
A Model-Based Design Methodology for
Cyber-Physical Systems

Jeff C. Jensen
National Instruments

Berkeley, CA 94704

E-mail: jjensen@ni.com

Danica H. Chang
University of California, Berkeley

Berkeley, CA 94720

E-mail: danicachang@berkeley.edu

Edward A. Lee
University of California, Berkeley

Berkeley, CA 94720

E-mail: eal@eecs.berkeley.edu

Abstract—Model-based design is a powerful design technique
for cyber-physical systems, but too often literature assumes
knowledge of a methodology without reference to an explicit
design process, instead focusing on isolated steps such as sim-
ulation, software synthesis, or verification. We combine these
steps into an explicit and holistic methodology for model-based
design of cyber-physical systems from abstraction to architecture,
and from concept to realization. We decompose model-based
design into ten fundamental steps, describe and evaluate an
iterative design methodology, and evaluate this methodology in
the development of a cyber-physical system.

Index Terms—model-based design, cyber-physical systems, em-
bedded systems, LabVIEW, Ptolemy II.

I. INTRODUCTION

Model-based design (MBD) [1]–[3] emphasizes mathemat-

ical modeling to design, analyze, verify, and validate dynamic

systems. A complete model of a cyber-physical system repre-

sents the coupling of its environment, physical processes, and

embedded computations. Modeled systems may be tested and

simulated offline [4], enabling developers to verify the logic

of their application, assumptions about its environment, and

end-to-end (i.e. closed-loop) behavior.

The design of a complex cyber-physical system — espe-

cially one with heterogeneous subsystems distributed across

networks — is a demanding task. Commonly employed

design techniques are sophisticated and include mathematical

modeling of physical systems, formal models of computation,

simulation of heterogeneous systems, software synthesis, ver-

ification, validation, and testing. We have yet to find a set

of sequential steps that, if followed carefully and correctly,

encompasses each of these design techniques and sufficiently

governs the development of a complex cyber-physical system.

Instead, we propose a set of steps, not necessarily sequential

but necessarily codependent, that facilitates the co-evolution of

a model of a cyber-physical system with its realization. Our

focus is on design methodology, and for each step we offer

only a cursory introduction to a vast field of research. Since no

model can ever be complete [5], a practical implementation of

this methodology is to iteratively visit each step until design

requirements are met.

II. MODEL-BASED DESIGN IN TEN STEPS

A. MBD Step 1: State the Problem

Use simple language to describe the problem to be solved,

without the use of mathematics or technical terminology.

This is the “elevator speech” for the project and is a handy

reference for developers, collaborators, colleagues and experts,

vendors, and machine shops. Developers of large or safety-

critical applications should also write a project plan consisting

of requirement tracking, metrics, formal testing processes,

and (most importantly) a process for peer review. Given the

multidisciplinary nature of cyber-physical systems, this step is

necessary to effectively communicate design requirements.

B. MBD Step 2: Model Physical Processes

A first iteration of physical modeling should establish basic

observations and insight into relevant physical systems, such

as the environment in which the cyber-physical system resides,

or physical processes to be controlled. Models of physical

processes are simplified representations of real systems, and

are usually in the form of systems of differential equations or

Laplace transfer functions. What may begin as simple mathe-

matical models may need to be refined following development

of a control algorithm, specification of hardware, and testing

of components and subsystems.

C. MBD Step 3: Characterize the Problem

Isolate fixed parameters, adjustable parameters, and vari-

ables to be controlled. Identify quantities that characterize

physical processes, such as configuration spaces, safety lim-

itations, input and output sets, saturation points, and modal

behavior. Understand how a physical process may interact with

a computation, including end-to-end latency requirements,

fault conditions, and reactions to noise and quantization.

