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LIST OF SYMBOLS 

 

1. Remarks about the nomenclature followed 

 

The application aspect of the present work spans multiple engineering disciplines, 

the most notable of which are vibration and signal analysis, and fracture mechanics. Each 

discipline utilizes particular symbols to describe physical or mathematical parameters of 

importance. However, some of the symbols used to represent different parameters are the 

same across different disciplines, even if the parameters are completely unrelated. Such is 

the case, for example, of the Greek-alphabet letter σ, which is generally recognized to 

represent the standard deviation in Statistics and signal analysis, and the stress in 

Mechanical Engineering. 

Although it would have been possible to assign different symbols to different 

parameters to avoid confusion within this document, it was decided not to proceed thus. 

The approach has been to maintain the standard use of symbols followed by each 

concerning discipline, even if the symbols are reused. Confusion is averted by focusing in 

individual chapters. Thus, all symbols used within each chapter have been ensured to 

maintain one definition only. Chapters 3 through 5 will follow the symbol definitions 

concerning analysis of vibration. Chapter 5 additionally uses unambiguous symbols to 

represent vibration-based condition indicators. Chapters 6 and 7 will follow the symbol 

definitions concerning fracture analysis. The symbol definitions for each of these areas of 

concern are listed, separately, below. 
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2. Symbols used in the analysis of vibration of gearboxes
1
 – Chapters 3 through 5 

nα  Amplitude of component n in the frequency representation of the intensity 

curve of the meshing vibration signal of a single planet gear in translation as 

perceived on a fixed point over the annulus gear; note that nn −= αα  for all 

values of n 

mβ  Amplitude of harmonic component m in the non-epicyclic tooth meshing 

vibration signal of a pair of gears as measured from a fixed point 

pδ  Angular shift of planet gear number p in a planetary gearbox, as measured with 

respect to its corresponding θp; a gearbox with equally spaced planet gears 

would have pδ = 0 for all p 

nmp ,,ϕΔ  Change in the phase angle nmp ,,ϕ  in sideband (m, n) resulting from an angular 

shift pδ  in planet gear number p of a planetary gearbox 

η  A normally distributed random variable with mean µ and variance σ 2 

mη  A normally distributed random variable with zero-mean (µ =0) and variance 

 2σ m

nm,η  A random variable with mean µ m,n and variance  2σ ,nm

pθ  Angular position of planet gear number p over the planetary carrier in a 

planetary gearbox 

µ Mean of a normal probability distribution 

µ m,n Mean of random variable nm,η . µ m,n is approximately equal to the mean value 

of SBm,n in a particular set of experimental gearbox vibration data that is 

affected by the presence of noise 

π The mathematical constant describing the ratio of a circle’s perimeter to its 

diameter  

σ 2 Variance of a normal probability distribution 

                                                 
1 When referring to certain aspects of gearbox vibration, the present work sometimes refers and expands on 

the ideas presented by McFadden and Smith (1985) and by Keller and Grabill (2003). Their respective 

works used different notations for certain physical magnitudes that were, however, common between them. 

For those magnitudes that are of concern in this thesis, not to suggest a third notation system and 

considering that the work of Keller and Grabill is more recent, the notation used by Keller and Grabill is 

given preference, although not always strictly followed. Deviations from their notation system are 

expressly identified in footnotes. 
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2

mσ  Variance of the random variable mη .  is the variance that is added to a series 

of sidebands SBm,n, for n = –N  to N, in the spectrum of simulated gearbox 

vibration to approximate the behavior of the corresponding series of SBm,n in a 

particular set of experimental gearbox vibration data that is affected by the 

presence of noise. The behavior approximated is that shown by the evaluation 

of vibration-based condition indicators 

2

mσ

2

,nmσ  Variance of random variable nm,η .  is the variance that is added to sideband 

SBm,n in the spectrum of simulated gearbox vibration to approximate the 

behavior the corresponding SBm,n in a particular set of experimental gearbox 

vibration data that is affected by the presence of noise. The behavior 

approximated is that shown by the evaluation of vibration-based condition 

indicators.  is approximately equal to the variance of SBm,n in the 

experimental gearbox vibration 

2

,nmσ

2

,nmσ

nm,Φ  Phase angle of sideband (m, n) in the spectrum of the planetary gearbox 

(vibration of all planet gears combined) 

nm,Φ
r

 Phasor (vector quantity representation) of sideband (m, n) in the spectrum of the 

planetary gearbox (vibration of all planet gears combined) 

-spcequal

,nmΦ  The value of  in a planetary gearbox with equally spaced planet gears nm,Φ

shifted

,nmΦ  The value of  in a planetary gearbox with unequally spaced planet gears nm,Φ

nmp ,,ϕ  Phase angle of sideband (m, n) in the spectrum of planet gear number p 

nmp ,,ϕ
r

 Phasor (vector quantity representation) of sideband (m, n) in the spectrum of 

planet gear number p 

spc-equal

,, nmpϕ  The value of nmp ,,ϕ  in a planetary gearbox with equally spaced planet gears 

shifted

,, nmϕ nmp ,, The value of ϕ  in a planetary gearbox where planet gear number p has 

shifted away from the equally spaced angular position 

p

c  Constant factor for characterizing the amplitude of sidebands; 2pNc =  for 

sidebands with n=0; 4pNc =

ie

                                                

 for sidebands with n≠0 

 Individual “error” terms used in the implementation of least squares 

optimization 

d Value of n for which sideband (m, n = d) is dominant
2
 (see section 3.4.4) 

f Frequency 

f
 s
 Planetary carrier plate rotation frequency (fc for McFadden and Smith) 

 
2 Keller and Grabill refer to this parameter as ndominant. For simplicity, d is used instead within this thesis. 
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G Index for Np-Sideband Groups (see section 5.5) 

i Index for error and weight terms in the implementation of least squares 

optimization 

K Total number of elements in an indexed series 

k Discrete, integer index; this symbol is used in generalizations 

M Total number of harmonics of the tooth meshing frequency to consider in 

vibration analyses 

m Index for harmonics of the tooth meshing frequency; m = 1, 2, …, M 

(m, n) Identifier pair for specific sidebands (frequency components) in the vibration of 

a planetary gearbox; (m, n) refers to the sideband located at frequency 

 s

t fnNmf ⋅+⋅= )(

s

t fnNmf ⋅+⋅= )(

|| ,, nmnmSB Φ=

N Total number of multiples of the carrier rotation frequency to consider in 

vibration analyses 

n Index for multiples of the carrier plate rotation frequency
3
; n = –N, …, –1, 0, 1, 

…, N 
4
 

Np Total number of planet gears in a planetary gearbox (referred to as N by 

McFadden and Smith) 

Nt Number of teeth in the annulus gear of a planetary gearbox (Za for McFadden 

and Smith) 

p Index for the number of planet gears present in a specific geometry of a 

planetary gear arrangement
5
 

SBm,n Half amplitude of the frequency component located at frequency 

, i.e., of sideband (m, n), in the vibration signal of a 

planetary gearbox. Note that 
r

 

experim

,nmSB

                                                

 The mean value of SBm,n in experimental vibration that is affected by noise 

 
3 Keller and Grabill refer to this parameter as an “index of shaft harmonics”. This term may be somewhat 

misleading because, strictly speaking, we are not studying vibrations of the shaft (i.e., we are not 

considering its fundamental vibration frequency and harmonics). Rather, following in the steps of 

McFadden, we are concerned with the modulation effect caused by the rotation of the planet gears around 

the sun gear at the angular speed (frequency) of the planetary carrier plate. This modulating signal can be 

decomposed in the frequency domain to generate indexed coefficients (in n) that, although being multiples 

of the carrier plate or “shaft” rotation frequency, are in cases like this not typically referred to as harmonics, 

but as frequency or spectral components instead. McFadden referred to these as “nth sidebands.” 
4 McFadden and Smith defined n as an integer number. Keller and Grabill used it as a nonnegative integer 

in their equations, so that in their paper we see two terms whenever n is referenced, one for +n and one for 

–n. In this thesis, McFadden’s definition is followed to avoid this duplication. 
5 Keller and Grabill refer to this parameter as np. To avoid a sub-sub-index notation necessary in some 

equations, the single letter p is used in this thesis. 
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noiseless

,nmSB  The value of SBm,n in a simulated vibration signal before simulated noise is 

added 

noisy

,nmSB  The value of SBm,n in a simulated vibration signal after simulated noise is added 

Tp Time it takes for planet gear number p to reach the closest point to a vibration 

sensor mounted on the annulus gear of a planetary gearbox (see section 3.3.2.3) 

t Time 

wi Weights for the individual error terms used in the implementation of least 

squares optimization 

X Number of adjacent sideband groups taken in averaging operations for 

condition indicator evaluations (see section 5.5.3) 

x Any discrete-time signal 

xk Individual discrete-time samples of signal x, indexed in k. 

y Vibration signal of a planetary gearbox in continuous time 

yp Vibration signal generated individually by planet gear number p in a planetary 

gearbox in continuous time 

 

 

3. Vibration-based condition indicators (vibratory features) – Chapter 5 

 

avgND Average size of non-dominant sidebands 

BrelSG Basic relative size of sidebands in an Np-sideband group 

BrelSX Group averaging of BrelSG 

HA Harmonic averaging operation; can be applied to any relative feature. The HA 

operation is specified as a sub-index; for example relSXHA is the harmonic 

averaging of the relSX feature 

relHSI Size-X relative harmonic sideband index 

relSG Compensated relative size of sidebands in an Np-sideband group 

relSI Relative sideband index 

relSX Group averaging of relSG 

SI Sideband index 

SLF Sideband level factor 
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4. Symbols used in fracture analysis – Chapters 6 and 7 

 

α Newman’s crack closure model constraint factor 

ΔK Crack-tip stress intensity range 

ΔKeff Effective crack-tip stress intensity range 

ΔKeff, torque cycle Effective crack-tip stress intensity range for a full cycle of torque applied 

to a helicopter transmission 

ΔKeff, n Effective crack-tip stress intensity range for a cycle of load described within a 

series n of similar cycles applied to a helicopter transmission 

θ Angular coordinate in a polar coordinate system  

π The mathematical constant describing the ratio of a circle’s perimeter to its 

diameter  

σ Directional stress in a specific spatial location near a crack tip; the parameter is 

either used generally or direction is made clear by the context of use; the 

direction be any of the x, y, or z directions of a normal stress, or the xy, yz, or zx 

directions of a shear stress 

σop Crack-opening stress 

σy Newman’s closure model flow stress 

An Amplitude of load cycles in a particular series of cyclic loads. The series is 

identified by the sub-index n 

a Crack length 

C Fatigue crack growth coefficient 

f Function 

K Geometric crack-tip stress intensity factor 

KLoad Instantaneous value of K for a particular application of a static load. The value 

of the load, referenced by the sub-index, is in percent of the nominal engine 

torque of the helicopter 

Kmax Maximum value of K within an individual fatigue load cycle 

Kmean Mean value of K within an individual fatigue load cycle 

Kmin Minimum value of K within an individual fatigue load cycle 

Kop Instantaneous value of K within a load cycle when σ = σop 

Kpε Value of K for a particular case assuming plane-strain conditions 

Kpσ   Value of K for a particular case assuming plane-stress conditions 

m Fatigue crack growth exponent 

N Index for the number of load cycles applied causing fatigue of a material 
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n Index for a particular series of cyclic loads applied to the helicopter 

transmission. All series described by a particular n have cycles that are 

comparable in some way 

r Radial coordinate in a polar coordinate system 

R Stress intensity ratio; R = Kmin / Kmax 

S Instantaneous load 

%S  Normalized load 

Smax Maximum value of a cyclic load 

%

max

%

mean,S

S

 eff

%

minS

%

opS

KUKeff Δ⋅=

 Normalized value of maximum cyclic load 

 Normalized mean effective load 

Smin Minimum value of a cyclic load 

 Normalized value of minimum cyclic load 

Sop Instantaneous value of the load S at which Kop exists 

 Normalized value of Sop 

U Elber’s effective stress correction factor; Δ  

x Distance on the horizontal (x) axis 
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SUMMARY 

This thesis presents a framework for integrating models, simulation, and 

experimental data to diagnose incipient failure modes and prognosticate the remaining 

useful life of critical components, with an application to the main transmission of a 

helicopter. Although the helicopter example is used to illustrate the methodology 

presented, by appropriately adapting modules, the architecture can be applied to a variety 

of similar engineering systems. Models of the kind referenced are commonly referred to 

in the literature as physical or physics-based models.  Such models utilize a mathematical 

description of some of the natural laws that govern system behaviors. 

In recent years, a paradigm shift has been introduced in the way critical systems 

are maintained and operated to ensure their safety, availability and reliability. The 

technology base is focusing on technologies to monitor, process on-line real-time data, 

and detect and predict the remaining useful life of failing components or subsystems. The 

military and industrial sectors are recognizing the importance of such condition-based 

maintenance (CBM) or prognostic and health management (PHM) technologies, and are 

actively pursuing their development and implementation. 

The present work addresses a significant component of CBM or PHM. An attempt 

is made to (1) detect and identify a fault before an engineering system is brought to 

failure, and (2) provide information about how much time the system can operate safely 

before it fails. This work provides a way to integrate these two activities by relying on 

models of the system’s behavior. 
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xxviii 

The methodology presented considers separately the aspects of diagnosis and 

prognosis, but a similar generic framework is proposed for both. However, for diagnosis, 

a fault is viewed as a static event, whereas prognosis considers its future dynamics. The 

methodology is tested and validated through comparison of results with experimental 

data obtained from helicopters in operation, and from a test cell employing a prototypical 

helicopter gearbox. Two kinds of experiments have been used. The first one retrieved 

vibration data from several healthy and faulted aircraft transmissions in operation. The 

second is a seeded-fault damage-progression test providing vibration data and ground 

truth data of increasing crack lengths. Both kinds of experiments collected vibration data 

through a number of accelerometers mounted on the frame of the transmission gearbox. 

The applied architecture consists of modules with key elements such as the 

modeling of vibration signatures, extraction of descriptive vibratory features, finite 

element analysis of a gearbox component, and characterization of fracture progression. 

Contributions of the thesis include: (1) generic model-based fault diagnosis and 

failure prognosis methodologies, readily applicable to a dynamic large-scale mechanical 

system; (2) the characterization of the vibration signals of a class of complex rotary 

systems through model-based techniques; (3) a “reverse engineering” approach for fault 

identification using simulated vibration data; (4) the utilization of models of a faulted 

planetary gear transmission to classify descriptive system parameters as fault-sensitive or 

fault-insensitive; and (5) guidelines for the integration of the model-based diagnosis and 

prognosis architectures into prognostic algorithms aimed at determining the remaining 

useful life of failing components. 



 

1. INTRODUCTION 

1.1. Outline 

This thesis presents a framework for integrating models, simulation, and 

experimental data to diagnose incipient failure modes and prognosticate the remaining 

useful life of critical components, with an application to the main transmission of a 

helicopter. Although the helicopter example is used to illustrate the methodology 

presented, by appropriately adapting modules, the architecture can be applied to a variety 

of similar engineering systems. Models of the kind referenced primarily are commonly 

referred to in the literature as physical or physics-based models.  Such models utilize a 

mathematical description of some of the natural laws that govern system behaviors. 

This research addresses a significant component of condition-based maintenance 

(CBM) or prognostic and health management (PHM) technologies, focusing on 

technologies to monitor, process on-line real-time data, and detect and predict the 

remaining useful life of failing components or subsystems.  

The methodology presented considers separately the aspects of diagnosis and 

prognosis, but a similar generic framework is proposed for both. An important difference 

between the two, however, is that, for diagnosis, a fault is viewed as a static event, 

whereas prognosis considers its future dynamics. The methodology is tested and 

validated through comparison of results to data from experiments carried out on 

helicopters in operation and a test cell employing a prototypical helicopter gearbox. Two 
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kinds of experiments have been used. The first kind retrieved vibration data from several 

healthy and faulted aircraft transmissions in operation. The second kind is a seeded-fault 

damage-progression test providing gearbox vibration data and ground truth data of 

increasing crack lengths. For both kinds of experiments, vibration data were collected 

through a number of accelerometers mounted on the frame of the transmission gearbox. 

The applied architecture consists of modules with the following key elements: 

• Vibration signature analysis and extraction of descriptive vibratory features, 

• Vibration signature characterization and modeling under both healthy and faulted 

conditions, 

• Finite Element Analysis of a gearbox component under varying operating conditions 

to determine the effect of different extents of damage, and 

• Characterization of fracture progression. 

1.2. Overview and Objective of this Thesis 

Mechanisms, machines and all kinds of devices on which engineering systems 

depend can fail unexpectedly. This places the lives of innumerable human beings, 

scientific progress and the efforts of industry and government to provide goods, services 

and safety in constant peril. Thus, we have an interest in preventing the occurrence of 

failure in an engineering system. 
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In recent years, a paradigm shift has been introduced in the way critical systems 

are maintained and operated to ensure their safety, availability and reliability. The 

technology base is focusing on technologies to monitor, process on-line real-time data, 

and detect and predict the remaining useful life of failing components or subsystems. The 

military and industrial sectors are recognizing the importance of such condition-based 

maintenance (CBM) or prognostic and health management (PHM) technologies, and are 

actively pursuing their development and implementation. 

The present work falls within the arena of predictive maintenance, addressing a 

significant component of CBM or PHM, where an attempt is made to (1) detect and 

identify a fault before an engineering system is brought to failure and (2) provide 

information about how much time a system can operate before it fails. There are multiple 

ways of approaching these two areas of concern, and in fact, they can be considered 

separately and independently of each other. However, this work provides a way to 

integrate these two activities by relying on models of a system’s behaviors. 

The objective of the present work is to present a framework for integrating 

models, simulation, and experimental data to diagnose incipient failure modes and 

prognosticate the remaining useful life of critical components, with an application to the 

main transmission of a helicopter. Although the helicopter example is used to illustrate 

the methodology, by appropriately adapting modules, the architecture can be applied to a 

variety of similar engineering systems. 
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1.3. Approach and Validation 

Mathematical models and descriptions of engineering systems and particular 

system behaviors are typically available even before a system is built; think, for example, 

of those needed in the design stage. While it is advantageous to thus have models readily 

available, it must be noted that models are largely used to reproduce the expected 

behavior of certain variables in a system under normal operation, i.e., without faults of 

any kind. However, to perform diagnosis and prognosis, models that represent the 

operation of a system at fault are needed. Furthermore, mathematical models most 

commonly address narrow characteristics or specific variables of engineering subsystems, 

and not the functional interaction of these as a whole in a complex machine or device. A 

diagnosis or prognosis will likely address this interaction and the effects of a fault or 

damage.  

Realizing a model-based, health-management architecture for a complex 

engineering system can be a daunting task. There are many aspects to consider, the most 

obvious of which may be the choice and complexity of the models themselves, which 

may depend on analyses from a wide variety of engineering disciplines. There are also 

issues like determining how best to use the data from the models, how to validate them 

under a wide variety of operating and fault conditions, how to deal with uncertainties in 

results and parameters, etc. If this were not enough of a challenge, there is still the 

problem of integrating solutions to all of these concerns into a procedure that provides 

reliable information about the conditions of a system in operation. 
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The present work establishes methods to facilitate the overcoming of some of 

these difficulties, and its foundation is the proposition of modular considerations of the 

problems of designing model-based diagnosis and prognosis architectures. Thus, in a 

manner typically followed within the engineering realm of systems and controls, the 

approach of this work has been to identify distinct “building blocks” or functional 

modules that may be used as part of a diagnostic or prognostic operation in a variety of 

engineering systems. These modules have been deliberately defined to address specific 

challenges in designing model-based architectures, some like those mentioned above.  

The modular approach is in line with the intent to adopt a so-called system of 

systems approach for the present research. Better expressed, this research follows a 

system of subsystems approach. The subsystems in question are many, and include, for 

example, the diagnostic and prognostic subsystems, the inner components of each of 

these two (like the physics-based models, the model adaptation routines, the data 

acquisition devices, the data preprocessing algorithms, etc.) or the operation regimes or 

assumption sets. Results from the system of systems approach are evident throughout this 

thesis. It is possible to identify the definition of blocks with particular functionality in 

different sections, as well as the interconnections of these blocks to perform more and 

more complex tasks. 

The identification of individual functional and analysis modules has also made it 

possible to perform relatively independent work in the fields of engineering that must be 

addressed to analyze a system like the helicopter transmission that is being considered, 

including fracture mechanics, finite element analysis, signal processing, system 
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identification, and mechanics and vibration of geared systems, among others. The two 

major modules of the architecture are the diagnostic and prognostic modules. These two 

modules are comprised of other sub-modules with the following key functions: 

• Vibration signature analysis and extraction of descriptive vibratory features in 

standard fashion, including the use of techniques for preprocessing and interpreting 

mechanical vibration signals (like time-synchronous averaging and frequency 

component analysis). 

• Vibration signature characterization and modeling, with foundations on developments 

by experts in the field of mechanical vibrations of geared systems, including the 

analysis of vibration components, the effects of frequency modulation caused by the 

rotary motion, and the determination of vibration changes induced by the appearance 

of a fault. This modeling effort also incorporates system-specific parameters and 

effects (e.g., frequency response, noise, etc.). 

• Finite Element Analysis (FEA), utilizing the widely-known ANSYS software 

package, of the system geometry under varying operating conditions to determine the 

mechanical effect caused by different extents of damage, including deformation 

patterns of the gearbox and structural stress distributions, especially at critical 

locations like fracture fronts. 

• Use of an empirical model and considerations for characterizing crack growth, based 

on developments in the field of Fracture Mechanics, including adaptations of the 
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famous Paris’ law of crack growth, load cycle shape considerations and plasticity-

induced crack closure. 

Validation of this research is obtained by applying the techniques and procedures 

developed for simulating and detecting a crack within the helicopter transmission, and for 

characterizing and predicting the growth of this crack. These results are produced using 

model-based diagnostic and prognostic architectures, and are compared to the results 

obtained from experiments carried out on helicopters in operation and a test cell 

employing a prototypical helicopter gearbox. Two kinds of experiments have been used 

in the comparison. The first kind retrieved vibration data from several healthy and faulted 

aircraft transmissions in operation. The second kind is a seeded-fault damage-progression 

test providing gearbox vibration data and ground truth data of increasing crack lengths. 

For both kinds of experiments, vibration data were collected through a number of 

accelerometers mounted on the frame of the transmission gearbox. 

1.4. Principal Contributions 

The principal contributions of this work include: 

• Generic model-based fault diagnosis and failure prognosis methodologies, readily 

applicable to a dynamic large-scale mechanical system, 
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• Characterization of the vibration signals of a class of complex rotary systems through 

model-based techniques to provide a better understanding of certain physics-of-

failure mechanisms and arrive at descriptive fault features or condition indicators, 

• A “reverse engineering” approach for fault identification using simulated vibration 

data and fault features or condition indicators, 

• Utilization of models of a faulted planetary gear transmission to classify descriptive 

system parameters either as fault-sensitive or fault-insensitive, and 

• Guidelines for the integration of the model-based diagnosis and prognosis 

architectures into prognostic algorithms aimed at determining the remaining useful 

life of failing components. 

1.5. Organization of the thesis 

There are four major parts to this thesis, each represented as a row of blocks in 

Figure 1.1. The first part, comprised of Chapters 1 through 3, covers historical aspects 

and background material, including a description of the helicopter transmission problem 

in focus throughout the thesis. 
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Figure 1.1. Scheme of organization of the thesis 

The second part of the thesis is made up of Chapters 4 and 5, and it covers the 

aspect of fault diagnosis. Chapter 4, in particular, presents a generic methodology for 

designing and implementing model-based diagnostic architectures. The methodology is 

presented in a modular fashion with the intent of making it applicable to various 

engineering systems. On the other hand, Chapter 5 shows how the architecture can be 

applied to the problem of diagnosing the fault in the helicopter transmission described in 

Chapter 3. 

The third part of the thesis, comprised of Chapters 6 and 7, is the prognostic 

counterpart of the diagnostic second part. Chapter 6 addresses a generic methodology for 

designing and implementing model-based prognostic architectures. The methodology has 

been deliberately set up in a way that is, as much as possible, analogous to the diagnostic 
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methodology presented in Chapter 4. Aside from the obvious aspects, one of the main 

differences between the two methodologies is the consideration of a fault as a static 

versus a dynamic event. Chapter 7 shows how the prognostic architecture can be applied 

to characterize the progression of damage in the helicopter transmission. 

The last part of the thesis, in Chapter 8, presents conclusions and possible future 

work in developing and implementing model-based fault diagnosis and failure prognosis 

architectures of dynamic systems. 
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2. HISTORICAL BACKGROUND 

2.1. The Importance of Diagnostics and Prognostics of Engineering 

Systems 

Interest in diagnosing and prognosticating faults in engineering systems is as old 

as engineering systems themselves (Gertler, 1998, p.1). Designers and users alike have an 

interest in preventing the occurrence of failure of a mechanism, a machine or any kind of 

device. To this end, several approaches can be taken, the most obvious of which is to stop 

the system whenever an anomaly is observed, i.e., a fault is detected as a difference in the 

performance of the system from its normal behavior. The alternative approaches consider 

a variety of situations. For example, what happens when an operator cannot sense or 

detect the fault? Or, what should be done if it were desired to keep a machine running 

while the damage is not yet critical? In many situations, making the correct diagnosis is a 

life or death decision, like when an aircraft in flight undergoes damage. 

The potential benefits offered by a successful implementation of a system for 

diagnosis and prognosis in engineering is well expressed in a quote transcribed by Vosilla 

(2006) from Joseph Garone, a program director for Northrop Grumman Corp.: "Just 

imagine that you can anticipate major structural failures in an aircraft or other structure 

before they happen. Or that you can schedule maintenance according to the usage and 

stresses imposed on an aircraft, instead of at fixed intervals.” Garone places emphasis on 

avoiding maintenance operations at fixed, regular intervals because, as will be seen 

below, such standard practice is costly. The implications of achieving scheduled 

maintenance based on the usage and needs of an aircraft, he concludes, “would save 
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operators significant amounts of money and ensure greater availability of aircraft.” This 

quote is relevant because Northrop Grumman Corp. is a premier contractor to the U.S. 

Department of Defense. 

Attempting to detect a fault before it becomes a failure is a prerequisite to the 

elimination of corrective maintenance.  We want to bring the maintenance operations 

forward in time, i.e., before the system fails and needs repair. In this sense, we have two 

generally recognized options: apply preventive maintenance or predictive maintenance. 

Preventive maintenance, or PM, typically refers to performing regular, scheduled 

operations that keep the system running reliably. Federal Standard 1037C (1996) 

indicates that, within the span of these operations, we find the tasks of inspecting, testing 

or adjusting of equipment, and the replacing or repairing of worn or wearing components. 

