block

is not the aggregate of the systems below it and thus exists separately – not at the

top of the tree. The high-level command is an entity within the abstract centralized

management that is responsible for ensuring that SoS objectives are met.

The allocation of activities for the directed SoS relies on the control being at

a higher, more centralized levels. This is shown through Figure 3.8, showing the

allocation of key activities. Sensors provide raw measurements to C2 nodes, which

fuse that data to generate tracks and, if applicable, fuse those tracks. C2 nodes

still provide tasking to their sensors, but the coordination of information between C2

nodes is applied to the high-level command. Likewise, the high-level command is able

to task the C2 nodes to influence their sensor tasking.

29

3.4.2 Acknowledged SoS

The acknowledged SoS architecture does not feature a centralized commanding

node and therefore the high-level command block is no longer included. In this SoS,

control groups manage themselves and interact to meet high-level objectives. Similar

to the directed SoS, two control groups are specified, one focusing on search and

detection and the other focused on tracking.

The hierarchy of systems, shown in Figure 3.9, is distinguished by the absence

of the high-level command block. Furthermore, the allocation of activities in this

SoS is identical to that presented earlier in this chapter (see Figure 3.5). Sensors

are responsible for their own measurement fusion while C2 nodes fuse tracks, share

information to other control groups, and provide tasking for sensors – outside of the

sensors’ capabilities to search and/or track on their own. The key difference in the

architectures relies on the direct exchange of information between systems as opposed

to relying on a centralized commanding node to gather data and analyze it.

3.4.3 Collaborative SoS

The collaborative SoS architecture is distinguished by the voluntary collaboration

of systems; thus, each radar is grouped with its own C2 node. These control groups

interact through a communication node that acts as the key relay of information

between groups.

Because of the nature of collaborative SoSs being indirectly managed, the col-

laborative SoS model places less of an emphasis on the radar system operations and

more emphasis on their interactions – namely what information is shared between

systems. The goal of modeling a collaborative SoS is to analyze and establish the

rules of interaction between systems, so the focus shifts from the radar systems to

C2 nodes and communication nodes that manage their interactions. Each radar is

capable of its own tasking and measurement and track generation. C2 nodes are

then responsible for coordinating information and fusing tracks from the data they

30

Figure 3.9. Hierarchy of resources for the acknowledged SoS architecture

31

Figure 3.10. Hierarchy of resources for the collaborative SoS architecture

32

Figure 3.11. Allocation of activities to the communication node

receive. The communication node receives the added capability of deciding to and

from which systems information is routed, enacting rules on the interactions between

control groups. This could represent either a third-party control of information flow

or logic internal to the routing processes of the communication node.

In this architecture, the communication node has the added task of determining

what information to share among the control groups and which control groups to

will receive information from the others. To show this, new activities are created

for communication routing and adding or blocking control groups. These activities

function based on rules set on how systems must interact (described in more detail

in Chapter 5).

3.5 Evaluation

3.5.1 How does SysML define systems and their features within a SoS?

SysML allows for the creation of block elements to represent systems, their com-

ponents, and the top-level SoS. These are hierarchically related through a series of

composition relations. This process allows for the ability to define any number of levels

of abstraction. A strength of SysML is its ability to capture systems and components

at different levels, provide detail at those levels, and be able to view the system at

those levels. Furthermore, these levels of abstraction can be easily extended upwards

33

or downwards; detail can be provided to existing elements and higher level elements

can be defined above those without requiring any change to the existing model. Being

able to specify these differing levels of abstraction in a related, consistent fashion is

key to SoS engineering due to the varying levels of scope.

By defining a baseline set of structural and operational elements, the common

features of a SoS can be defined and inherited by different architectures with ease.

However, to allow for heterogeneity between systems, it is useful to create unique

blocks for each system and have them inherit properties from the baseline set of

structural elements. The operational elements can then be allocated to these unique

blocks independently. This adds another step in the initial definition of any SoS

type and adds complexity to the model. However, once in place and used correctly –

applying like features to the inherited block and unique features to the unique block

– this process allows for much more flexibility in modeling different systems.

For each SoS type, the process of defining the systems and their features in SysML

remains the same. The definition of systems, independently, is what SysML is de-

signed for, and the processes developed for SE can be applied to this step in the SoS

process. System definition is an aspect that shows a true strength of SysM; the process

does not take a long time, accomplishes the task of establishing the base properties of

a system, and initializes the model for more detailed analysis. This system definition

capability is expanded upon through this research to incorporate the systems into a

SoS. Basic requirements analysis can be done on each system independently; interface

requirements will be discussed in Chapter 4.

Beyond defining the properties of a system within SysML, there exist plug-ins

(to MagicDraw, the SysML tool used in this research) to link model elements to

external software/documents that can provide more detailed information. Popular

applications of these plug-ins include connecting blocks representing mechanical fea-

tures to CAD parts [11] or supplying detailed orbital trajectory information through

STK [10]. Furthermore, references documents, such as requirements documents, can

be hyperlinked to provide further information. It is not the role of SysML to replace

34

any of these tools/documents entirely but to be used as a tool to incorporate them

into the SE or SoSE process. To use CAD as an example, instead of exporting several

part drawings into a system design document, the model-centric parallel is to link

each block to its CAD model directly.

3.5.2 How does SysML define the operations and allocate them to the

systems of a SoS?

The operational aspect of SysML is succinct, drawing direct inspiration from sim-

ilar flowcharts that have been used in SE. A high-level CONOPS is created via an

activity hierarchy, displaying a basic functional decomposition. By further defining

each activity with an activity diagram, a highly detailed operational concept can be

built within SysML for the SoS.

The allocation of these activities to different systems is easily done with the use

of allocation lanes on activity diagrams or directly with the allocation relationship

between an activity and a block or its ports. This allocation is independent of level of

abstraction, allowing any combination of activities and blocks. The independence of

the allocation relationship allows for vastly different levels of centralization in different

SoS models drawing off the same hierarchy of activities; a feature that is useful in

capturing different SoS types.

The method for defining and allocating activities remains the same for each SoS

type. This is a standard SE process that transfers perfectly to SoSE due to its orthog-

onality. The difficulty in creating these views lies more in determining what activities

must be defined than in creating them in a model. Without SysML, activity views

with or without swimlanes would be created using a different graphical tool; however,

SysML allows these graphical elements to be linked to other objects, maintaining

a singe source of truth in the model. Though defining and allocating operations

may take the same time with or without SysML, SysML allows these activities to be

35

Table 3.2 Overview of SoS Initiation & Analysis tasks in SysML

used and analyzed by other parts of the model, a benefit that would not exist in a

document-centric format.

36

4. SOS ARCHITECTURE DEVELOPMENT AND

EVOLUTION

The next step in the Wave model is SoS Architecture Development and Evolution.

The focus of this chapter is on creating the framework for addressing how systems

interact within a configuration and later evolving these configurations. Networks

are created to model system interactions while a focus is placed on allowing these

networks to be re-configurable to allow for SoS evolution. Major tasks to be addressed

are establishing how the systems interact, creating the networks required for those

interactions, and formulating methods for altering the SoS model to demonstrate

evolution.

4.1 System Interactions and Networks

An architecture is defined beyond its composition by establishing how its con-

stituent systems interact. Two different network sets are defined, following a cyber-

physical approach: the logical network and the physical network [23]. The cyberphys-

ical approach is an abstraction of protocol layers used in networking, which show the

various layers that control the conveyance of information over a network – a multitude

of layers is not necessary to demonstrate the applicability of the modeling patterns

used in this research. The logical network describes the exchange of information

between systems – what information is transferred between systems. The physical

network shows the connectivity of systems – over which physical paths the systems

communicate. For example, where a logical network connection may specify that a

radar platform sends data to the C2 node in its control group, the related physical

network connection would show a RF link between the two. The combination of these

two links show that the radar sends data over a RF connection to the C2 node, where

37

both the action and the medium may have differing properties (e.g., data rate vs

bandwidth).

Keeping these two networks separate allows for changes to either network without

necessarily disrupting the other. For example, if the RF link in the previous example

were replaced with a hardline connection (e.g., fiber-optic cable), the logical network

would require no changes. This is in contrast to the SysML practice of using item

flows to denote the information flow over a physical connection. In the case of using

item flows, the physical network and logical network become directly coupled; any

change to one necessitates a change to the other within the model. Though this may

not be much of a hassle for a single connection, large-scale physical network changes

may be common in certain SoS’s –cellular data flowing through the Internet being

a prime example where wifi or cellular towers may function as a medium while the

functional connection remains constant.