D. MBD Step 4: Derive a Control Algorithm

Determine conditions under which physical processes are

controllable and derive a suitable control algorithm to be exe-

cuted by an embedded computer. Use the problem character-

ization to specify requirements on latencies, delays, sampling

rates, jitter, and quantization so that the physical dynamics of

interest can be accurately measured and suitably controlled;

these requirements must be satisfied by the computational

978-1-4244-9538-2/11$26.00 c© 2011 IEEE

eal
Typewritten Text

eal
Typewritten Text
To appear, Proc. of the First IEEE Workshop on Design, Modeling, and Evaluation of
Cyber-Physical Systems (CyPhy), Istanbul, Turkey, 2011.

platform used. In highly distributed applications, or systems

that are globally asynchronous but locally synchronous, it

may be necessary to select models of computation before

a control algorithm can be derived. Revisit this step after

selecting models of computation and specifying hardware to

determine the impact of latency jitter or variable sampling

rates introduced by an asynchronous model of computation, or

saturation or other nonlinear artifacts introduced by hardware.

E. MBD Step 5: Select Models of Computation

A model of computation is a set of allowable instructions

used in a computation along with rules that govern the inter-

action, communication, and control flow of a set of computa-

tional components [4]. A formal model of computation defines

semantics that often result in greater analyzability and the

potential to simulate cyber-physical systems through the use

of heterogeneous modeling tools. Models described by formal

models of computation may be easier to analyze with respect

to determinism, execution time, state reachability, memory

usage, and latency [6], [7]. These software dynamics alter

the evolution of a cyber-physical system, and if modeled may

be generalized and used in an MBD workflow. The inherent

complexity of many cyber-physical systems often necessitates

the composition of multiple models of computation. Advan-

tages of using a specific model of computation depend on its

semantics, whether timing constructs are used, and whether it

is Turing-complete.

F. MBD Step 6: Specify Hardware

Select hardware that is capable of withstanding the en-

vironment, interacting with the modeled physical systems,

and implementing the control algorithm. For each component,

consider its input and output bandwidths, delay from input

to output, power usage, measurement resolutions and rates,

and mechanical parameters such as form factor, rejection of

electrical interference, durability, and lifespan. Mechanical

actuators should be capable of producing forces and torques

in excess of minimum values derived from earlier problem

characterizations. Consider and model the impacts of using

cost-effective substitutes for ideal parts; keep in mind that

manufacturer specifications are not always accurate, and that

hardware components should be independently tested.

Selection of an embedded computer may hinge on a deeper

understanding of latency and execution time requirements of

control algorithms, worst-case execution time measurements of

synthesized software, and reasoning as to how software will

interact with a specific hardware architecture. This step may

require several iterations with software design and simulation

before an embedded computer can be selected with confidence.

G. MBD Step 7: Simulate

Solve the problem using a desktop simulation tool. If

multiple models of computation are to be used, simulation

and synthesis tools must allow the compositions of and inter-

actions between multiple models of computation. Depending

on the robustness of the development environment, incor-

porate models of sensors, actuators, and physical processes.

Use platform-based design to separate application logic and

architecture-specific software into modular components, which

can improve code portability, reduce the impact of changing

hardware components, and allow components to be reused in

other contexts [8].

Models of individual components and subsystems are as

important as a complete end-to-end model. Component models

provide a test harness for construction, verification of synthe-

sized software, and testing. If no one modeling tool can com-

pletely describe the system, then for each subsystem use the

modeling tool that best captures its dynamics. While disjoint

simulations cannot represent relationships between signals that

cross subsystem boundaries, or the behavior of compositions

of these subsystems, the exercise facilitates co-iteration of

physical modeling, simulation, and testing. Ptolemy II is

a versatile tool for researching heterogeneity [4], allowing

developers to easily create new models of computation and

simulate their behavior.

Many simulation tools exist, but most are limited to only

a few models of computation and are unable to capture

the interactions between heterogeneous systems. In our case

study, we use Ptolemy II and LabVIEW. The heterogeneous

modeling capabilities of Ptolemy II are well-known [9].

LabVIEW is a capable tool in this realm: continuous systems

are expressed as ordinary differential equations or differential

algebraic equations, and discrete systems are expressed as

difference equations, in the LabVIEW Control, Design, and

Simulation Module; concurrent state machines are expressed

in models created in the LabVIEW Statechart Module (which

implements a variant of Harel’s Statecharts); imperative ex-

pressions are expressed as formula nodes (a subset of ANSI

C) or MathScript nodes (compatible with scripts created by

developers using The Mathworks, Inc. MATLAB software

and others); data acquisition and program flow are expressed

in structured dataflow, which is general enough to allow the

composition of each of these models of computation [10].