Predictive maintenance, or PdM, on the other hand, attempts to defer maintenance 

operations until they are required. Although sometimes there is confusion between the 

two strategies, it is more generally acknowledged that PM is concerned with preventing a 

failure blindly, i.e., without knowing if a fault exists or not, whereas PdM endeavors to 

detect faults before action is taken. 
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Table 2.1. Comparative table of approaches to maintenance of engineering systems 

Type of 

Maintenance
Approach Actions taken

Comparative  

Associated 

Costs*

Safety and 

Reliability

Corrective 

(CM)

Fault never detected. 

Failure occurs

Repair High None

Preventive 

(PM)

Fault presence 

unknown

Regular Inspection and 

replacement of components

Medium Medium to High 

(Inspection can fail)

Predictive 

(PdM)

Incipient fault detection Maintenance deferred until 

actually needed

Low High when proven 

* of maintenance  

Table 2.1 suggests that, when taking into consideration the costs of maintenance 

and the safety and reliability of the different approaches to engineering system 

maintenance, the approach of predictive maintenance is preferable. Because each of these 

strategies works by considering a different time span with respect to the occurrence of 

faults and failures, Jarrell et al. (2002) have even suggested that there is yet another way 

of dealing with maintenance. The approach suggested by them, dubbed “proactive 

operation and maintenance,” although similar to predictive maintenance in many aspects, 

also considers the time range before a fault is detected. 

The present work falls within the realm of predictive maintenance and more 

specifically within such in-vogue efforts known as condition based maintenance (CBM) 

and prognostics and health management (PHM), which are techniques that utilize 

automated strategies for detecting a fault and provide ways of extending the operational 

time (known as uptime) of damaged engineering systems. This extension in time can be 

offered because, in most cases, it is possible to continue to operate a system safely even if 

a fault has been detected, at least for a limited amount of time. Diagnostics and 

prognostics engineering belong within the arena of CBM and PHM. 

13 



 

2.2. Diagnostics of Engineering Systems 

2.2.1. Background 

Diagnosing an engineering system involves three activities. First, a fault must be 

deemed to exist through fault detection techniques. Second, the fault is located through a 

process known as fault isolation. The concern of many industrial diagnostic systems 

focuses on these two activities exclusively, so that their practice has become known as 

“fault detection and isolation”, or FDI (Chen and Patton, 1999). The third and final 

activity, known as fault identification, assesses the severity of the fault, either 

qualitatively or quantitatively (Patton et al., 2000). The process of fault identification is 

of paramount importance for the research presented in this thesis. The books by Gertler 

(1998), and Chen and Patton (1999) provide an extensive review of the history and 

progress of research in the area of diagnostics engineering. 

2.2.2. Classification of approaches to performing engineering system diagnostics 

There are several ways of classifying approaches to the problem of diagnosing an 

engineering system. Farrar, Lieven, and Bement (Inman et al., 2005, chapter 1, pp. 4-5), 

for example, suggest that health assessment operations can be classified as either online 

or offline, depending on whether they are performed while a system is in operation or 

not, respectively.  

Another way of classifying diagnostic techniques depends on whether the 

diagnosis assessment is based on deterministic information (e.g., one obtained from a 
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model) or on stochastic information (e.g., historical, statistical data). The first of these 

two has been termed a “white box” approach, while the second has been called a “black 

box” approach. Park et al. (2003) even suggest that a combination of these two 

techniques might be referred to as a “gray box” approach. 

We can think of existing solutions to the problems of performing diagnostics and 

prognostics as belonging to one (or perhaps even both) of two types: data-driven –also 

called model-free– techniques and model-based techniques, although other classifications 

exist. Data-driven techniques include, for example, signal processing algorithms and 

knowledge-based methodologies. Model-based techniques more commonly involve the 

description of a system through mathematical models of the physical laws governing its 

behavior. Both types of techniques are described and compared below. 

Data-driven techniques rely on comparative assessments of the status of a system 

under testing with other known occurrences. For as long as the behavior of the system 

under testing remains similar to that of a previously known, healthy configuration, the 

former is deemed to be healthy. When the measured behavior deviates from this 

reference, a fault is detected, and a comparison with the conditions previously observed 

in analogous faulted systems can take place. Under the appropriate conditions, this new 

comparison hast the potential to isolate and identify the fault efficiently. Thus, the ability 

of data-driven techniques to perform the task of diagnosis is given by the training of a 

classification algorithm. 
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The training algorithms used by data-driven decision processes are highly 

automated tasks for which extensive literature exists. Intelligent algorithms in support of 

this duty abound, and implementation is generally a straightforward and proven activity. 

Even more appealing is the fact that the data-driven effort typically avoids the need to 

understand the underlying physical mechanisms that describe the behavior of a system; 

diagnostics are performed regardless of the causes of a fault. Furthermore, data-driven 

algorithms can continue to “learn” as they operate, ideally making their assessments more 

reliable with each fault detection attempt. 

However, we must note that data-driven techniques can be ineffective when 

dealing with measurements that deviate from the references available in the training 

“library,” whether there is damage or not. If the behavior of a system is for some reason 

dissimilar to all the past observations from healthy and faulted cases that were available 

at the time of training, there may be no telling what the data-driven algorithm is going to 

decide. If this is a recurring situation, or if some change has made the deviations 

permanent, the algorithm can continue to misinterpret the system status until retraining is 

performed. Changes like this might be likened to “under-training”, since the new 

situations must be added to the training library. In the other hand, there also exists a 

danger of “over-training”, which occurs when all of the training data is similar and the 

algorithms adjust too finely to specific details of the data that are more of a coincidence 

than have a causal relationship with the fault. Thus, over-training, which is more properly 

termed overfitting, has the opposite effect of what training intends; instead of making 

data-driven classification algorithms more effective, it makes them less “prepared” to 
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deal with changes in data sets. Designers of data-driven algorithms must always take care 

of balancing the algorithm implementations so neither under- or over-training take place. 

In contrast, the model-based approach is generally more robust in the sense that it 

can sort out new or unforeseen situations more easily, since this technique can 

incorporate and replicate, per its mathematical models, a wider range of behaviors, even 

if previously unobserved in actual systems. If the state of a system deviates from 

expected operational ranges, model-based techniques can continue to work by updating 

physical parameters that describe the new situation. Because of this ability, model-based 

techniques can also dispense with the use of the extensive training and historical 

information required by the data-driven approach, and is less prone to the kind of 

difficulties introduced by under- or over-training.  

Yet, setting up an accurate model that describes the physics-of-failure 

mechanisms (i.e., a physics-based model) requires so much effort and expertise, that 

many simplifying assumptions have to be made, which degrade the model’s reliability or 

applicability to the real situation. This effort is typically beyond that required by data-

driven techniques. All the observed occurrences of a fault in past instances become 

useless to the modeling effort if the physics behind such behavior are not well 

understood. A comparison between the applicability of the data-driven and the model-

driven approaches is given graphically in Figure 2.1. 
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Figure 2.1. Comparison of situations where the physics-based approach or the 

data-driven approach are appropriate. Adapted from Inman et al. (2005), p. 6 

Designers adept at the model-based approach almost invariably find themselves at 

a crossroads when defining models; either simplicity or accuracy has to be given priority 

at the expense of the other. Choosing a course that maximizes accuracy may always be 

desired, but the limited availability of the resources it requires (time and energy; 

computational or analytical effort; simulation hardware and software; training and 

expertise), tends to favor the path of simplicity. Thus, when enough resources are 

available, the quest for accuracy will normally lead to a more complex model. 

It is worthwhile to note that, although the classification of model-based vs. data-

driven approaches refers here to diagnostics, it can also apply to prognostics, as 

confirmed by Farrar, Lieven and Bement (Inman et al., 2005, chapter 1, pp. 4-5). 
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2.2.3. Model-based diagnostics 

The focus of this thesis is exclusively on quantitative techniques for performing 

model-based fault diagnoses of engineering systems, although qualitative techniques exist 

(Yang, 2004). Quantitative engineering diagnosis techniques (Gertler, 1998, p. 6; Park 

and Zak, 2003) operate by comparing a particular measurement from a plant with an 

expected value. When there is a difference, the plant is declared to be at fault. The 

comparison is typically performed using one of two techniques, parameter estimation or 

residual evaluation, as represented in Figure 2.2. These techniques are explained below. 

For now, notice in the figure that a two-stage process is typically followed: attribute 

calculation (i.e., the residual or the parameter) followed by decision-making. Such two-

stage process was originally suggested by Chow and Willsky (1980). 

 Plant 

Model 

Parameter 
estimation  

or 

residual 
evaluation 

 

Evaluation
or 

“decision 
making” 

Fault 
detection 

 

Figure 2.2. An overview of the general approach to performing model-based fault 

detection, the fundamental aspect of model-based diagnostics. The dotted-line 

arrow represents the idea that observations from the plant may be used to update 

the model before a diagnosis is pronounced, although this is not always desired 

Although the “model” block of Figure 2.2 can refer to a mathematical description 

of a system, this need not be so. As suggested in a famous publication by Willsky (1976), 

this model can be any realization that replicates certain behaviors (i.e., variables, signals 

or any other measurable activity) of an engineering system; it may be, for example, a 
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computer simulation tying different processes, even if described without equations; it 

may be linear or non-linear; it may be deterministic or stochastic, etc. The approach of 

parameter estimation for performing model-based diagnostics is represented in Figure 

2.3. A system identification model is updated with observations from the plant to try to 

determine some internal parameters of the plant’s process and ensure that they remain 

within specified bounds, or else a fault may be declared. 

 

Plant 
Parameter 
estimation 

System 
identification Data 

acquisition 
Model 

 

Figure 2.3. Parameter estimation procedure 

The approach of residual evaluation is depicted in Figure 2.4. Signals acquired 

from the plant or from model simulations are used to calculate features (also known as 

condition indicators), which are quantities that describe some condition of the system and 

do not necessarily have a clear physical meaning. When residual evaluation is used, a 

large difference (i.e., the residual) between comparable measures (i.e., the features) of the 

model and the plant can be regarded as indicative of a fault condition. 

 
Plant 

Data 
acquisition 

Feature 
extraction 

Model 
Feature 

extraction 

+ 

– 

 

Residuals 

 

Simulation 

 

Figure 2.4. Residual evaluation procedure 
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Hybrids of the approaches of parameter estimation and residual evaluation may be 

built, but, in any case, the model is intended to replicate some behaviors of the plant. This 

can be a very cumbersome task, especially when considering that (1) selecting the most 

appropriate measurements from which to generate residuals or estimate parameters can 

involve choosing among thousands or even millions of possibilities, and that (2) some 

models require information from multidisciplinary engineering analyses. The subject of 

measurement selection has drawn considerable attention, and in its own right has become 

a particular area of study for which extensive literature exists, commonly referred to as 

sensor location and selection, or SLS. Zhang (2005) and Padula and Kincaid (1999), for 

example, have reviewed some techniques and literature on the subject. SLS is beyond the 

scope of this thesis. However, the use of multidisciplinary engineering techniques is of 

great concern to the present work, and is regarded when fitting throughout this document. 

2.3. Prognostics of Engineering Systems 

2.3.1. Background 

In general, prognostic systems are expected to provide predictive information 

about the remaining useful life (RUL) or time-to-failure (TTF) of a deteriorating machine 

or machine component. Because a prognosis is thus inherently uncertain, in addition to 

this indication, a prognosis call should also offer some representation of the amount of 

uncertainty in the prediction, as will be seen in section 2.2.3. 

Some prognostic systems provide RUL estimates based on a priori knowledge of 

life expectancy and, possibly, of expected usage patterns. This approach to prediction 
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does not involve damage monitoring. Another kind of prognostic is performed only after 

a fault is detected and damage is evaluated, i.e., it is based on a diagnosis, and thus 

requires system status monitoring. Byington et al. (2002) refer to these two kinds of 

performing prognostics as vertical and horizontal, respectively. This thesis focuses on 

prognostic systems that require anteceding diagnostic activities, i.e., using the horizontal 

approach, although certain aspects of the thesis can be applied to systems that do not 

require diagnostic updates. 

At present, damage-progression prognosis is an intense area of study (see, for 

example, Inman et al., 2005, chapter 1; Byington and Stoelting, 2004; Hess, 2002; and 

Mathur et al., 2001). An effective prognostic system is expected to provide considerable 

benefits in the costs, reliability, and safety of engineering systems. Multiple organizations 

have expressed strong interest and provided support in this area of research, including 

those related to the aircraft and other industries (e.g., the Aging Aircraft program of the 

Federal Aviation Administration), the government and the military, and regulation 

institutions (e.g., the International Standards Organization, ISO). 

2.3.2. Classification of approaches to performing engineering system prognostics 

Developing prognostic systems has been attempted from a few varying 

perspectives. For example, Byington et al. (2002) suggest that there are three major 

classifications to approaching the problem: use experience, trending models, or physics-

based modeling. Each of these techniques offers its own advantages. Such classification 

is represented in Figure 2.5. 
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Figure 2.5. Hierarchical classification of approaches to prognostics. Reproduced 

from Byington et al. (2002) 

Another classification is proposed by Jaw and Wang (2004), noting that 

prognostic systems can perform health assessment tasks online (i.e., while the analyzed 

system is in operation and providing recent data), offline (using stored information that 

was retrieved in past operation of the system), or via a combination of the two. 

Regardless of the classification, it seems that most attempts to perform prognosis 

start by executing diagnosis (see, for example, Byington and Stoelting, 2004; Luo et al., 

2003; and Kacprzynski et al., 2004). Then, some sort of technique, whether empirical or 

analytical, is used to characterize the future progression of damage and predict when, as a 

function of time or usage, a fault will reach a condition of concern. 

2.3.3. Model-based prognostics 

Mathur et al. (2001) propose that model-based diagnostic and prognostic systems 

can use one of four modeling paradigms. The first one, based on physical models, 

references the natural laws that govern the system behavior. The second one analyzes the 
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probability of failure of individual components separately and combines them to 

determine the probability of failure of the parent system, thus generating reliability 

models whose information is useful to establish periodic maintenance schedules. The 

third class, consisting of machine learning models, uses historical data and training 

techniques to provide comparison-based estimations of the present and future status of a 

system. The fourth modeling paradigm uses artificial intelligence with dependency 

models to attempt to establish cause-and-effect relationships in the behavior of a system. 

Sometimes, even combinations of these four approaches (i.e., hybrid techniques) 

are developed, like the technique proposed by Garga et al. (2001), which combines 

machine learning and dependency models. 

The use of physical models, often referred to in the literature as a “physics-based 

modeling” approach, is the focus of this thesis, although parts of the methodology 

presented are applicable to the other types of models as well. 

Prognosticating damage evolution is, in general, a very demanding problem. 

Farrar, Lieven, and Bement (Inman et al., 2005, chapter 1, pp. 1-12) identify the system 

prognostic problem as a “grand challenge” requiring a multidisciplinary approach. In a 

non-exhaustive list, they mention that the following engineering disciplines are involved 

in prognostics: engineering mechanics, reliability engineering, electrical engineering, 

computer science, information science, material science, statistics, and mathematics. 
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When performing engineering prognostics, the response of a system to varying 

operating conditions and to structural changes induced by the fault need to be considered. 

Thus, fault progression models are typically complex and require much expertise to be set 

up. Unfortunately, sufficient expertise is not always available, and experimentation is 

sometimes necessary to validate the models. This experimentation is often carried out 

through a process widely known as seeded fault testing (see, for example, Hess and 

Hardman, 2002; Bilosova, 2002; and Swanson, 2001). This process uses specimens with 

damage deliberately caused by designers, as opposed to faults originating during normal 

operation of a system.  

Sometimes simple models can be set up for analyzing the effects of either varying 

operating conditions or fault-induced structural changes. However, combining both of 

these effects in practical applications requires more than analytical equations. Advanced 

numerical solutions or computer simulation may be required. This is true, for example, 

when modeling the growth of cracks in mechanical components from considerations of 

fracture mechanics. One of several techniques able to predict crack growth rates and 

directions is the use of computer simulations performing finite element analysis (FEA). 

FEA is a methodology that serves to study the behavior of systems in many 

engineering disciplines, including Thermal Engineering, Fluid Mechanics, 

Electromagnetism and Mechanics of Materials, among others. The method derives its 

name from the idea that a complex system or structure can be analyzed by dividing it into 

small parts called  elements, each of which is fully defined in its geometry and/or 

properties, i.e., is discrete and finite (as opposed to infinitesimal), as represented in Figure 
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2.6. Elements can be more easily studied than the complete structure they are a part of, 

and each can be considered as a continuous structural member (Rao, 1990). The finite 

element method converts a continuous medium into systems of algebraic or ordinary 

differential equations. To solve a finite element problem, the method calls for a search of 

simultaneous solutions to the reaction problem of the elements caused by applied loads or 

disturbances (i.e., forces, fields, heat, etc.), constraints (like those of motion, position, 

temperature, etc.) and the interaction of adjacent elements. Elements interact through 

their connections, defined by means of nodes, as illustrated in Figure 2.7. The problem is 

set up so that the numerical solution converges iteratively towards the behavior of the 

total structure, with better approximations provided by larger numbers of elements. 

 

Figure 2.6. Finite element computer model of a mechanical component. The 

design has been divided into finite elements thorough a process known as meshing 

Introduction of the finite element method is generally attributed to Courant 

(1943), who was then studying the vibration of systems. Important steps in the 

development of the method are later taken by Turner et al. (1956) and Clough (1960) 

leading to a formal establishment of the method in a book by Strang and Fix (1973). 
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Through the years, the Finite Element Method has been successfully applied to a wide 

variety of problems, and at present literature on the subject is abundant. 

a) b) 

Nodes 

Constrained 
nodes 

Applied 
force 

Finite 
elements 

 

Figure 2.7. Illustration of some of the functions of nodes in a finite element 

model. a) The elements of a simple design are connected by nodes, some of which 

are in this case constrained from motion and some of which may be recipient of 

forces. b) The effect of applying a force on a node affects the entire structure 

through elements and nodes, but constrained nodes remain fixed 

Finite element models allow a designer to analyze the static or dynamic response 

of a system to the application of loads or the presence of disturbances. In the case of 

structural studies, a model for FEA can be as simple as a single truss experiencing a point 

load or as complex as a complete engine with moving parts. Today’s software tools based 

on FEA are usually available for very specific engineering disciplines or else they are 

very large and complex program packages useful in a wide range of applications. For the 

first case, we find programs like FASTRAN (Newman, 1992) and FRANC3D (Cornell 

Fracture Group, 2003), which rely on results from finite element studies to simulate 

mechanical fracture growth. For the other case, we find powerful packages like ANSYS 

and ABAQUS. 
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FEA simulations can be applied to many different situations to approximate the 

behavior of systems when operating conditions vary or when faults appear and progress. 

Thus, the utility of FEAs in diagnostics and prognostics is that they offer the potential to 

determine the way in which a condition of the system changes when a fault or anomaly is 

introduced. 

The successful solutions to certain kinds of problems might tempt us to think that 

computer simulations (including, but not limited to FEA techniques), when applied to the 

fault progression problem, are in general the panacea of machine health prognostics. 

However, we have to take into account the following caveats: 

1) The models and solution techniques used in computer simulations are numerical 

approximations to real physical behaviors and not all problems generate satisfactory 

solutions, either because not all actual conditions are properly modeled or because the 

physics of the problem are not entirely understood. For example, certain crack growth 

and corrosion mechanisms are yet to be adequately explained and characterized. 

2) Rough model approximations are often accepted because of the considerable effort 

and amount of data required to set up certain computer simulations, and because of 

the extensive running time of the simulations. Validation of the simulation’s results 

and correction of deviations from the real system’s behavior must be thus executed 

with other tools, among which we may even find “expert’s judgment”. 
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3) Computer simulations require significant computing power and resources, making 

real-time application of these techniques impossible or, at the very least, impractical 

in many situations. It may be possible, nevertheless, to use a collection (database) of 

results from previously executed simulations (prepared off-line) as a baseline for 

diagnosis and prognosis studies.  

4) Computer simulation results provide information for variables that may not be 

directly observable (i.e., measurable) in the system (e.g., a crack in a rotating 

component). We need other tools (like physics-based models) to map these variables 

to real-world sensor measurements and produce usable information out of the 

simulation results. 

5) System parameters and initial state conditions are not necessarily known with 

sufficient accuracy. Only approximations or estimates are available, hence making the 

simulation results inherently uncertain. 

6) To realize a prognosis of RUL, information about the future operating conditions is 

necessary. Because most physics-based models are deterministic, the accuracy of a 

prognosis is severely affected by the accuracy of information about the future 

operation conditions. This situation has led in many cases to the preferred use of a 

worst-case assumption that limits the effectiveness of the ability to extend component 

life through prognostics. 

29 



 

Points number (5) and (6) in the list above have provided the motivation to 

attempt to implement adaptation mechanisms for the models. These mechanisms allow a 

model to improve its system replication tasks by analyzing and correcting for differences 

between its estimates and the actual behavior observed in the system. Jaw (1999), for 

example, has used an artificial neural network to improve the results of a physics-based 

damage-progression model related to a condition of the rotating blades of a turbine 

engine. Going a step further, Vachtsevanos and Wang (2001) have used a dynamic 

wavelet neural network to assess also the performance of different prognostic routines. In 

a different approach, Kacprzynski et al. (2002) have proposed a technique for using 

diagnostic information to adapt physics-based prognostic models. 

The same two points of the list also justify the specification of confidence 

intervals when attempting to make a prognosis and RUL assessments in general, because 

the prognostic can vary depending on the certainty of our estimates of the parameters 

(including system geometry or configuration, material properties, etc.), the initial state, 

and the future operating conditions. Analyzing the issue of confidence bound 

determination and specification has spawned a detailed research area, as evidenced in 

work done by Barlas et al. (2003), Vachtsevanos (2003), Khiripet (2001), Roemer et al. 

(2001), and Engel et al. (2000). Consider, for example, the case of the future operating 

conditions. These are typically either unknown (e.g., in an aircraft) or expectedly 

bounded (e.g., in a motor under constant load). In either case, the exact loads cannot be 

determined as a function of future time, although they can be estimated to some degree, 

sometimes roughly and sometimes accurately. Computer simulation is hence a tool whose 
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results need to be properly interpreted and even adjusted to provide realistic information 

about the expected development of faults. 

Notwithstanding these drawbacks, and given the fact that computer simulation is 

considered one of the most accurate and powerful techniques for performing system 

behavior studies, it is clear that this tool remains promising for providing a reliable 

diagnosis of the health of an engineering system and an accurate prognosis of its RUL 

after a fault is identified. 

2.4. Diagnostics and Prognostics Today 

It has been suggested that the discipline of engineering diagnostics has been 

studied for quite some time now yielding reliable techniques for fault detection, isolation 

and identification. At present, there is considerable and widespread interest in advancing 

the related discipline of prognostics engineering to such levels of success. However, this 

has proven to be a challenging problem. The primary motivation to advance prognostics 

engineering and provide the engineering community with reliable CBM and PHM 

methods and techniques is the desire to avoid the unexpected failure of systems, because 

such failures can be extremely costly both economically and in terms of human lives. For 

example, imagine the breakage of a critical gear or bearing in a complex machine 

operating at high speed. The fracture may lead to a “chain reaction” that damages 

multiple components of the machine, rendering it inoperable and even perhaps more 

costly to repair than replace. The cost may not just involve the loss of the machine, but 

the loss of productivity as well. Alternatively, imagine an aircraft in flight experiencing 
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the failure of an engine component, or tearing of the fuselage… many lives can be at 

stake. There is a multiplicity of application domains for CBM and PHM techniques. Take 

for example the efforts in realizing engine health monitoring (EHM) for the next-

generation aircraft known as the Joint Strike Fighter (JSF) described by Powrie and 

Fisher (1999) as a critical component of a prognostics and health management (PHM) 

program that is expected “to reduce direct costs such as hardware, labor, fuel, and 

logistics,” and increase safety. Jaw (2004) lists as other important applications the cases 

of rockets and aircraft engines. This list of examples could go on for many pages. 

The interest in integration of diagnostics and prognostics in CBM and PHM 

systems concerns the multiple approaches to carrying out the task of predicting the RUL 

of systems in operation, some of which have already been described earlier. The focus of 

the research presented in this document, however, is on model-based techniques. Larsen 

and Christodoulou (2004) suggest that efforts of this kind are expected to provide 

“dramatic improvements in the accuracy of predictions of the future health and 

capability” of structures or their components. They also identify the aspect of materials 

damage prognosis as requiring the union of non-intrusive state awareness and physics-

based models, similarly to what is pursued by the research presented in this thesis: a 

combination of (1) a diagnostic system that relies on data acquisition with (2) a model-

based prognostic system. Even though they present many challenges, it is clear from the 

preceding sections that diagnostic and prognostic efforts relying on physics-based 

modeling are among the more promising for implementing effective engineering health 

management systems.  
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3. THE HELICOPTER TRANSMISSION PROBLEM IN FOCUS 

3.1. Description and Importance of the Problem 

3.1.1. Discovery and assessment of the problem 

In May of 2002 the U.S. Army grounded almost a thousand of its helicopters after 

an unexpected and unexplained mechanical fault had been detected in one of them 

(Strass, 2002). Instruments of a UH-60A “Black Hawk” helicopter indicated, while in 

flight, that there was low oil pressure in the main mechanical transmission system of the 

aircraft. Once the aircraft was on the ground, the maintenance crew in charge of checking 

the lubrication pump and flow system discovered the presence of metal chips in the sump 

of the transmission gearbox. These chips were hindering adequate oil flow, thus causing 

the instrumentation alarm. Obviously, the presence of these metal shavings was 

indicative of damage to mechanical parts, and a teardown of the transmission was carried 

out for further investigation. 

This investigation found that the planetary gear carrier plate –or “carrier plate” 

for short– of the main rotor transmission of the helicopter had developed a crack, which 

had gone undetected by the gearbox warning instrumentation system. The carrier plate is 

a critical component of the planetary gear transmission system that is used to transmit 

mechanical power from the engines to the main rotor blades of the helicopter. Some 

components of the planetary gear transmission are shown in Figure 3.1 (planetary gear 

systems are described in more detail in section 3.3). 
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Figure 3.1. Mechanical components of the helicopter transmission 

of focus in this thesis 

It was determined that the metal shavings were not coming from the planetary 

carrier plate, but rather from certain alignment shims belonging to the gearbox. However, 

it was still deemed that the cause for the destruction of the shims was excessive vibration 

and stressing of the gearbox, which was in fact due to the crack in the plate. 

Later on, a similar crack was found in another U.S. Army “Black Hawk” 

helicopter and in a U.S. Navy “Seahawk” helicopter. Because the damaged part is a 

critical component of the aircraft, there is concern that, if unchecked, it may lead to the 

loss of the machine and the lives of people on board. Thus, its appearance in multiple 

aircraft has become an issue of great concern to the U.S. military and companies involved 

in the design and maintenance of these machines, including Sikorsky Aircraft (the 

principal manufacturer) and Northrop Grumman (providing avionics and other kinds of 
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support). Even the Defense Advanced Research Projects Agency (DARPA) has 

sponsored research projects treating this issue, including a portion of the present work.  

The crack, illustrated in Figure 3.2, developed on the root of one of the five planet 

gear mounting posts of the planetary carrier plate, which is a region of high stress. 