These networks are created in SysML through the use of internal block diagrams

or ibds. Each ibd is created in the context of the a single SysML block, allowing

the use of all owned and inherited blocks and their properties that exist within the

composition hierarchy below the context. Blocks are established with ports that detail

the information that can flow in or out of the system or the physical connections that

the system can support. Flowports may be uni- or bi-directional.

Figure 4.1 and 4.2 show the logical and physical network diagrams for the acknowl-

edged SoS architecture. From the logical diagram, we can see that the C2 nodes in

either control group send commands and receive data from each sensor in their group.

The C2 nodes then send and receive data from each other. Based on the functional

allocation and the definition of these lines, the data sent between the sensors and

their C2 nodes is track information (data outlining the physical properties of a target

being tracked by that sensor). The C2 nodes can communicate these fused tracks

to each other to allow for better command and control of their constituent sensors.

The physical network diagram shows that all of this communication occurs via RF

through a singular communications node.

38

Figure 4.1. Logical network diagram for the acknowledged SoS architecture

39

Figure 4.2. Physical network diagram for the acknowledged SoS architecture

40

Figure 4.3. Relation between activity diagrams and logical ports

41

By connecting the elements from activity diagrams developed in the last chapter

to the ports of systems, as shown in Figure 4.3, a relation is established between

the operations a system is performing and how the data from that operation is used

(i.e., where that information flows). This relation between elements from different

viewpoints provides more information about the system(s) and creates a traceable

path in the model that can be queried by scripts for simulation and analysis.

4.2 Port Definition

In establishing the network architecture in the previous section, a number of ports

are created. Each connection between blocks in both logical and physical diagrams

utilizes a SysML element known as a flowport. Flowports allow types to be set to

them, letting a SoS engineer denote what logically flows over the port or what type

of physical connections it supports. Port typing is used to provide further context

to the port or to show commonality among several similarly-typed ports, yet this

research emphasizes another purpose for them. By typing all flowports with flow

specification blocks, value properties may be applied. These value properties allow

for parameterized specification and analysis the same way they do for system blocks.

For the purposes of this research, ports are divided into two categories: physical

ports and logical ports, to be used for their respectively cyberphysical views. Physical

ports inherit value properties relating to the physical limitations of that port, such

what types of data can flow in/out, data rates, etc. Logical ports then express

the nature of the system and its capabilities (further shown by their connection to

activities), inheriting values of how much data should be produced and at what rate.

A system or its allocated function may denote a certain data production rate, but

that rate will only be analyzed if it is allocated over a connected logical port and its

associated physical port.

42

Figure 4.4. Requirement specifying the output of measurement data
by a radar platform

4.3 Requirements on Ports

As mentioned briefly in Chapter 3, generating requirements or importing previ-

ously created requirements (from past SE efforts) allows for validation and standard-

ization of system components. Using requirements for system properties was discussed

as a SE task, but including requirements on ports broadens the requirement engineer-

ing scope to how systems interact. Interface requirements specify what information

a system is intended to communicate, where the information is sent, and how much

information should flow. To meet these needs, requirements should be connected

through a satisfies relationship to port properties as well as system properties.

As was established in the last section, logical ports designate what type of infor-

mation should be sent from a system. Connecting these ports to other system ports

designates where that information will flow. Thus, a requirement on a logical flowport

should designate what type of information is sent from that port. Such a requirement

may be written as, “Radar X shall send measurement data” and is attached to the

“Radar-data-out” port. Any connections from that port will satisfy where the data

is intended to go. In the case of the Baseline architecture, this requirement is written

as “Radar X provides measurement data to C2 Node Y”. Furthermore, “C2 Node Y”

should have a requirement on its port denoting that it receives measurement data.

Ensuring that requirements are established on both ends of a connection is referred

to as requirement gap analysis and is discussed more in Chapter 5.

43

For physical ports, requirements specify what necessary physical connections a

system needs to support. Requirements on a radar may say that it is capable of

sending data over a RF connection at a speed of 200 kb/s (this is used as a default

value). If the language of a requirement is formalized well enough, a user script can

ensure that the model elements are matching the requirements attached to them and

raise a flag any time a requirement is validated. However, this is not an inherent

feature in SysML due to the fact that requirements may be written differently for

separate projects. A validation script exists for the models shown in this thesis

to automatically synchronize numerical information in requirements with the value

properties of their connected elements (ports and systems properties).

4.4 Integration of System Models

As the goal of MBSE is to provide a single source of truth for information on a

system, the scope of a SoS model focuses on the high-level properties and interactions

of systems; lower levels are already established through standard SysML SE practices.

A benefit of modeling is its capability to examine various levels of abstraction. Thus,

it is a useful capability for SoS modeling to integrate a more detailed system model

into a SoS model. A radar system model was created separate from any of the SoS

models and then integrated into the Acknowledged model in order to test the ability

for the SoS model to utilize the system model. The model is not meant to be a

complete description of the radar system, but instead just to capture some of the key

facets that may be modeled in order to best simulate the importing of such a model

into a higher-level SoS model. Though factors of the integration of a system model

into a SoS model is tool-based, this thesis will focus on the abilities of SysML as a

language to integrate the two.

The independent radar model defines the components of the radar system in depth

by including the communication antenna, sensor array, CPU, and power supply. A

structural decomposition of these elements is shown in Figure 4.5 on a bdd. The

44

Figure 4.5. Structural decomposition of the independent radar model.

45

Figure 4.6. Use case diagram showing three key use cases: search,
track, and discriminate.

sensor array is then decomposed into the individual transmit/receive (T/R) modules.

The multiplicity on this relationship specifies how many T/R modules there are – with

2,560 being the estimated number of modules used in the UEWR radar system [24]

Each component has value properties to further define it. Common radar sensor

properties are found on the T/R module block – area and average power – or the

sensor array block, which contains aggregate properties for the entire array. Other

basic properties of components are shown on the blocks to simulate what a system

model may contain (e.g., component power usage and supply output may be used in

system power management activities).

The model also contains a use case diagram to capture activity sets used by

the radar. This is shown in Figure 4.6, with the radar being capable of searching

for, tracking, and discriminating targets. Each of these use cases maps to a related

activity, shown in Figure 4.7. These activities are similar to the ones created for the

SoS models but are purposefully defined differently. Without significant oversight

or pattern definition from the integrating entity (i.e., the SoS modeling group), it is

common that an independent system model will define things differently; thus, it is

important to test what occurs when such differences are merged into the SoS model.

Once the system model is fully defined, it can be merged into the SoS model. There

are various ways of moving the data from one model to another (project merging,

importing the data as a module, copy/pasting, etc.) that accomplish the exact same

46

Figure 4.7. Activity flows for key operational modes: search, track,
and discriminate

47

Figure 4.8. New radar model (ExperimentalRadar) integrated into
the Acknowledged SoS.

task. Though these may be tool-dependent in their execution, the key element is the

ability to transport the data from the system model into the same environment as

the SoS model (this is an assumed tool capability). For the purposed of this test, a

copy and paste of all model elements from the radar model to the acknowledged SoS

model suffices.

At this point, the system model data is included in the model and remains inde-

pendent of all other model objects. The process of incorporating it is similar to the

process used to create the SoS model. First, the independent radar model must be

added into the structural hierarchy of the SoS by removing and replacing (or refac-

toring if the tool allows) a previously existing radar platform block. The resulting

48

Figure 4.9. Acknowledged SoS logical network with a radar platform
replaced with an experimental radar system.

hierarchy is shown in Figure 4.8. This is only done for a single radar platform for

simplicity and could be done for any number of radar platforms by repeating the

process. However, more steps are necessary to meet the definition of the baseline

architecture.

Earlier, the generalization relationship was used to create properties on several

blocks without having to define them separately. This same process must be used

with the imported radar system and can also be used to ensure that the new block

has important properties used in other parts of the model. It is important to note

that inheritance of attributes within SysML creates new properties/ports for the

block and does not overwrite any existing properties/ports, even those with the same

names (part properties do not create global naming conflicts). For this example,

the new ExperimentalRadar block inherits from the RadarPlatform block in order

to automatically create properties associated with radars and the ports needed to

network with other systems. Furthermore, the SensorArray component inherits sensor

properties from the RadarSensor block.

49

The new radar must then be incorporated into the logical and physical networks

(refactoring in some tools may keep these relations intact). For this example, it will

be connected in the same manner as the radar platform that it replaced, though a

new system may require/provide different interactions. Since the new radar did not

specify any ports, new ports must be defined and typed or inherited for the system.

The radar is then included in the network in the same way as the previous radar

platforms. For reference, the resulting logical network is shown in Figure 4.9.