H. MBD Step 8: Construct

Build the device according to specifications, taking note

where exceptions have been made that may impact earlier

modeling. Plan construction in a way that allows individual

components and subsystems to be tested against theoretical

models, which facilitates co-iteration between simulation and

testing.

I. MBD Step 9: Synthesize Software

Code synthesizers are sometimes incorporated into desktop

simulation environments, examples of which are LabVIEW

and Ptolemy II. They may directly support the embedded

computer used, or generic code may be synthesized and tied

to handwritten, architecture-specific code. Unlike many tools,

models written in LabVIEW are natively executable across

many platforms without knowledge of architecture-specific

instruction sets or drivers, including desktop computers (for

simulation or data acquisition), real-time processors, FPGAs,

and ARM-based microcontrollers. LabVIEW models may tar-

get custom platforms through arbitrary C code generation. If

code synthesis is infeasible or unavailable, handwritten code

should carefully follow the selected models of computation.

Assuming the code synthesizer produces code that faithfully

executes the semantics of the models of computation used, the

logic of synthesized code is correct by construction. Timing

behavior, however, must still be verified, as code generators

and compilers may introduce software timing artifacts, and

hardware features such as pipelines and caches may introduce

jitter. Other constraints such as memory footprint or processor

utilization may also require independent verification. Timing

and other constraints should be verified against existing mod-

els.

J. MBD Step 10: Verify, and Validate, and Test

Configure adjustable parameters to create test environments

that are as simple as possible, and test each component

and subsystem independently. Computational systems may

be isolated from physical systems via hardware-in-the-loop

testing, where programmable hardware such as embedded

computers or FPGAs simulate the feedback from physical

or other computational processes. Measurements of execution

time and latency can be used to refine previous models, and

unexpected test results may point to errors in modeling or

implementation.

Formal verification and validation give insight into the

behavior of an algorithm over all or certain combinations

of its inputs, or over the course of time. Precisely state

requirements and translate them into a formal specification

for verification and validation. List invariants that should be

verified during testing. Verification and validation are perhaps

the most difficult aspects in the design of a cyber-physical

system.

III. CASE STUDY: THE TUNNELING BALL DEVICE

The Tunneling Ball Device (TBD) [11] is a cyber-physical

system whose operation demands hardware and real-time

embedded computing that deliver high-precision sensing and

actuation. Computations are triggered by a combination of

sporadic, periodic, and quasi-periodic events. Signals present

reflect those in an automotive engine control unit for control

of fuel injection, ignition timing, and valve retraction of an

automotive engine. The system is naturally extensible to a

distributed platform, presenting an interesting example for

modeling distributed cyber-physical systems. For the purposes

of demonstrating our design methodology, we do not consider

a distributed implementation of this system.

A. TBD Step 1: State the Problem

Steel ball bearings are dropped one at a time at sporadic

intervals towards a fixed drop target located below a spinning

disc. The disc has been bored through at two opposite ends,

and the ball will pass (“tunnel”) through untouched if the disc

is correctly aligned at the time of impact. Should the disc be

improperly rotated, the ball will collide with the disc. The

device must sense when a ball is dropped, track the position

of the disc, and adjust the trajectory of the disc so that balls

tunnel through the disc untouched. Only one ball will be

above the disc at any time, and between drops the disc must

maintain constant speed. The disc must not stop at any time,

and changes in rate should be minimal.

B. TBD Step 2: Model Physical Processes

1) Kinematics of a Ball in Freefall: A ball is modeled as a

tuple of its initial altitude, initial velocity, and time at which it

is detected above the drop target, β = (z0, v0, t0) ∈ B, where

B ⊂ R
2
+ × R is the set of all possible ball drop events. Let

z : B ×R −→ R be the altitude from the center of the ball to

the center of the disc,

z(β, t) = z0 − v0(t− t0)−
1

2
g(t− t0)

2 (1)

where g is constant acceleration due to gravity [12].

