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Abstract- The Pareto optimal solutions to a multi-

objective optimization problem often distribute very

regularly in both the decision space and the objective

space. Most existing evolutionary algorithms do not

explicitly take advantage of such a regularity. This

paper proposed a model-based evolutionary algorithm

(M-MOEA) for bi-objective optimization problems. In-

spired by the ideas from estimation of distribution algo-

rithms, M-MOEA uses a probability model to capture

the regularity of the distribution of the Pareto optimal

solutions. The Local PCA and the least-squares method

are employed for building the model. New solutions are

sampled from the model thus built. At alternate genera-

tions, M-MOEA uses crossover and mutation to produce

new solutions. The selection in M-MOEA is the same

as in NSGA-II. Therefore, MOEA can be regarded as a

combination of EDA and NSGA-II. The preliminary ex-

perimental results show that M-MOEA performs better

than NSGA-II.

1 Introduction

Many engineering areas involve the following multi-

objective optimization problem:

min
x∈Ω

F (x) =







f1(x)
...

fm(x)






(1)

where x = (x1, . . . , xn)T ∈ Rn is the decision vari-

able vector. Ω ⊆ Rn is the decision space, fi(x)(i =
1, 2, . . . , m) are the objective functions to be minimized.

Generally there is no solution which can minimize every fi

simultaneously. In multi-objective optimization, the com-

ponentwise order is used in ranking the solutions. Let

a = (a1, . . . , am), b = (b1, . . . , bm) ∈ Rm be two vec-

tors, a is said to dominate b, denoted by a ≺ b, if ai ≤ bi

for all i = 1, . . . , n, but a 6= b. A solution x⋆ ∈ Ω
is called (globally) Pareto optimal if there is no x ∈ Ω
such that F (x) ≺ F (x⋆). The set of all the Pareto op-

timal solutions, denoted by Ω⋆, is called the Pareto opti-

mal set. The set of all the Pareto optimal objective vectors,

PF = {y ∈ Rm|y = F (x), x ∈ Ω⋆}, is called the Pareto

front. Multi-objective optimization algorithms aim to find

an approximation of the Pareto optimal set and/or the Pareto

front.

Since the publication of Schaffer’s seminal work [1], a

number of multi-objective evolutionary algorithms(MOEA)

have been developed [2, 3, 4, 5, 6]. In MOEAs, multiple

individuals search for multiple solutions in a collaborative

way and can produce a set of nearly Pareto optimal solutions

in a single run. Most MOEAs focus on the Pareto front and

try to find a set of solutions that are as close to the Pareto

front as possible and as diverse as possible. The approxi-

mation of the Pareto optimal set has not been explicitly ad-

dressed in these algorithms. Their solutions are often poor

in terms of closeness to the Pareto optimal set and unifor-

mity in the decision space. As argued in [7, 8], the Pareto

optimal solutions often distribute so regularly in the deci-

sion that they can be described by (piecewise) continuous

surfaces (curves in the case of bi-objective optimization). In

fact, it has been found that the Pareto optimal sets can be de-

fined as linear or piecewise functions for most widely-used

test problems of multi-objective optimization in the evolu-

tionary computation community [8]. Most MOEAs ignore

such a regularity.

Estimation of distribution algorithms (EDAs) are a new

computing paradigm in evolutionary computation. There is

no crossover or mutation in EDAs. Instead, they explicitly

extract global statistical information from the selected so-

lutions and build a posterior probability distribution model

of promising solutions, based on the extracted information.

New solutions are sampled from the model thus built and

fully or in part replace the old population. Several EDAs

have been developed for multi-objective optimization prob-

lems [9, 10, 11]. However, these EDAs do not take the

regularity into consideration in building probability models.