Since the system block uses its own set of activities, these can remain intact. The

activities may be added to the activity hierarchy if desired, but it is not entirely

necessary to define the operations. Relations between the activities and the newly

defined ports should be created. Any requirements that exist on the radar system may

be integrated into requirement lists for the entire system or kept separate depending

on the needs of the SoS engineer and the organizational structure of the model.

Changes to analyses and related diagrams are discussed in Chapter 5.

4.5 Networking with Different SoS Types

4.5.1 Directed SoS

The Directed SoS is logically networked so that all sensors pass data to the C2 node

in their control group. The C2 node responds by sending commands to these sensors.

Coordination between control groups is managed by the high-level command system,

which receives data from the C2 nodes of each control group and sends commands

to these C2 nodes. This network topology befits a directed SoS due to the fact that

each control group remains independent in their operations and management; yet,

there is still the possibility of a central management structure directly influencing the

operations of either control group. These features can be seen in Figure 4.10.

The physical network for the Directed SoS, shown in Figure 4.11, routes all com-

munications between a communication node. This is not intended to be an optimal

50

Figure 4.10. Directed SoS logical network

51

Figure 4.11. Directed SoS physical network

52

configuration of the network, but just an arbitrary configuration to show the net-

working capabilities within SysML.

4.5.2 Acknowledged SoS

The Acknowledged SoS networks are presented in this chapter in Figures 4.1 and

4.2. The only difference between these networks from the Directed SoS networks

is the absence of the high-level command block. This also means that C2 nodes

do not receive commands from any other systems, the coordination between control

groups is now in the form of data shared between the groups. The implications of

this simple change are vast; C2 nodes now are responsible for interpreting an entirely

separate data set, the incoming stream of information from another control group.

In a real-world scenario, this information may have differing levels of certainty on its

accuracy based on stochastic variations on measurements, cyber-security concerns, or

network delays. The intricacies of these changes are not the aim of this thesis, only

the representation of such changes within SysML.

4.5.3 Collaborative SoS

The Collaborative SoS continues many of the network features from the other SoS

types. However, the structural change of having four control groups, each with a single

radar and C2 node, results in some aesthetic changes to the network. The interactions

between each radar platform and its C2 node remains the same: the radar sends data

to and receives commands from the C2 node. The logical interactions between C2

nodes remains the same as it was in the Acknowledged SoS; each C2 node sends data

to the other C2 nodes. Figure 4.12 presents the logical network for this SoS type.

The primary changes occur in what restrictions are placed on the physical network

in order to create a competitive environment.

The physical network for the Collaborative network features two departures from

the other physical networks. First, to simulate higher complexity in the radar sys-

53

Figure 4.12. Collaborative SoS logical network

54

Figure 4.13. Collaborative SoS physical network

55

tems in this SoS, the C2 nodes are collocated with and hardwired to a single radar

system. This is one method of showing the control functionality existing on the same

system. Another method of showing this would be to remove the C2 node entirely

and allocate its activities to the radar platform. This option is not done because it

implies large changes to the underlying structure of the base radar system, namely in

the computational strength of the system. Such a change to the system would require

a different set of properties, a redefined set of subsystems (e.g. CPU, avionics), and

possibly different port properties to convey increased data rates.

The other primary difference in this physical network are the requirements levied

on the ports of the comm. node. In order to best capture the features of a collabo-

rative SoS, focus is placed on the interface rules between the systems. This is due to

the fact that directly influencing the systems in this type of SoS may not be possible.

Furthermore, to simulate the voluntary inclusion of systems in the SoS, the rules gov-

erning the flowports, featured as requirements in the model, specify what a system

(in this situation a single control group) must do to share data with other control

groups. One requirement is placed on the RF-in port that specifies a lower limit data

rate of transfer that must exist for a system to be “included” in the SoS – to be on

the list of systems that receive data. Another requirement is placed on the RF-out

port that states that a system must be “included” in order to be sent data. These

two requirements combine to turn the comm. node into a filter of sorts, only allowing

data to flow between systems that contribute data. This scenario enforces both the

voluntary inclusion and interface control aspects that distinguish a collaborative SoS.

All of these requirements are incorporated into simulations and analyses run on the

model.

56

4.6 Conclusions

4.6.1 How are alternative configurations, system sets, networks evaluated

in SysML within the SoS scope?

SysML can evaluate alternative configurations easily because of its extensible na-

ture (i.e., less and more stringent interactions between elements can be defined by the

user within the language). However, when dealing with SoS’s, specific precautions

must be considered to create a model that can be adapted, rather than recreated,

every time something changes. As discussed previously, there are precautions to be

taken when allocating functions to system blocks.

There must also be caution when defining the interactions between systems, which

are prone to changing as the SoS evolves: new systems come on/off-line, systems

change their operations, different data is required in different places. To allow for

this adaptability within the model, two major steps are taken. Physical and logical

views are kept independent of each other to allow for the types of interactions be-

tween systems and within what medium those interactions occur to change without

disrupting each the other. Secondly, flowports are established with flow specification

types to allow for both categorization and specification.

A key to allowing for the adaptability to the model to changes in architecture defin-

ing is to develop internal methods for recognizing and accounting for these changes.

Here the use of specific modeling patterns comes into play. Though a pattern has

been used for this thesis to broadly capture the ability to model a SoS, SysML allows

for the definition of unique relations, allowing an infinitude of patterns to be defined.

Some real-world applications may use a more stringent pattern to meet their specific

needs, and for such a case, a process for evolving such patterns is a necessity.

57

4.6.2 How does SysML allow for SoS evolution?

To examine evolution of a SoS in SysML, each intermediate state of the SoS must

be examined separately. To do this, the model is set up in a way that allows for

different configurations of systems to be built easily. Any evolution internal to an

α-level system is executed by a change to its value properties – the parameterized

values that define the systems quantifiable properties – or part properties if the system

is defined further within the model via internal elements. Higher-level systems are

evolved by evolving their constituent systems and those system interactions. In order

to change system interactions, two groups of model elements may be adjusted without

altering the system: the system ports that define their interaction capabilities and

the connections between said ports. Finally, functional changes between SoS states

are executed by rewriting activities and their flows or adjusting how those functions

are allocated. These provide a description of how a SoS may evolve while maintaining

the same composition of systems, but this does not cover the addition or removal of

systems.

New systems that are already modeled can be included by adding another com-

position relationship to the top-level domain block. For example, the changes from

the Acknowledged to the Collaborative architecture sees the addition of two more

control groups, each with a C2 node. This addition is done easily due to how the

system blocks are established. The only reworking of the model required is to include

the systems within both the physical and logical networks. To remove systems, only

the composition relationship must be removed. Addition or removal of new types of

systems require similar changes to be reflected in the base SoS definition, while any

other changes should maintain the same redefinition pattern of the base SoS elements.

Of the different ways to evolve a SoS – changing system properties, system in-

teractions and/or functions, and adding/removing systems – some are more easily

applied in SysML than others. As stated before, changes to system properties can

be evaluated quickly and easily by using generalizations and altering value proper-

58

Table 4.1 Overview of SoS Architecture Evolution tasks in SysML

ties. Changes to the system interactions (i.e., re-networking) require some work in

restructuring the connections between systems. This is either done as a change under

an existing domain block (permanently changing the model) or under a new domain

block for side-by-side comparison, which can be easily copied (in most, if not all,

tools). Similar changes are required to add or remove systems. The only evolu-

tionary behavior that requires a permanent change to the model are changes to the

allocation of functions. Any changes system behavior or new systems must reallocate

these functions with the same method as they were initially allocated.

59

5. SOS PLANNING FOR UPDATES &

IMPLEMENTATION

The goal of this chapter is to plan for SoS updates and implement those plans. In

order to create a plan for updates, a thorough review of the current and possible

future architectures must be conducted. This is where the latter half of the SoS

analysis step in the Wave model occurs. Much of the focus of this chapter will be

on presenting the analysis methods that are available within the SoS model and how

those may be used to plan and implement updates to the SoS. Emphasis will be

placed on the analysis of systems, interfaces, and the SoS as a whole. A discussion of

how well SysML addresses the analysis needs of the SoS follows.

5.1 System Analysis

System analysis can be performed through the use of parametric diagrams. As

indicated by the name, parametric diagrams use the parameters of constituent systems

as inputs to a set of equations, defined by the model. For the distributed sensor

model used throughout this research, determining the signal-to-noise ratio that a

radar sensor experiences during a measurement on an target is important. Signal-

to-noise ratio is a basic measure of how clearly a radar perceives its target. The

signal-to-noise ratio (SNR) between a sensor and a target can be found by solving

the radar range equation:

SNR =
Pt ∗ n ∗ τp ∗G

2

T ∗ λ2 ∗ σ

(4π)3 ∗ k ∗ To ∗ Fn ∗ Ls ∗R4
(5.1)

Equation 5.1 utilizes several properties of the radar sensor, including average

power transferred PT , number of pulses integrated n, pulse width τp, transmitted

gain GT , wavelength λ, receiver noise Fn, system loss Ls, and operating temperature

60

To. k is Boltzmann’s constant [25]. The target is represented by its cross sectional

area perpendicular to the sensor σ and its range from the sensor R. SNR allows for

the derivation of variances on the estimated position of the target and the probability

that the target is detected by the radar given a set probability of a false positive.