Sahrmann (2004) carried out a comprehensive analysis of the crack origin and growth 

characteristics on the damaged part, while Keller and Grabill (2003), Wu et al. (2004), 

Hines et al. (2005), and Blunt and Keller (2006), among others, have attempted to 

provide early detection techniques based on vibration changes. 

a) b)

 

Figure 3.2. Planetary gear carrier plate of a UH-60A Blackhawk helicopter; a) 

Top view of a healthy plate; b) View of Crack on one of the posts; the crack path 

is indicated by the arrows. Photographs reproduced from Sahrmann (2004) 

3.1.2. Problem significance  

The recurring problem of damage in the planetary carrier plate of helicopter 

transmissions is important because thousands of helicopters with a potential to develop 
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the cracking problem described above operate today around the world. Variants of the 

Black Hawk helicopter model are in service not only in the U.S. military but in civilian 

use and the military of foreign governments as well. One of these variants even serves to 

transport the President of the United States as one of the famed “Marine One” 

helicopters.  An attempt to replace the failure-prone component would involve not only 

the redesign of an expensive and complicated part, but would also require a considerable 

amount of maintenance labor, which would be nearly impossible to carry out 

economically with so many aircraft in service.  

Diagnosing and prognosticating the carrier-plate cracking fault in helicopters 

without the need to disassemble the transmission has become an important aspect of a 

multi-million dollar program sponsored by DARPA charged with developing a structural 

integrity prognosis system (SIPS). The goal of this system, Vosilla (2003) reports, “is to 

provide military commanders with data and quantitative performance predictors they can 

use to manage, deploy, and use individual combat systems to the limit of their 

capability.” The reach of this program goes beyond the banner application of the 

helicopter transmission problem, which has been used, along with other applications, to 

evaluate the feasibility of the program goals, as reported by Vosilla (2006).  

3.1.3. Vibration is key for diagnosis 

It is highly desirable to detect the crack in the helicopter transmission through 

vibration data because such a data acquisition arrangement is reliable, economical and 

non-invasive. Vibration sensors are easy to install and maintain because they can be 
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mounted on the frame of the gearbox, precluding the need to modify or disassemble the 

transmission for installation and service. Furthermore, vibration sensors and 

instrumentation are already available in many of these aircraft, and measurements can be 

made while an aircraft is operating, so that a crack might be detected even in flight, 

possibly offering a pilot the ability to make critical decisions over an incipient fault or 

based upon the severity of developing damage. Thus, the applications of focus in this 

thesis are detecting the planetary carrier crack in its early stages of development by 

analyzing changes in the vibration caused by the operation of the gearbox, and 

characterizing the crack growth rate. 

It is worthwhile to note that the vibration analysis of concern in this thesis for 

diagnosing the helicopter transmissions is related to the operation of the gears in the 

planetary gearbox. These vibrations are generated by the motion of gears and gear 

components and, particularly, by the contact or clash of gear teeth (i.e., the gear meshing 

action). This kind of vibration analysis is opposed to approaches that focus on other 

physical aspects like the natural frequency and resonances of a structure (for example, 

Giurgiutiu, 2002; and Gelman and Gorpinich 2000) or the changing patterns of sound 

waves around certain geometries (for example, Michaels and Michaels, 2005; and Mi et 

al., 2006). 

It should also be noted that focus on this thesis is on the vibration changes caused 

by the appearance of a crack on the planetary carrier plate of the helicopter transmission. 

This is different from diagnostic efforts involving the gears or gear teeth, which is in 

many respects a simpler problem. Samuel (2003) provides a review of techniques to 
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diagnose gears in helicopter transmissions and describes a novel technique to separate 

and analyze the vibration patterns of individual gear teeth, thus offering the ability to 

detect and localize tooth faults. 

3.1.4. A chance to validate prognostic efforts 

As discussed in chapter 2, model-based prognosis is an area of research with 

much promise but young in its stage of development. Some of the obstacles for its 

advancement are the limited availability of data to validate research efforts, the 

complexity of the systems and their corresponding models, the required multidisciplinary 

expertise, and the need for many kinds of resources. The helicopter transmission problem 

is exceptionally well suited for prognosis research because it is being supported and 

researched by the government and many institutions simultaneously, and provides means 

to circumvent all of the obstacles mentioned. The wide interest in this problem has 

brought together many experts and professionals with the willingness to cooperate and 

produce results in a manner that may have never been done before. The research in this 

thesis is a part and product of these efforts, and has been helped and supported by many 

people and institutions. Furthermore, and of particular importance for the aspect of 

prognosis, experiments have been carried out to characterize the progression of the crack 

in the planetary gear plate. This characterization enables the validation of many aspects 

of model-based techniques, which in turn may set the foundation for developing integral, 

health-management architectures with state-of-the-art technologies. 
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3.1.5. Selection of this problem for research 

The helicopter transmission problem has been chosen as the focus of the research 

for this thesis principally because of the following reasons: 

 

1. The problem is of importance to save human lives and can be considered as involving 

a prototypical mechanism. Some results, techniques, and methods derived from the 

studies carried out with this system may be widely applicable. 

 

2. There is interest by industry and government in this application, so there is adequate 

support and experimental data. The present research effort has been given access to 

such data. 

 

3. The problem is complex enough to merit detailed research and provides an excellent 

opportunity to test and validate modern diagnostic and prognostic techniques. It also 

offers the opportunity to be modeled with considerations based on the physics of the 

system. 

3.2. Experimental Support for Studying the Helicopter Transmission 

Experimental research on the planetary carrier plate fault described in section 3.1, 

includes experiments involving the U.S. Army Aviation Engineering Directorate, 

Aeromechanics Division (see Keller and Grabill, 2003), the U.S. Army Research 
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Laboratory (see Sahrmann, 2004), and the Helicopter Transmission Test Facility of the 

U.S. Naval Air Systems Command at Patuxent River, Maryland (see McInerny et al., 

2003). Different kinds of tests have been performed, but, throughout this thesis, we will 

be referring to two sets of experiments for which gearbox vibration data was acquired 

from the main-rotor transmissions used in some Sikorsky-brand helicopters with potential 

to develop the problem. 

The first set of experiments involved the acquisition of vibration signals from 

planetary transmissions either with a 3.25-inch crack in the carrier plate (shown earlier in 

Figure 3.2b) or with a “healthy” plate (i.e., without any crack). Furthermore, the cracked 

plate was used in a test cell for some experiments and in an actual aircraft for some 

others. Similarly, vibrations from transmissions using healthy plates were acquired both 

from the same test cell and from operational helicopters. The test cell is a set up that uses 

actual aircraft engines to power the transmission components in an effort to replicate the 

on-board behavior of the mechanical components tested. We will be referring to this set 

of experiments as “experiments with specific crack lengths”. 

The second set of experiments was carried out in the test cell exclusively. It 

involved the use of a single planetary carrier plate with a seeded crack. The objective of 

the experiments was to observe the change in vibration signals as the crack experienced 

growth caused by the operational loads of the functioning planetary gear transmission. 

Initially, a notch was carved on the carrier plate through electrical discharge machining 

(EDM). Then, high stress cycles were applied to the plate with a custom-made machine 

to turn the notch from a fault seed into an actual crack of 1.34 inches in length. The 
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vibration experiments were run in the test cell starting with this crack length.  The crack 

reached the outer edge of the circumference of the plate at a total length of about 4.8 

inches. From this point on the crack grew towards the inside of the plate, the plate 

experienced greater deformations, and vibration data showed increased variability (i.e., as 

if noise had increased). These experiments were run until the total length of the crack was 

beyond 8 inches. We will be referring to this set of experiments as “experiments with a 

growing crack”. 

Table 3.1. Sources of experimental data for the validations and results presented in this 

thesis 

Test cell 

experiments

Short vibration

tests

Seeded-fault 

test

Healthy

Transmission

Faulty Transmission 

(3.25-inch crack)

Transmission with 

growing crack

(1.34 to 7.67 inches)

Helicopter 

testing

Helicopter:

20, 30%

Test cell:

20, 30, 50, 70, 90, 100%

Up to about 3.30 in:

20, 40, 100, 120%

Engine Torque Settings
(percentage of nominal load)

More than 3.30 in:

20, 40, 93%

System ConditionTest typeData Origin

Test cell 

experiments

Short vibration

tests

Seeded-fault 

test

Healthy

Transmission

Faulty Transmission 

(3.25-inch crack)

Transmission with 

growing crack

(1.34 to 7.67 inches)

Helicopter 

testing

Test cell 

experiments

Short vibration

tests

Seeded-fault 

test

Healthy

Transmission

Faulty Transmission 

(3.25-inch crack)

Transmission with 

growing crack

(1.34 to 7.67 inches)

Helicopter 

testing

Helicopter:

20, 30%

Test cell:

20, 30, 50, 70, 90, 100%

Up to about 3.30 in:

20, 40, 100, 120%

Engine Torque Settings
(percentage of nominal load)

More than 3.30 in:

20, 40, 93%

System ConditionTest typeData Origin

  

The two sets of experiments described above are summarized in Table 3.1. The 

vibration data generated by the experiments was acquired from the systems by means of a 

number of accelerometers mounted on the frame of the transmission. Although data for 

several accelerometers was available, focus in this thesis is placed on those installed near 

the annulus gear of the planetary gearbox, since the analysis of this research is based 

upon this assumption (see section 3.3.2). Furthermore, since results from all the 

accelerometers near the annulus gear were similar, for reasons of brevity, results 
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presented in this thesis refer only to a selected subset of these accelerometers. Examples 

of accelerometers mounted near the annulus gear are positions 5 and 6 of those illustrated 

in Figure 3.3. 

 

Figure 3.3. Top view of helicopter transmission gearbox assembly. The image 

highlights examples of possible locations for mounting vibration-measuring 

accelerometers; the locations of focus for this thesis are similar to locations 5 and 

6 in the image. Reproduced from Keller and Grabill (2003) 

3.3. Main Transmission Gearbox of the Helicopter 

3.3.1. Planetary gearboxes 

Planetary gear arrangements are used extensively in aircraft and other systems 

that require mechanic transmissions with specifications of high power per unit-weight 

and good speed and torque ratios within a limited volume. These geared transmissions 

belong to the “epicyclic”
6
 kind because some of the gears in the arrangement move 

around other gears. In a planetary gear arrangement the axis of rotation of each of several 

                                                 
6 Epicyclic gears are known as such because their axis of rotation in turn rotates about another gear, thus 

introducing a “translational” rotary motion component, which is in addition to the “rotational” motion. 
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epicyclic gears, each of which is known as a planet gear, in turn rotates about another 

gear, known as sun gear, thus introducing a “translational” rotary motion component, 

which is in addition to the “rotational” motion of each planet gear. To be able to complete 

the translational cycles while remaining spaced among each other planet gears are 

mounted on a rotating planetary carrier plate. During operation, the teeth of the planet 

gears mesh with those of the sun gear and, simultaneously, with those of the annulus or 

ring gear. 

The axis of rotation of the carrier plate, the sun gear and the annulus gear are 

aligned, but their rotational speeds are always different, which is what makes a planetary 

gearbox useful as a transmission. Planetary gearboxes are designed to transmit power 

from any one of these three components to any other while keeping the third fixed. The 

gear ratio of the transmission depends not only on the number of teeth of the gears, but 

also upon the choice of the stationary component. The ability to change the gear ratio by 

fixing a different one of the three components is exploited in systems where it is useful to 

have varying gear ratios, like in the automatic transmissions of automobiles. For the 

helicopter transmission of our focus, which has Np = 5 planet gears, the annulus gear is 

always fixed. This configuration is represented in Figure 3.4. 
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Figure 3.4. Representation of a planetary gear system with 5 planet gears 

(p = 1 to 5). Arrows represent the directions of motion of the gears 

3.3.2. Vibration of planetary gearboxes 

As discussed in section 3.1, the use of vibration signals is an appealing way to 

monitor the condition of a planetary gearbox. To use vibration for such purpose, 

however, calls for the understanding of the vibratory characteristics of this kind of 

mechanism, especially if model-based condition monitoring is to be involved. 

The particular vibration characteristics of planetary gear transmissions have been 

studied by several researchers. The span of these efforts ranges, for example, from such 

classic work of Botman and his co-workers (see Botman, 1975; Toda and Botman 1979; 

and Botman, 1980) to the more recent research of Kahraman and his co-workers (see 

Kahraman, 1994a, 1994b and 2001; Bodas and Kahraman, 2004; and Yuksel and 

Kahraman, 2004).  Parker and his co-workers have very notably advanced the state of the 

art in the subject (see, for a brief example of their ample research, Lin and Parker, 1999 

and 2000; Parker and Lin, 2004; and Ambarisha and Parker, 2006) by developing elastic 
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models of planetary gears. Some effects of unequal planet gear spacing studied by Lin 

and Parker (2002) and the influence of planet gear phasing examined by Parker (2000) 

are closely related to the model presented here. These latter references, however, place 

emphasis on using unequal phasing as a means of reducing vibration levels in planetary 

gear transmissions. 

Planetary gearboxes have particular vibration characteristics because of the 

interaction of the individual vibrations generated by each one of the planet gears as they 

move with rotation axis fixed on the planetary carrier plate, about the sun gear and along 

the annulus gear. In non-epicyclic gearing systems, one can typically expect to see 

vibration components in frequencies that are multiples of the number of teeth in the 

gears, i.e., harmonics of the tooth meshing frequency. This frequency characterizes the 

rate at which successive teeth come in contact as the gears rotate. However, because of 

the interaction and motion of the planet gears, it is possible that these exact harmonic 

frequencies become faint or even disappear in planetary transmissions. Ideas initially 

proposed by McFadden and Smith (1985) and advanced by Keller and Grabill (2003) 

explain the suppression of tooth meshing harmonics. 

3.3.2.1. McFadden and Smith’s planetary gear vibration insights 

Consider a planetary gearbox operating in a fixed-annulus-gear configuration
7
 

whose vibrations are measured at a fixed point in the annulus gear, as illustrated in Figure 

3.5. McFadden and Smith (1985) found that harmonics of the tooth meshing frequency 

                                                 
7 Visualizing the annulus gear as fixed is useful in the analysis, although this may not be the case. A 

necessary condition, however, is that the vibration must be measured at a fixed point with respect to the 

annulus gear. 
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and the modulation effect described below generate “regions” where the vibration 

spectrum of an epicyclic gear system, as measured from a point fixed with respect to the 

annulus gear, shows multiple frequency components. As will be seen below, these 

components, known as sidebands, appear as a harmonically spaced series. 

 

Figure 3.5. Representation of a planetary gear system with vibration sensor fixed 

on the annulus gear. Arrows represent direction of motion. θp is the angle 

(measured clockwise) from the sensor to the axis of rotation of 

planet gear number p 

The work of McFadden and Smith explains at which frequencies such sidebands 

will be observed, and typical evidence of sidebands is shown in Figure 3.6. However, the 

amplitude of the sidebands cannot be determined from their study. Furthermore, their 

work is based on the assumption that all planet gears are equally spaced along the 

circumference of the planetary carrier plate. 
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Figure 3.6. Vibration signature of the main rotor gearbox of a “Sea King” 

helicopter, used by McFadden and Smith to illustrate their findings. Adapted from 

McFadden and Smith (1985) 

The vibration regions considered by McFadden and Smith are centered at integer 

multiples (i.e., harmonics) of the tooth meshing frequency, which is quantified as Nt⋅f
 s
 

with Nt being the number of teeth in the annulus gear and f
 s
 the planetary carrier (“shaft”) 

rotation frequency (denoted as fc by McFadden and Smith.) 

In general, although these vibration regions appear to be centered at m⋅Nt⋅f
 s
, 

where m is an index designating the harmonic number, the pattern of sidebands may not 

be symmetric about this value, as illustrated in Figure 3.7. These patterns form because of 

the interaction of two effects: the addition of the de-phased vibrations of the planet gears 

and the modulation of these vibrations effected by the translation of the planet gears 

about the sun gear and (more importantly) along the annulus gear. 
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Figure 3.7. Simulated spectrum representation of vibrations generated by a 

planetary gear. (a) Symmetrical vibration caused by a single planet gear. (b) 

Asymmetrical sidebands of the combined vibration of all the planet gears 

The vibrations individually generated by each one of the planet gears combine 

and experience interference. Some components interfere destructively, and thus we 

observe that certain frequency components that otherwise would be present as sidebands 

in the vibration spectrum of individual planet gears, can altogether disappear in the 

overall system’s vibration. This elimination of frequencies has an explainable pattern that 

gives rise to the observed asymmetry of the sidebands, as illustrated in Figure 3.7b. 

According to McFadden and Smith’s model, in the vibration signal of individual 

planet gears –i.e., before the interference effect described above occurs–, sidebands can 

exist only at frequencies that are m⋅Nt + n multiples of the planetary carrier frequency f
 s
, 

where n is an index designating multiples of the carrier rotation frequency. The frequency 

components of individual planet gears (and their corresponding sidebands) have 

comparable amplitudes, but can differ in phase. The difference in phase causes that, in an 
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ideal, equally spaced planetary gear system, the individual planet-gear components whose 

m⋅Nt + n frequency factor is not also divisible by the number of planet gears Np in the 

system, combine with phase shifts that null the vibration component in the gearbox 

vibration –i.e., after interference occurs–. McNames (2002) has confirmed that sidebands 

whose m⋅Nt + n factor is not a multiple of Np will be suppressed. 

Take for example the same case considered by McFadden and Smith of a 

compressor drive planetary gearbox. Table 3.2 lists which frequency components 

(sidebands) will and will not be suppressed. The table is similar to the one presented by 

McFadden and Smith, but is here expanded to show more harmonics. 

Table 3.2. Sideband suppression pattern of a planetary gearbox with Np = 3 and Nt = 134. 

Clear cells marked with “0” correspond to sidebands that become suppressed. Sidebands, 

each of whose frequency can be evaluated as (m⋅Nt + n) ⋅f s, subsist only when 

(m⋅Nt + n) / Np is an integer 

n m = 1 m = 2 m = 3

-3 0 0 1

-2 1 0 0

-1 0 1 0

0 0 0 1

1 1 0 0

2 0 1 0

3 0 0 1  

3.3.2.2. Keller and Grabill’s equation 

McFadden and Smith’s analysis addresses the issue of sideband suppression. 

However, it does not go into considering the amplitude of the unsuppressed sidebands. 

For the experimental results of their paper (McFadden and Smith, 1985), they indicated 

that it was “not possible to predict the relative amplitudes of the surviving components 
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because these are determined by the pattern of [the frequency response coefficients of the 

modulating signal], which is not known.” 

Using McFadden and Smith’s model, Keller and Grabill (2003) suggested an 

expression to represent the vibration signals of the system. In addition, their expression 

explicitly considers the effect of the frequency response coefficients of (1) the tooth 

meshing signal along with its harmonics, and (2) the modulating signal generated by the 

planetary carrier rotation (i.e., the planet gears’ translation motion). Before discussing the 

actual equation suggested by Keller and Grabill, let us consider its underlying theory. 

The tooth meshing vibration signal of a single planet gear, as seen from a fixed 

point in the planetary carrier, is generated by the engaging of teeth of this gear with the 

teeth of both the sun gear and the annulus gear. It is assumed that all the teeth behave 

similarly and thus that their vibration components have uniform amplitude. Because the 

speed at which teeth come in contact is proportional to the angular velocity of the 

planetary carrier, the meshing vibration is a multiple of the rotational frequency of the 

latter and is given by Nt⋅f
 s
. This signal, whose amplitude is defined as β1, is expected to 

show harmonics, with amplitudes of β2 for the second, β3 for the third and so on. Figure 

3.8 illustrates a simulated spectrum of this vibration. 
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Figure 3.8. Magnitude spectrum of non-epicyclic tooth meshing vibration as seen 

from a fixed point on the planetary carrier 

As the planet gears move in translation over the planetary carrier around the sun 

gear and along the annulus gear, a static observer located on the annulus gear would see 

the planet gears approaching from one side and retreating towards the opposite. As 

McFadden explained, when a planet gear is the closest, the observer would sense its 

meshing vibration the loudest; at the farthest, this vibration would be weaker. Figure 3.9 

represents how the intensity of the signal varies as a single planet gear rotates.  

θ(t)0

Vibration Intensity

π−π θ(t)0

Vibration Intensity

π−π
 

Figure 3.9. Representation of the intensity of the meshing vibration signal of a 

single planet gear in translation as perceived on a fixed point (vibration sensor) 

over the annulus gear. Horizontal axis represents the varying angular position of 

the planet gear as time passes 
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To the observer, the regular change in position of the planet gears and the 

subsequent change in intensity of their respective vibration signals modulate the overall 

meshing vibration. Figure 3.10 represents the spectrum of the modulating signal, showing 

the Fourier Transform coefficients of the curve of Figure 3.9. The coefficients are 

represented with indices of the letter α. Note that each αn shows at both n=k and n=–k 

for any integer k. Also note that, in agreement with customary spectrum representation, 

α’s have a constant coefficient of ½, with the exception of α0, whose coefficient is 1. 
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Figure 3.10. Magnitude spectrum of the modulation signal caused by the 

translation motion of a planet gear 

When a planet gear moves, the signals represented in Figure 3.8 and Figure 3.10 

combine in modulation. Recognizing the influence of the αn and βm coefficients of each 

of the signals involved in the modulation process, Keller and Grabill showed that the 

expected vibration signal of a planetary gearbox can be expressed as 

 ∑∑ ∑
= = −=

++⋅=
PN

p

M

m

N

Nn

nmp

s

tmn tfnNmty
1 1

,, ))(2sin(
2

1
)( ϕπβα , (3.1) 
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where M is the and N are, respectively, the total number of harmonics of the tooth 

meshing frequency and of multiples of the carrier rotation frequency to consider in a 

given vibration analysis (ideally, M and N have values equal to infinity, but in practice 

only finite values are considered). ϕp,m,n is a phase angle dependent upon the geometric 

position of the planet gears and is evaluated as 

 . (3.2) ( ptnmp nNm θϕ +⋅=,, )

As suggested by the summation over p, the overall vibration of the planetary gear 

system is formed by the addition of the vibrations generated by the individual planet 

gears. In the ideal case, where the planet gears are identical, their vibrations would also 

be identical. Hence, the vibration perceived at the sensor would be the combination of Np 

similar signals, equal in shape (amplitude) but differing in place of origin (phase). This 

difference in the signals is generated by the planet gear positions, as substantiated below. 

3.3.2.3. Planetary gearbox vibration as a sum of similar but delayed signals 

Define Tp as the time it takes for planet gear p to reach the sensor within one 

revolution of the planetary carrier. Because the planetary carrier plate has a rotational 

frequency of , and because planet gear p is located at θp at the instant where time t = 0, 

we have that 

sf

 . (3.3) p

s

p Tfπθ 2=
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The modulation of the signals represented earlier in Figure 3.8 and Figure 3.10 

produces vibration signatures of individual planet gears that can be described as a sum of 

sinusoids given by 

 ∑ ∑
= −=

++⋅=
M

m

N

Nn

nmp

s

tmnp tfnNmty
1

,, ))(2sin(
2

1
)( ϕπβα , (3.4) 

where yp(t) is the vibration signal of any one planet gear, numbered p. Substituting 

Equation 3.2 we can rewrite this as 

 ∑ ∑
= −=

+⋅++⋅=
M

m

N

Nn

pt

s

tmnp nNmtfnNmty
1

))()(2sin(
2

1
)( θπβα . (3.5) 

Substituting (5) and regrouping we obtain that 

 ∑ ∑
= −=

++⋅=
M

m

N

Nn

p

s

tmnp TtfnNmty
1

))()(2sin(
2

1
)( πβα . (3.6) 

Next, since we assumed that the first planet gear is aligned with the sensor at t = 

0, yielding θ1 = T1 = 0, and because of the t + Tp factor in Equation 3.6, the vibration of 

any planet gear may be expressed as a delayed version of the first planet gear’s vibration, 

i.e., 

 ) . (3.7) ()( 1 pp Ttyty −=

Hence, in the ideal case where all planet gears and all teeth contacts behave 

similarly, if the planet gears are equally spaced, the overall planetary system vibration is 

the sum of Np delayed copies of one planet gear’s vibration signal, which can be 

expressed as  
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If the system is not equally spaced but the vibrations of the individual planet gears 

still have similar shapes, the overall vibration of the system is a combination of these 

similar signals, each with its respective Tp delay. This form of delayed addition has led 

researchers to search for ways to separate the vibration of the individual planet gears. 

Several of these techniques are referenced and described by Samuel (2003). 

3.3.2.4. Characterization of the vibration of an ideal planetary gearbox and definition of 

the types of sidebands 

We can now analyze the vibration spectrum of a planetary gear system with 

equally spaced planet gears using the definition of Keller and Grabill for αn and βm 

considered in section 3.3.2.2. After the signals represented in Figure 3.8 and Figure 3.10 

have combined in modulation, the spectrum for the vibration of a single planet gear will 

be as shown in Figure 3.11. Note the effect on the constant coefficients, which, because 

of the product of coefficients caused by modulation, become either ½ or ¼ for all 

sidebands. 
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Figure 3.11. Vibration spectrum of a single planet gear. Only right-hand side of 

the spectrum is shown 

As described in section 3.3.2.1, sidebands can only be found at m⋅Nt + n multiples 

of the planetary carrier frequency f
 s
. Hence, we can refer to individual sidebands by their 

particular m⋅Nt + n numbers, which are always integers, as Keller and Grabill have done
8
. 

We can also identify sidebands by the pair (m, n). 

The phase of each sideband shown in Figure 3.11, as found by McFadden and 

Smith, depends on the geometrical angular position of the planet gear in the planetary 

carrier. The phase of sideband m⋅Nt + n is equal to θ ⋅(m⋅Nt + n), where θ is the initial 

angular position of the planet gear under consideration about the axis of rotation of the 

planetary carrier, and taking zero angle at the sensor, by “initial” meaning the time instant 

at which the system’s vibrations start to be measured. 

To generalize this claim, consider again Figure 3.5. Suppose planet gear number 1 

is aligned with the vibration sensor when the system’s vibrations start to be measured. In 

                                                 
8 Keller and Grabill refer to this number as the order of a sideband. 
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this case, planet gear number p (for any p=1 to Np) has an initial angular position of 

2π⋅(p–1)/Np with respect to the axis of the planetary carrier and taking zero angle at the 

sensor. Then, for an equally spaced system, the phase angle of sideband m⋅Nt + n in the 

spectrum of planet gear p is 

 , (3.9) ( ptnmp nNm θϕ +⋅=spc-equal

,, )

where 
p

p
N

p 1
2

−
= πθ . In accord with McFadden and Smith’s findings, the phase angles of 

corresponding sidebands across different planet gears are for some frequencies in phase 

with the rest, and for the rest out of phase. Clearly, because of Equation 3.9, only when 

m⋅Nt + n = k⋅Np  for any integer k are the sidebands of all the planet gears in phase. Thus, 

when the vibrations generated by the different planet gears in the system combine, 

vibrations from the sidebands that are in phase add constructively.  