Note that probability modelling techniques under regularity

have been widely investigated in the area of statistical learn-

ing, it is very suitable to take the advantage of the regularity

in the design of EDAs for MOP. Compared with traditional

evolutionary algorithms, EDAs mainly rely on global sta-

tistical information collected from the previous search for

guiding their further search. The information about the lo-

cations of the solutions found so far is not directly used in

the search. Recently, combinations of traditional GAs and

EDAs have been proposed for solving single objective opti-

mization problems [12, 13, 14].

As one of the first attempts to capture and utilize the

regularity of the distribution of Pareto solutions in the de-

cision space, Voronoi-based Estimation of Distribution Al-

gorithm (VEDA) for MOP has been proposed in [15] very



recently. In VEDA, the distribution of promising solutions

in the decision space is learned by clustering and princi-

pal component analysis (PCA) algorithms. Then Voronoi

meshes are constructed to model the distribution under the

assumption of the regularity. Their preliminary experimen-

tal results are very encouraging. However, combination of

clustering and PCA are not very suitable to learn nonlin-

ear continuous curves or surfaces and in addition, building

Voronio meshes can be very time-consuming, particularly,

for the problems with a large number of decision variables.

Inspired by the idea behind VEDA for MOP and suc-

cessful combinations of GAs and EDAs for single optimiza-

tion problems [12, 13, 14], this paper proposes a model-

based evolutionary algorithm (M-MOEA) for bi-objective

optimization problems. M-MOEA has the following fea-

tures:

• A probability model is built to model the promising

area in the decision space. New solutions are sampled

from the model thus built. Taking into consideration

the regularity in the distribution, the model assumes

that the Pareto optimal solutions for a bi-objective op-

timization problem is a piecewise continuous curve.

• At alternate generations, crossover and mutation are

employed to generate new solutions. In this way, the

location information of the non-dominated solutions

found so far is used to guide the further search, which

compensates for the ignorance of the location infor-

mation in the EDA method.

• The selection method is the same as in NSGA-II[6].

The rest of the paper is organized as follows. M-MOEA

is described in detail in the next section. The experimental

results are shown in Section 3 to compare the performance

of M-MOEA and NSGA-II. The final section outlines the

conclusions and further research topics.

2 Algorithm

2.1 The Framework

The proposed M-MOEA is for solving the bi-objective opti-

mization problem (Problem (1) with m = 2). It maintains a

population of candidate solutions P (t) at generation t. GA

offspring generators (i.e., crossover and mutation) and an

EDA method are used for generating new solutions at alter-

nate generations. The next generation are selected from the

new solutions and the current population. The structure of

M-MOEA is shown in Figure 1.

The details of the main ingredients of M-MOEA are ex-

plained in the following.

Algorithm(M-MOEA)

Step 0 Initialization: Set t = 0 and initialize P (t).

Step 1 Reproduction:

If t%2 == 0, perform crossover and mutation on

P (t) to generate a set of new solutions, Ps(t).

Else use the EDA method to generate Ps(t).

Step 2 Selection: Select P (t + 1) from Ps(t) ∪ P (t).

Step 3 Stopping Condition: If the stopping condition is

met, stop; otherwise, set t = t + 1 and go to Step 1.

Figure 1: The framework of M-MOEA

2.2 Initialization

N solutions are sampled from the decision space randomly

and uniformly to constitute P (0).

2.3 Crossover and Mutation

Recent studies show that EDAs alone cannot solve hard

problems very well since EDAs do not utilize the location

information of the best solutions found so far, the solutions

generated by EDAs can be far away from the best solutions

found so far, particulary in the early stage of the search. The

combination of EDAs and traditional GAs has proved an ef-

ficient way for solving hard problems [12, 13, 14].

In Step 2 of M-EOEA, if t%1 == 0, we perform

crossover and mutation on P (t) to create N new solutions

to form Ps(t). The crossover and mutation operators used

are the same as in NSSA-II [6].