These performance values are determined by the following equations:

σθ =

q

4

πG

1.4
√
2n ∗ SNR

(5.2)

σR =
c∗τp
2

1.81
√
2n ∗ SNR

(5.3)

Additional variables used in Equations 5.2 – 5.3 are angular and range standard

deviations, σθ and σR, and the speed of light, c [25].

To perform these calculations within the model, each of the sensor and target

properties must be established as value properties on their system blocks. Once this

is done, a parametric diagram can be created to carry out the calculation. The Para-

Magic plugin for MagicDraw includes a solver for any parametric diagrams. However,

performing large calculations within parametric diagrams can become tedious. For-

tunately, MagicDraw and ParaMagic (as well as other SysML tools) have the ability

to feed model values into MATLAB and other scripting languages to be used as an

external evaluation device. Parametric diagrams may be used to pass values into

these scripts or the scripts themselves can extract values from the model depending

on the tool (both are available via MagicDraw as it defines an API for writing scripts

in multiple languages).

Because up to two sensors are used in a single sensor group, the parametric dia-

gram seen in Figure 5.1 calculates both SNR values for a single target at the same

time. Once this diagram is established it can be applied to any sensor group. For

simplicity, the plots generated for the entire trajectory of the target are created in the

same MATLAB code that calculates SNR. The model feeds these values in, so that if

any values are changed within the model, the changes will be reflected in the MAT-

61

Figure 5.1. Parametric diagram showing the calculation of SNR for
two sensors on a single target

62

Figure 5.2. Signal-to-noise ratio and other derived performance values
for a single radar and a single target

LAB outputs. Because there are two targets being simultaneously investigated for

SNR values, two separate SNR value properties must be created, each set to display

information about one target.

To test the performance analysis capabilities of the MATLAB script and its in-

tegration into SysML, an target is placed 100 km north of a radar sensor. The

sensor is set with parameters similar to that of an Upgraded Early Warning Radar

(UEWR) [24]:

63

Power transmitted 67 dB

pulses 3

Pulse length 5.1E-6 s

Gain 48 dB

Wavelength 0.091 m

Operating temp. 290 K

Receiver noise 4.25 dB

Signal loss 9 dB

The cylindrical target is set with a randomized ballistic trajectory away from the

sensor and a starting velocity of 1000 m/s. Drag is not accounted for, as the purpose

of this research is not to develop a physically accurate trajectory simulation. The

results of simulating this for 100 seconds is shown in Figure 5.2. As is expected, the

SNR drops as the target is launched away from the sensor. This in turn causes the

standard deviations in both angular and range dimensions to increase. Finally, the

probability of detection drops slightly throughout the simulation.

This same simulation is performed for each sensor (of 6) and each target (of 2). The

SNR values for the entire simulation are averaged and reported back into SysML to

be used in aggregate performance analysis. Furthermore, by passing these values back

into the model, they can be used in comparisons against other model architectures at

a later point while maintaining the single source of truth that is desired throughout

this process. Though it is possible to manipulate arrays within ParaMagic, it remains

much easier to do those calculations within MATLAB.

5.2 Interface Analysis

Having demonstrated the ability to analyze the systems themselves, the next step

in analyzing the SoS is to examine the interactions between systems. As mentioned

in Chapter 4, the ports used in this research are specifically typed to allow for prop-

erties to be assigned to them. Physical ports are provided with maximum allowable

64

bandwidth and excess bandwidth value properties, and outgoing logical ports have

a data rate value property. Using parametric diagrams, the amount of data flowing

through each commline is calculated and each utilized physical port can solve for its

excess bandwidth.

Bandwidth calculations are created entirely in SysML without the utilization of

external software (e.g., MATLAB), as inherent solving tools in MagicDraw allow for

acausal solutions to problems. Therefore, it does not matter which variables within

the calculations for bandwidth are found, as long as a solution can be determined (i.e.,

the resultant equations are solvable). Despite the simple nature of the calculations,

it is important to take note of the methodology behind creating these parametrics.

This same approach can be used to solve for the summation of data transfers in a

system or to determine the maximum available data transfer over a line if others are

already determined.

All information required for bandwidth calculations is gathered from the flowports

of the utilized blocks. Each port that utilizes a physical connection is set to inherit

properties from a single interface block. This allows for any value properties of that

interface block to be applied to all inheriting blocks (via a generalization relationship).

Such properties may be the bandwidth of the connection, the maximum number of

connections allowable through the port, or any matter of quantifiable property. For

the calculations used in this research, only the bandwidth of the port is required.

Similarly, flowports that are used for logical connections inherit values pertaining

to the information that flows through that port, which may be specified by the flow

specification or the activities allocated to the port. These values may describe the

maximum amount of data sent over a port, the rate of data that flows over that port,

or other quantifiable properties pertaining to data flows. For the sake of simplicity,

this research focuses solely on the data rate of all logical ports.

Having all ports established with properties, the bandwidth calculations are set

to combine all data going over a single port and analyze how much excess bandwidth

that port still holds. Though these are moderately simple calculations and could be

65

accomplished with an adjacency matrix, SysML provides the ability to pull informa-

tion from various places in order to perform these calculations and also allows for

acausal solving. If a low-level system or component has a design change that sees

its data production increase or its bandwidth limitations decrease, these changes will

instantly propagate throughout all other calculations in the model. This single point

of truth capability can be crucial in avoiding errors in system design as it immediately

shows the effect of the design on the entire SoS.

Via scripts it is capable to take the result of this analysis and apply visual changes

to the existing diagrams. For example, a script is written to color code the connections

between various blocks based on their bandwidth capability and usage This script

examines the excess values from each port and colors a connection green if it has

excess bandwidth, yellow if it is perfectly saturated, or red if the desired data rate over

the line is greater than the allowable bandwidth. This coloration is also performed on

ports, due to the fact that a single port (e.g., the communication node’s RF out port)

may service a number of different physical connections. The visual aspects of a model

are easily altered by its inherent values because the two are so closely intertwined.

Figure 5.3 demonstrates this effect in process. Here, the communication node in

the baseline architecture established with a high bandwidth on its RF-in port, but a

low bandwidth on its RF-out port. All ports on the radar platforms and C2 nodes

are producing and receiving data under their maximum bandwidth on those ports.

However, the RF-out port on the comm. node is in violation – producing more data

than it can send. It is colored red along with all connections to that port.

This visual representation is useful in quickly conveying the validity of a specific

network design. If the design space is open to a number of ideas, and the rest of the

model exists already, a SoS engineer may wire together various network options for

analysis. Each can be tested quickly and glanced at to determine where the network

structure is valid for the information needs of the systems. Similar trades can be

examined in the logical network structure as well, to see if placing functionality at a

different level may alleviate network issues.

66

Figure 5.3. Physical network diagram displaying the state of each
physical connection

67

5.3 Requirements Analysis

As has been previously discussed, the use of requirements provides a list of the

key features that must be fulfilled when developing a system. These requirements are

satisfied through elements in the model – focusing on system properties, flowports,

and the connections between them. Requirements provide systems engineers with a

checklist with which to ensure a system is engineered as intended. Requirements anal-

ysis in SysML functions as both a check to ensure the model is accurately portraying

the system or SoS and that the requirements between systems are coordinated. This

is important when dealing with a SoS, where systems are often developed under differ-

ing management structures and possibly with little coordination between interacting

systems’ teams.

As mentioned in Chapter 3, systems requirements are satisfied by the properties of

system blocks in the model. A validation script can ensure that these stay coordinated

with any changes in system updates (assuming that a system requirement may change

outside of the SoSE process). Any changes in these requirements must be updated and

accounted for within the model by the SoS engineer or a systems engineer responsible

for modeling their system. Therefore, the key aspect of requirements engineering

for SoSE lies in system interactions. Chapter 4 discussed applying requirements to

ports, their properties, and the connections between them. By using this modeling

infrastructure, useful analysis is generated for SE groups focusing on system interfaces.

The high-level approach of SoSE allows for a SoS engineer to analyze the require-

ments on multiple interacting systems in tandem. Thus, a requirement on a port

specifying the generation of data must have a parallel requirement on the port that

receives that data. This gap analysis is done in SysML either with a script that queries

each port and its connected port and then examines both for related requirements or

by generating a table that displays the connections between interface requirements.