A ball with radius rb may first contact the disc at arrival time

Ta(β), pass through the center of the disc at time Tc(β), depart

the disc at time Td(β), and is known to be above the disc for

time ∆T (β), where Ta, Tc, Td : B −→ R follow from (1), and

∆T : B −→ R+ is defined ∆T (β) = Ta(β) − t0. The drop

interval [t0, Ta(β)] is the duration for which a ball is known

to be above the disc, and the impact interval [Ta(β), Td(β)]
is the interval over which the ball may contact the disc. The

impact radius RI : B × R −→ R+ is the widest horizontal

slice of the ball that may be passing through the disc:

RI(β, t) =















0 if |z(β, t)| > rb +
h
2

rb if |z(β, t)| < h
2

√

r2b −
(

|z(β, t)| − h
2

)2
otherwise,

(2)

where h denotes the thickness of the disc.

2) Kinematics of a Rotating Disc: Let ϑ = [R −→ (−π, π]]
be the set of functions that describe the rotation of a disc over

time. Note that all angle arithmetic is wrapped to (−π, π]. The

disc has two doors bored at opposing ends, each with radius

rdoor and centered at a distance rdrop from the axis of rotation.

A coordinate system is fixed so that the doors on the disc

are centered above the drop target at rotation 0 and π. The

Euclidean distance d : ϑ × R −→ [0,
√
2rdrop] from the drop

target to the center of the nearest of two doors is

d(θ, t) = 2rdrop sin
(

1
2 min {|θ(t)|, |π − θ(t)|}

)

. (3)

As the disc rotates, the doors pass over the drop target

exposing a tunnel through which a ball may pass. The tunnel

radius RT : ϑ×R −→ [0, rdoor] is the largest allowable impact

radius at time t (Fig. 1):

RT (θ, t) =

{

rdoor − d(θ, t) if d(θ, t) ≤ rdoor

0 if d(θ, t) > rdoor.
(4)

(a) Disc rotated such that a door is
centered over the drop target, yielding
an optimal tunnel.

(b) Disc rotated such that a door is
offset from the drop target, yielding a
sub-optimal tunnel.

Fig. 1. Disc rotations showing optimal and sub-optimal tunnels.

3) Dynamics of a DC Motor with Load: To find a mecha-

nism to control the position of the disc, we recursively apply

MBD to model and characterize a disc with an inertial load,

derive a PID control algorithm, evaluate hardware such as DC

and AC brushed and brushless motors, and simulate using the

continuous model of computation in the LabVIEW Control,

Design, and Simulation Module. We conclude that a DC

brushed motor is a sufficient control mechanism and save our

models for later code synthesis and subsystem testing.

A standard DC brushed motor with torque constant Kτ ,

armature resistance R, armature inductance L, damping coef-

ficient b, back-electromotive force constant KB , input voltage

amplification KA, and net inertia J is modeled by the system

of linear differential equations [13]

τ(t) = Kτ i(t) (5)

KGτ(t) = b
dθ(t)

dt
+ J

d2θ(t)

dt2
(6)

KAv(t) = Ri(t) + L
di(t)

dt
+KB

dθ(t)

dt
(7)

where v : R −→ R is voltage applied to the armature coil, i :
R −→ R is the current induced by this voltage, τ : R −→ R is

the torque produced by the motor, and θ ∈ ϑ is the rotation of

the disc. Moving to the frequency domain, the transfer function

of the system is

Θ(s)

V (s)
=

KAKGKτ

JLs3 + (RJ + Lb)s2 + (Rb+K2
GKBKτ)s

, (8)

where s is the Laplace complex variable [13].

C. TBD Step 3: Characterize the Problem

The Tunneling Ball problem is characterized by six fun-

damental quantities: a worst-case drop (minimum drop time

coinciding with maximum correction angle), the minimum

torque that can accommodate a worst-case drop, the minimum

voltage required to produce this torque, lower and upper

bounds on disc rate, conditions for success, and trajectories

that yield success. We translate these quantities into physical

parameters used to select appropriate hardware for the device.

1) Worst-Case Drop: The initial velocity of a ball is

bounded, so let maximum initial velocity be defined as

vmax = max
β∈B

v0 (9)

and minimum drop time be defined as

tmin = min
β∈B

∆T (β). (10)

For a ball to pass through the disc, a tunnel must be present

at the time of impact, likely requiring the position of the disc

when the ball arrives be altered from its original trajectory.