2.4 EDA Method for Generating Offspring

The proposed EDA method for generating offspring esti-

mates the shape of Pareto optimal set from the current pop-

ulation and then uses this estimation to guide the further

search. It first partitions P (t) into several subsets. Then a

probability model is built for each subset for estimating the

distribution of its solutions. These models are repeatedly

sampled to generate new solutions.

2.4.1 Probability Model

If f1 and f2 are continuous, Pareto optimal set of a bi-

objective optimization problem is very likely to be a contin-

uous curve or several continuous curves. After a few gener-

ations, the population in an EA for such a problem should

be distributed around these curves in the decision space. For

this reason, M-MOEA assumes that the population P (t) can



be partitioned into several clusters. The points in each clus-

ter distribute around a bounded continuous curve. More pre-

cisely, the points in a cluster can be regarded as independent

observations of the following n-D random vector:

ξ = ξ1 + ξ2 (2)

where ξ1 is uniformly distributed along a continuous curve

and ξ2 is a random noise vector. The underlying curve for

ξ1 is called the centroid curve of ξ in this paper. For the sake

of simplicity, we assume that ξ1 and ξ2 are independent of

each other, and ξ2 obeys a normal distribution.

2.4.2 Partition

The Local PCA algorithm [16] is used in the proposed

EDA method for partitioning P (t) into K disjoint clusters

S1, . . . , SK (where K is a user-specified algorithmic para-

meter in the local PCA algorithm).

Suppose Sk contain Nk points xk,1, . . . , xk,Nk , the mean

of Sk is:

x̄k =
1

Nk

Nk
∑

i=1

xk,i,

and the covariance matrix of the points in Sk is

Vk =
1

|Nk| − 1

Nk
∑

i=1

(xk,i − x̄k)(xk,i − x̄k)T .

The i-th principal component vk,i of Sk is a unity eigenvec-

tor associated with the i-th largest eigenvalue λk,i of Vk. Let

Lk be the line passing through the point x̄k in the direction

of vk,1, the partition of P (t) by the Local PCA algorithm

minimizes the squared reconstruction distance:

K
∑

k=1

Nk
∑

i=1

[d(xk,i, Lk)]2,

where d(xk,i, Lk) is the shortest Euclidean distance from

xk,i to the curve Lk.

Compared with the widely-used K-means clustering, the

Local PCA algorithm is advantageous for dealing with the

data whose distribution can be approximately modelled by

(2). The details of the local PCA algorithm can be found in

[16].

2.4.3 Modelling

As discussed in 2.4.1, the underlying random vector for

each cluster can be modelled by (2).

To model the distribution of the underlying random vec-

tor ξk for Sk, the scalar projection of xk,i − x̄k along the

first principal component vk,1 is computed:

θk,i = (xk,i − x̄k)T vk,1.

Therefore, x̄k + θk,ivk,1 is the projection point of xk,i on

the line Lk.

Let Ak and Bk denote the minimum and maximum of

θk,i, i = 1, 2, . . . , Nk respectively. Set

ρk =
λk,2

Bk − Ak

.

If ρk is small, then the points in Sk are close to its centroid

curve. Therefore, it is very likely to obtain a good approx-

imation of its centroid curve from the points in Sk. In this

case, we model the centroid curve as a cubic curve. On the

other hand, if ρk is not small, then it is impractical to use

a fine model for approximating its centroid curve. We use

a linear model for large ρk. In the following, the details of

modelling of the distribution of ξk is given.

Case A when ρk ≥ ρ, where ρ is an algorithmic parameter,

the underlying random vector ξk is modelled as

ξk = ξk,1 + ξk,2,

where

• ξk,1 = x̄k + ηvk,1, η is a uniform random vari-

able in [Ak−0.1(Bk−Ak), Bk+0.1(Bk−Ak)],

• ξk,2 = Σn
i=2

εivk,i, each εi obeys the normal

distribution N(0, λk,i), i = 2, . . . , n,

• the random variables η, ε2, . . . , εn are indepen-

dent of each other.