The former method may be quicker in simple cases, but when interface requirements

get more complex (e.g., multiple value properties, multiple layers of information ex-

68

changed) it is best to manually examine a table of the ports and their requirements

or use an automated method to examining the differences.

5.4 System Integration & Aggregate Analysis

In Chapter 4, an independent radar system model was imported to examine the

capabilities of integrating existing and more detailed system models into a grander

SoS model. Beyond what was discussed previously, there are also implications on the

analysis aspects of the SoS that must be addressed when importing a different system

model. Much of this deals with how different aspects of the model are specified.

As previously discussed, it is often useful to use generalized blocks to inherit

properties to blocks that require the same properties. This can also be a useful tool for

standardizing an external model to something more easily digestible in the SoS model.

Though the ExperimentalRadar block, which acts as the top-level block for the radar

model, already contains some value properties that are used in the SNR analysis on the

existing radar blocks, some of these values are defined differently. These alternatively-

named properties are equated to their identical value properties inherited from the

RadarPlatform and RadarSensor blocks through a parametric relation. The new

radar is now able to be used in any of the pre-established parametric diagrams. Port

properties are also inherited for any ports that have been inherited from a generalized

block.

5.5 SoS Analysis

To further engage the model, querying of elements can improve the quality of

simulation. In each SoS type, a simulation of sensor tracking is created. The overall

goal in each SoS type is to aggregate the highest quality and highest quantity of

measurements on each target. Each SoS type accomplishes this in different ways

based on their set of operations and structural properties, stressing the key features

of that SoS type. In every SoS type, the base level sensors are capable of searching for

69

targets and tracking the targets that they find. Sensors are also capable of accepting

commands from C2 nodes to change their behavior. The nuances of exactly how a

sensor decides when to search and track or when a commands are sent from a C2 node

change with each SoS type. The simulation is created by querying the SysML model

for its operations procedures (i.e., at what threshold to task to a different mode)

and the communication structure between targets. Calculations are performed in

MATLAB.

5.5.1 Directed SoS

The Directed SoS is composed of two control groups, each with two sensors and a

C2 node, with a high-level command system functioning as the coordinating element

between the two groups. This commander takes in the data from each control group

and may provide high level commands to either. Each control group has a SNR

threshold per target to determine how to task sensors. Control group 1 focuses on

scanning and has a low threshold that when met, will cause the C2 node to retask

the sensor into scanning again. Control group 2 focuses on tracking and has a higher

threshold set for when to switch targets. Sensors in this group will also be tasked

away from a target if the SNR values drop too low. The handoff between when the

scanning group meets its threshold and when the tracking group picks up a target is

coordinated by the high-level command.

Figure 5.4 shows sample results for the Directed SoS simulation. In this case,

both sensors in control group 1 scan an area until a target is found. The first sensor

in control group 1 tracks this target, while the second sensor continues to scan due to

the control scheme of this group placing larger emphasis on scanning for new targets

than tracking found targets. Since the tracking group does not have any targets at

the start, they are tasked by the high-level command to also track the target found by

the first control group, despite it being below their standard threshold for tracking.

This group continues tracking the target after the scanning group returns to scanning.

70

(a) Control group 1 look directions (b) Control group 2 look directions

Figure 5.4. Look directions for all sensors in the Directed SoS simulation

71

The scanning group then finds a second target and begins tracking it. Once this

target hits the control group’s threshold, they return to scanning and the high-level

command tasks control group 2 with tracking the new target. Since the first target

has yet to reach its upper SNR threshold, the C2 node for this group only tasks one

sensor to track the second target.

Overall, this simulation shows the capability of a high-level command system – one

of the key features of a Directed SoS – to coordinate and control constituent system

groups. The method of control is basic and leaves some management capability to

the systems below it, as evidenced by the C2 node determining whether to task one

or both sensors to track a target. Sensors in this SoS are not capable of much decision

making outside of determining their own look directions and tracking targets.

5.5.2 Acknowledged SoS

The Acknowledged SoS functions on many of the same principles as the Directed

SoS, but without the use of a high-level command system. In this SoS, the two control

groups coordinate directly via their C2 nodes transferring information. Neither C2

node sends commands to the other control group, only data is transferred; this is

to allow each control group its own decision making. A scenario is established to

stress this managerial independence by showing conflicting operational principles in

a control group.

The control groups are again set so that control group 1 focuses on scanning, and

control group 2 focuses on tracking. Both use the same SNR threshold principles as

in the Directed SoS. However, instead of a command being issued for the hand-off

between low SNR tracking and higher SNR tracking, data is continuously sent about

the targets being tracked. The control groups are also aware of each others thresholds.

In the simulation described in Figure 5.5, the results of a simulation with the Ac-

knowledged SoS are shown. The same initial conditions were used from the Directed

SoS, so the simulation begins the same way. One target is detected and tracked by

72

(a) Control group 1 look directions (b) Control group 2 look directions

Figure 5.5. Look directions for all sensors in the Acknowledged SoS simulation

73

one sensor from control group 1 while the other continues to scan. Control group 2

joins in this endeavor after receiving data about the target and while not having any

known targets of its own. The target is tracked until it reaches the scanning control

groups SNR threshold, at which point those two sensors begin scanning again.

After the second target is detected and tracked to the first control groups thresh-

old, the two sensors in this group again return to scanning. In the Directed SoS, the

second control group was tasked to begin tracking this second object; however, this

simulation is set so that until the first target reaches its upper threshold, the sensors

will not be retasked. Thus, the second target gets picked up again a few seconds

later by one of the scanning sensors and, having dropped below the SNR threshold

again, is tracked shortly. The second control group never retasks to track the second

detected target.

The goal of this simulation is to emphasize the separation of control between

control groups. Each operates on its own principles with the overall goal of increasing

the cumulative SNR of each target to a high level. It is engineered not to achieve

the best performance for the sample case shown, but to examine what occurs when

the two groups follow their own operations procedures over what may be best for the

entire SoS. The absence of a central governing body shows a lack of cohesion between

the groups – this is an intended feature for this example.

5.5.3 Collaborative SoS

The Collaborative SoS operates based on the principle of voluntary inclusion in

the SoS. Each radar sensor is split into its own control group with a collocated C2

node and coordinates through the comm. node with all other control groups. The

goal of each control group is to detect and track as many targets as possible to a SNR

threshold. They coordinate data with each other in return for the other systems’ data,

a mutually beneficial circumstance for all groups involved. However, protocols are put

in place to remove a control group that does not contribute data (does not have any

74

Figure 5.6. Measurement rate plots for a sample Collaborative SoS simulation

tracks to follow). This lower limit is a fixed offset from the average measurement

rate of all contributing sensors – avoiding the situation where all groups are isolated

because no targets are found. After a sensor is removed, it will begin receiving data

again after sending enough information to surpass the cutoff limit.

Figure 5.6 shows the measurement rates of all control groups in the Collaborative

SoS simulation. Limitations are placed on the field-of-regard (viewable azimuth and

elevation angles) and range of all sensors involved in order to ensure that some sensor

groups may not be able to see the targets at a certain time. In the simulation shown,

the randomly generated targets stay in the vicinity of sensor groups 1 and 3 for much

of the time. Sensor group 4 rarely sees a target and thus is cut off from receiving

data. It never recovers from this due to the lack of visible targets. Sensor group 2

comes close to the lower limit measure rate, but manages not to surpass it.

The use of voluntary inclusion and limitations on contribution are both key fea-

tures of a Collaborative SoS. There remains the overall goal of increasing the track

quality on a set of targets, but the means by which this occurs are much different than

in the other SoS types. The focus of this simulation is to show the capability of uti-

lizing interface requirements to create rules on interactions that can then be analyzed

via simulation. The contribution lower limit exists as a requirement on the data-in

port for the comm. node. This captures the feature of removing a system from the

75

group, whereas the capability for a system to be re-added exists in it overcoming the

threshold.

5.6 Updates & Implementation

Having examined the systems, interfaces, and aggregate SoS, a SoS engineer can

plan for updates to the SoS. Trade studies can be performed within the model through

the use of either external tools (e.g., MATLAB, STK) or internal parametric anal-

ysis. Such trade studies allow for SoS engineers to examine the design space before

proceeding with the implementation of changes to the SoS.

In the case of the SoS simulations described in this chapter, there are various key

ways in which the information created can be used to plan for updates. With the

Directed SoS, a key capability is to ensure that the high-level command is capable of

communicating with the constituent systems. Thus, the network analysis discussed

previously is of high importance. Since much of the control is set at this centralized

point, it remains pertinent to ensure that communications to that point stay intact.