The center of a door is never more than one-quarter rotation

away from the drop target, hence maximum position error

θmax =
π

2
. (11)

A worst-case drop is tuple (βworst, θworst) ∈ B × ϑ such

that ∆T (βworst) = tmin and θworst (Tc(βworst)) = θmax, which

corresponds to the minimum amount of time to correct for the

maximum position error.

2) Minimum Torque: The trajectory with the least maxi-

mum torque that adjusts for a worst-case drop is given by

Maupertuis’ principle of classical mechanics [14], and is the

result of applying a constant torque τmin over the drop interval.

Given the motor and disc are at steady-state at time t0 = 0
with constant angular velocity ω0 = dθ

dt
(0), and solving motor

equations (5)–(7) subject to ∆T (β) = tmin, τ(t) = τmin,

θ(0) = θmax, and θ(tmin) = 0, for t ≥ t0,

τmin =

(

b

KG

)

θmax

tmin +
J
b

(

1− e−
b

J
tmin

) . (12)

3) Minimum Voltage: The minimum voltage vmin is the

voltage applied to the motor necessary to produce steady-state

torque τmin. Substituting τ(t) = τmin into the motor equations,

KAvmin =

[

R

Kτ

+
KBKG

b

(

1− e−
b

J
tmin

)

]

τmin+KBω0e
−

b

J
tmin .

(13)

4) Rate Bounds: The minimum rate ωmin at which the disc

must spin to accommodate a worst-case drop follows from

minimum torque:

ωmin = ω0 +

(

KG

b
τmin − ω0

)

(

1− e−
b

J
tmin

)

. (14)

If the disc is rotating too fast, it may be impossible for a

ball to tunnel through. An exact bound on disc rate follows

from the kinematics equations but is somewhat cumbersome; a

conservative bound ωmax guarantees the tunnel is always larger

than the radius of the ball over the impact interval:

ωmax =
2 sin−1

(

rdoor−rb
2rdrop

)

max
β∈B

∆T (β)
. (15)

5) Success: A ball successfully tunnels through the disc

if its impact radius is smaller than the tunnel radius for all

times within the impact interval. The predicate S : B× ϑ −→
{true, false} is the conditional for success given a ball and a

trajectory,

S(β, θ) ⇔
[

t ∈ [Ta(β), Td(β)] ⇒ RI(β, t) ≤ RT (θ, t)
]

.

(16)

6) Correction Trajectory: A disc trajectory θ ∈ ϑ is a

correction trajectory for β if and only if β ∈ B and S(β, θ).
At the time a ball drop is detected, the disc must follow a

correction trajectory or the ball will impact the disc.

D. TBD Step 4: Derive a Control Algorithm

Position control of a DC motor with an inertial load is

a simple and well-known problem. We opt for PID control,

and tune its gains using LabVIEW (Fig. 2). To derive a

trajectory planning algorithm, we assume the motor and disc

are at steady-state at time t0 with constant angular velocity

ω0 when a ball is dropped, that tracking error is negligible,

that motor transients are negligible (which restricts correction

trajectories to those with a fixed rate), and that the ball does

not accelerate over the impact interval (hence the impact radius

is symmetric). Under these assumptions, the optimal solution

to the Tunneling Ball problem is to center the nearest door

over the drop target as the center of the ball passes through.

The uncorrected final angle θf : B × ϑ −→ (−π, π]

θf (β, θ) = θ(t0) + ω0∆T (β) (17)

is the projected rotation of the disc at the time of impact. The

correction angle θc : B × ϑ −→ [−θmax, θmax]

θc(β, θ) =

{

−θf (β, θ) if |θf (β, θ)| ≤ π
2

π − θf (β, θ) if |θf (β, θ)| > π
2 .

(18)

is the angle by which the final trajectory must be altered to

center a door over the drop target at impact time. The planning

algorithm Ψ : B×ϑ −→ ϑ that produces the optimal correction

trajectory by applying a constant change in rate when a ball

is detected is

(Ψ(β, θ)) (t) =

{

θ(t) if t < t0

θ(t0) +
[

ω0 +
θc(β,θ)
∆T (β)

]

t if t ≥ t0.
(19)

E. TBD Step 5: Select Models of Computation

PTIDES [15], which faithfully executes discrete-event (DE)

semantics [16], extends DE by specifying timing constraints

at sensor and actuator boundaries, which are used to produce

real-time guarantees through static analysis of the model.