Case B when ρk < ρ, the underlying random variable ξk is

modelled as

ξk = ξk,1 + ξk,2,

where

• ξk,1 = g(η), η is a uniform random variable in

[Ak −0.1(Bk −Ak), Bk +0.1(Bk −Ak)]. x =
(g1(s), . . . , gn(s)) is a curve parameterized by

s, its component xj = gj(s) is the least-squares

cubic which fits:

x
k,i
j ≈ g(θk,i).

• ξk,2 = Σn
i=2

εivk,i, each εi obeys the normal

distribution N(0, λk,i), i = 2, . . . , n,

• the random variables η, ε2, . . . , εn are indepen-

dent of each other.

2.4.4 Sampling

After establishing the probability models for all the clusters

S1, . . . , SK , we sample from these models for generating

new solutions to form Ps(t). For each cluster Sk, we sample

[Nk

3
] points from its model.



Note that the range of the random variable ξk,1 is larger

than that of the scalar projections θk,i, i = 1, 2, . . . , Nk in

the models. Therefore, the algorithm is able to explore new

areas in the decision space. This exploration is guided by

the models. On the other hand, the new solutions sampled

are distributed around the centroid curves (or lines). In such

a way, the algorithm intensifies its search in the promising

areas.

2.5 Selection

The selection operator is the same as in NSGA-II. The de-

tails of the selection operator can be found in [6].

3 Experimental Results

We compare the performances of M-MOEA and NSGA-II

experimentally on a set of test problems.

3.1 Test Problems

The following test problems are used in our experimental

studies.

Test Problem 1 (ZDT1.1):

f1 = x1

f2 = g × (1.0 −
√

f1

g
)

g(x2, . . . , xn) = 1.0 + 9

n−1
Σn

i=2
(xi − x1)

2

0 ≤ xi ≤ 1, i = 1, . . . , n

(3)

This problem is a modified version of ZDT1 [17]. The

Pareto optimal set of ZDT1 is

Ω⋆
ZDT1 = {0 ≤ x1 ≤ 1, x2 = . . . = xn = 0},

which all the decision variables but x1 are constant. There-

fore, ZDT1 is not hard for any model-based EAs. This is the

reason why we do not use ZDT1 in our experiments. The

Pareto optimal set of ZDT1.1 is

Ω⋆
ZDT1.1 = {0 ≤ x1 ≤ 1, x2 = . . . = xn = x1},

which is a line segment in Rn.

Test Problem 2 (ZDT1.2):

f1 = x1

f2 = g × (1.0 −
√

f1

g
)

g(x2, . . . , xn) = 1.0 + 9

n−1
Σn

i=2
(x2

i − x1)
2

0.0 ≤ xi ≤ 1.0, i = 1, . . . , n

(4)

This problem is another modified version of ZDT1. Its

Pareto optimal set is

Ω⋆
ZDT1.2 = {0 ≤ x1 ≤ 1, x2 = . . . = xn =

√
x1},

which is a bounded nonlinear curve.

Test Problem 3 (ZDT2.1):

f1 = x1

f2 = g × (1.0 − ( f1

g
)2)

g(x2, . . . , xn) = 1.0 + 9

n−1
Σn

i=2
(xi − x1)

2

0.0 ≤ xi ≤ 1.0, i = 1, . . . , n.

(5)

This problem is a modified version of ZDT2 [17]. The

Pareto optimal set of original ZDT2 is

Ω⋆
ZDT2.1 = {0 ≤ x1 ≤ 1, x2 = . . . = xn = 0},

which is a line parallel to the x1− axis. In contract, the

Pareto optimal set of ZDT2.1 is

Ω⋆
ZDT2.1 = {0 ≤ x1 ≤ 1, x2 = . . . = xn = x1},

which is a line with nonzero slope at any axis.