If the planet gears are evenly spaced along the circumference of the planetary 

carrier, then, whenever m⋅Nt + n ≠ k⋅Np for any integer k, the phase angles of the 

sidebands are also evenly spaced from 0 to 2π. Thus, when the vibrations generated by 

the different planet gears in the gear system combine, vibrations from the sidebands that 

are out-of-phase add destructively, as McFadden and Smith found, and can in fact 

altogether become zero. 

When the sidebands add constructively, because this addition involves as many 

sidebands as the gearbox has planet gears, the sidebands that are located over axes of 

symmetry (i.e., at frequencies equal to harmonics of the tooth meshing frequency, 
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quantified as m⋅Nt⋅f
 s
) will produce an overall system sideband with half-amplitude equal 

to 

 m

pN
βα0

2
,    for sidebands with n = 0. (3.10) 

The sidebands that are not in the axes of symmetry will generate a system 

sideband with a half-amplitude of 

 mn

pN
βα

4
,    for sidebands with n ≠ 0. (3.11) 

Equations 3.10 and 3.11 agree with the recognition by McNames (2002) that the 

overall system’s sidebands would be an Np scaling of the individual planet gears’ 

sidebands. 

Take again McFadden and Smith’s compressor drive gearbox as an example 

(refer to Table 3.2). Suppose that Figure 3.11 represents the spectrum of one planet gear 

of such system. Since there are Np = 3 planet gears, and because the number of teeth Nt = 

134 generates the sideband suppression pattern previously shown in Table 3.2, we could 

expect to see a gearbox spectrum as shown in Figure 3.12. The spectrum of the graph 

represents the case of an ideal system, where all the planet gears are evenly spaced along 

the planetary carrier’s circumference. 
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Figure 3.12. Sidebands of equally spaced planetary gearbox with Np = 3 and 

Nt = 134 

Keller and Grabill referred to the surviving sidebands with two different names. 

For each group of sidebands with the same value of m, there is one dominant sideband, 

which is the one closest to the axis of symmetry. The other surviving sidebands in the 

group are called apparent sidebands
9
. This naming convention is used in Figure 3.12, and 

is followed throughout this thesis. The suppressed sidebands, which are not visible in the 

ideal case discussed, are important for the present study, and hence they will be referred 

to as non-dominant sidebands. Regardless of this naming convention, sidebands will also 

be identified by their m and n numbers. 

3.4. A Vibration Model for Planetary Gearboxes with Planet-gear shifts 

Relating sideband changes to the amount of relative shift between the planet gears 

can be of interest for detecting faults in planetary gear systems. Take for example the 

                                                 
9 McNames calls all surviving sidebands “dominant.” McFadden calls one sideband “dominant”, the others 

just “surviving”. 
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problem described in section 3.1. A crack near the root of one of the planet gear 

mounting posts of the planetary carrier plate would reduce the stiffness of this 

component, leading to abnormal deformation that in turn causes non-uniform shifting of 

the planet gears. Hence, the angular shifts will vary with the length of the crack. 

3.4.1. Effect of the shift of a planet gear 

Sections 3.3.2.1 through 3.3.2.4 assumed that planet gears were evenly spaced 

along the circumference of the planetary carrier plate, with geometric angles given by 

p

p
N

p 1
2

−
= πθ . Consider now the case when one planet gear has shifted with respect to its 

corresponding θp angle by a specific amount, namely δp. This condition is illustrated in 

Figure 3.13. 
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Figure 3.13. Angular shift of planet gear number 3 in a system with Np = 3 
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We discussed in section 3.3.2.4 that the phase of the sidebands generated by the 

meshing of single planet gears are m⋅Nt + n scalings of the geometric angular position of 

the corresponding planet gears. Because the phases of the sidebands thus depend on the 

geometric position of the planet gears, once a planet gear has shifted from its 

corresponding θp position to a new θp+δp angle, the phases of its sidebands also change. 

This is verified by substituting the new angle in Equation 3.9 to obtain that 

 . (3.12) )()(shifted

,, nNm tppnmp +⋅⋅+= δθϕ

By rearranging this result, we find that the phases of the sidebands of a shifted 

planet gear  are equal to the phase of the equally spaced planet gear position (i.e., 

without the shift) plus a quantifiable phase change, i.e., 

shifted

,, nmpϕ

 , (3.13) nmpnmptptpnmp nNmnNm ,,

spc-equal

,,

edshift

,, )()( ϕϕδθϕ Δ+=+⋅⋅++⋅⋅=

where  is obtained from Equation 3.9, and spc-equal

,, nmpϕ

 )(,, nNm tpnmp +⋅⋅=Δ δϕ  (3.14) 

is the sideband phase change effected by the planet-gear shift. In conclusion, when a 

planet gear shifts, the phase of each of its corresponding sidebands changes by an m⋅Nt + 

n proportion of that shift. Following McFadden and Smith’s approach, the idea is 

illustrated in Figure 3.14 using phasor representation. 
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Figure 3.14. Effect of angular planet-gear shift on the phase of a planet gear’s 

sidebands; a) representation of a shift in planet gear number 3 of a three-planet-

gear system; b) Phasor representation of the corresponding effect in the phases of 

the sidebands of each planet gear; the ϕ's represent angles of the phasors. Note: δp 

is not to scale in a) and b) 

Expectedly, sidebands generated by systems with a shifted planet gear that 

experience phase changes of knmp ⋅=Δ πϕ 2,,

shifted

,, nmpϕ

Δ

 for any integer k are equivalent to the 

sidebands of a system without planet-gear shifts (i.e., equally spaced), since a phase 

change of multiples of 2π return a  phasor angle to its equal-spacing position. We 

might be tempted to think that it is thus possible for all evidence of a gear shift to 

disappear when a shift angle causes knmp ⋅= πϕ 2,, . However, by substituting 

knmp ⋅=Δ πϕ 2,,  in Equation 3.14, we find that only the sidebands whose 

p

t nNm
δ

kπ ⋅
=+⋅

2
 will return to the equally spaced position and eliminate any evidence 

of shifting. The equality condition 
p

t nNm
k

δ

π ⋅2
=+⋅  is rarely met among all the (m, n) 
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sidebands corresponding to a planet gear. Thus, in general, we can expect most of the 

sidebands of a shifted planet gear to be affected, and show evidence, of an angular shift. 

Consider now the changes experienced by the sidebands in relation to the amount 

of angular shift of a planet gear. From the discussion above, we know that we can expect 

to see the effect of a planet-gear shift on a specific m⋅Nt + n sideband disappear whenever 

nNm

k

t

p
+⋅

⋅
=

π
δ

2
 for any integer k. Conversely, because the effect of the shift on the 

sideband’s phase has to increase as nmp ,,ϕΔ  moves away from multiples of 2π , the effect 

will be maximum when
n

k

+Nm t

p
⋅

⋅
=

π
δ . In practice, because the value of n is typically 

small when compared to m⋅Nt, and because sideband analyses are typically done in the 

regions where n is close to 0, we may be able to use the following two approximations 

within the group of sidebands of a specific m
th

  harmonic region: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅

⋅
≈

⋅

⋅
≈

  maximum iseffect shift planet then ,

 negligible iseffect shift planet then ,
2

  if  harmonic,  For the th

t

p

t

p

Nm

k

Nm

k

m
π

δ

π
δ

,(3.15) 

for any integer k. This behavior is demonstrated graphically in Figure 3.15. 
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Figure 3.15. Sideband phase change 
nmp ,,ϕΔ  of the dominant sideband (n = 0) as 

a function of the geometric angular shift δp of a planet gear for different tooth 

meshing harmonics. System represented has Np=3 and Nt=134 

Note in Equation 3.14 that, because typically a large number scales the planet-

gear shift angle, even small shifts can noticeably affect the sidebands of a planetary gear 

system, especially in higher harmonics, where m is larger. For example, in a system with 

Nt=134, the dominant sideband (n=0) of the third tooth meshing harmonic (m=3) can 

experience a full phase reversal (phase change of πϕ =Δ 0,3,p ) with a planet-gear shift of 

only about 0.45 degrees (0.008 radians). 

Also note that, with respect to the first tooth meshing harmonic (m=1), phase 

changes are twice as fast on the second tooth meshing harmonic (m=2), three times as fast 

on the third (m=3), and so on. This fact suggests that the effect of small planet-gear shifts 

may be more perceptible at higher tooth meshing harmonics. However, other factors must 

be considered, as discussed later, in section 3.4.3. 
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As was discussed in section 3.3.2.4, when the vibrations of the individual planet 

gears combine to form the overall planetary system vibration signal, an equally spaced 

system would experience suppression of all non-dominant sidebands, i.e., those whose 

m⋅Nt + n ≠ k⋅Np. However, this does not entirely hold true for a system with planet-gear 

shifts. As is represented in Figure 3.16, when a planet gear shifts, the formation of 

sidebands in the overall system’s spectrum is affected. Depending on the magnitude of 

the planet-gear shift angle it is most likely that the dominant and apparent sidebands will 

see their magnitude reduced by some amount with respect to that of the equally spaced 

case; simultaneously, non-dominant sidebands will not be completely suppressed. 
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Figure 3.16. Phasor representation of the formation of planetary system sidebands 

through addition of individual planet-gear sidebands; a) dominant and apparent 

sidebands, m⋅Nt + n = k⋅Np; b) non-dominant sidebands, m⋅Nt + n ≠ k⋅Np. The ϕ's 

and Φ's are used to represent, respectively, the angles of individual planet gear 

phasors and of overall system phasors 
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The drop in magnitude of the dominant and apparent sidebands and the 

corresponding rise of the non-dominant sidebands, all caused by planet-gear shifting, is 

illustrated in Figure 3.17 as a function of the change of phase on a single-planet-gear 

sideband, Δϕ. Figure 3.18 shows what changes would be observed in the spectrum of a 

gearbox with a particular planet-gear shift. Notice in this graph that the effect tends to be 

more perceptible on the regions of higher harmonics, where the planetary shift angle is 

scaled by a larger amount. 
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Figure 3.17. Effect of single-planet-gear shift in the magnitude of dominant (or 

apparent) and non-dominant sidebands for a system with three planet gears and 

unity single-planet sideband magnitudes. Ordinate axis is scaled to the magnitude 

of a single planet gear's contribution 
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Figure 3.18. Comparison of sidebands in the spectra of an equally spaced 

planetary gearbox and a gearbox with planetary shifting. When planet-gear 

shifting occurs, dominant and apparent sideband magnitudes are expected to 

decrease while non-dominant sidebands are expected to increase with respect to 

the equally spaced case 

3.4.2. Other effects due to the number of planet gears 

Figure 3.19 shows in more detail how dominant and apparent sidebands are 

formed by the addition of single-planet-gear sidebands when one planet gear shifts for the 

cases of systems with Np = 3 planet gears and with Np = 5 planet gears. The illustration 

also shows the theoretical ranges for the overall system sidebands when the last planet 

gear (p = Np) shifts. It is worthwhile to note that both the magnitude nm,Φ
r

 and phase 

(
nmnm ,, Φ=Φ∠

r
) of the system sidebands change with the planet-gear shift. However, the 

change in magnitude is relatively smaller as the number of planet gears increases. 
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Figure 3.19. Effect of single-planet-gear shift on the formation of dominant and 

apparent sidebands; a) system with 3 planet gears; b) system with 5 planet gears. 

The ϕ's and Φ's are used to represent, respectively, planet gear and system phasors 

(i.e., vector quantities) 

For example, the minimum of the system’s sideband magnitude in the system 

with three planet gears equals the magnitude of one single-planet-gear sideband, 

suggesting a maximum change of 2/3 of the magnitude of the equally spaced case. The 

minimum magnitude when there are five planet gears equals the sum of 3 single-planet-

gear sidebands, corresponding to a maximum variation of only 2/5 of the magnitude of 

the sideband of the equally spaced system. 

Effects of the number of planet gears over the magnitude and phase of the non-

dominant overall system sidebands are shown in Figure 3.20. 
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Figure 3.20. Effect of single-planet-gear shift on the formation of non-dominant 

sidebands; a) system with 3 planet gears; b) system with 5 planet gears. The ϕ's 

and Φ's are used to represent, respectively, planet gear and system phasors (i.e., 

vector quantities) 

3.4.3. Sensitivity of the vibration to planet-gear shifting 

The preceding discussion and the results of Equation 3.15 already suggest what 

can be formally determined to be the sensitivity of the phase of sidebands to angular 

shifts. When the spectrum of a single planet gear is considered, it should be expected that 

the amplitude of the sidebands is insensitive to angular shifts. Yet, the phase of the 

sidebands changes proportionally to both the amount of angular shift and the sideband 

number. This is immediately verified by differentiating Equation 3.13 with respect to the 

angular shift of a planet gear to obtain that 

  nNm
d

d
t

p

nmp

p

nmp +⋅=
Δ

=
δ

ϕ

δ

ϕ ,,

edshift

,,
. (3.16) 
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This result suggests once again that sidebands located at increasingly higher 

frequencies (i.e., for the most part at larger harmonics, or greater m values, and for the 

least at higher n values) show an increased phase change when small planet-gear shifts 

occur. The finding is important because it might provide a guide to selecting frequency 

bands for planet-gear shift detection, as will be discussed below. 

The sensitivity of the overall system’s vibration is a different matter, however. In 

this case, both the amplitude and the phase angle of the system’s sidebands are affected 

by the angular shift of any one planet gear because of the interference of the individual 

planet gears’ vibrations. 

Evaluating the sensitivity of the overall system’s sidebands can be done 

analytically via vector operations by representing the sidebands as vector quantities, or 

phasors, in a fashion similar to that of McFadden and Smith’s work. However, this task is 

overlooked in the present research. Nevertheless, the following points will be made about 

the sensitivity of the overall system’s vibration: 

1) The overall system’s sensitivity may be better expressed as a vector result (with 

phase sensitivity and magnitude sensitivity). In addition, the sensitivity might have to 

be evaluated as a partial derivative of the overall system with respect to the angular 

shift of a single planet gear; i.e., when more than one planet gear shifts, sensitivity 

can be evaluated on a gear-by-gear basis.  
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2) The combined effect of multiple planet-gear shifts can be complex, chiefly because 

the single-planet-gear phasors, as was shown in Figure 3.16, combine in a different 

manner at each spectral frequency. Thus, each one of the overall system’s sidebands, 

each of which is located at its own m⋅Nt + n value, is formed by the combination of 

individual planet gear sidebands with their own m⋅Nt + n sensitivity to the particular 

δp shift angle corresponding to their planet gear. 

3) Even though the sensitivity of the phase of a single-planet-gear sideband is for the 

most part proportional to the harmonic number m at which it is located, as suggested 

by Equation 3.9, the sensitivity of the overall system’s sidebands may not be in any 

way comparable to this amount. 

4) As mentioned earlier, even small planet-gear shifts can cause considerable changes in 

the system sidebands. Hence, even manufacturing tolerances (for the planet gears’ 

angular positions) can cause differences in the sideband signature of otherwise 

similar systems. 

3.4.4. Effects of large shift angles 

One of the effects of large angular shifts of planet gears is that dominance of 

sidebands may change from one sideband to the next, especially in systems with 4 planet 

gears or less, per the analysis of the effect of the number of planet gears, above. By 

dominance here, it is meant that the “tallest” sideband (i.e., with the largest amplitude) is 

no longer at a position where m⋅Nt + n is an integer multiple of Np. When one planet gear 
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shifts relatively to the others, dominance of sidebands can change at each group of Np 

adjacent sidebands. However, whether dominance changes or not depends on the planet-

gear shift angle δp and the relative change in amplitude of the specific sidebands 

involved, all adjacent, since each sideband experiences a particular Δϕp,m,n. 

Suppose for example that in the equally spaced case with no planet-gear shifting 

some particular (m, n) sideband with n = d is dominant. The sideband may be formed in 

fashion similar to that illustrated by Figure 3.16a, regardless of the number of planet 

gears in the system. For this case, the adjacent sideband, identifiable by (m, d + 1), would 

be non-dominant, and would be formed in a manner similar to the representation of 

Figure 3.16b. If δp is large enough, it may happen that the respective Δϕ values of each of 

these two sidebands causes the magnitude of the phasors to change considerably, up to a 

point where the (m, d) sideband becomes “shorter” than the (m, d + 1) sideband, thus 

showing an effect of “dominance shift”. The situation is illustrated in Figure 3.21. 
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Figure 3.21. Illustration of the case when dominance of sidebands can switch 

from a sideband to an adjacent sideband. a) What appeared to be a dominant 

sideband on an equally spaced system can become a “short” sideband on the 

system with a planet-gear shift. b) The adjacent non-dominant sideband becomes 

longer than the “short” sideband in the system with the planet-gear shift, thus 

giving the impression of a dominance shift 

Even though it is possible to observe this dominance shift effect in systems with 

planet-gear shifts, it is improbable at a specific frequency. Nevertheless, since there are 

so many sidebands, it is very likely that in a real system with 4 planet gears or less, apart 

from noise-induced or other variability effects, some sideband groups will show this 

effect. 

3.4.5. Model validation 

Vibration data from the experiments described in section 3.2 is used to validate 

the vibration model for planetary gearboxes with planet-gear shifting developed above. 

Time synchronous averaging (TSA) was applied to the vibration signals of the 
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accelerometers to normalize the frequency units with respect to the carrier rotation speed. 

The procedure is in line with techniques used by Keller and Grabill (2003), Wu et al. 

(2004) and Hines et al. (2005).  Descriptions of the TSA technique can be found in 

Vachtsevanos et al. (2006) and Samuel (2003). 

As was listed earlier in Table 3.1 (see section 3.2), vibration signals were acquired 

in all cases at various engine torque settings. Different toque settings produce different 

amounts of deformation on the planetary carrier plate, leading to varying degrees of 

planet-gear shifting. Nevertheless, the strains near the planet gear mounting post root, 

where the crack is located, vary linearly with torque (see Sahrmann, 2004). Thus, we 

would expect the gearbox to experience larger planet-gear shift angles at increased 

torques. 

3.4.5.1. Validation through experiments with specific crack lengths (first set of 

experimental data) 

Tests with specific crack lengths were carried out for two different cases, each of 

which required different a different planetary carrier plate. One of the carrier plates was 

cracked and the other was healthy (i.e., without a crack). Because of the possible 

variations between the two system-setups, if would be unfair trying to compare vibratory 

signatures of the two systems without making proper adjustments. The adjustments are 

necessary because each system tested can have a different frequency response. In other 

words, the values for αn and βm considered in sections 3.3.2.2 and 3.3.2.4 can vary among 

experiments and produce different signature scales. To correct for this variation, results 
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are here presented with frequency components normalized. The normalization is done 

with respect to the magnitude of the dominant frequencies (i.e., all sideband magnitudes 

divided by the magnitude of dominant sideband located at f = m⋅Nt⋅f
 s
). 

For this first set of experiments, the gearbox was run at a desired engine torque 

setting and allowed to stabilize for some time before vibration data was acquired. Results 

presented here use data from the sensor referred to as “Port Ring” by Blunt and Keller 

(2006). The graphs in Figure 3.22 through Figure 3.29 show how most non-dominant 

sidebands in the system where a 3.25-inch crack is present (i.e., where there is a planet-

gear shift) rise above those in the system with a healthy carrier plate (i.e., without 

abnormal planet-gear shifts). Sidebands that do not behave this way may exhibit the 

discrepancy because of noise or other signal variability effects, but the mean value of the 

non-dominant sidebands seen in the picture is represented by a horizontal line to show the 

overall effect. 

The graphs report on data from the test cell gearbox and from on-board actual 

helicopters. Observe, furthermore, that the dominant and apparent sidebands (located at 

frequencies that are multiples of 5 and plotted over the vertical, dotted grid lines) tend to 

decrease in magnitude when the carrier plate experiences crack-induced planet-gear 

shifting, although they sometimes show a discrepancy too. Note however, that, when the 

torque applied to the planetary carrier is low and thus the planet-gear shift angles are not 

as large, the shifting effect does not show clearly in the sideband magnitudes of the 

vibration spectrum. Such situation, which may be caused by noise or other signal 

variations overwhelming the sideband magnitudes, can be seen in the third harmonic 
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region plot of Figure 3.22 and Figure 3.23, where the engine torque values are only 20% 

and 30%, respectively, for test cell data. Signal variability levels have been observed to 

be larger in the experimental data used at higher frequencies, and this would explain why 

higher harmonic regions, such as the third, sometimes show the discrepancy.  There, the 

mean value line of the non-dominant sideband magnitudes for the cracked carrier plate is 

below that of the healthy plate. Nevertheless, at 30% engine torque, the effect is reduced, 

and this is in line with the possibility that planet-gear shift angles become larger. This 

discrepancy effect does not appear in aircraft data at 20% torque (Figure 3.28), but it does 

slightly at 30% (Figure 3.29). 
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Figure 3.22. Vibration spectrum for test cell gearboxes with Np = 5 planet gears 

and Nt = 228 teeth in the annulus gear. One of the gearboxes had a 3.25-inch crack 

on the root of a mounting post of one of the planet gears in the planetary carrier 

plate, leading to abnormal planet-gear shifting; the other gearbox was in normal 

operating conditions. Planet-gear shifting is here expected to be low because 

stresses on the planetary carrier plate, caused by an operational engine torque of 

only 20% of the nominal, were also relatively low 
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Figure 3.23. Vibration spectrum for test cell gearboxes at 30% engine torque. 

Data legend is same as in Figure 3.22 
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Figure 3.24. Vibration spectrum for test cell gearboxes at 50% engine torque. 

Data legend is same as in Figure 3.22 
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Figure 3.25. Vibration spectrum for test cell gearboxes at 70% engine torque. 

Data legend is same as in Figure 3.22 
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Figure 3.26. Vibration spectrum for test cell gearboxes at 90% engine torque. 

Data legend is same as in Figure 3.22 
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Figure 3.27. Vibration spectrum for test cell gearboxes at 100% engine torque. 

Data legend is shown in Figure 3.22 

78 



 

220 225 230 235 240
10

-3

10
-2

10
-1

10
0

10
1

M
a
g

n
it

u
d

e
 o

f 
a
ir

c
ra

ft
 s

id
e
b

a
n

d
s
 a

t 
2
0
%

 t
o

rq
u

e

(n
o
rm

a
liz

e
d
 t

o
 t

h
e
 d

o
m

in
a
n
t 

a
t 

e
a
c
h
 h

a
rm

o
n
ic

 r
e
g
io

n
) Harmonic 1 of the meshing frequency

445 450 455 460 465
10

-3

10
-2

10
-1

10
0

10
1

Multiples of the carrier rotation frequency = (mN
t
+n)fs

Harmonic 2 of the meshing frequency

675 680 685 690 695
10

-3

10
-2

10
-1

10
0

10
1

Harmonic 3 of the meshing frequency

 

Figure 3.28. Vibration spectrum for on-aircraft gearboxes with Np = 5 planet gears 

and Nt = 228 teeth in the annulus gear. The vibration data used for this figure was 

acquired from actual helicopters in operation. One gearbox had a 3.25-inch crack 

in the planetary carrier plate, leading to abnormal planet-gear shifting; the other 

gearbox was in normal operating conditions. Engine torque is 20% of the nominal. 

Data legend is same as in Figure 3.22 
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Figure 3.29. Vibration spectrum for on-aircraft gearboxes at 30% engine torque. 

Data legend is same as in Figure 3.22 

3.4.5.2. Validation through experiments with a growing crack (second set of 

experimental data) 

Unlike the first set of experimental data used above, vibration for the second set 

of experimental data was acquired entirely from a single gearbox.  The frequency 

response of the system was found to vary throughout the test as the crack grew, especially 
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at larger crack lengths. Hence, results presented below are once again with frequency 

components normalized with respect to the magnitude of the dominant frequencies (i.e., 

all sideband magnitudes divided by the magnitude of dominant sideband located at f = 

m⋅Nt⋅f
 s
). 

The experiment applied load cycles by varying the engine torque continuously to 

make the crack grow. These cycles were designed by the technical leaders of the 

experiment to resemble a helicopter taking off the ground, hovering for some time and 

then landing, in what is called a ground-air-ground (GAG) cycle. A GAG cycle is 

comprised of a succession of increasing and decreasing engine torques. Vibration data 

“snapshots” were acquired at each GAG cycle for specific torque settings. Each snapshot 

corresponded to the time it took for the planetary carrier plate to complete about 21 to 22 

full revolutions. Crack length measurements were obtained throughout the experiment 

with the use of specialized instrumentation (i.e., crack length gages) to measure discrete 

increments in the crack size. Each discrete crack length measurement obtained is referred 

to as a “ground truth” point. By interpolating the ground truth crack lengths with respect 

to the GAG cycle numbers, it is possible to assign specific crack lengths to the vibration 

snapshots. More details on the GAG cycles are provided in section 7.2.2, and on the 

crack length measurements in section 7.6. 

The experiment was run for more than 1000 GAG cycles, but provided vibration 

data usable by the present study only up to GAG cycle number 999. Inside this region, 

crack growth rates ranged from about 53 to 327 GAG cycles per inch, with an average of 

about 210.1 GAG cycles per inch, except near the region where the crack reached the 
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outer edge of the circumference of the plate (crack length of about 4.8 inches), time at 

which the crack growth rate shot up. Results presented here use data from a sensor 

similar to the “Port Ring” sensor of the first set of experimental data and identified as 

“VMEP2” by researchers and technicians involved with the experiment (see 

Vachtsevanos et al., 2006). 

Figure 3.30 gives an idea on how it is possible to observe vibration changes 

throughout the experiment for specific crack lengths and at specific engine torque 

settings. Time-synchronous vibration spectra (refer to section 3.4.5) for 10 adjacent GAG 

cycles are averaged at each crack length shown in the graph. 

1
2

3
4

5

220

225

230

235

240
0

0.2

0.4

0.6

0.8

1

Crack Length (inches)

Selected vibration spectra around harmonic 1 of the meshing frequency

as a function of crack length at 100 and 93% torque

Multiples

of the carrier

rotation frequency 
  = (mN +n)fs

M
a
g

n
it

u
d

e
 o

f 
te

s
t 

c
e
ll

 s
id

e
b

a
n

d
s

(n
o
rm

a
liz

e
d
 t

o
 t

h
e
 d

o
m

in
a
n
t 

a
t 

c
ra

c
k
 l
e
n
g
th

=
1
.3

4
")

t

93%100%

 

Figure 3.30. Representation of vibration snapshots taken for the crack growth 

experiment of a seeded crack in a planetary carrier plate. The vibration spectra 

shown at each crack length correspond to the frequency components near the first 

meshing harmonic at either 100% or 93% engine torque settings 
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For reasons of clarity, results for the behavior of sidebands are presented after 

classifying sidebands in one of three categories: (1) dominant and apparent sidebands, (2) 

non-dominant sidebands adjacent to dominant or apparent sidebands, and (3) non-

dominant sidebands not adjacent to dominant or apparent sidebands. This categorization 

is represented in Figure 3.31. According to the theory set forth in section 3.4.1, category 

1 sidebands are expected to decrease as the crack in the planetary carrier plate grows and 

planet-gear shifting increases. In contrast, the non-dominant sidebands of categories 2 

and 3 are expected to increase. 