PTIDES models are readily deployed to embedded targets

while still benefiting from the powerful simulation features

of DE. PTIDES is an inherently distributed model of com-

putation, which allows the modeling of systems that are

separated by network boundaries. Given the discrete, mixed-

signal nature of inputs and the potential opportunities for

distributed computation, we find PTIDES to be the best fit

to solve the Tunneling Ball problem.

encoder delay

Plant

amplifier gain

Saturaterate
Trajectory

PID.vi Quantizer ZOH

Fig. 2. LabVIEW model of the motor and PID controller.

Fig. 3. Top-level view of the Tunneling Ball Device in Ptolemy II.

F. TBD Step 6: Specify Hardware

Characterizing the problem required a mechanism for ro-

tating an inertial load, and a recursive application of MBD

verified a DC brushed motor would suffice. The six funda-

mental quantities from the problem characterization are the

basis for selecting a motor, encoder, H-bridge, and embedded

microcontroller.

The drop sensor will be constructed from two sequential

optical sensors at a fixed altitude above the drop target. As

the ball passes through the first optical sensor, the time of the

event is recorded and compared to the time the ball passes

through the second optical sensor, which is the time t0 when

the ball is known to be a fixed altitude above the disc.

G. TBD Step 7: Simulate

Nonlinear operations such as quantization, saturation, and

sampling are difficult to model mathematically; however,

simulating their effects is straightforward in LabVIEW. Our

LabVIEW model for position control of the motor incorporates

the motor transfer function, sampling rate and quantization

of a digital controller, latency and quantization of a PWM

generator, and voltage saturation.

The entire end-to-end heterogeneous system is modeled in

Ptolemy II, making use of its DE, PTIDES, and Continuous

models of computation. The top-level view (Fig. 3) shows

a drop generator, a controller, and physical dynamics actors

connected in a feedback loop.

H. TBD Step 8: Construct

A housing to enclose the motor, disc, and dropped balls is

constructed. As schematics for the device are drawn, design

tradeoffs are easily considered by changing simulation param-

eters. During construction, individual components are tested

against simulations before integrating into larger subsystems.

Measurements of the constructed device are fed back into

simulation for verification.

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

time (s)

e
rr

o
r

(d
e
g
)

(a) Theoretical tracking error. The
graph shows a settling time of 200ms
and steady-state error of 0.1% of a
rotation.

(b) Experimental tracking error. The
graph shows a settling time of 100ms
and steady-state error of 0.5% of a
rotation.

Fig. 4. Theoretical predictions and experimental results for trajectory
planning of the Tunneling Ball Device. The graphs show tracking error versus
time. The system is at rest (ω0 = 0rps) at time t = 0s, and is given a new
trajectory with ω0 = 16rps. The scales of the vertical axes are different.

I. TBD Step 9: Synthesize Software

The first iteration of the software is written by hand in C,

drawing from many aspects of PTIDES. Kinematics lookup

tables are generated from models of ball and disc kinematics.

We leave formal software synthesis from PTIDES as future

work.

J. TBD Step 10: Verify, and Validate, and Test

The success predicate (16) is a first step towards formal

verification. Given a worst-case drop and our planning algo-

rithm, we find a necessary and sufficient condition for which

the device will always succeed,

ω0 +
θmax

tmin

< ωmax. (20)

Such a condition can be used to validate software using formal

temporal logic. We leave formal verification of the TBD as

future work on the PTIDES model of computation.

Position control is independently verified (Fig. 4) before

moving to a system-wide test. The first system-wide test

of the Tunneling Ball Device is a success: with initial disc

rate ω0 = 8rps, a randomly dropped ball passes through

untouched. The test is replicable and succeeds for rates of

up to ω0 = 16rps, nearing the theoretical bound for successful

operation. We consider the late-night proving of the device to

be an illustration of the power of model-based design.