Test Problem 4 (ZDT2.2):

f1 =
√

x1

f2 = g × (1.0 − f1

g
)

g(x2, . . . , xn) = 1.0 + 9

n−1
Σn

i=2
(x2

i − x1)
2

0.0 ≤ xi ≤ 1.0, i = 1, . . . , n

(6)

Its Pareto optimal set is

Ω⋆
ZDT2.2 = {0 ≤ x1 ≤ 1, x2 = . . . = xn =

√
x1},

which is a bounded nonlinear curve.

Test Problem 5 (FON [17]):

f1 = 1 − exp(−
n
∑

i=1

(xi − 1√
n
)2)

f2 = 1 − exp(−
n
∑

i=1

(xi + 1√
n
)2)

−4.0 ≤ xi ≤ 4.0, i = 1, . . . , n

(7)

Its Pareto optimal set is

Ω⋆
FON = {− 1.0√

n
≤ x1 ≤ 1.0√

n
, x2 = . . . = xn = x1},

which is a line segment.

3.2 Performance Measures

Two performance indices are used to compare the perfor-

mance of different performances in our experimental stud-

ies.

Let S1 and S2 be two finite subsets of the solution space,

the first index Coverage of Two Sets [18] is defined as:

C(S1, S2) =
|{x|x ∈ S1,∃y ∈ S2 : F (x) ≺ F (y)}|

|S1|
, (8)
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Figure 2: The evolution of the average GD(P, Q) and GD(Q,P ) of 20 runs with the number of F -function evaluations in

ZDT2.2

where C(S1, S2) represents the percentage of the solutions

in S1 which are dominated by at least one solution from

S2. C(S1, S2) is not necessarily equal to 1 − C(S2, S1). If

C(S1, S2) is small and C(S2, S1) is large, then S1 are better

than S2 in a sense.

The second index is Generational Distance(GD) [19],

which is defined as follows1

GD(S1, S2) =
1

|S1|
∑

x∈S1

d(x, S2), (9)

where

d(x, S2) = min
y∈S2

‖F (x) − F (y)‖2.

GD(S1, S2) measures the distance from S1 to S2. Gener-

ally, GD(S1, S2) 6= GD(S2, S1). If Q = {x̃1, . . . , x̃J} ⊂
Ω⋆ and its corresponding F−vectors F (x̃1), . . . , F (x̃J)
are uniformly distributed along the Pareto front PF , then

GD(S1, Q) can measure the closeness of S1 to Ω⋆ while

GD(Q,S1) measures the spread of S1 to a certain degree.

3.3 Experimental Setup

The number of decision variables in all the test problem is

10. The setting of the algorithmic parameter values in M-

MOEA and NSGA-II is given in Table 1.

The stopping condition for both algorithms: The al-

gorithms stop after a given number of evaluations of the ob-

jective function F (x).

1The definition is little different from the original one:GD(S1, S2) =

1

|S1|

√

∑

x∈S1

d(x, S2)2.

Table 1: Parameter Setting in M-MOEA and NSGA-II

Parameters M-MOEA NSGA-II

Population Size (N ) 100 100

The Number of Clusters (K)

in Local PCA 3

ρ 0.01

Crossover Rate 1.0 1.0

Mutation Rate 0.1 0.1

3.4 Results

In order to compare the average behaviors of M-MOEA

and NSGA-II, 20 independent comparisons have been per-

formed between these two algorithms for each test problem.

In each comparison, two algorithms start with the same ini-

tial population that are randomly generated, GD(P,Q) and

GD(Q,P ) at each generation are computed and recorded

for each algorithm, where Q is set as in Section 3.2 and its

size is 1000, P is the current population.

Figure 2 shows the evolution of the average GD(P,Q)
and GD(Q,P ) of 20 runs with the number of F -function

evaluations in both M-MOEA and NSGA-II for ZDT2.2.

Clearly, GD(P,Q) and GD(Q,P ) are smaller in M-

MOEA than in NSGA-II after 1, 000 F -function evalua-

tions. Therefore, we can conclude that M-MOEA performs

better than NSGA-II in terms of the quality of the solutions

in the long term, although NSGA-II outperforms M-MOEA

in the early generations.