Dominant Apparent
Apparent

Category 1

Category 2 Category 3

n=d n=d+5n=d-5

……

Dominant Apparent
Apparent

Category 1

Category 2 Category 3

n=d n=d+5n=d-5

Dominant Apparent
Apparent

Category 1

Category 2 Category 3

n=d n=d+5n=d-5

……

 

Figure 3.31. Categorization of planetary gear spectrum sidebands for a planetary 

gearbox with Np = 5 planet gears. Category 1 includes dominant and apparent 

sidebands. Category 2 includes non-dominant sidebands immediately adjacent to 

dominant or apparent sidebands. Category 3 includes non-dominant sidebands 

away from dominant or apparent sidebands 

The graphs of Figure 3.32 through Figure 3.34 show the progression in 

magnitude, for different engine torque settings, of the categorized sidebands as the crack 

grew in the seeded crack experiment. For reasons of clarity, results presented show only 

certain crack lengths and not all available data. To better show the trend in the sideband 

magnitudes, spectrum determination was done after utilizing time-synchronous averaging 
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for 21 or 22 revolutions (depending on data availability) of the planetary carrier plate at 

each GAG cycle, and then averaging the sideband magnitudes of 50 successive GAG 

cycles at each crack length depicted. The intent is to mitigate variations likely caused by 

noise or other effects. The 50 GAG cycles averaged for the results shown correspond to 

variations in the crack length of about 0.24 inches in average and are never more than one 

inch. It can be seen that, in general, the results presented show the expected trends in 

sideband magnitudes for the different categories. Note however that, once again, the 

trend is less clear at low engine torques. Furthermore, it appears that, as the crack 

increases, the magnitudes of non-dominant sidebands of category 2 do not decrease as 

quickly as those of category 3 do. This effect may be caused by frequency leakage from 

the sidebands in category 1 to those in category 2. 
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Figure 3.32. Progression of sideband magnitudes for frequency components as a 

function of crack length at 20% of nominal engine torque. Arrows indicate the 

frequency values corresponding to each sideband depicted. This frequency is in 

multiples of the planetary carrier plate rotation frequency, i.e., f = (m⋅Nt+n) f s
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Figure 3.33. Progression of sideband magnitudes for frequency components as a 

function of crack length at 40% of nominal engine torque. Arrows indicate the 

frequency values corresponding to each sideband depicted. This frequency is in 

multiples of the planetary carrier plate rotation frequency, i.e., f = (m⋅Nt+n) f s
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Figure 3.34. Progression of sideband magnitudes for frequency components as a 

function of crack length for 100% of nominal engine torque up to about 3.3 inches 

and 93% engine torque thereafter. Arrows indicate the frequency values 

corresponding to each sideband depicted. This frequency is in multiples of the 

planetary carrier plate rotation frequency, i.e., f = (m⋅Nt+n) f s 
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3.4.6. Remarks about the vibration model 

The vibration model presented in section 3.4.1 characterizes analytically certain 

trends in specific frequency components of the vibration signature of a planetary gearbox 

occurring when planet gears shift and become unevenly spaced. More specifically, the 

model ties the increase or decrease in magnitude of sidebands of a gearbox’s vibration 

spectrum at specific frequencies to planet-gear shifts. The model also shows that the rate 

of this increase or decrease is related to both the angle of the shift and the frequency of 

the sidebands. 

It is important to note that all planet gears are expected to shift during normal 

operation of a planetary gear transmission because of elasticity, especially that of the 

planetary carrier. When a system operates normally, angular-symmetric design provides 

for the shifting to be approximately equal on all planet gears. However, some anomaly in 

the system, like a fault in the system’s geometry, can cause excessive and uneven shifting 

of the planet gears. Such was the case in focus on the characterizations presented. 

The values of αn and βm are important parameters in the description of the 

frequency response of a planetary gearbox. However, these parameters were not directly 

available from the experimental data used to validate the model in section 3.4.5. Hence, 

to be able to present results that could be compared across experiments or across data 

taken at different times in the same experiment, experimental spectra had to be 

normalized with respect to the dominant sideband at each harmonic region of the tooth 

meshing frequency. 
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The need for this normalization is explained by McFadden and Smith (1985) 

when they express that “it is not possible to predict the relative amplitudes of the 

surviving components [in the vibration spectrum of a planetary gearbox] because these 

are determined by the pattern of [the vibration intensity function of Figure 3.9], which is 

not known.” This claim highlights the importance of determining the values of αn and βm 

to characterize the vibration of a planetary gear system. Without these values, we do not 

have a direct way of relating the vibration components of experimental vibration data to 

the sideband behaviors studied analytically in section 3.4.1. 

The values of αn and βm are, in practice, difficult to measure. Nevertheless, it is 

possible to use numeric techniques to approximate their values from the spectrum of a 

specific planetary gearbox, as section 5.3 will show. However, to complicate further any 

efforts in trying to determine the noiseless frequency response of a planetary gearbox, we 

have that the frequency response of the vibration sensor can disrupt the relation between 

the measured spectrum and the values of the αnβm factors characteristic to a particular 

system. In addition to the αnβm factor describing the magnitude of the sidebands in the 

vibration spectrum, there may be an additional γ factor produced by the frequency 

response of the sensor, such that each frequency component would be described by a 

quantity such as αnβmγf. This consideration was overlooked in the analysis presented, just 

as it may be possible to neglect it in practical applications as long as the frequency 

response of the vibration sensor remains fairly smooth and constant. 
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4. A MODEL-BASED DIAGNOSIS ARCHITECTURE 

4.1. Objectives 

The goal of this chapter is to suggest a methodology for designing a model-based 

diagnostic architecture that can (1) establish the foundation for performing model-based 

diagnosis in a class of dynamic systems, (2) be easily integrated with the model-based 

prognostic architecture of chapter 6, and (3) be applied to diagnose a crack in the 

planetary carrier plate of a helicopter transmission such as the one described in section 

3.1. 

The diagnostic architecture suggested in the present chapter integrates modeling, 

simulation, and experimental data. The class of dynamic systems to which it can be 

applied will fit the assumptions and descriptions set forth in section 4.2. Focus is placed 

on models that characterize the physics-of-failure mechanisms of faulted systems. 

Models of this kind are commonly referred to as physics-based models in the engineering 

diagnostics literature. However, the methodology suggested might be applicable to other 

kinds of models by appropriately adapting its constituent modules. The architecture is 

immediately applicable to diagnose particular mechanical rotary systems, such as the 

helicopter transmission. Such application, discussed in detail in chapter 5, will validate 

and demonstrate the use of the methodology suggested in the present chapter. 
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4.2. A Generic Diagnostics Methodology for a Class of Dynamic 

Mechanical Systems 

4.2.1. Adapting a model for its use in diagnostics 

A model to be used for realizing model-based diagnostics must provide the ability 

to simulate an engineering system under varying types of faults and varying amounts of 

damage, because, as covered in section 2.2.1, comprehensive fault diagnostics involve 

not just the aspect of fault detection, but fault isolation and fault identification as well. 

Effort has thus been invested in designing a diagnostic architecture that can use a so-

called physics-based model to simulate the changing behavior of a system with a 

developing fault. Figure 4.1 shows the architecture developed. Note that it is generally 

applicable to many kinds of systems. 
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Figure 4.1. Suggested architecture for performing model-based simulation of 

systems with a static fault 
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Any model can be cast in the form of a function, with inputs, outputs, variables 

and parameters. Physics-based models are functions referencing and relating variables 

and parameters having physical significance, i.e., that can be associated with physical 

laws governing the behavior of the system that is modeled, like the laws of motion, 

mechanics, electromagnetism, etc. 

To be able to use a physics-based model to replicate the behavior of a system 

experiencing a fault, we need to apply values that are indicative of the presence of the 

fault to some of the variables and parameters. This is the reason why it is fitting to 

classify these according to whether they are sensitive to the fault or not, as proposed by 

Figure 4.1. This classification will allow the study of the effect of a fault to focus on 

significant components of the model while simultaneously isolating them to facilitate 

their consideration. 

The most basic underlying assumption in the methodology proposed here is that 

the model can replicate the behavior of the system under the fault. As discussed in section 

1.3, models are often available for operational engineering systems, but it is more 

difficult to ensure that they truly reflect the changing behavior of a system when a fault is 

present. If the model were not ready to do this, then it must be modified to allow it to 

simulate the fault conditions. In many occasions, system models based in physical 

behaviors should have this ability, but in the design stage of an engineering system, the 

model is reduced or simplified to simulate the normal operating conditions that designers 

wish to study. Such is the case, for example, of the planetary gear vibration 

characterization proposed by McFadden and Smith (1985) and studied in section 3.3.2.1. 
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The model was established to describe the vibration signature of a planetary gear system 

working normally. Parker (2000) also developed a similar model from a different 

perspective, but precisely with the intent to aid in the design of planetary gear systems 

and provide a means to reduce the vibration. 

Another assumption in this development is that the parameters describing the 

system have been correctly classified into fault-sensitive or fault-insensitive. This may 

not be simple, however. It is further assumed that it is possible to study the response of 

the fault-sensitive parameters to a fault, and that the fault-insensitive parameters either 

are known or can be determined experimentally.  

The approach proposed in Figure 4.1 integrates the use of a model with 

experimental data for simulation, and provides the ability to consider different operating 

conditions. This simulation architecture can be applied by following the steps described 

in sections 4.2.1.1 through 4.2.1.5, below. 

4.2.1.1. The experiment case 

Experimental data are used to approximate all the fault-insensitive parameters 

describing the system. Of course, experimental data are used only when the values of 

these parameters are not readily known quantities like invariant material properties or 

physical constants. This step is included considering that we want to calibrate a model 

that requires the values of parameters that are specific to a particular system realization or 

arrangement. The determination of the fault-insensitive parameters is done through any 
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reliable technique for parameter estimation or system identification. These parameters 

should be determined for particular cases of experimental data that were obtained at 

known operating conditions of interest. These known operating conditions, given by the 

application of a particular loading case, are represented in the diagram of Figure 4.1 in 

the center-top block. Because the parameters to be determined are supposed to be 

insensitive to the fault, it should not matter whether the plant from which the 

experimental data were retrieved was at fault or not. However, if some of the parameters 

are sensitive to the fault to some extent but for reasons of simplicity were assumed 

insensitive
10

, then it is up to the diagnostic system designer to choose whether it would 

be better to use experimental data from a system with or without a fault. The decision 

would be made after considering which of the two instances (with or without a fault) 

reflects the most adequate values of the parameters chosen as “fault-insensitive”. Data 

from one of these particular experimental cases enter the methodology on the upper-right 

corner of the diagram of Figure 4.1. 

                                                

4.2.1.2. The fault case 

To use the model for simulating the behavior of the plant under a fault with a 

particular degree of development, one must quantify this development as a specific 

amount of damage in the system. The exact amount of damage is used to describe the size 

of a particular fault, i.e., it is a specific fault case, and is entered in the diagnostic 

algorithm of Figure 4.1 through the top-left corner. 

 
10 This would be done if the effect of a fault is negligible in such parameters  
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4.2.1.3. Analysis of damage-sensitive subsystems or components 

In this step, the operating conditions (load case) and the amount of damage (fault 

case) are used to analyze the response of different components or subsystems of the plant 

to the presence of the specific fault size considered. The objective of this analysis is to 

determine the values of fault-sensitive parameters describing the system for the model. 

Such an analysis is particular to the plant, and may require support from a variety of 

engineering disciplines. For example, in the case of the helicopter transmission problem 

considered in this thesis, the plant model for diagnosis is a vibration model of the 

planetary gearbox. The model, described in section 3.4, requires information about the 

angular shift of the planet gears. Determining the angular shifts requires analyzing the 

deformation of the planetary carrier plate. In this case, the angular shifts are the fault-

sensitive parameters of interest that the plant model at the center of Figure 4.1 requires. 

4.2.1.4. Simulations with the plant model 

Once the fault-insensitive and fault-sensitive parameters have been determined, 

the parameters are input to the plant model at the center of Figure 4.1. The model is used 

to simulate the behavior of the plant for a specific fault case in individual components or 

subsystems and under a particular load case. It is possible to run simulations for 

particular faults and loads because the parameters were determined also for particular 

faults and loads. The simulation will produce a signal, or the values of a set of system 

variables, replicating those from the plant under similar conditions. However, in the real 

world, the corresponding values of this signal or set of variables are observed (i.e., 

measured) in the plant after they have been affected by different events, including noise, 
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sensor response characteristics, signal processing, etc. Thus, the signals or variables 

obtained from the model should be treated or modified in a similar manner to ensure that 

the simulation truly replicates the plant and allow for fair comparisons between the model 

and plant. Calibration of the model-based diagnostic architecture is hence due here. Take 

for example the case of noise. If we know that the signal the plant produces is distorted 

by extraneous signals that can be characterized with a statistical distribution, the same 

distribution may be added to the model signal to have it approximate better the behavior 

of the plant. Omitting the calibration or signal conditioning step described has the 

potential to invalidate any comparisons between simulation results and plant 

measurements. 

4.2.1.5. Use of the proposed simulation architecture in model-based diagnosis 

The architecture of Figure 4.1 is used to simulate the behavior of a plant for a 

specific fault case in individual components or subsystems and under a particular load 

case. The simulation produces a signal or values that replicate those of the plant when 

operating under such conditions. However, the plant may not be operating under such 

conditions. It is the intent of a diagnostic effort to determine the conditions of the plant, 

and the simulation does not directly provide information about this. To arrive at a 

diagnosis of the plant, the signal or values resulting from the model simulations must still 

be interpreted and compared to those coming from the plant. This task is discussed in 

section 4.2.2.  
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4.2.2. A reverse engineering approach to model-based diagnostics 

Section 2.2.3 discussed the approach that is generally followed to perform model-

based fault detection. Since the approach refers to fault detection, it is useful for 

determining whether a fault exists or not in a plant. This detection approach was depicted 

earlier in Figure 2.2. We are here interested, however, in assessing the size of the fault or 

the severity of damage as well, i.e., we want to perform fault identification in addition to 

fault detection. A modification of the detection approach is proposed here to allow for the 

task of fault identification. The technique is similar, but an iterative step is added, as 

shown in Figure 4.2, below. The idea is to use the model repetitively with different 

amounts of damage to generate a series of residuals or parameter estimates. The process 

stops when the evaluation block decides that a residual or parameter estimate has an 

“adequate” value. At that point, the fault size used in the model to generate the residual or 

parameter estimate is deemed to approximate the fault size present in the plant. By 

“adequate value”, different things are meant when using parameter estimation or residual 

generation. In the case of parameter estimation, an adequate value would be that of a 

parameter remaining within previously specified bounds (see section 2.2.3). For residual 

generation, the adequate value approaches zero. 

 Plant 

Model 

Residual 
generation 

or 

parameter 
estimation 

Fault 
identification 

Evaluation
or “decision 

making” 

 

Figure 4.2. Approach suggested for performing fault identification. Compare to 

the general approach followed in fault detection, shown in Figure 2.2. 
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Let us consider how this approach can be applied with the residual evaluation 

procedure described earlier in section 2.2.3 and illustrated by Figure 2.4. Consider Figure 

4.3. The unknown amount of damage present in the plant is assessed by running repeated 

trials with different amounts of damage in the model. The trial with an amount of damage 

in the model that minimizes the absolute value of the residual is taken to be the amount of 

damage present in the plant. 
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Figure 4.3. Reverse engineering approach to fault identification through residual 

evaluation. This technique shows the application of the approach suggested in 

Figure 4.2 to the procedure followed in Figure 2.4. 

This approach to modeling makes it possible to use feature extraction techniques 

to diagnose a specific size of fault in the plant by searching for a correspondence of the 

behaviors observed in the plant among the behaviors of several simulation trials. The 

simulation trials represent varying degrees of damage, and the one that exhibits the 

closest correspondence is taken to be the one representing the size of the fault in the 

plant. Thus, this “searching” technique can be likened to a reverse engineering process of 

fault identification. 
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In summary, for this technique to work, the model must be able to replicate the 

behaviors that the plant would exhibit under different amounts of damage and specific 

operating conditions. To this end, the simulation architecture proposed in section 4.2.1 

and represented in Figure 4.1 can be used. 
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5. DIAGNOSIS OF THE HELICOPTER TRANSMISSION 

In this chapter, we diagnose the helicopter transmission problem described in 

section 3.1. We want to achieve this by using model-based diagnostics and applying the 

architecture and methodologies proposed in section 4.2. Our diagnostic signal is vibration 

data retrieved from a planetary gearbox in operation. Within this chapter, we also 

validate the model-based diagnostic architecture by comparing simulation results to 

experimental data obtained from helicopter transmissions exhibiting cracks. 

To implement the diagnostic architecture, we need to characterize changes in the 

vibration signal of the planetary gearbox caused by the presence of the crack on the 

planetary carrier plate. To this end, we can apply the model proposed in section 3.4. We 

also need to classify the model parameters as either fault-sensitive or fault-insensitive. 

The next step in the use of the diagnostic architecture is to establish adequate feature 

extraction routines by selecting vibration features that can adequately characterize the 

fault in the gearbox. This information can be used to assess the length of a crack using the 

reverse engineering methodology proposed in section 4.2.2. 

5.1. Special considerations of the planetary gear vibration model 

Section 3.4.5 used experimental vibration data to validate the analytic predictions 

about the frequencies at which sidebands will increase or decrease in magnitude. The 

experimental data were not useful, however, to validate directly the analytic 
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characterization of the rate of the increase or decrease of the sideband magnitudes. There 

are two reasons for this inability: 

1) The analytic studies of section 3.4.1 through section 3.4.4 considered the shifting 

of a single planet gear, whereas the abnormal deformations of the planetary 

carrier plate, attributable to the crack, produced uneven shifting of the planet 

gears. 

2) The values of αn and βm, which are important parameters in the description of the 

frequency response of a planetary gearbox, were not directly available from the 

experimental data. 

These two points are important if the model is to be used for replicating the 

behavior of a planetary gear transmission, and hence are addressed individually below. 

5.1.1. Considering the shift of multiple planet gears 

The planetary gearbox transmits power coming from the engines to the main rotor 

blades. The power is input to the planetary gearbox through the sun gear, then transmitted 

to the planet gears, and is output by the planetary carrier plate and delivered to the main 

rotor shaft that drives the rotor blades. The ring gear is stationary and thus does not 

transmit any power. See Figure 5.1. 
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Figure 5.1. Representation of the path of transmission of power from the engines 

through the planetary gear transmission to the main rotor blades of the helicopter. 

Solid arrows represent the action forces applied by one component on the next. 

The dotted-line arrow represents the reaction forces acting on the 

planetary carrier plate 

As in any structural member of a mechanism, loads in the planetary carrier plate 

can be classified as either action or reaction forces. The action forces are generated by 

the input of power, and, at the carrier plate, they are applied through the posts where the 

planetary gears are mounted. The reaction forces are generated by the component 

receiving the power output, and, at the carrier plate, they are applied through the internal 

splines of the plate, to which the main rotor shaft is attached. See Figure 5.2. 
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Figure 5.2. Representation of the major forces acting on the planetary carrier plate 

of the planetary gearbox of the helicopter transmission during operation 

When the planetary gearbox is operating without faults, the carrier plate will 

respond to the action and reaction forces with localized deflections. If the loads in each of 

the five planet gears are all equal and the rotor shaft remains aligned with the axis of the 

planetary gearbox, the angular symmetry of the carrier plate will ensure that the 

deflections of the five mounting posts are also angularly symmetric, i.e., the five posts 

will deflect comparably. 

A crack on the root of a planet gear mounting post of the planetary carrier plate 

will reduce the stiffness of that post. It should be clear that this reduction in stiffness will 

increase the deflection of the post when load is applied to the carrier plate. What is not so 

clear is the effect of the crack on this one post on the deflections of the other posts. 

According to the vibration model presented in section 3.4, the angular shift of the 

planet gears drives changes in the vibration patterns of the planetary gearbox. To be able 

to use this vibration model in the characterization of the effect of the crack on the 
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planetary carrier plate, we need information about the deformation patterns of the plate 

and the corresponding angular shifting of all the planet gears. 

5.1.2. The importance of the frequency response coefficients  

As explained in section 3.4.6, to characterize adequately the vibration of a 

planetary gear system we need information about its frequency response. In practice, this 

can be done by approximating the values of a sufficient number of the αn and βm 

parameters of the planetary gear vibration model. 

To approximate these parameters for a particular gearbox we can use the vibration 

model itself. Note that we are not trying to fit a model to the plant and then validate the 

model by its approximation to the plant. This would nullify the validation process. The 

suggestion here is to obtain descriptive parameters using experimental data of a gearbox 

under normal operating conditions. It is then assumed that these parameters remain 

constant when the gearbox operates with a fault, and only then is the model used to 

characterize the changes that should be observed under the fault. Why do we not estimate 

the parameters from experimental data representative of the fault conditions? There are 

two reasons. First, if we were to determine the parameters from the fault conditions we 

cannot use the model to characterize those fault conditions. Once again, we either 

characterize the model with the experiment or the experiment with the model, but not 

both things at the same time. Second, the vibration model characterizes the values of a 

series of parameters (αn and βm for a series of n and m) in a system of non-linear 

equations. As will be seen below, the complexity of the system of equations becomes 
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reduced in the healthy configuration, where many of the equations cancel out, so it is 

simpler to determine the parameters from a healthy configuration. 

5.2. Adaptation of the planetary gear vibration model for its use in 

diagnostics 

Figure 5.3 shows how the architecture described in section 4.2.1 (Figure 4.1) can 

be applied to the particular case of diagnosing the crack in the planetary carrier plate. 

Each of the four shaded blocks of the process shown in Figure 5.3 corresponds to a 

specific task that will now be addressed. 
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Figure 5.3. Application of the technique of Figure 4.1 to the problem of 

simulating the vibration of a faulted helicopter transmission 
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5.2.1. The planetary gearbox vibration model as the diagnostic model 

The block located at the center, “model of transmission vibration”, refers to the 

use of the planetary gear vibration model (discussed in section 3.4) for simulating 

expected changes in the vibration of the gearbox at different operating conditions with 

different crack sizes. 

5.2.2. Frequency response analysis for determining the fault-insensitive parameters 

The block located near the top-right corner of Figure 5.3, “frequency response 

analysis”, corresponds to the determination of the fault insensitive-parameters of the 

planetary gearbox that the model needs. The fault-insensitive parameters are the 

frequency response coefficients αn and βm, and their determination is done by attempting 

to solve a system of non-linear equations that utilize input from experimental data. 

5.2.3. Finite element analysis for determining the fault-sensitive parameters 

The block located near the top-left corner of Figure 5.3, “finite element model of 

planetary carrier”, corresponds to the determination of the fault sensitive-parameters of 

the planetary gearbox that the model needs. The fault-sensitive parameters are the planet-

gear shift angles, and their determination is done by analyzing the static deformation of 

the planetary carrier plate when a crack is present. Finite element analysis is used to 

characterize the deformation patterns and approximate the amount of angular shift of the 

planet gears at various levels of torque load. 
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5.2.4. Calibration of the simulation 

The block located at the center-bottom of Figure 5.3, represents the simulated 

vibration signal that the model of the planetary transmission vibration can generate by 

incorporating the results of the frequency response analysis and of the finite element 

model. We want to ensure that this simulated vibration signal is similar in certain 

characteristics to the vibration observed in the planetary gearbox for a particular crack 

length and under specific operating conditions. To this end, we need to calibrate the 

generation of simulated signals to replicate effects altering the experimental signals, like 

noise. Performing simulations with different crack lengths will enable us to use the 

reverse engineering technique of section 4.2.2 for diagnosing a helicopter transmission 

gearbox. 

5.3. Determination of the fault-insensitive parameters 

In this section, we are interested in determining the frequency response 

coefficients αn and βm that describe vibration characteristics of a planetary gearbox in a 

manner consistent with the model presented in section 3.4. The actual value of these 

parameters in a measured vibration signal is affected by many system-specific factors, 

among which are the gearbox frequency response, frequency response of the vibration 

sensor, transmission path of the vibrations (i.e., sensor location), operational conditions, 

vibration of other components, etc., so that attempting to analytically estimate them 

would be extremely difficult. Nevertheless, we can use a numeric technique to try to 

approximate them from experimental data. 
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5.3.1. Relating experimental data to the vibration model 

The vibration model proposed in section 3.4 offers a description of the vibration 

components of an ideal (i.e., noiseless) planetary gear system. For a system with 5 planet 

gears, such as the helicopter transmission considered, such description involves a series 

of αnβm factors like those exemplified in Figure 5.4. When the spectrum represented is 

obtained from actual experimental vibration of a planetary carrier, the sideband 

amplitudes will also reveal the presence of noise in the signal. 

 

Figure 5.4. Representation of the αnβm factors describing the amplitude of 

different frequency components in the vibration signature of the helicopter’s 

planetary gearbox 

The model characterizes the amplitude of non-dominant sidebands as being zero 

for an ideal planetary gearbox with equally spaced planet gears. Hence, through the 

model, we can attribute all non-dominant sidebands found in the experimental vibration 

of a gearbox with equally spaced planet gears as being pure noise. This technique for 
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using the model to characterize sidebands in the experimental vibration is illustrated in 

Figure 5.5. 
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Figure 5.5. Procedure followed for characterizing sidebands in experimental 

vibration data of a planetary gearbox using the vibration model 

The locations of specific αn and βm parameters in the vibration characterization 

offered by the model have a discernible pattern. This pattern is explained by McFadden 

and Smith (see section 3.3.2.1), who pinpoint the locations where sidebands have 

theoretical non-zero amplitude. This is shown in Table 5.1. Recall that the exact location 

(i.e., frequency) of a specific (m, n) sideband is given by f = (m⋅Nt + n) ⋅f s. 
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Table 5.1. Sideband suppression pattern of a planetary gearbox with Np = 5 and Nt = 228. 

Clear cells marked with “0” correspond to sidebands that become suppressed. Compare 

to Table 3.2 

n m = 1 m = 2 m = 3 m = 4 m = 5

-5 0 0 0 0 1

-4 0 0 1 0 0

-3 1 0 0 0 0

-2 0 0 0 1 0

-1 0 1 0 0 0

0 0 0 0 0 1

1 0 0 1 0 0

2 1 0 0 0 0

3 0 0 0 1 0

4 0 1 0 0 0

5 0 0 0 0 1  

Once the unsuppressed sidebands have been located, we can proceed to establish 

the pattern of appearance of dominant and apparent sidebands, i.e., determine the values 

of n at which sidebands are dominant or apparent near each tooth meshing harmonic m. 

For the planetary gear transmission with Np=5 planet gears and Nt=228 teeth in the 

annulus gear, the pattern is as shown in Table 5.2. 