For the Acknowledged SoS, the key emphasis in planning updates to the SoS is

to ensure that the behaviors of the systems are as cooperative as possible. In the

example simulation, this would be done by adjusting the thresholds at which C2

nodes will change their sensor behavior. Lowering the tracking upper threshold can

fix the issue of that control group not picking up a target ready for precision tracking.

The Collaborative SoS is dependent on the rules of interaction that are set in place.

With a collaborative SoS, control over the evolution of the systems involved may not

be possible, but the rules and protocols by which they interact are controllable. Thus,

changes to the rules for inclusion, how data is shared, or when a system should or

should not be included in data sharing are important factors to examine. Studying

these will allow for updates to the SoS.

During the implementation step, the major role of a SoS engineer is to oversee

the process and begin planning for the next analysis step. Testing, evaluation, and

76

deployment of systems all occur during this step. Though the SoS engineer facilitates

the process, there is not much to be done within SysML.

5.7 Conclusions

5.7.1 What analysis methods does SysML provide for the SoS and how

well does SysML execute said analysis methods?

SysML allows for the planning of updates to a SoS by providing a number of

options for evaluation. Within MagicDraw, there exists tools for doing parametric

analysis and performing trade studies based on that analysis (through the ParaMagic

plugin). Furthermore, SysML’s definition allows for analysis to be performed at

any level of abstraction within the SoS, with lower-level performance characteristics

feeding upwards into higher-level analysis. This is a key capability within SysML

that allows for useful analysis of a SoS; multiple levels of abstraction are captured

and analyzed within the same model. By modeling each system at a low level and

then developing the interactions that system has with other systems, the emergent

properties of the SoS can be realized and examined.

System performance analysis

The performance analysis examined in this thesis focus on a primary performance

characteristic of radar systems – the signal-to-noise ratio. To analyze this, parametric

constraints are used, feeding in key operating parameters of a radar system and the

target that it is measuring. To add an extra degree of detail, MATLAB is used

to generate trajectories for all targets, allowing analysis over numerous data points.

Analysis of parameters of systems in SysML is basic since the information is contained

in a single localized repository that may be analyzed by MATLAB or other scripting

tools.

77

However, handling arrays in SysML is not nearly as simple as pushing the same

analysis into a MATLAB script. Similarly, one would not try to perform detailed

calculations on the stress and strains of a system component through parametric

constraints; such an analysis would best be calculated though structural analysis

software. These more complex analysis types are best performed in external software,

many of which have plugins that will directly connect into the software as ParaMagic

does with MATLAB [10] [11] [26]. The key capability of SysML relies in capturing

and relating the key elements of a system or SoS in a centralized format and providing

the interfaces to perform the necessary analysis via external methods. SysML was not

developed as an analysis tool but rather as a method for performing tasks to support

SE. Similarly, it should retain that role within SoSE, providing the framework for

developing, establishing, and interacting with external tools for the analysis of a SoS.

SoS Analysis

Complete analysis of a SoS is best done through a simulations and analyses of

the network of systems. At the moment of this writing, the simulation tools within

MagicDraw (the modeling tool used throughout this thesis), as it analyzes SysML,

are still limited in their capability. However, by querying the model through scripting

capabilities (inherent to MagicDraw and other SysML tools), important elements can

be examined and interpreted in various external software. The examples shown in

this research pull data from each model and run it through a MATLAB script.

78

Table 5.1 Overview of SoS Plan for Updates tasks in SysML

79

6. CONCLUSION

6.1 Systems Engineering vs. SoS Engineering

As SysML is a language built around the aspects of Systems Engineering, the

transition to utilizing it for SoS engineering exacerbates key differences in the pro-

cesses. As was introduced earlier in this paper, the US DoD outlined key differences

in various fields between systems engineering and acknowledged SoS engineering (see

Table 1.1. These differences were considered during the research for this thesis. Table

6.1 displays information on the processes and findings on the key changes from SE to

SoSE n SysML for each field.

6.2 Is SysML capable of demonstrating the 8 traits of a SoS?

6.2.1 Managerial Independence

The managerial ownership of systems is reliant on the practitioner to define in

SysML. It is specifiable through various different methods as well. In this research,

managerial independence is described via the structural hierarchy of the SoS. This

is shown through the use of control groups in the example models. Each sensor

belongs to a sensor group which is then set within a control group. The control

group establishes the boundary of management, as each control group is managerially

independent. It is possible to establish another level of control at the regional level

(the top level in the example SoS), as is shown in the Directed SoS, but it is important

to limit how much control this element has. It would then fall to the practitioner to

incorporate multiple regional commands in order to reincorporate the managerial

independence of the SoS.

80

Table 6.1 Systems Engineering vs. SoS Engineering

81

Other methods exist for demonstrating ownership of systems. It may be useful to

use the SysML stereotype, which allows labeling and grouping of elements without

creating relations to other elements, or a stereotyped dependency relationship. A

stereotype can be used as a label, specifying one systems incorporation into a group.

For example, if the example sensor architecture were expanded to define a set of U.S.

joint-force military sensors, there may be one stereotype for the Navy and another

for the Air Force depending on the sensors locations at sea or on land [27]. Similarly,

one could define stereotyped relationships to either of these forces. This avoids the

trouble of hierarchical organizing elements, but is entirely free in its usage, as these

are orthogonal definitions to the elements they are defining. A stricter definition of

ownership was used in this thesis to best test the capabilities for SysML to capture a

SoS. Furthermore, this pattern allows for systems to change ownership dependent on

their configuration.

6.2.2 Operational Independence

The operational independence of constituent systems is specified by the allocation

of activities to system blocks. The steps specified in the previous section for func-

tional decomposition will establish a set of possible activities. How these activities

are connected depends on their definition through both decomposition and activity

and/or sequence diagrams. Thus when examining operational independence of a con-

stituent system the key question is to examine if that system has a set of activities

attributed to it that are independent of other activities.

For the examples shown in this thesis, all radar platforms are capable of performing

their own scanning and tracking, while relying on a connected C2 node for higher level

tasking. The radars are capable of performing these independent of other systems.

C2 nodes can similarly generate commands without the input of sensors; however, the

quality of such commands may be lacking without the knowledge supplied from the

sensors. Operational independence depends heavily on how the activities outlined for

82

the SoS are allocated to the constituent systems of that SoS. This directly impacts

what type of SoS is modeled or if the model describes a SoS at all.

6.2.3 Evolutionary Behavior

Evolution of the SoS is captured through the modeling of separate stable inter-

mediate forms of the SoS. To do this, a baseline SoS is redefined according to the

changes between the three specific forms of the SoS. Because all of the base elements

and their interactions are already established, evolving an architecture is an easier

task than creating one from scratch. Any change to these elements can be enacted

within these configurations without the issue of altering the original form. Any fur-

ther exploratory configurations may inherit from the original baseline or any of the

previously modeled configurations. For this thesis, three different SoS variations are

specified from a baseline definition of elements. Furthermore, an example is shown

of how to incorporate new system models into a pre-existing SoS model to simulate

acquisition or evolution of new systems. In Chapter 4, methods to create a model

that allows for evolution are discussed.

6.2.4 Emergent Properties

Emergent properties are modeled in SysML through system interactions. These

can be in the form of new activities or sequences that are only added when specific

systems interact or in the form of parametric analysis (discussed in Chapter 5). The

inclusion of new activities when certain systems interact is a case of designed emer-

gence – the modeler is conscious of the properties. If complex parametric diagrams

are set up for analysis, emergent properties may arise that were not previously known

(e.g., communication paths are strained with the addition of systems).

83

6.2.5 Geographic Distribution

Geographic distribution is established through the definition of value properties

that describe the location of physical systems. In the distributed sensor model, all

physical systems inherit these properties (denoting Cartesian location) through a

generalization relationship to a “Physical Object” block. Though it is not a necessary

condition that a SoS be geographically distributed, it is a trait that is easily addressed

in SysML.

6.2.6 Heterogeneity

Heterogeneity is another trait that is easily expressed in SysML. By default, every

block that is created should represent a different system or component. At the α-level

of the distributed sensor SoS, three different systems are established – sensors and

their platforms, C2 nodes, and communication nodes. A plethora system definitions

may be included in this definition, but a basic example was expressed to allow for

simplicity of explanation and analysis in this thesis. Futhermore, the systems can

be further specified with value properties to represent vastly different systems with

similar operations. For example, the same radar sensor block can represent anything

from a ballistic missile tracking system to a radar for asteroid tracking to a hand-held

radar used by a traffic officer. The capability for having a highly diversified set of

systems exists within SysML.