Let PM and PN be the final solution sets resulted from

M-MOEA and NSGA-II, respectively, the average value,

the maximum and the minimum of C(·)’s and GD(·)’s in

20 runs in both M-MOEA and NSGA-II for all the test

problems are presented in Table 2. The algorithms stop af-



Table 2: Comparison between M-MOEA and NSGA-II

Performance Index

C(PN , PM ) C(PM , PN ) GD(PM , Q) GD(Q,PM ) GD(PN , Q) GD(Q,PN )
Mean 0.027000 0.403550 0.002015 0.004929 0.004919 0.014848

ZDT1.1 Min 0.000000 0.190000 0.001303 0.004484 0.004013 0.007026

Max 0.090000 0.610000 0.002549 0.005393 0.005551 0.042239

Mean 0.051900 0.273650 0.002610 0.005318 0.004445 0.055772

ZDT1.2 Min 0.000000 0.100000 0.002127 0.004864 0.003177 0.008089

Max 0.180000 0.520000 0.003757 0.006260 0.006028 0.159617

Mean 0.039100 0.470800 0.002646 0.005825 0.006388 0.015197

ZDT2.1 Min 0.000000 0.260000 0.001545 0.004765 0.005472 0.008084

Max 0.150000 0.710000 0.003440 0.007755 0.007907 0.037905

Mean 0.057300 0.301075 0.002801 0.005436 0.004749 0.097906

ZDT2.2 Min 0.000000 0.030000 0.002106 0.004907 0.002248 0.013462

Max 0.180000 0.530000 0.003924 0.006216 0.006338 0.365518

Mean 0.057600 0.593250 0.004104 0.007574 0.008304 0.013236

FON Min 0.000000 0.150000 0.002364 0.005084 0.007123 0.009542

Max 0.310000 0.880000 0.008041 0.013749 0.010078 0.016432

ter 14, 000 F−function evaluations for FON and 10, 000
for the other functions. We can conclude from these results

that the quality of the solutions produced in M-MOEA are

higher than in NSGA-II for the test problems.
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Figure 3: The results on ZDT1.1

Figure 3-7 show the distributions of the final solutions

found by each algorithm after 10,000 F−function evalua-

tions in a single run in both x1−x2 space (there are 10 deci-

sion variables in the test problems) and the objective space.

As we can see from these figures, M-MOEA performs better

than NSGA-II, particularly in the aspect of spread of solu-

tions in both decision space and objective space. These re-

sults imply that the proposed EDA mechanism can improve

the algorithm.
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Figure 4: The results on ZDT1.2

4 Conclusions

M-MOEA, a combination of EDA-like methods and NSGA-

II for bi-objective optimization problems, has been pro-

posed in this paper. M-MOEA exploits the regularity in

the distribution of Pareto optimal solutions of a MOP and

builds a probability model to estimate the promising area

in the search space. The Local PCA algorithm and least-

squares fitting are employed in modelling. New solutions

are sampled from the model thus built. In order to take the

advantage of the location information collected in the previ-

ous search, M-MOEA also uses crossover and mutation to

generate new solutions at alternate generations.
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Figure 5: The results on ZDT2.1
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Figure 6: The results on ZDT2.2

We compared the proposed M-MOEA and NSGA-II on

five test problems. Our preliminary experimental results

showed that M-MOEA performed better than NSGA-II.

The future work may investigate other simple and ef-

ficient modelling methods to exploit the regularity of the

Pareto optimal solutions in both the decision space and the

objective space. The incorporation of traditional optimiza-

tion methods with M-MOEA is also a further avenue for

investigation. How to generalize M-MOEA to MOP with

more than two objectives and MOPs with a disconnected

Pareto front is also a challenging research topic.
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Figure 7: The results on FON
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