IV. SUMMARY

We introduced model-based design methodology for cyber-

physical systems and evaluated it through the development of

the TBD. It is our strong belief that the Tunneling Ball problem

would have been extremely difficult (if not impossible) to solve

without the use of modeling and simulation. MBD proved

critical in nearly every aspect of development, and especially

in device construction, hardware selection, and selection of

the model of computation. The methodology invokes powerful

modeling theory in a strongly pedagogical application of

mathematics, engineering, and computer science. Each of the

steps investigated in this report is only a preview of a vast

field of research, but the formalization into codependent steps

offers an innovative approach to the design of cyber-physical

systems.

ACKNOWLEDGMENT

This work was supported in part by the Center for

Hybrid and Embedded Software Systems (CHESS) at UC

Berkeley, which receives support from the National Science

Foundation (NSF awards #0720882 (CSR-EHS: PRET) and

#0931843 (ActionWebs), the U. S. Army Research Office

(ARO #W911NF-07-2-0019), the U. S. Air Force Office

of Scientific Research (MURI #FA9550-06-0312), the Air

Force Research Lab (AFRL), the Multiscale Systems Center

(MuSyC), one of six research centers funded under the Focus

Center Research Program, a Semiconductor Research Corpo-

ration program, and the following companies: Bosch, National

Instruments, Thales, and Toyota.

REFERENCES

[1] C. Brooks, C. Cheng, T. Feng, E.A. Lee, and R. von Hanxleden,
“Model Engineering Using Multimodeling”, in 1st International Workshop
on Model Co-Evolution and Consistency Management (MCCM 08),
September 2008.

[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S.
Neema, “Developing Applications Using Model-Driven Design Environ-
ments,” IEEE Computer, vol. 39, no. 2, pp. 33, February 2006.

[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-Integrated
Development of Embedded Software,” Proceedings of the IEEE, vol. 91,
no. 1, January, 2003.

[4] J. Eker, J. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S.
Sachs, and Y. Xiong, “Taming Heterogeneity - The Ptolemy Approach,”
Proceeedings of the IEEE, vol. 91, no. 1. January, 2003.

[5] N. Cutland, Computability: An Introduction to Recursive Function The-

ory. Cambridge, MA: Cambridge University Press, 1997, pp. 100-112,
149-156.

[6] E.A. Lee, “Computing needs time,” ACM Communications, vol. 52, no.
5, pp. 70-79, May 2009.

[7] J. Eidson, E.A. Lee, S. Matic, S.A. Seshia, and J. Zou, “Time-centric
Models for Designing Embedded Cyber-Physical Systems,” University
of California, Berkeley, Technical Memorandum. UCB/EECS-2009-135,
October 2009.

[8] K. Keutzer, A.R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,
“System-Level Design: Orthogonalization of Concerns and Platform-
Based Design,” IEEE Transactions, vol. 19, no. 12. December 2000.

[9] A. Goderis, C. Brooks, I. Altintas, E.A. Lee, and C. Goble, “Hetero-
geneous Composition of Models of Computation,” Future Generation
Computer Systems 25(5): 552-560.

[10] J. Kodosky, J. MacCrisken, and G. Rymar, “Visual Programming using
Structured Data Flow,” IEEE Workshop on Visual Languages, IEEE
Computer Society Press, Kobe, Japan, pp. 3439. October, 1991.

[11] J.C. Jensen, “Elements of Model-Based Design,” University of Califor-
nia, Berkeley, Technical Memorandum. UCB/EECS-2010-19, February,
2010.

[12] H. Young, Sears & Zemanskys University Physics: with Modern Physics,
11th ed. San Francisco, CA: Pearson, 2004, pp. 58-60, 178-181, 334, 345-
346.

[13] S. Shinners, Modern Control System Theory and Design, 1st ed. New
York, NY: Wiley Interscience, 1992, pp. 143-159, 256-258.

[14] E. Corinaldesi, Classical Mechanics for Physics Graduate Students.
Boston, MA: World Scientific Publishing, 1999, pp. 12-13.

[15] P. Derler, T. Feng, and E.A. Lee, “PTIDES: A Programming Model
for Distributed Real-Time Embedded Systems,” University of California,
Berkeley, EECS Technical Report. EECS-2008-72, May 2008.

[16] G. Fishman, Discrete-Event Simulation: Modeling, Programming, and

Analysis. Springer-Verlag, 2001.