6.2.7 Trans-domain Nature

SysML is designed to examine a system through various viewpoints. Relating

back to the “Four Pillars of SysML” (see Chapter 1), the major focus of SysML is

on the structure, behaviors, requirements, and parametrics of a system. These key

viewpoints maintain when examining a SoS and require a trans-domain approach.

The structural aspects of a SoS examine the hierarchical definition of the systems as

84

well as the physical properties of those systems. With the use of CAD tools, further

physical definition of each system can be provided in detail. Electric properties of

the system could also be defined here or through a circuit diagram in SysML (often

created with an ibd). Behavioral aspects of the SoS can be extended to require

the use of external tools such as STK to capture the orbital dynamics of a satellite

or simulation tools. Requirements engineering is captured entirely in SysML while

parametrics may use SysML tools or external analysis tools (e.g., MATLAB).

Furthermore, the trans-domain nature of the SoS is established by the set of

systems that are modeled and what the goal of the model is. It may be necessary

to look at the data production and network usage of a SoS, and so these features of

the systems and their interactions will be captured in SysML – as is done with the

sensor model in Chapter 5. On the other hand, if the model is being built to examine

software architectures or decision making protocols between systems, more focus may

be placed on the operational aspects of the model. The model would function as a

testbed for the integration of various systems’ operational protocols. SysML has the

capabilities to examine various different domains within a SoS, but it is still the duty

of the practitioner(s) to develop the model for their needs.

6.2.8 Networks

Networks are common traits of SoS’s, but not a necessary condition. It stems

from the fact that systems are generally geographically distributed, yet must still

interact. This interaction then occurs over a communication network. In SysML,

communication networks are established through the use of flow ports and connec-

tions, usually shown on an ibd. Chapter 4 discusses methods for capturing system

interactions through the use of networks, broken into physical and logical networks.

85

Table 6.2 Overview of SoS Traits in SysML

SoS Trait SysML Element/Diagram

Managerial Indepen-

dence

Composition/aggregation relation and/or

stereotypes on blocks

Operational Indepen-

dence

Activities allocated to blocks

Evolutionary Behav-

ior

Top-level domain blocks to represent inter-

mediate states

Emergent Properties Activities, sequences, parametric diagrams,

simulations

Geographic Distribu-

tion

Value properties

Heterogeneity Unique blocks, value properties, instances

Trans-domain Nature All views

Networks Flow ports, connections, ibd

86

6.3 Is SysML capable of modeling different types of SoS?

Examples of three of the four types of SoS are developed throughout this thesis

– directed, acknowledged, and collaborative. The virtual SoS is foregone due to the

fact that there are no strict definitions on how systems interact, what high-level goals

exist, or how to affect the evolution of the SoS. This abstract and free-form nature

makes a rigorous SoSE approach to managing virtual SoS’s an ineffective activity. A

much more adaptive and free-form method to study virtual SoS’s must be used and

SysML would not be the tool to perform these analyses.

On the other end of the spectrum, directed SoS’s lend themselves well to SysML

modeling. This is due to the straight-forward definition of both hierarchical systems,

how they interact, and the process by which they evolve. Similarly, acknowledged

SoS’s follow similar modeling practices but require the model designer to ensure that

independence is stated between systems, both operationally and managerially. The

primary difference between these two types is the existence of a high-level command

that can influence systems in the directed SoS and the allocation of activities to

systems.

Collaborative SoS’s are a different story, as systems here have a voluntary inclusion

into the SoS. A standard example of a collaborative SoS is the Internet. Capturing the

entirety of a collaborative SoS may not be possible or desirable in SysML, chiefly due

to the fact that systems may be included or removed at any point. More applicable to

SysML is examining a specific subset or situation within a collaborative SoS. Modeling

what happens when a new system joins or how multiple systems may interact is still

possible, but the problem must be bounded. Also, by capturing the basic interactions

between these systems, a detailed analysis or simulation script could extrapolate

the problem set to a much larger scale without requiring additional modeling. The

example shown in this thesis focuses on the interactions of a limited number of systems

to focus on the rules and interactions between them, using a collaborative group

of sensors interacting to track targets via a voluntary data sharing method. If a

87

system decided or could not share any data, it would stop receiving data from the

other sensors, possibly impairing its capability to track as many objects. Developing

requirements and examining the effects of those requirements on how systems in this

SoS interact is the best use of SysML for collaborative SoS’s.

6.4 Future Work

As stated previously, one of the drawbacks of SysML is the time it takes to develop

various diagrams. However, there are methods within SysML to create patterns

and scripts to automate parts of this creation process. Some of these capabilities

were used to do the automatic port and connection coloring in Chapter 5. Patterns

could possibly be created to automate the rewiring of network via an adjacency

matrix or to automatically connect system properties with constraint blocks. These

patterns can be grouped into modules that are importable into any SysML model. By

developing a standard ontological framework for modeling SoS’s in SysML and then

supporting that framework with patterns for developing common diagrams and scripts

for automated analysis, the time to develop models can be reduced. This, however, is

bound to be a daunting task that requires both a large amount of development, but

also application to real world problems to verify and validate the processes.

The development of an ontology for performing SoSE in SysML would help to

both alleviate inconsistencies between the two and allow for future practitioners to

more easily use these tools. This would require the definition of specific stereotypes,

views, and patterns to be used. Though this research provides some of the patterns

and views within SysML that are useful in regards to SoSE, it does not rigidly define a

set of rules and processes. There are some frameworks that have laid the groundwork

in this area and found acceptance in SysML (e.g. DoDAF, MoDAF), but they only

detail a set of high-level viewpoints and the dependencies between these viewpoints.

Nor is there a specific implementation of these frameworks within SysML.

88

Finally, work is ongoing in methods to strengthen the analysis capabilities of

SysML. This is done by both providing plugins to interact with standard external

analysis tools (CAD, CFD, etc.) and by improving tools to analyze the SysML

elements themselves. As mentioned in Chapter 5, the Cameo Simulation Toolkit

for MagicDraw allows for the direct analysis of activity diagrams but is still in its

infancy of development. Furthermore, most scripting efforts are application-focused

and limited in their scope. Improved analysis capabilities within tools should be

developed in order to improve the functionality of SysML, as this is generally one of

the limiting factors to its adoption.

APPENDICES

89

A. SYSML TUTORIAL

The following is a set of reference materials displaying most standard SysML elements

and interactions.

90

91

92

93

94

B. MODELING PATTERN

This appendix describes in detail the pattern used throughout the modeling effort for

this thesis. Key aspects of the pattern are described throughout the main chapters

and are further elucidated here. Alternative model design options are discussed along

with explanations on why these options were not used. While the main chapters of

this thesis focus on the SoS engineering aspects of SysML, this appendix will describe

the nuances and usage of SysML itself.

B.1 Developing the Baseline Architecture and Specialized Configurations

The baseline architecture is initialized with a single context block, used to house

all components of the architecture. This is required in order to provide a location for

global properties while also acting as a method for generalizing any configurations

of the architecture. In the baseline hierarchy block definition diagram (Figure B.1),

the SensorArchitecture block acts as the context block. Any elements common to

all configurations are housed within this context block, while elements unique to a

configuration may add to or redefine the common set (these specific relations are

discussed later in this Chapter).

Components of the architecture are instantiated as blocks and related to the con-

text blocks via directed associations, or composition relations. The multiplicity of

elements may be specified within this relation to constrain the number of elements des-

ignated for either end of the relation. From Figure 3.1, the SensorArchitecture is com-

posed of one-to-any number of ControlGroups, zero-to-any number of CommNodes,

zero-to-one HighLevelCommands, and zero-to-any number of Targets. The internal

elements of each of these blocks is further defined through composition relations.

95

Figure B.1. Block definition diagram showing the baseline hierarchy
of systems within the SoS

96

Figure B.2. Internal Block Diagram showing the interactions between
internal elements

Structuring baseline architectures in this way allows for scalability and compart-

mentalizes the system definition. This scalability allows for further definition in either

direction (higher or lower level) with ease. To increase the scale of the model, a new

context block is defined with a directed association to the previous context block and

any other elements at that level. To increase the fidelity of the model, more detail is

provided by defining the composition of existing elements. This capability is crucial

to SoS Engineering where defining the scale of the model may change as the SoS

evolves, requirements change, or higher fidelity analysis is required.

B.1.1 The use of directed associations

Directed associations are useful in SysML for specifying a structural hierarchy of

elements. By default, a directed aggregation will create a part property within the

relation-supplying block. Part properties may be displayed on any Internal Block

Diagrams (ibd’s) belonging to the owning block. Whereas block definition diagrams

are used to describe the hierarchy of elements in an architecture, an ibd is used to

show the interactions of parts within a block.