Table 5.2. Pattern of sideband locations for the planetary gearbox of the helicopter 

transmission gearbox in focus. The pattern shows the values of n at which sidebands are 

dominant or apparent near tooth meshing harmonics. Five tooth meshing harmonics are 

listed (m = 1 to 5) 

Harmonic 

number

m= 1 … -8 -3 2 7 12 …

m= 2 … -11 -6 -1 4 9 …

m= 3 … -9 -4 1 6 11 …

m= 4 … -12 -7 -2 3 8 …

m= 5 … -10 -5 0 5 10 …

Values of n
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5.3.2. A system of non-linear equations characterizing the frequency response of a 

planetary gearbox 

Using the pattern of Table 5.2 and equations 3.10 and 3.11 of section 3.3.2.4 we 

can characterize the sideband amplitudes in the vibration of the helicopter gearbox. Each 

(m, n) pair corresponding to a cell in the table can be substituted in one of the two 

equations to describe the amplitude of the sideband located at frequency given by 

(m⋅Nt + n) ⋅f s in experimental vibration data. Thus, we characterize the sideband 

amplitudes of experimental vibration data according to the relation 
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Using these relations, we can proceed to estimate the values of individual αn and 

βm  parameters. We do this by noticing that we can build a system of nonlinear equations 

considering each cell of Table 5.2 separately. Take for example the case of the sideband 

at m=1 and n=–8 for our planetary gearbox with Np=5 and Nt=228. To simplify the 

notation let us define SBm,n as the symbol representing the half amplitude of the 

frequency component located at frequency f = (m⋅Nt + n) ⋅f s. Using equation 5.1 and 

recalling that, by definition, αn = α–n we obtain 
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 8,118 noise
4

5
−=+ SBβα , (5.3) 

where SB1,-8 represents the half-amplitude of the sideband at f = 220⋅f s
. The inclusion of 

the sign of n in the subscripts of the SB symbol is important because although αn = α–n , 

the asymmetry of the sidebands causes SBm,n ≠ SBm,–n for most cases. 

The system of equations is non-linear because of the αnβm factors. Under the 

definition suggested, the system of equations has an infinite number of solutions because 

the system is underconstrained by having one different unknown “noise” term per each 

equation. Nevertheless, we can still approximate the plant parameters with a valid 

solution to the system of equations, as represented in Figure 5.6. We want to find a 

solution that is representative of the system, and one possible way to do this is by 

minimizing a function constructed with the noise terms. This objective function can be 

defined as a kind of mean squared error. This approach to solving the problem assumes 

that the noise amplitude is relatively small and searches for a solution that minimizes the 

noise terms in the equations.  

Set up a system 

of non-linear 

equations and 

solveExperimental 

vibration data

Model 

characterizations Estimate of frequency 

response parameters:

alphas (αn) and

betas (βm)

Set up a system 

of non-linear 

equations and 

solveExperimental 

vibration data

Model 

characterizations Estimate of frequency 

response parameters:

alphas (αn) and

betas (βm)

 

Figure 5.6. Procedure for estimating the fault-insensitive α and β parameters of a 

planetary gearbox using experimental vibration data 
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Under this consideration the optimization problem is set up in general for a 

planetary gearbox as a least squares optimization problem with 

 , (5.4) 

{ } inmeSBc
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inmmn
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each   toingcorrespondpair  ),( onefor  
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  minimize

:function Objective

,
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=−⋅⋅

∑

βα

where  is a constant that is either c 2pNc =  for sidebands with n=0 or 4pNc =  for 

sidebands with n≠0, the  terms represent the noise present at each sideband, and the 

total number of  values taken is the number of sidebands we wish to characterize. 

ie

i

In the implementation of this algorithm, the designer might want to add weights to 

the “error” terms depending on the confidence that he has on the accuracy of different 

frequency components of the vibration spectrum of a given planetary gearbox. In this 

case, individual  weights for frequency components can be included in the 

optimization problem, such that the objective function of Equation 5.4 becomes 

iw

 ∑
i

iiew 2)(  minimize . (5.5) 

The application of the optimization problem to the helicopter planetary gearbox 

with Np=5 planet gears can be done by using the cells in Table 5.2 and substituting in 

Equation 5.4. Each cell corresponds to a value of i . The problem setup is: 
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As suggested before, the α and β parameters are a measure of the frequency 

response of the overall system, from the gears to the casing to the sensor. Since the 

frequency response is dependent upon sensor response, mechanical configuration, and 

operating conditions, α and β parameters should be estimated for different sensors, 

mechanical configurations, and operating conditions. The two mechanical configurations 

of interest for our helicopter transmission are the test cell setup and the aircraft setup of 

the transmission. The operating conditions of interest are the varying engine torque levels 

applied to the transmission. The estimated values of α and β corresponding to the 

different sensors, mechanical configurations, and operating conditions can be used by the 

model to replicate the vibration signature more closely in each case. 

5.3.3. Fault insensitive parameters of the helicopter planetary gearbox 

We now proceed to estimate the frequency response parameters αn and βm of our 

helicopter planetary gearbox using the techniques described in sections 5.3.1 and 5.3.2. 
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To solve the non-linear equations described in section 5.3.2 by least squares optimization 

we use Equation 5.6 with the modification to the objective function proposed by Equation 

5.5. The values of the weights are here calculated from the weighting function shown in 

Figure 5.7. This function was selected empirically, taking into consideration observed 

waning patterns of the sidebands in experimental vibration data. Observe that the 

weighting function is defined with respect to values of n, and is hence invariant across 

harmonics of the tooth meshing frequency m. 
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Figure 5.7. Weighting function utilized to approximate the frequency response 

parameters αn and βm in the planetary gearbox vibration experiments. This 

weighting function is applied as defined by Equation 5.5 

As stated earlier, the optimization problem can be solved for different sensors and 

different values of the operating torque of the gearbox. Figure 5.8 through Figure 5.13 

present results obtained by solving the optimization problem for values of n ranging from 

-15 to 15 and for values of m ranging from 1 to 6. To be meaningful, results presented 

illustrate the factors c·αm·βn on top of the corresponding sidebands of experimental 

vibration data. Results presented in the graphs use data from the sensor referred to as 
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“Port Ring” by Blunt and Keller (2006). Figure 5.8 through Figure 5.10 use the same 

experimental vibration data of section 3.4.5, but only the healthy gearbox (i.e., without 

the planetary carrier crack) is here considered; thus, these figures use data from the 

experiments with a specific crack length. In contrast, Figure 5.11 through Figure 5.13 use 

data from the experiments with a growing crack, but only the initial crack length (1.34 

inches) is here considered. For this latter case, we are assuming that the crack is small 

enough to allow considering the carrier plate as if healthy. These results are later 

implemented to diagnose the condition of the gearbox using the model-based technique 

proposed in this thesis (see section 5.6). 
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Figure 5.8. Results of the characterization of the αn and βm parameters of a 

healthy planetary gearbox transmission operating in a test cell at 20% of nominal 

torque 
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Figure 5.9. Results of the characterization of the αn and βm parameters of a 

healthy planetary gearbox transmission operating in a test cell at 50% of nominal 

torque 
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Figure 5.10. Results of the characterization of the αn and βm parameters of a 

healthy planetary gearbox transmission operating in a test cell at 100% of nominal 

torque 
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Figure 5.11. Results of the characterization of the αn and βm parameters of a 

planetary gearbox transmission with a small crack (1.34 inches), but assumed to 

be healthy, operating in a test cell at 20% of nominal torque 
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Figure 5.12. Results of the characterization of the αn and βm parameters of a 

planetary gearbox transmission with a small crack (1.34 inches), but assumed to 

be healthy, operating in a test cell at 40% of nominal torque 
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Figure 5.13. Results of the characterization of the αn and βm parameters of a 

planetary gearbox transmission with a small crack (1.34 inches), but assumed to 

be healthy, operating in a test cell at 100% of nominal torque 
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5.4. Determination of the fault-sensitive parameters 

In this section, we are interested in approximating the shift angles of the planet 

gears caused by deformations of the planetary carrier plate of the helicopter planetary 

gearbox while in operation. The angular positions of the planet gears are important 

parameters in the vibration model proposed in section 3.4. These angular positions are 

expected to change when a crack is present in the planetary carrier plate, which in turn 

affects the vibration patterns of the gearbox. The change in these vibration patterns 

enables us to use vibration signals as a means for diagnosing a gearbox with the crack. 

Finite element analysis (FEA) can be used to analyze the deformation of the 

planetary carrier plate (see section 2.3.3). The deformation patterns should be converted 

into specific shift angles for each planet gear. To this end, the results presented in this 

thesis used the FEA software package known as ANSYS (for a useful reference, see 

Moaveni, 2003). ANSYS was used to determine the planet-gear shift angles resulting 

from specific crack lengths at different operating torque values of the gearbox. 

A three-dimensional model of the planetary carrier plate is built in the program. 

This model approximates the most relevant geometric features of the part. Forces acting 

on the part, as described in section 5.1.1, are applied in the simulation to resemble the 

loads experienced during operation of the gearbox. The FEA simulation produces results 

giving specific deflection measurements throughout the plate. Results corresponding to 

regions on the planet gear mounting posts are post-processed to approximate the angular 

shift of the planet gears. 
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5.4.1. Computer model of the planetary carrier plate and the major forces acting 

on it 

Figure 5.14 shows the design of the planetary carrier plate used in ANSYS for the 

deformation study. 

 

Meshing

 

Figure 5.14. Three-dimensional computer model of the planetary carrier plate as 

used for deformation analysis. The solid model (left) is divided into a mesh of 

finite elements (right) to be used in finite element analysis of its deformation 

patterns 

After the model is meshed, forces and constraints must be applied to specific 

finite elements to simulate the operating conditions of the planetary carrier plate. The 

interaction of these forces and constrains will produce the deformation. Table 5.3 lists 

some technical characteristics of the ANSYS model of the planetary carrier plate. 
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Table 5.3. Characteristics of the finite element model of the planetary carrier plate 

Material properties 

Type of material Titanium alloy, Ti-6Al-4V 

Density  0.17 lb/in
3
 

Elastic (Young's) modulus  16,000 ksi 

Poisson's ratio  0.33 

ANSYS finite element model 

Model without a crack 

Element count  19,185 

Node count  101,265 

Constraints on nodes (all DOF’s)  2,700 

Surface loads on elements  20 

Models with a crack 

Element count*  25,000 to 29,000 (aprox.) 

Node count*  110,000 to 116,000 (aprox.) 

Constraints on nodes (all DOF’s)  2,700 

Surface loads on elements  20 

Types of elements 

Away from the crack region 
SOLID 95 hexahedrons 
 (manual meshing) 

Near the crack region 
SOLID 95 tetrahedrons 
 (automated meshing) 

Crack tips (fracture stress 
analyses only) 

SOLID 95 prisms 
 (collapsed elements) 

* depends on the length of the crack modeled  

Two main groups of forces act on a planetary carrier plate when operating. The 

first group derives from the action of the planet gears and acts on the planet gear 

mounting posts of the carrier plate. The second group derives from the reaction of the 

helicopter’s main rotor shaft to which the carrier plate is attached, and to which the 

carrier plate transmits power. This reaction acts on the central shaft bore of the carrier 

plate. The deformation patterns of the carrier plate are studied under a static 

consideration of these forces. Although forces acting on the carrier plate are actually 

dynamic, it is possible to use a static approximation because we are interested in 

characterizing the deformations of the plate when operating at steady torques. When a 

steady torque is present, the large majority of the stress experienced by the plate is also 
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steady (Sahrmann, 2004). Thus, we expect the large majority of the deformation 

experienced by the plate to be caused by the static component of the stresses. 

The static analysis requires that one of the two sets of forces described be applied 

as a constraint to motion. In the analysis presented in this work, the reaction of the main 

rotor shaft of the helicopter against the carrier plate is selected as the constraint. The 

constraint in the finite element model is applied to the shaft bore of the planetary carrier 

plate, near the location of the splines, because the reaction of the shaft acts there (refer to 

Figure 5.2). The constraint sets to zero all degrees of freedom at specific contact 

locations. 

After setting the motion constraint in the model, forces are applied to each of the 

planet gear mounting posts of the carrier plate. The application of these forces is 

explained next. 

Operation of the planetary gearbox causes the planet gears to experience forces 

similar to those represented in Figure 5.15. We can calculate the magnitude of the 

resultant force generated by the addition of the two forces represented in the illustration 

from consideration of the actual helicopter engine power and the radial distances (i.e., 

conversion of power to torque to force). 
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Figure 5.15. Representation of the forces acting on the gear teeth of the planetary 

gears 

Because the forces under consideration act on the teeth of the planet gears, they 

are transmitted to the planetary carrier plate in a distributed fashion through the gear and 

the rotary couplings (i.e., the bearings and other mechanical components). Therefore, we 

apply the resultant force as a distributed (i.e., area) force, not a point (or line) force on 

the planet gear mounting posts of the carrier plate. Thus, the resultant force applied to 

each of the mounting posts is a pressure load. To facilitate modeling, the pressure is 

applied uniformly, but on the surface of a limited number of elements. The situation is 

represented in Figure 5.16. 
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 Interior surface 
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Figure 5.16. Representation of the application of loads and constraints to the 

planetary carrier plate in the finite element model 

The spatial deformations of faulted and healthy carrier plates under different 

loading levels were analyzed using this model. Figure 5.17 shows how axes have been 

conveniently defined on each planet-gear mounting post to study deflections. Results 

from the simulations carried out with the model have been validated by comparing 

stresses on the mounting-post roots to those determined by Sahrmann (2004). Further 

validation is provided by the crack growth studies of chapter 7. 
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Figure 5.17. Definition of the axes of deflection at individual planetary gear 

mounting posts 
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According to the simulation results, deformations in the axial direction are the 

largest. However, the vibration model of section 3.4 is a gear meshing description and 

concerns deviations in teeth contact timing. The deflection that affects teeth contact 

timing the most is in the tangential direction. Axial deflection will not modify teeth 

contact timing in any amount deserving consideration. Radial deflection can affect teeth 

contact timing due to the profile of the teeth, but this variation is small and hence 

assumed to be negligible. 

No constraints are applied to the planet-gear mounting posts. The tangential 

direction is clearly forced by the application of load already, and no other force or 

constraint is applied in that axis. Even though excessive deformation could possibly close 

the gear mesh clearance shown in Figure 5.18 and cause contact constraints, it is 

assumed that the clearance is large enough to prevent this from occurring in either of the 

tangential or radial directions. In the axial direction, the planet gear mounting posts have 

no constraints because the gears used in the transmission are spur gears, which are 

unhindered to slide over this axis. 

 

Planet
gear 

Translation 

motion 

Rotation 

motion 

Gear mesh 

clearance 

Ring gear  

Figure 5.18. Representation of the gear-mesh clearance of a planet gear. It must 

be noted that the image illustrates the concept of gear mesh clearance used only, 

and is not representative of the gear teeth shapes or contact patterns 
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5.4.2. Modeling the fracture in the planetary carrier plate 

The first step in modeling the fracture on the root of a planet-gear mounting post 

of the carrier plate is to define a crack plane. The crack plane is a reference plane that 

slices the plate model near the post with the crack, as shown in Figure 5.19. A finer mesh 

is used in this region to maintain precision of the results under the high stresses and 

strains caused by the crack, and to allow for the modeling of more precise crack shapes. 

Finite elements around the crack plane are allowed to have faces lying on, but never 

crossing, the plane. 

 

Crack plane 

Crack plane

 

Figure 5.19. View of the finer mesh used in regions near the simulated crack 

plane of the planetary carrier plate model 

A similar condition is applied along the crack front once a particular crack shape 

is designed: element edges can lie along the crack front but never cross it. These 

characteristics of the fracture model are represented in Figure 5.20. 
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Figure 5.20. Views of a crack design in the finite element model of the planetary 

carrier plate 

To complete the design of the fracture, all the elements sharing nodes inside the 

crack faces, but on opposite sides of the crack plane, must be separated to allow the crack 

to open when load is applied to the plate. To achieve this, nodes meeting these conditions 

are duplicated and the elements on one side of the crack plane that were sharing the 

original nodes are assigned the duplicate nodes instead. The procedure is illustrated in 

Figure 5.21. 
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Figure 5.21. Procedure for simulating the presence of a crack in a finite element 

model 
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The model is run under the assumption that the crack only opens and does not 

close or cause finite element interference. This is a reasonable assumption for the 

geometry and loading configuration under consideration. The deformation results show 

that, for the static deformation analyses carried out, the crack clearly takes on an open 

shape and no element interferences occur. Thus, no provisions are taken to handle 

element interferences in the finite element model. 

The finite element simulation delivers results describing the displacements 

experienced by the nodes, as illustrated in Figure 5.22 and Figure 5.23. These 

displacements can be used to approximate the shift of the planet gears as described in the 

following section.  

 

Figure 5.22. View of open crack in the finite element model of the planetary 

carrier plate, corresponding to the design of Figure 5.20. Deformation results 

shown here have been enlarged 15 times their actual values to enhance the 

illustration 
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Figure 5.23. Illustration showing example results of the FEA analysis of the 

deformation experienced by the planetary carrier plate exhibiting a crack more 

than 7 inches long. Colors represent different amounts of angular deformation 

over the plane of the plate. Deflection shown has been enlarged to enhance the 

illustration 

5.4.3. Deformation analysis and interpretation 

The FEA model provides deflection results for individual nodes in the design. We 

can process information about nodes located on the planet gear mounting posts to 

approximate the deflection experienced by the planet gears. Nodes located near the rim of 

the mounting posts experience larger deflections than nodes near the base of the carrier 

plate. It was decided to consider the nodes around the circumference of the posts, near the 

middle of the total height of the posts to measure the deflections. Figure 5.24 illustrates 

this. 

132 



 

Edge of 
unforced shape 

Deformed 
shape 

Height on 
mounting post 
considered for 
planet-gear 
shifts 

 

Figure 5.24. Illustration of the deflection experienced by different regions of the 

planet gear mounting posts of the planetary carrier plate. To measure the 

deflection as a single value that represents the angular shift of a planet gear that is 

mounted on a deflected post, the deflection of the post at about the middle of its 

total height is considered  

A geometric center of the nodes chosen is calculated for both the unforced part 

and the deformed shape. These centers are calculated for each of the five planet gear 

posts, and are ultimately used to measure the angular shift of the planet gears at each 

mounting post on the plane of the carrier plate. This is illustrated in Figure 5.25. 
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Figure 5.25. Nodes on the planet gear mounting posts of the carrier plate model 

are used to approximate the geometric center of the planet gears and estimate the 

planet-gear shift angles caused by deformation of the plate 
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Table 5.4 reports on the results obtained through simulations. Post mounting 

numbering is successive in the direction opposite to the rotation of the carrier plate (i.e., 

numbering is clockwise), in correspondence with the numbering of planet gears defined 

earlier in Figure 3.4, and taking post number 1 as the post where the fracture is present. 

Figure 5.26 presents the results of Table 5.4 graphically. 

Table 5.4. Static shift angles, in degrees, of planet gears at 100% of nominal engine 

torque (54,000 lb·ft) caused by the presence of different cracks on the planetary carrier 

plate. The crack is located on the root of the mounting post of planet gear number 1. 

Angles are measured with respect to the planet gear positions of the unforced plate 

1 2 3 4 5

0.00 0.22 0.22 0.22 0.22 0.22

1.34 0.23 0.22 0.23 0.22 0.21

1.95 0.25 0.22 0.23 0.22 0.21

2.48 0.27 0.22 0.23 0.22 0.20

3.02 0.30 0.22 0.23 0.21 0.19

3.54 0.36 0.23 0.24 0.21 0.17

4.07 0.39 0.23 0.25 0.21 0.16

4.57 0.42 0.23 0.25 0.21 0.15

5.39 0.53 0.23 0.27 0.19 0.12

6.21 0.68 0.23 0.30 0.18 0.08

6.47 0.74 0.23 0.31 0.17 0.06

6.73 0.83 0.23 0.32 0.17 0.04

Planet gear / mounting post numbers

C
ra

c
k
 L

e
n

g
th

 (
in

c
h
e

s
)

7.07 1.38 0.34 0.38 0.08 0.01

7.38 1.45 0.35 0.39 0.08 0.01  
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Figure 5.26. Graph of the static shift angles, in degrees, of planet gears at 100% 

of nominal engine torque (54,000 lb·ft) as a function of the length of a crack 

present on the planetary carrier plate. The crack is located on the root of the planet 

gear mounting post identified as number 1. Angles are measured with respect to 

the planet gear positions of the unforced plate 

It was found through FEA simulations of the carrier plate that, although the shift 

angles do not vary linearly with respect to changes in the crack length, they vary linearly 

with respect to different values of the torque applied. This is visible in the graph of 

Figure 5.27, which uses post number 1 as an example. 
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Figure 5.27. Graph of the static shift angles, in degrees, of the planet gear whose 

mounting post has a crack on the planetary carrier plate. Shift angles are plotted as 

a function of crack length and percent of nominal engine torque (54,000 lb·ft). 

Notice that the shift angles have a linear relation with respect to the torque. 

Angles are measured with respect to the planet gear position of the unforced plate 

5.5. Proposed condition indicators (features) for diagnosing the 

planetary gearbox through vibration 

5.5.1. Background in the condition assessment of the helicopter planetary gearbox 

For many years, there has been considerable interest in detecting and diagnosing 

defects in gear train systems based on vibratory sensory outputs. Examples include such 

condition indicators as the figures of merit (FM0 and FM4) presented by Stewart (1977), 

the energy ratio presented by Swansson (1980), the sideband level factor (SLF) presented 

by Favaloro (1985), or the sideband index (SI) presented by Szczepanik (1989), all of 

which are still in use today. Most of the work in gear train diagnostics has been for 

stationary gear trains; however, some of it has specifically considered planetary train 

systems. Consider, for example, a recent paper by Chaari, et al. (2006) where the effects 

of gear teeth defects in the dynamics of a planetary gear system are investigated. 
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The difference in the way vibration signals are generated between the non-

epicyclic and the epicyclic geared transmission systems prevents certain vibration-based 

standard condition indicators of the former –which is more typical– from working on the 

latter. Condition indicators of this kind are hence useless for diagnosing planetary gear 

transmissions. Using the characterization offered by McFadden and Smith (1985) of the 

epicyclic system’s vibration (i.e., the asymmetry effect), Keller and Grabill (2003) tried 

to adapt some standard non-epicyclic condition indicators to circumvent this inadequacy. 

The treatment that they followed offers the corresponding epicyclic version of the 

indicators, all of which keep in use the same underlying functioning theory and specific 

system parameters or signal measures as their original non-epicyclic counterparts. 

Unfortunately, as Keller and Grabill have reported, most of the adapted indicators did not 

seem to work as well as their unmodified non-epicyclic predecessors. 

Furthermore, although useful for detecting a fault or evaluating damage 

progression in a specific system, many of these condition indicators, whether unmodified 

or adapted, are not always suitable for making comparisons across systems because their 

numeric values sometimes depend on (1) measurement subsystem, (2) system-specific, or 

even (3) setup-specific characteristics,
11

 in addition to (4) changes in operating 

conditions (like load). Take for example the case of the sideband index (SI) and the 

sideband level factor (SLF) condition indicators, both of which Keller and Grabill 

reported to be the only measures, among those analyzed by them, that could single out 

                                                 
11 By each of these three types of characteristics, the following is meant: (1) Measurement subsystem 

characteristics are those related to the vibration data acquisition system, like sensor type, or converter gain 

and offset; (2) System-specific characteristics are those physical parameters that vary from one geometry or 

system design to another, e.g. number of planet gears, number of teeth, pitch diameters, etc.; (3) Setup-

specific characteristics refer to physical parameters that change between otherwise geometrically identical 

systems which are installed at different locations or as part of different machines. 
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the planetary carrier plate crack in the helicopter transmission of our focus, and only 

under controlled experimental conditions.
12

 Because we will be referring constantly to 

the magnitude of specific sidebands in the vibration frequency spectrum of the planetary 

gear transmission, let us define SBm,n as the symbol that represents the half amplitude of 

the frequency component located s

t fnNm ⋅+⋅ )( , i.e., of sideband 

(m, n), in the vibration signal of a planetary gearbox. In this manner, following the 

notation used

at frequency 

 in section 3.4, 

f =

 
nmnmSB ,, Φ=

r

. (5.7) 

Following this nomenclature, and deviating here from that used by Keller and 

Grabill
13

, the two condition indicators described above can be defined as 

 
2

SI
1,11,1 +− +

=
dd SBSB

, (5.8) 

and 

 
RMS

SLF
1,11,1 +− +

=
dd SBSB

. (5.9) 

In the two equations above, n = d corresponds to the dominant sideband at the 

first tooth meshing harmonic (m = 1), so that only the two non-dominant sidebands 

adjacent to the dominant are used in the calculations. Note that under this definition, the 

                                                 
12 These experimental conditions correspond to “test cell data,” identified as such both in Keller and 

Grabill’s publication (2003) and in this thesis, and are as opposed to data measured onboard an actual 

aircraft. 
13 Keller and Grabill used the symbol RMC –standing for regular meshing components– to refer to the 

dominant and apparent sidebands. Because we are interested in considering the non-dominant sidebands as 

well, which under their definition are not regular meshing components, the proposed differing 

nomenclature is used. 
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calculations are done only on the first tooth meshing harmonic, although, by varying the 

first subscript of each SBm,n, they could be evaluated at different harmonics. RMS stands 

for the root mean square of the vibration signal, i.e., 

 
K

x
K

k k∑ == 1

2

RMS , (5.10) 

where x is a discrete-time vibration signal described by of a total of K individual xk 

samples. 

Also, be aware that extracting reliable values for the sideband magnitudes 

involves the application of a suitable preprocessing filtering technique on the “raw” 

vibration data, like time synchronous average, or TSA (see section 3.4.5). 

The SI and SLF condition indicators are functions of numerical quantities –the 

sideband magnitudes and the RMS– that vary from one system to another. This variation 

occurs because the quantities are tied to the amplitude of the vibration signal components, 

which, in addition to noise, depend on the value of parameters like transducer sensitivity, 

converter gain and even system frequency response, among others. Hence, condition 

indicators exhibiting this dependency may be inappropriate for making comparative 

assessments of the status of two or more systems. The graphs of Figure 5.28 show the 

high variability that the SI and SLF indicators display. The results shown in the graphs 

have been extracted from the same data used by Keller and Grabill in their work, 

although with the addition of an extra set of data obtained from yet a fourth aircraft in 
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proper operating (i.e., “healthy”) conditions
14

. The comparison of interest here regards all 

the data points for the healthy aircrafts (i.e., numbers 2 through 5). Note that, for all cases 

shown, the range of variability among data sets for comparable operating conditions (20 

or 30% of nominal engine torque) is greater than their corresponding mean across all 

healthy helicopters. 
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Figure 5.28. Evaluation of vibration-based SI and SLF condition indicators for 

five different helicopters. Helicopter number 1 is known to have a crack in the 

planetary carrier plate of about 3.5 inches in length 

5.5.2. Consideration of the sideband magnitude variability and noise at different 

frequencies 

The data points shown in Figure 5.28 have illustrated that a significant amount of 

noise or variability may be present in the vibration signals acquired from operating 

                                                 
14 Keller and Grabill presented results for one faulted aircraft and three healthy aircraft. 
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planetary transmission systems. Experimental data from our transmission problem show 

that sideband magnitudes have large variability. It is worthwhile to consider how the 

noise and variability affect the construction of the overall system sidebands at different 

frequency ranges. We assume here that the sideband magnitude variability is generated 

by unmodeled dynamics, primarily the dynamic deflections of the planet gears’ axes of 

rotation, which is caused by loading of the transmission. These deflections in turn 

dynamically affect the vibration signature of the system, i.e., the sideband magnitudes. 