97

An example ibd can be seen in Figure B.2, which shows the logical interactions

for the Acknowledged SoS. ibd’s only display the part properties within a block; thus,

all parts on the diagram are owned by the type of the part within which it is nested.

A key aspect of the directed association is that it establishes a common composi-

tion for all blocks of a similar type. This may seem useful in the case of duplication of

systems or components; however, it provides no benefits on its own for architectures

in which systems may differ slightly. To best model these discrepancies a more sophis-

ticated approach must be used – implementing directed associations, generalizations,

and redefinition.

B.1.2 Applying generalizations and redefinition

Generalization relations allow for common attributes to be inherited by specific

blocks. Using these generalization relations, common attributes are shared. The

block inheriting these shared attributes is deemed the specialized block.

As the baseline architecture is created from the generalized blocks, a specialized

configuration of this architecture then redefines any blocks that specialize the blocks

that compose it. For example, a baseline architecture may be composed of multiple

general radar platforms – non-destinct in their detail. In order to specify these as

certain types of radar and provide detail to their composition, which may vary among

each system, specialized blocks for each radar may redefine them under the specialized

architecture’s context. Furthermore, any ancestors (parents and their parents) of

these redefined blocks must also be redefined up to the redefined context architecture

block.

This pattern for defining an architecture allows for a taxonomical definition of a

SoS and its components, while the specialized architecture demonstrates a specific

usage or deployment of systems meeting that definition. An alternate method for

meeting this need is to use SysML “instances” of the original blocks.

98

Instances are highly limited in their usage. They can only specify detail on existing

properties of the blocks that they instance. Therefore, no additional detail or design

can be included in an instance. For example, an instance of a radar platform from

the baseline architecture is incapable of providing further design details outside of

altering the base values of any properties (e.g., changing operational bandwidth or

power), whereas a redefinition of that block may utilize the full capabilities of SysML

to define subsystems that hold these values, to create new relations to activities that

the system performs, and/or to satisfy new requirements not levied on the baseline

system.

B.2 Definition of System Interactions

In order to capture interactions between systems, SysML ports, connectors, inter-

faces, and association blocks are utilized. Ports act as an element on a block (note:

not a part property) that acts as an entry and/or exit point. Connectors allow these

ports to be linked. Interfaces are used to type ports and provide details as to their

attributes. Finally, association blocks link interfaces and detail their interaction.

Together these elements define the possible and enacted interactions between sys-

tems within an architecture. When a port is placed on block, it establishes a gateway

with which that block may interact. That port is then typed by an interface, which

declares how that port acts. These interfaces are defined in the same way as blocks

through the use of composition and generalization relations – allowing for an ether-

net interface to inherit the properties of a generic data link layer interface, or for a

high-level logical command interface to be composed of various ethernet interfaces.

Once the ports are defined, they are linked through the use of connections. These

connections are then further defined through the use of association blocks. Similar

to how interfaces define ports, association blocks are used to type and provide detail

to connectors, and can also capitalize on composition and generalization relations.

Furthermore, they allow for internal validation of the connector. For a connector to

99

be valid, its association block must link the interfaces or instances of the interfaces

that type the ports on either end of the connector. For example, two ethernet ports

cannot be connected with a coaxial cable, as this connector and its association block

type (coaxial) would not be compatible with the ethernet interfaces that type the

ports on either end of the connector.

An alternative method for defining interactions over connectors is the use of con-

veyed information flows as opposed to association blocks. This method is also uni-

and bi-directional, allows for typed connectors and ports, and can capitalize on com-

position and generalization relations. A boon of using conveyed information flows is

that multiple flows may be applied to a single connector, which is useful for high-

level logical interactions, saving the time of modeling multiple connectors. However,

conveyed information flows do not require relations to the ports’ interfaces, so the

inherent validation within the model is lost. As these methods both have nearly iden-

tical capabilities, it does not impact any of the points made in this thesis on which

is used; neither limit the capabilities of SysML for performing SoSE tasks.

LIST OF REFERENCES

100

LIST OF REFERENCES

[1] D. M. Buede, The Engineering Design of Systems, Models, and Methods. Wiley,
2009.

[2] E. Rebentisch, D. H. Rhodes, and E. Murman, “Lean systems and engineering:
Research and initiatives in and support of a new and paradigm,” tech. rep.,
Conference on Systems Engineering Research, 77 Massachusetts Ave., Bldg 41-
205 Cambridge, MA 02139, Apr. 2004.

[3] M. W. Maier, “Architecting principles for systems-of-systems,” in Sixth Annual
International Symposium of INCOSE, (Boston, MA), 1996.

[4] M. Jamshidi, ed., System of Systems Engineering: Innovations for the 21st Cen-
tury. Wiley Series in Systems Engineering and Management, Wiley, 2009.

[5] S. Jenkins, “A modeling approach to document generation,” in INCOSE Insight,
INCOSE, 2009.

[6] A. L. Ramos, J. V. Ferreira, and J. Barcelo, “Model-based systems engineering:
An emerging approach for modern systems,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, pp. 101–111,
Jan. 2012.

[7] D. A. DeLaurentis, “Understanding transportation and as system-of-systems and
design and problem,” tech. rep., AIAA, Jan. 2005.

[8] M. W. Maier, “Research challenges for systems-of-systems,” in IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, Oct. 2005.

[9] O. of the Deputy Under Secretary of Defense for Acquisition, S. Technol-
ogy, and S. Engineering, Systems Engineering Guide for Systems of Systems.
ODUSD(A&T)SSE, version 1.0 ed., 2008.

[10] R. Peak, “Sysml parametrics research for modeling & simulation interoperabil-
ity,” tech. rep., Modeling & Simulation Lab, Georgia Institute of Technology,
2011.

[11] M. Horl, M. Hochwallner, S. Dierneder, and R. Scheidl, “Integration of sysml and
simulation models for mechatronic systems,” in EUROCAST 2011, 2, pp. 89–96,
ASME, Sept. 2011.

[12] “Unified modeling language.” http://www.uml.org/, Apr. 2013.

[13] “Paramagic plugin.” http://www.nomagic.com/products/magicdraw-
addons/paramagic-plugin.html, 2013.

[14] “Omg systems modeling language.” http://www.omgsysml.org/, 2013.

101

[15] J. Dahmann, G. Rebovich, R. Lowry, J. Lane, and K. Baldwin, “An implementers
view of systems engineering for systems of systems,” tech. rep., IEEE, 2011.

[16] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis. Prentice
Hall, 2010.

[17] D. A. U. Press, Systems Engineering Fundamentals. Department of Defense,
Systems Management College, Fort Belvoir, VA, Jan 2001.

[18] J. A. Estefan, ed., INCOSE Survey of MBSE Methodologies. INCOSE, May
2007.

[19] J. A. Lane and T. Bohn, “Using sysml modeling to understand and evolve sys-
tems of systems,” in Systems Engineering, vol. Vol 16., pp. pp. 87–98, Wiley
Periodicals, Inc., Apr. 2013.

[20] S. M. White, “Modeling a system of systems to analyze requirements,” in IEEE
International Systems Conference, (Vancouver, Canada), IEEE, IEEE, March
2009.

[21] D. A. DeLaurentis, W. A. Crossley, and M. Mane, “Taxonomy to guide systems-
of-systems decision-making in air transportation problems,” Journal of Aircraft,
vol. 48, pp. 760–770, May 2011.

[22] J. A. Lane, “Factors influencing and system-of-systems and architecting and
integration and costs,” in Conference on Systems Engineering Research, Stevens
Institute of Technology, March 2005.

[23] M. Liotine, Mission-Critical Network Planning. Artech House, 2003.

[24] “Space surveillance sensors: The pave paws and bmews radars.”
http://mostlymissiledefense.com/2012/04/12/pave-paws-and-bmews-radars-
april-12-2012/, Apr. 2012.

[25] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems.
Artech House, 1999.

[26] R. Peak, R. Burkhart, S. Friedenthal, M. Wilson, M. Bajaj, and I. Kim,
“Simulation-based design and using sysml and part 2: Celebrating diversity and
by example,” in INCOSE Intl. Symposium, (San Diego), INCOSE, 2007.

[27] R. K. Garrett, S. Anderson, N. T. Baron, and J. D. Moreland, “Managing the
interstitials, a system of systems framework suited for the ballistic missile defense
system,” Systems Engineering, vol. 14, pp. 87–109, Mar 2011.

	Purdue University
	Purdue e-Pubs
	Summer 2014

	A Model-Based Approach To System-Of-Systems Engineering Via The Systems Modeling Language
	Kevin Hughes Bonanne
	Recommended Citation