We also assume that noise can be present in the vibration signals because of many known 

or unknown factors, like resonances, frequency response of the sensors, vibration signal 

reflections and refractions, transmission path effects, surface roughness and rubbing of 

the gear teeth, aerodynamic loads on an aircraft, etc. 

Even if healthy, when a planetary gear transmission is operating, we can expect 

the elasticity of the planet gears’ axes of rotation to cause, continuously, a small 

variability in the planet gear angles. As mentioned earlier, this can be caused by the tooth 

meshing action of the planet gears, among other causes. These slight excursions of the 

planet gear angles in turn affect the phase of the single-planet-gear sidebands 

corresponding to each planet gear. Although the phase changes are different at each 

sideband and at each planet gear, the corresponding sidebands across planet gears are 

likely to be affected in comparable magnitudes, since the system geometry is angularly 

symmetric (i.e., all the planet gears have angular excursions within the same orders of 

magnitude). 
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However, this effect has a varying outcome on the overall system sidebands, 

depending on whether the sidebands formed are dominant, apparent or non-dominant. 

The effect is illustrated in Figure 5.29. The shaded areas in the illustration represent the 

expected variation of the sideband magnitudes. This variation can be perceived as noise 

in the spectrum analysis of the system’s sidebands, and its effects can be observed in all 

systems, whether healthy or with a fault condition. This kind of variability is not 

necessarily indicative of an anomaly, and depends on the load imposed on the planetary 

gear system, because the load affects the angular excursions of the planet gears. 
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Figure 5.29. Illustration of the effect of continuous small angular shifts in 

multiple planet gears; a) interaction of single-planet-gear sidebands to form a 

dominant (or apparent) sideband; small deflections of each planet gear generate an 

area range for expected values of the sideband; b) corresponding situation for a 

non-dominant sideband 

Figure 5.29 suggests that, when a planet-gear shift is small or when the system is 

healthy, the dominant and apparent sidebands can be expected to have an average 

magnitude close to the value that the sideband would have if the sideband magnitude 

variability were reduced or eliminated. In the figure, this means that the average 
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magnitude of the dominant sideband would probably be near the middle of the shaded 

area.  

On the other hand, since the magnitude of the sidebands cannot be negative by 

definition, averaging the time-changing magnitude of a non-dominant sideband will yield 

a non-zero value. This is in opposition to the behavior of the dominant and apparent 

sidebands described in the preceding paragraph. If we were able to reduce or eliminate 

the sideband magnitude variability, we would see that a non-dominant sideband would 

tend to approach an average magnitude of zero. However, while the variability is present, 

the average magnitude of the non-dominant sideband will not approach zero. This 

behavior suggests that the average magnitude of the non-dominant sidebands in a healthy 

system will approximate the average of the noise and variability effects at the specific 

frequency of each non-dominant sideband. 

The observation above is important because it suggests that non-dominant 

sidebands can be easily overwhelmed by noise and variability effects. Any one non-

dominant sideband can be useful for planet-gear shift detection only after its magnitude 

has overcome the mean of the noise or variability effects at the corresponding frequency, 

or else noise must first be removed, and the variability compensated, by some means. 

The theory set forth in section 3.4.3 suggests that, in general, because the 

sensitivity of the phase of a single-planet-gear sideband is for the most part proportional 

to the tooth meshing harmonic number m at which it is located (as expressed by Equation 

3.16), it may be possible to detect smaller single-planet-gear shifts by observing changes 
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in the sidebands of the overall system vibration at higher harmonics. However, if multiple 

planet gears shift in comparative amounts, the complex interaction of the individual 

planet-gear sidebands is likely to repeal the proportionality between the sensitivity of the 

overall system sidebands and m. In addition, although higher tooth meshing harmonics 

with larger m values can be more sensitive to planet-gear shifting, they can be as well 

more sensitive to noise and variability effects, because larger frequencies are likely to 

have smaller values of βm, which generate shorter sidebands. 

Hence, there a tradeoff ensues when selecting sidebands of different frequencies 

for their sensitivity to planet-gear shifts. Sidebands at higher harmonics respond more to 

smaller planet-gear shifts, but the shorter sidebands of these high frequency regions of the 

spectrum first have to overcome the noise to be useful for shift detection, and this may be 

impossible sometimes, due to the small values of βm. Conversely, lower harmonics might 

have a better chance to show sideband magnitudes well above the noise mean, but their 

ability to detect small shifts is quickly compromised by the variability effects. These 

situations are illustrated in Figure 5.30. 
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Figure 5.30. Effect of noise and variability levels on the sideband magnitudes at 

different frequency regions; a) spectrum representation of several sidebands as 

compared to some level of noise; b) the effect of variability. Note in (b) that 

detecting a planet-gear shift may be challenging because the faulted system’s 

sideband is within the variation range of the healthy system’s sideband 

Thus, the selection of the harmonic frequency range on which to work when 

analyzing the system sideband magnitudes and spectral shape can play an important role 

in successfully assessing the condition of a planetary gear system. Even further, different 

fault conditions may require that different harmonic regions be considered. 

5.5.3. Suggested condition indicators 

We are now interested in developing condition indicators that involve the use of 

sideband magnitudes to detect the angular shifting of planet gears. We mentioned in 

section 5.5.1 that some condition indicators have a weakness in the sense that, even under 

similar operating conditions, they can vary from system to system. This variation occurs 

because the values of the condition indicators depend on parameters that change between 

systems and between data acquisition setups. We are here proposing the use of relative 

measurements of the sideband amplitudes to compensate for this weakness. 
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5.5.3.1. Suggested condition indicator 1: relative sideband index 

Taking as a reference the sideband index feature of Equation 5.8, let us define the 

relative sideband index as 

 
d

dd

SB

SBSB

,1

1,11,1

2
relSI +− +

= . (5.11) 

This condition indicator differs from the SI indicator because it is now evaluated 

as a ratio with respect to the amplitude of the dominant sideband. relSI has the advantage 

that it may be able to mitigate the effects of varying scales in sideband levels across 

systems caused, for example, by differences in transducer gains.  

5.5.3.2. Suggested condition indicator 2: sized relative harmonic sideband index 

The sideband index and relative sideband index indicators consider only two 

sidebands of the first tooth meshing harmonic region. If, instead, we wish to consider 

other sidebands, we may do so by defining 
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dm

K

k

kdmkdm
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SBSB
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,

1

,,

2
),(relHSI

⋅⋅

+

=
∑

=
+−

. (5.12) 

Under this definition, the relSI condition indicator is modified to allow for 

evaluations at different tooth meshing harmonic regions (m), and to use more than the 

two adjacent sidebands of the dominant, depending on the value of the “size” parameter 

K. Provisions can be taken to avoid the use of the apparent sidebands in the numerator of 

the right-hand side of Equation 5.12. 
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5.5.3.3. General form of suggested relative metrics 

From the theory presented in section 3.3.2, we know that for every group of Np 

adjacent sidebands, one of them is dominant or apparent, while the other Np–1 are non-

dominant. Since in a system with more than two planet gears we will always have more 

non-dominant than dominant and apparent sidebands, we can try to combine information 

from their magnitudes to mitigate the effect of noise (e.g., average their magnitudes). In 

addition, because the dominant and apparent sidebands have a lesser relative variation, 

we can use these as a reference value to measure the change in nearby non-dominant 

sidebands. In this way, the amplitude of dominant and apparent sidebands can work as a 

reference to the average amplitude of nearby non-dominant sidebands. A straightforward 

way to implement this idea for measuring changes in the amplitude of sidebands is to 

define a metric that provides a ratio of the amplitudes on non-dominant sidebands to 

dominant and apparent sidebands, calculated as 

 
∑
∑

=
magnitudesapparent  anddominant 

magnitudesdominant -non

region harmonic ain 

metrics ratio of form Basic
. (5.13) 

This inviting measure, however, is based on quantities that change rapidly with 

respect to the shift of a planet gear. It may prove useful to define a metric that measures a 

ratio with respect to a quantity with “lesser variability”. Hence a slight variation to 

Equation 5.13 is proposed as follows: 

)oncompensatidominant -non()apparent anddominant (

magnitudesdominant -non

region harmonic a

in  metrics ratio

dCompensate

+
=
∑

∑
. (5.14) 
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The behavior of the terms involved in the two previous equations is shown in 

Figure 5.31. Note that adding the dominant and non-dominant curves produces a curve 

(represented by a dashed line) that is less variable, which may provide a good reference 

for relative metrics with the form of Equation 5.14. The example shown in the graph 

considers unit-magnitude, single-planet-gear sidebands for reasons of simplicity. Under 

this assumption, the curve corresponding to an apparent sideband would be the same as 

that of the dominant sideband shown. 
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Figure 5.31. Effect of single-planet-gear shift on basic sideband magnitude 

metrics. The planet-gear shifts considered are “small”, i.e., Δϕ < π for all cases 

shown (compare to Figure 3.17) 

5.5.3.4. Definition of Np-sideband groups and basic group metrics 

We may also generate metrics by considering the spectrum shape. Since one 

apparent or dominant sideband appears in the spectrum every total of Np adjacent 
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sidebands, it is convenient to define the “Np-sideband groups”. An Np-sideband group 

includes a total of Np adjacent sidebands, one of which is dominant or apparent, and is 

centered among the others, as illustrated in Figure 5.32. If the number of planet gears in 

the system is even, then the dominant or apparent sideband can be in either of the two 

available central positions. Because the sidebands in each group are adjacent, their 

magnitudes are similar and may provide a sound basis for comparison. 
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Figure 5.32. Definition of Np-sideband groups. Sideband groups are integrated by 

Np sidebands, with an apparent or dominant sideband centered within the group. 

The illustration represents a system with Np = 3 planet gears. Sideband groups are 

identified by a number G, with G = 0 corresponding to the group with the 

dominant sideband, G < 0 for groups to the left of this one, and G > 0 to the right 

At each specific meshing harmonic region (m), groups can be identified with a 

number G that describes their position. G = 0 corresponds to the group that includes the 

dominant sideband (referred to as the “dominant group”) at the corresponding harmonic 

region, G = –1 for the group to the left of this one, G = –2 for the next group to the left 

and so on. Similarly, G = 1 for the first group to the right of the dominant group, G=2 for 

the next group to the right and so on. 
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We also suggest the evaluation of the average size of the non-dominant sidebands 

in a specific Np-sideband group. This value can be calculated by adding the magnitudes 

of all the non-dominant sidebands in a group and dividing by (Np – 1). In equation form, 

the average size of non-dominant sidebands in a group be described as 
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Condition indicators can be defined based on measurements of relative sideband 

sizes in Np-sideband groups, evaluating a ratio of the amplitudes of non-dominant versus 

dominant or apparent sidebands, as shown below. 

5.5.3.5. Condition indicators 3 and 4: relative size of sidebands in an Np-sideband group 

The next two condition indicators suggested are the “basic relative size of 

sidebands in an Np-sideband group,” defined as 

 
GNpdmSB

GmavgND
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,
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),(BrelSG , (5.16) 

and the “compensated relative size of sidebands in an Np-sideband group,” defined as 

 
),()1(

),(
),(relSG

, GmavgNDNSB

GmavgND
Gm

pGNpdm ⋅−+
=

⋅+

. (5.17) 
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These two condition indicators follow the patterns of Equations 5.13 and 5.14, 

respectively. However, we are proposing that the average magnitude of non-dominant 

sidebands be used instead of the simple summation of non-dominant sideband 

magnitudes. This provides for a metric that may be more comparable across varying 

gearbox geometries, regardless of the number of planet gears. If the non-dominant 

sideband magnitudes were not averaged, systems with more planet gears would tend to 

provide larger values for the metric. Because the dominant group (G = 0) is expectedly 

the one with the largest magnitudes
15

, such a group will most likely have the largest 

signal-to-noise ratio and may be the best in which to evaluate this condition indicator.  

5.5.3.6. Condition indicators 5 and 6: group averaging of relative sideband sizes 

The next two condition indicators suggested are the “basic group averaging of 

relative sideband sizes,” defined as 
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, (5.18) 

and the “compensated group averaging of relative sideband sizes,” defined as 
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. (5.19) 

These two condition indicators average several evaluations (groups) of the 

BrelSG and relSG indicators respectively. The groups averaged include the dominant 

group and its adjacent groups. The quantity X refers to the number of adjacent groups 

                                                 
15 The reason for this is the effect considered in Fi ; see section 3.3.2. gure 3.9
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taken in the average at both sides of the dominant group. Although the equations initially 

appear to be involved, especially because of their dependence on relSG and avgND 

quantities, it is worthwhile to remember that the calculation is, in general, simple. The 

following expressions show the simple pattern of these equations: 

 takengroups ofnumber 

group an in 
apparent

dominant)-avg(non
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The term “apparent” in the two previous equations refers in general to the 

magnit

5.5.3.7. Condition indicator enhancement: harmonic averaging of relative condition 

To further mitigate the effects of noise in the sidebands of gearbox vibration 

spectra

 

ude of the apparent sideband in an apparent group (G ≠ 0) or to the dominant 

sideband in a dominant group (G = 0). 

indicators 

, we may average results of any of the condition indicators suggested above across 

tooth meshing harmonics, i.e., across values of m from 1 to M, where M is the desired 

number of harmonics to consider. The operation is performed as 

M
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),( . (5.22) 
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The relS symbol refers here to the use of any of the preceding condition 

indicators, like relHSI, relSG, relSX, etc, and the HA subscript indicates the harmonic 

averaging operation. The idea behind this definition is to try to combine the information 

provided by a condition indicator at different harmonics (i.e., evaluated at different 

values of m) into a single useful quantity. Simulation analysis of this kind of operation 

suggests that it allows for a high sensitivity of small planet-gear shifts. The averaging 

operation may be able to offer, in general, an improvement in the signal-to-noise ratio of 

the condition indicators. 

5.6. Noise calibration for the simulations of gearbox vibration 

5.6.1. Justification of the need for noise calibration 

5.6.1.1. Explanation of the procedure followed to show the importance of noise 

calibration 

With the developments of sections 5.2 through 5.5, above, we are now in a 

position to utilize the vibration model of a planetary gearbox to generate an initial set of 

simulated vibration signals. However, as described in section 5.2.4, before data from the 

vibration model can be used to characterize the gearbox experiments, noise calibration of 

the simulation architecture must be performed. To show why noise calibration is 

important, and how it can be done, we will now implement the model-based diagnostic 

technique of Figure 5.3 to generate simulated vibration signals of the planetary gear 

assembly of the helicopter’s main transmission for different carrier-plate crack lengths 

and different values of operating torque. The simulated signals will be processed to 
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provide three examples that should justify the importance of noise calibration. In the 

three examples, we would have liked to follow the next procedure: 

1) Run an experiment with a healthy gearbox and extract vibration data. 

2) Extract model parameters from the experimental data of the healthy gearbox. 

3) Induce a fault (crack) in the gearbox to and measure vibration. 

4) Simulate the same fault with the model, still using the parameters of the healthy 

gearbox, and generate simulated vibration. 

5) Compare the characteristics of the vibrations of steps (3) and (4), i.e., between the 

model of a faulted gearbox and a faulted gearbox. 

Unfortunately, we do not have experimental data that were obtained at both 

healthy and faulty states from the same gearbox, as the above procedure requires. The 

experimental data that we have is either (1) healthy from one gearbox and faulty from 

different gearboxes, or (2) all from a faulty gearbox with a growing crack. Therefore, we 

need a way to make a reasonable comparison of simulated vibration with experimental 

vibration, for which we have two options.  

On the one hand, we can use a healthy gearbox to obtain model parameters, then 

simulate a fault with the model and finally compare the vibration characteristics of the 

simulation with experimental data from a faulted gearbox. This procedure will be used by 

the first and third or our examples. On the other hand, we can use the same gearbox to 

extract model parameters and make vibration comparisons, but the model parameters are 

not extracted from a healthy (zero crack length) gearbox. Instead, the model parameters 

154 



 

are extracted from vibration data with the shortest possible crack length. Simulations of a 

longer crack in the model are then compared to vibration data corresponding to this 

longer crack length. This procedure will be used by the second of our examples. 

The first two of our examples will shown the effect of noise on vibration spectra, 

particularly on the amplitude of non-dominant sidebands. The focus is on non-dominant 

sidebands because noise and sideband magnitude variability tend to increase noticeably 

their magnitude, as explained in section 5.5.2. This increase is beyond that caused by 

planet shifting. In the third and last of our examples, representative feature values will be 

extracted from the simulated vibration signals using one of the condition indicators or 

vibratory features previously presented in section 5.5. The characteristics of the three 

examples used are summarized in Table 5.5. 

Table 5.5. Characteristics of the examples used to show that adding noise to the gearbox 

vibration model improves the replication of vibration characteristics of experimental data  

Example characteristics Example 1 Example 2 Example 3

Tool used for comparisons
non-dominant 

sidebands

non-dominant 

sidebands

feature

values

Healthy (zero crack length) gearbox used to extract 

model parameters
yes no yes

Same gearbox used for deriving model parameters is 

used for comparison to experimental data
no yes no

Scaling of sidebands required to make valid 

comparisons
yes no

no (relative 

features used)

Crack length of gearbox used to extract model 

parameters (inches)
0 1.34 0

Crack length at which comparisons take place between 

the model and experiment (inches)
2 2

1.34 to 7.7 aprox. 

(growing crack)

Comparison results shown in Figure 5.33 Figure 5.34 Figure 5.34
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5.6.1.2. Example 1, using non-dominant sidebands 

Figure 5.33 shows three different superimposed spectra. The first spectrum is that 

of experimental vibration data corresponding to the helicopter gearbox with a crack of 

about 2 inches in the carrier plate. The second spectrum corresponds to the sidebands 

from the vibration model, corresponding to a healthy carrier plate at 40% of nominal 

torque. Here, no crack is simulated, and the αn and βm parameters used in the model have 

been extracted from experimental data corresponding to a healthy transmission, but at 

50% of nominal torque, because healthy system data at 40% were not available. We are 

assuming that the effect of the difference in torque is small enough to be negligible. The 

third spectrum corresponds to the vibration characterization proposed by the model when 

a 2-inch crack is present in the carrier plate. This characterization is derived from the 

healthy model but adding the planet-gear shifts caused by the 2-inch crack, as determined 

from finite element analysis. 
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Figure 5.33. Illustration of the difference in the levels of non-dominant sidebands 

between a noiseless model and experimental data. Model parameters were 

extracted from a different system than the one providing the experimental data 

shown. Thus, the model spectra have been scaled to match the RMS of the 

experimental spectrum 

The experiment-data spectrum of Figure 5.33 corresponds to vibration data 

obtained from the experiment with a growing crack, but the vibration data used to derive 

the model parameters is from an experiment without a crack, which involves a different 

system setup. Data from two different setups had to be used in this example because the 

experiment with a growing crack did not provide vibration data of a healthy (zero crack 

length) carrier plate (refer to Table 5.5). The two setups provided data with different 

amplitude scales in the vibration signals. Therefore, to show comparable spectra in the 

figure, the two spectra corresponding to the model had to be scaled to match the sideband 

levels observed in the spectrum of the growing-crack experiment. The scaling factor used 

is the ratio of the RMS of the frequency response coefficients shown. 
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5.6.1.3. Example 2, using non-dominant sidebands 

Figure 5.34 shows spectra without the sideband-scaling artifact that was needed in 

Figure 5.33. For Figure 5.34, the same system provided the data for the experiment 

spectrum shown and for deriving the model parameters used in the two model spectra of 

the graph. However, the system was run starting with a 1.3-inch crack, so we have no 

“healthy” vibration reference. Nevertheless, we are assuming that the 1.3-inch crack is 

small enough to allow the system to behave as if it had no crack, and the model 

parameters used in the model spectra are derived from data corresponding to this crack 

length. The experiment spectrum corresponds to a 2-inch crack. 
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Figure 5.34. Illustration of the difference in the levels of non-dominant sidebands 

between a noiseless model and experimental data. Model parameters were 

extracted from the same system than the one providing the experimental data 

shown. However, the model parameters were extracted from data corresponding to 

a shorter crack length (1.34 inches) in an attempt to approximate the behavior of 

the system without the crack 
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5.6.1.4. Example 3, using feature values 

Figure 5.33 and Figure 5.34, above, showed that, when the planet-gear shift 

angles are input to the vibration model, and before noise is added, the model is not able to 

show non-dominant sidebands with magnitudes comparable to those observed in 

experimental data. We attribute this deficiency to the lack of noise in the simulated 

vibration signal, thus suggesting that noise must be added modeled vibration signals to 

replicate better the experimental vibration. The need to add noise is now made more 

evident through Figure 5.35, below, by using feature values. Here, we see that the feature 

curve for the noiseless model is quite different from that of the experimental data. When 

“appropriate” levels of noise (discussed in the next section) are added to the model, the 

model feature curve approximates the experiment feature curve much closer. 
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Figure 5.35. Illustration of the effect of noise in the feature values calculated from 

simulated vibration signals of the helicopter planetary gearbox. Observe how, 

when noise is added to the model vibration, the model feature values approximate 

the features values observed in experimental vibration data 
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5.6.2. Two variants of a possible technique for calibrating the noise levels 

In this section, we discuss two techniques with which an appropriate level of 

noise might be added to modeled vibration signals. It is worthwhile to note that these 

techniques are rather simple, and more advanced options are available. For example, the 

application of a more advanced technique for characterizing noise in the planetary gear 

transmission is treated by Zhang et al. (2007, to appear). 

We consider the addition of noise to the model vibration in the frequency domain. 

We believe the complexity of the mechanical system is sufficient to require the 

consideration of noise in different frequency bands. Furthermore, the gearbox vibration 

simulation has been designed to model spectrum sidebands, and it is reasonable to focus 

on how the noise affects them, as discussed in section 5.5.2. 

To simulate noise, we can add a random variation to the sideband magnitudes. 

Thus, we generate values for random variables that can be characterized with normal 

probability distributions. The normal distribution is selected because of empirical 

considerations. The random variables describe our simulated noise, and their values are 

added to the sidebands of the noiseless simulated vibration to generate noisy simulated 

vibration. Thus, individual sidebands are modified with individual random values. This 

can be expressed as 

 η+= noiseless

,

noisy

, nmnm SBSB , (5.23) 

where each  represent the half amplitude (a real value) of sideband (m, n), and η is 

a normally distributed random variable with mean µ and variance σ 2
, i.e., 

nmSB ,
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 ) . (5.24) ,(~ 2σµη

To calibrate the noise levels in the sidebands we adjust the parameters of the 

distributions corresponding to individual random variables used with individual 

sidebands. The parameters are chosen depending on how well feature values from the 

model approximate feature values of the experimental data. However, we are wary not to 

over-fit the model, because this would nullify the model validation process. To validate 

the model, we want to calibrate the noise at specific, “reference” operating conditions and 

see if the model is able to replicate changes in the gearbox vibration when operating 

conditions of the system change. We assume that the noise we are characterizing remains 

unchanged, because changes in the system behavior are characterized by the model, not 

by the noise. 

Since we will be validating the model by comparing feature values of the model 

against feature values of data from the crack-length progression experiment, as will be 

seen in section 5.7, we will calibrate the noise levels observing their effect on feature 

values. There are many ways to characterize the parameters of the noise distribution 

described. We test two variants here.  

In the first noise-calibration variant, we characterize the noise as a normal 

distribution with zero mean affecting all the sidebands in a tooth meshing harmonic 

region equally. Our selected reference operating conditions in this variant come from the 

short vibration experiment with a healthy planetary carrier plate. 
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The second noise-calibration variant characterizes the noise as a series of normal 

distributions with non-zero mean affecting sidebands individually. Our selected reference 

operating conditions for this variant come from the initial part of the crack-progression 

experiment (initial 15 GAG cycles). Although the gearbox already has a crack, its 

behavior in the initial part of the experiment is assumed comparable to that of a gearbox 

without a crack. This assumption is reasonable because the crack is short. 

5.6.2.1. Noise-calibration variant 1 

In this subsection, we characterize gearbox vibration noise as a normal 

distribution with zero-mean affecting all the sidebands in a tooth meshing harmonic 

region equally. To arrive at the characterization of this distribution and test the approach, 

we use data from the short vibration experiments with a healthy planetary carrier plate. 

We appoint these data as a description of our reference operating conditions. 

Following the nomenclature of Equations 5.23 and 5.24, the addition of noise to 

the model sidebands is done as 

 mnmnm SBSB η+= noiseless

,

noisy

, , (5.25) 

where 

 ) , (5.26) ,0(~ 2

mm ση

and  is the variance that is added to simulated sidebands within a tooth meshing 

harmonic region m. The same value of variance is used in all the sidebands that have a 

common m value. 

2

mσ
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The value of the variance  is selected so that feature values calculated from the 

spectrum of the simulated gearbox vibration approximate the corresponding feature 

values extracted from experimental gearbox vibration. The procedure is illustrated in 

2

mσ

Figure 5.36. 
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Figure 5.36. Illustration of the procedure followed to perform calibration of the 

noise levels in modeled gearbox vibration sidebands. a) The noiseless model 

feature values are calculated and compared to the experiment’s features. b) Noise 

levels ( ) added to the sidebands of the simulated vibration spectrum are 

gradually increased; this raises the feature values. c) When appropriate noise 

levels are reached, the feature values of the model are comparable to the feature 

values of the experiment; results of noise calibration using the calibration 

procedure variant number 1 at 100% of nominal engine torque are shown 

2

mσ
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Figure 5.36(c) shows the results of performing noise calibration under the 

procedure discussed above at 100% of engine torque. Figure 5.37 shows the 

corresponding results at 40% engine torque. 
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Figure 5.37. Results of noise calibration using the calibration procedure variant 

number 1 at 40% of nominal engine torque 

5.6.2.2. Noise-calibration variant 2 

In this subsection, we characterize gearbox vibration noise as a series of normal 

distributions with non-zero means, each affecting an individual sideband of the gearbox 

vibration spectrum. To arrive at the characterization of this distribution and test the 

approach, we use data from the initial part of the crack-progression experiment (initial 15 

GAG cycles), which, although having a crack, is assumed to behave as a system without 

a crack. This assumption is reasonable because the crack is short. We appoint these data 

as a description of our reference operating conditions. 
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Following the nomenclature of Equations 5.23 and 5.24, the addition of noise to 

the model sidebands is done as 

 nmnmnm SBSB ,

noiseless

,

noisy

, η+= , (5.27) 

where 

 ; (5.28) ),(~ 2

,,, nmnmnm σµη

µ m,n is the mean of the distribution of the random variable nm,η  and is approximately 

equal to the mean value of  in noisy experimental gearbox vibration from the 

reference operating conditions; and  is the variance of 

experim

,nmSB

2

,nmσ nm,η  and is approximately 

equal to the variance of . experim

,nmSB

Individual values of nm,η  with their own individual distributions are added to 

simulated sidebands at particular (m, n) locations. Thus, each of the  sidebands 

is affected by its unique µ m,n and  parameters. The values of the mean µ m,n and the 

variance  are selected so that feature values calculated from the spectrum of the 

simulated gearbox vibration approximate the corresponding feature values of 

experimental gearbox vibration. 

noiseless

,nmSB

2

,nmσ

2

,nmσ

Figure 5.36 shows the results of performing noise 

calibration under the procedure discussed in this section at 100% of engine torque. Figure 

5.37 shows the corresponding results at 40% engine torque. We are thus treating the noise 

parameters as torque-dependent. 
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Figure 5.38. Results of noise calibration using the calibration procedure variant 

number 2 at 100% of nominal engine torque 
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Figure 5.39. Results of noise calibration using the calibration procedure variant 

number 2 at 40% of nominal engine torque 

5.7. Validation and performance of the vibration model 

The vibration model of the planetary gearbox discussed in section 5.2 is able to 

incorporate the results of the frequency response analysis of section 5.3 (fault-insensitive 

parameters) and the planet-gear shift angles obtained from the finite element simulations 
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of section 5.4 (fault-sensitive parameters). The model can generate a simulated vibration 

signal that is similar in certain characteristics to the vibration observed in the planetary 

gear assembly of the helicopter’s main transmission. Simulated vibration signals can be 

generated for different crack lengths present in the carrier plate, and for a variety of 

values of the operating torque. Representative feature values can be extracted from both a 

simulated vibration signal and the experimental vibration signal of an actual gearbox. The 

feature values can be calculated using the condition indicators presented in section 5.5. 

The intent in this section is to validate the comprehensive implementation of the 

vibration model as described in the paragraph above. We validate the vibration model of 

planetary gearboxes using one of two sets of experimental data (refer to section 3.2). 

First, we use data either from the short vibration test with a healthy planetary carrier plate 

or from the initial part of the experiment with a growing crack, to determine the values of 

the fault-insensitive parameters for the model. The choice of data depends on which of 

the two noise-calibration variants presented in section 5.6.2 is used. Then, we consider 

data from the crack-length progression test to compare the model vibration to the 

experimental vibration at different crack lengths. This particular experiment is well suited 

to validate the simulated vibration because it provides a series of points to make 

comparisons. 

It is possible to utilize the two different experiments for a single set of simulations 

with the model because both experiments had a similar setup, as they were both carried 

out in a test cell with the same gearbox configuration. We also exploit the abilities of the 
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“relative” features presented in section 5.5.3, since they have been designed precisely in 

an attempt to mitigate the effects of system-to-system, or setup-to-setup variations. 

Figure 5.40 through Figure 5.47, below, illustrate the effectiveness of the 

planetary gearbox vibration model. Results presented in the graphs involve the 

implementation of the model with the fault-insensitive parameters discussed in section 

5.3, the fault-sensitive parameters presented in section 5.4, and the noise calibration 

procedure described in section 5.6. 
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 Figure 5.40. Comparison of feature values extracted from the helicopter 

transmission vibration and features extracted from the vibration produced by 

simulations with the planetary gear vibration model. The horizontal axis 

corresponds to the count of load cycles and is related to the crack growth in time. 

The model uses the noise-calibration procedure variant number 1. Torque is 100% 

or 93% (as indicated) 
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Figure 5.41. Comparison of feature values extracted from the helicopter 

transmission vibration and features extracted from the vibration produced by 

simulations with the planetary gear vibration model. The horizontal axis 

corresponds to the count of load cycles and is related to the crack growth in time. 

The model uses the noise-calibration procedure variant number 1. Torque is 40% 
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Figure 5.42. Comparison of values for the feature of Figure 5.40 in its 

harmonically averaged form 
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Figure 5.43. Comparison of values for the feature of Figure 5.41 in its 

harmonically averaged form 
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Figure 5.44. Comparison of feature values extracted from the helicopter 

transmission vibration and features extracted from the vibration produced by 

simulations with the planetary gear vibration model. The horizontal axis 

corresponds to the count of load cycles and is related to the crack growth in time. 

The model uses the noise-calibration procedure variant number 2. Torque is 100% 

or 93% (as indicated) 
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Figure 5.45. Comparison of feature values extracted from the helicopter 

transmission vibration and features extracted from the vibration produced by 

simulations with the planetary gear vibration model. The horizontal axis 

corresponds to the count of load cycles and is related to the crack growth in time. 

The model uses the noise-calibration procedure variant number 2. Torque is 40% 
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Figure 5.46. Comparison of values for the feature of Figure 5.44 in its 

harmonically averaged form 
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Figure 5.47. Comparison of values for the feature of Figure 5.45 in its 

harmonically averaged form 

Obviously, to obtain the results presented, a series of simulations was run with the 

model, each instance corresponding to a specific crack length comparable to the crack 

length present in the gearbox at a given GAG cycle number, i.e., the model used the 

lengths of the crack as measured from the experiment. As explained in section 3.4.5.2, 

the crack lengths in the crack-progression experiment are known at different GAG cycles 
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from related instrumentation (ground truth points). Before features were extracted, the 

experimental vibration data were pre-processed by applying time synchronous averaging, 

or TSA (refer to section 3.4.5). Vibration of about 21 or 22 revolutions (depending on the 

availability of experimental data) of the planetary carrier plate was averaged at each 

GAG cycle. 

Two important observations must be made about the results presented in the 

graphs within this section. First, the fault-insensitive parameters used in the model with 

the noise-calibration procedure variant number 1, correspond to a different experiment 

than the one being characterized. The parameters were obtained from a healthy gearbox, 

while the characterizations seen in Figure 5.40 through Figure 5.43 address the crack 

progression test. Second, noise calibration of the vibration simulations for Figure 5.40 

through Figure 5.47 was performed by comparing the level and dispersion of the feature 

values within the span of only the first 15 GAG cycles. After this, no other form of 

calibration, or any model adaptation was performed. 

Validation of the planetary gearbox vibration model is primarily given by the 

results presented in the graphs within this section. However, validation is also enhanced 

by the fact that, even in the presence of the two observations described in the preceding 

paragraph, the characterizations of the model appear to be quite adequate and repeatable, 

even for a mechanical system of such complexity as the helicopter transmission gearbox. 
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5.8. Application of the reverse engineering technique for identifying a 

crack in the helicopter transmission 

It has been shown that the diagnosis model allows us to calculate the vibration 

feature values that a helicopter gearbox will exhibit when a crack is present in the 

planetary carrier plate. This calculation is able to consider a specific crack length and the 

torque at which the gearbox operates. We now discuss how we can use the model to 

diagnose a helicopter gearbox with such a crack. 

To find whether a helicopter gearbox has a crack present or not (i.e., to perform 

fault detection), we use standard detection techniques that check on the statistical 

separation
16

 of two sets of data: feature values extracted from the vibration of the 

helicopter gearbox to diagnose, and feature values descriptive of normal operating 

conditions. This is the first step in diagnosis. 

The following step in diagnosing the gearbox is the identification of the fault, i.e., 

assessing the length of the crack. This is where the ability of the vibration model to 

produce feature values for different crack lengths is crucial. We exploit this ability by 

comparing the feature values extracted from the helicopter gearbox at fault against the 

feature values of model simulations with different crack lengths. Finding a match 

between the gearbox and one of the model simulations will provide information about the 

crack length present in the gearbox. This procedure is the reverse engineering technique 

                                                 
16 Detection and feature separation techniques are beyond the particular subject of interest in this thesis. 

Literature on the subject is abundant. For a good modern summary refer to Vachtsevanos et al. (2006). 
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covered in section 4.2.2. To diagnose the helicopter gearbox, we adapt the reverse 

engineering technique presented earlier in Figure 4.3 as illustrated in Figure 5.48, below. 
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Length
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Figure 5.48. Application of the “reverse engineering” approach for performing 

model-based fault diagnostics with the helicopter transmission problem 

An example of how to apply this technique is the following. We obtained 

vibration signals from the planetary gearbox experiment with a growing crack. We 

extracted features from it, and Figure 5.42 in section 5.7 showed what one of those 

particular features looks like. The figure also showed the corresponding feature values 

from the vibration model. If we wanted to perform fault identification with those feature 

values exclusively, we would try to match the feature values of the gearbox to the feature 

values of the model to arrive at an estimate of the crack length. Using the same data of 

that figure, we now plot the feature values of the model against crack lengths, as shown 

in Figure 5.49. We can approximate the crack length present in the gearbox from 

178 



 

matching the gearbox feature values to the model feature values and determining the 

crack length from the model. 
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Figure 5.49. Illustration of the procedure followed to match experimental feature 

values to model feature data to perform crack length identification; first, feature 

values in the experiment are assessed; second, comparative feature values are 

sought in the model data; third, crack length in the experiment is assessed by the 

corresponding crack length in the model. Data seen here corresponds to data from 

Figure 5.42 

Notice, however, that using this technique, there will be a difference between the 

crack lengths observed in the experiment and those obtained from the characterizations of 

the model, because the feature values of the model are slightly different from the feature 

values of the gearbox for known crack sizes. The difference is made obvious when 

plotting, once again, some data from Figure 5.42 in terms of ground-truth crack lengths 

instead of cycles. Such plot is shown in Figure 5.50, below. The crack lengths 

corresponding to the experimental data are known from instrumentation used for 

measuring the crack progression throughout the experiment. The difference in feature 

values will obviously affect the quality of our diagnosis. 
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Figure 5.50. Example vibratory feature value data as a function of crack length 

for experimental data and model data 

Thus, in general, we need to qualify and interpret the feature-matching algorithm 

results for several reasons. First, noise is present, both in the gearbox vibration and in the 

model. Second, the model is only an approximation to the gearbox behaviors. Third, we 

may want to combine the information from several features. 

The implementation of a diagnostic algorithm should consider these elements 

before providing an estimate of the crack length. We will want such an algorithm to use 

filtering and, possibly, state estimation techniques to improve matching and arrive at a 

more confident estimate of the fault. This subject is also relevant for prognosis, so it is 

further discussed in chapter 6. 
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6. A MODEL-BASED PROGNOSIS ARCHITECTURE 

6.1. Objectives 

The goal of this chapter is to suggest a methodology for designing a model-based 

prognostic architecture that can (1) establish the foundation for performing model-based 

prognosis in a class of dynamic systems, (2) integrate results from anteceding diagnostic 

activities, like those presented in chapter 4, and (3) be applied to prognosticate a crack in 

the planetary carrier plate of a helicopter transmission such as the one described in 

section 3.1. 

As with the diagnostic architecture discussed in chapter 4, the prognostic 

architecture suggested in the present chapter integrates modeling, simulation, and 

experimental data. The class of dynamic systems to which it can be applied will fit the 

descriptions presented in sections 6.2 and 6.3, and the assumptions set forth earlier in 

section 4.2.1. Focus is still placed on models that characterize the physics-of-failure 

mechanisms of faulted systems, referred to as physics-based models in the engineering 

diagnostics and prognostics literature. However, the methodology suggested might be 

applicable to other kinds of models by appropriately adapting its constituent modules. 

The architecture is immediately applicable to prognosticate the growth of the 

crack in the helicopter transmission using a fracture mechanics model. Such application, 

discussed in detail in chapter 7, will validate and demonstrate the use of the methodology 

suggested in the present chapter. 
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6.2. A generic approach to model-based prognosis for a class of 

dynamic mechanical systems 

Figure 6.1 shows a generic method for designing model-based prognostic 

architectures with focus on systems that require anteceding diagnostic activities. We refer 

to prognostic activities as those whose objective is to determine the remaining useful life 

(RUL) or the time to failure (TTF) of damaged components. Furthermore, we take on this 

topic with interest in applying the understanding of the physics-of-failure mechanisms of 

a system in the design of the model-based prognostic architecture. 
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Figure 6.1. A generic approach to model-based prognostics 

The method proposed is to provide functionality to the distinct blocks represented 

in Figure 6.1. Such a modular approach is applicable to many kinds of systems and 

models. Implementing a prognostic architecture with this method in a complex system 

will typically involve the participation of a team of experts in the different aspects and 

disciplines involved. That is why, although we will now be describing the basic functions 

of each block, this thesis does not cover them all in detail. The thesis focuses only on the 

diagnosis and damage progression model blocks from a model-based perspective. 
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The future operating conditions block refers to the determination of the expected 

usage pattern of a system. The way in which damage progresses in a system depends on 

how the system is used. Hence, to make a prognosis of a system, we need information 

about the expected usage pattern of a system, which is also referred to as the loading 

profile. The loading profile should be time-series data providing specific information of 

how and what loads will be successively applied to the system. Depending on the system 

and type of fault, the order in which varying loads are applied may also be critical 

information. One of the promises of prognostics is precisely their ability to offer 

information about how a system will behave under different loading profiles. This is 

important for system operators because, as they are in control of the loading profile, they 

can make a decision to change it if it serves a purpose, like extending the life of a system. 

The subject of loading profiles is discussed further in section 6.3.2. 

The diagnosis block provides diagnostic functions, such as those provided by the 

architecture discussed in chapter 4. It must be noted that, although the diagram of Figure 

6.1 suggests that diagnostics be performed before prognostics, the method is also 

applicable to systems that do not require diagnostic updates, such as systems where the 

life expectancy of a system is used, regardless of any possible diagnosis (see section 

6.3.1). 

Both the diagnosis and future operation conditions blocks provide information 

needed by the model-based prognosis block. This information is used to assess the future 

development of damage in the modeled plant or system. To arrive at a prognosis, the 
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dynamic behavior of the plant and its damage must be simulated. Three different 

interrelated critical aspects of this simulation are represented inside the block. 

The first aspect is a damage progression model that characterizes the 

development of the fault dynamically. One architecture to accomplish this function is 

presented in section 6.3. To deal with the uncertainty present in the diagnosis and the 

expected future operating conditions, the damage progression model can simulate 

multiple scenarios of fault development, each corresponding to a different variant in the 

uncertain information provided. 

The second aspect is the utilization of model adaptation algorithms. Adaptation 

algorithms abound in the literature. Techniques such as these will allow the damage 

progression model to be dynamically updated to replicate the plant behaviors more 

accurately. When on-line data is available to update the dynamic models, it is convenient 

to represent the problem as one of state estimation. Several approaches can be applied to 

solve the state estimation problem. When the system is linear, and the noise present is 

assumed Gaussian, Kalman filtering gives the optimal solution. Many cases, though, 

cannot be represented with a linear realization. For these, more complex estimation 

algorithms need to be used, such as extended Kalman filtering, grid-based methods, and 

particle filtering (see Arulampalam, 2002). However, this subject is outside the scope of 

this thesis. 

The third aspect is the implementation of uncertainty management techniques. 

These will offer a variety of functions, among which we find: 
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(1) the adequate interpretation and mitigation of the uncertainty in the diagnosis and 

operating conditions, 

(2) the determination, supervision, and control of the multiple scenarios that the damage 

progression model simulates, 

(3) the execution of state estimation algorithms to support the operation of the damage 

progression model and the model adaptation algorithms to increase their accuracies, 

and 

(4) the collection and interpretation of the results provided by the multiple-scenario 

simulations of the damage progression model to provide reliable estimates of the 

RUL or TTF with confidence metrics. 

Confidence metrics provide a measurement of the certainty in the results offered 

by the prognostic algorithm. These metrics will typically exhibit characteristics of the 

probability distribution describing the chances of failure of the system at a given time or 

condition.  

The subject of uncertainty management is, again, beyond the scope of this thesis. 

A good overview of the subject is provided by Vachtsevanos et al. (2006) and an 

application of uncertainty management techniques to the helicopter transmission problem 

described in chapter 3 is studied by Orchard (to be published). 
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6.3. The damage progression model 

In general, a plant model used in the task of diagnosing a system will not likely be 

the same as the model used in prognostics. This is because models usually replicate a 

predetermined set of system characteristics while assuming that others are constant, and 

the two sets generally differ in diagnoses and prognoses. This assumption allows models 

to be kept as simple as our tolerances require. Naturally, unnecessary model complexity 

is avoided, because a model that simulates unneeded and negligible conditions typically 

requires excessive amounts of work, solution time, and computing power. Additionally, 

there is the danger of unaccounted-for behaviors, unexplained deviations, and perhaps 

counter-intuitively, even loss of accuracy, since the expanded set of parameters (away 

from those of interest) may not be as well known. 

Take, for example, the case of the helicopter transmission problem described in 

chapter 3. The so-called physics-based diagnostic model attempts to reproduce the 

vibrations corresponding to specific crack lengths on the planetary carrier plate of the 

transmission, one crack length at a time. Information about the crack growth rate is 

irrelevant for this model, and the only reason the model requires “time” as an 

independent variable is because vibration signals are involved, not because damage is 

progressing. This progression is not considered. In fact, the damage is considered static in 

every diagnosis simulation using the model. This is a fair and valid assumption as long as 

the damage progression timescale is different from the vibration timescale, which is the 

case for the fracture fault considered. 

186 



 

For prognosticating the fault in the helicopter transmission, in contrast, we need a 

different kind of model. This model must provide information about how the crack length 

progresses in time. Damage is not static anymore, and vibration changes need not even be 

considered here, since they are an a posteriori effect of the crack length, and not the 

focus of the progression study, which concerns only a priori causes. The prognostic 

model should be able to simulate the progression of the crack length while considering 

the degradation of the system and the variations in the loads applied to the gearbox (i.e., 

its usage patterns). Furthermore, these system conditions, each of which is now referred 

to as a state, may not be accurately known. Even after diagnosing the system, we can 

only approximate the crack length at any given instant, and the load to be experienced by 

the cracked component will be an estimate too, better expressed stochastically. Both of 

these states will be most properly described with probability distributions. Thus, we may 

require that our fault progression model provide probabilistic results as well. 

Thus, in general, a model used in the prognosis of a dynamic system must 

integrate a damage progression model with information from the diagnosis of the fault, 

the expected loads to be applied to the system, and the parameters or states describing the 

system and its changing conditions. Following the train of thought of section 4.2.1, a 

model with these characteristics may be represented with the block diagram of Figure 

6.2. 

187 



 

Dynamic determination of

fault-sensitive

parameters or states

Damage 

progression model

Initial

conditions

Loading

profile

Dynamic determination of

fault-insensitive

parameters or states

“switch”

Corresponding 

to load at a 

specific time

Corresponding 

to load and 

damage  at a 

specific time

From diagnosis 

(if applicable)

Dynamic determination of

fault-sensitive

parameters or states

Damage 

progression model

Initial

conditions

Loading

profile

Dynamic determination of

fault-insensitive

parameters or states

“switch”

Corresponding 

to load at a 

specific time

Corresponding 

to load and 

damage  at a 

specific time

From diagnosis 

(if applicable)

 

Figure 6.2. Suggested architecture for performing model-based simulation of 

systems with a dynamic fault 

It is illuminating to compare the diagram of Figure 6.2, above, with that of Figure 

4.1 presented earlier, in section 4.2.1. The two approaches are similar in several ways. 

First, they both classify parameters into fault-sensitive or fault-insensitive. The fault-

insensitive parameters can be in both cases determined from experimental data, and both 

architectures provide the ability to consider different operating conditions and loads. 

However, in addition to the obvious differences, there are some non-obvious. One 

of the most important non-obvious differences is that all the blocks in the diagnostic 

architecture of Figure 4.1 are static with respect to the fault. With the exception of the 

initial conditions, the blocks in the prognostic architecture of Figure 6.2, above, are 

dynamic. By this terminology, we mean that a dynamic realization must consider changes 

in the fault under some description, which is typically the passing of time, although other 

descriptions are possible. In contrast, a static description considers an unchanging fault. 
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One of the important visible differences is that in Figure 6.2 there is now a closed 

loop connecting the model block with the block of fault-sensitive parameters. The loop is 

suggestive of the dynamic conditions and the dependence in time of the prognostic 

architecture. 

The simulation architecture proposed here can be applied by following the steps 

described in sections 6.3.1 through 6.3.5, below. 

6.3.1. Initial conditions for the prognostic model: the integration with diagnostics 

As stated above, a damage progression simulation is always dynamic, i.e., it is 

dependent on some description of time. Thus, a pre-requisite for running such a 

simulation is to establish the initial conditions of the system. Since we are concerned with 

prognosticating a system failure, our initial conditions must be indicative of either the 

existence of a fault or, at least, the possibility that the system will degrade in a certain 

way as damage progresses. An example of the first situation would be an initial crack 

length in a system that, when used, will experience fracture growth. For the second case, 

our initial conditions could be the readiness or configuration of a system. For example, 

we may want to prognosticate the failure of a battery depending of how much charge it 

had initially, or the failure of a light bulb depending on the alloy used in the filament. 

To have the initial conditions indicate the existence of a fault in a working 

system, we will typically use diagnosis. This is because a diagnostic system will detect, 

locate and assess the size of an incipient fault, and the size of the fault is the most 
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important initial condition for prognosticating a system with an incipient fault. Such is 

the case in the helicopter application studied in this thesis. It is precisely at the stage of 

initial conditions assessment that the diagnostic and prognostic tasks integrate. 

The initial conditions block of the architecture shown in Figure 6.2 is static with 

respect to the fault. This means that the initial conditions are used at the beginning of a 

damage progression simulation, and represent only the initial state of the system, not the 

dynamic behavior of the damage or degradation. This is the reason why a “switch” is 

illustrated in the diagram. Once the initial conditions are used to determine for the first 

time the fault-sensitive parameters or states, the position of the switch is changed. The 

initial conditions are not used anymore, and the dynamics of the modeled fault are used 

instead.  

6.3.2. The loading profile 

As discussed in section 6.2, to arrive at a prognosis of a system, we need 

information about the future usage pattern of a system, also known as the loading profile. 

The ability to vary the loading profile in a damage progression simulation is a desirable 

characteristic in a prognostic architecture, because it can provide information that aids 

operators in making decisions when a fault appears on a system. An example of how 

changes in the load profile can be applied to the architecture suggested by Figure 6.2, 

above, is illustrated by Figure 6.3, below. The illustration represents the idea that three 

different possible loading profiles can be simulated separately. These correspond to 

simulating that (1) the load profile that the system has been experiencing for some time 
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while operating is to remain; (2) the load profile can be estimated from past experience; 

and (3) the load profile will be as the operator is deeming and describing before the 

simulation is started. It should be clear that the three loading profiles could be of interest 

to an operator in charge of deciding how to continue to operate a system with an incipient 

fault. 
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Deemed by operator

Choices for future load
“switch”
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Figure 6.3. Illustration of how different loading profiles can be selected for 

simulating the progression of damage in a system 

Any prognosis is an estimate of future conditions, and as such, it is uncertain and 

probabilistic in nature. In making a prognosis of a specific condition, operational 

conditions play a crucial role, because the progression of damage depends upon usage of 

the system. For some systems, future operational conditions are well known, but for most 

systems, these will be continually adapted to meet specific requirements at different 

points in time. When a particular prognosis is made, this fact should have been 

recognized and the prognosis should be accompanied by a specification of validity under 

specific operational conditions. The uncertainty in the loading profile can be reduced by 

enhancing communication between the operator of the system (who is in control of the 

loading profile), by improving our estimation techniques, or by both.  
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6.3.3. The fault-insensitive parameters or states 

The fault-insensitive parameters and states describing the system are determined 

from design information, by experimental data, or by any other means. In addition to 

model-and system-specific descriptions, these parameters can include material properties, 

physical constants, and the like. In this aspect, the determination of fault-insensitive 

parameters and states for prognosis is similar to that of diagnosis (see section 4.2.1.1). 

However, there are important differences and additions. 

Although the fault-insensitive parameters and states have no correlation with 

changes in the fault by definition, some are likely to be dynamically dependent upon the 

operating conditions of the system. Take, for example, the stress in a mechanical 

component that is not affected by the fault considered in a system, but that is an 

important element in the model of the system. As a state in the model description, the 

stress depends upon the load applied. However, the load applied to the system may vary 

throughout operation, and hence the “stress state” considered depends upon the load 

conditions. This is why the loading profile block is connected to the block with the fault-

insensitive states in Figure 6.2, and why we identify this block as a dynamic block. 

Since the fault-insensitive parameters and states are dynamic, i.e., changing, we 

need different sets of them. Each set corresponds to different operating conditions. Thus, 

the damage progression model will need to use different sets at each step or iteration of 

the damage progression simulation, according to the changes in load prescribed by the 

loading profile. 
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There are two possible approaches to determining the different sets of fault-

insensitive parameters and states dynamically. We can try to do it on-line or off-line. The 

two approaches are discussed in more detail in section 6.3.4, below, because the fault-

sensitive parameters and states considered there also share this characteristic.  

6.3.4. The fault-sensitive parameters or states 

In this step, the operating conditions and an instantaneous amount of damage are 

used to analyze the response of different components or subsystems of the plant to the 

presence of the fault of the instantaneous size considered. The objective of this analysis is 

to determine the values of the fault-sensitive parameters and states. This process is 

somewhat similar to the one discussed for the diagnostic modeling architecture in section 

4.2.1.3. It is particular to the plant and it may require support from a variety of 

engineering disciplines. However, it must be noted once again that, for prognosis, the 

model is dynamic. Thus, multiple fault sizes must be considered in succession. The 

succession is given by some consideration of time and the corresponding dynamic 

characteristics of the loading profile. 

When the damage progression simulation starts, determining the fault-sensitive 

parameters and states requires the consideration of initial conditions, as described in 

section 6.3.1. After this, when the simulation is running, new values of the fault-sensitive 

parameters and states are determined successively. The determination of these values is 

done utilizing the progression of damage that the simulation is characterizing. The 
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parameters and states recalculated each time reflect the change in the fault size. The 

recalculation process is continuous and runs along with the simulation, iteratively. 

As with the fault-insensitive parameters discussed above in section 6.3.3, there are 

two possible approaches to determining, dynamically, the fault-sensitive parameters and 

states. We can try to do it on-line or off-line. The on-line approach uses information from 

the plant while it is operating. This requires that the analysis or simulations that 

determine the parameters or states be executed in parallel with the machine operation. It 

also requires that the analysis or simulations be carried out timely, which is not always 

possible, especially with complex systems, because some simulations may take hours to 

derive useful results, as will be seen with an example, further below.  

In contrast, the off-line approach executes these analyses or simulations 

beforehand. The results of the simulations for different operating conditions can be stored 

in a database. When the plant is operating, the stored parameters corresponding to the 

operating conditions of the plant can be retrieved from the database and used for the 

prognosis.  
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Figure 6.4. The on-line and off-line approaches to the dynamic determination of 

parameters and states of a prognostic model. The diagram illustrates the idea that 

parameters and states can be determined using a combination of on-line and off-

line activities. The dotted arrow represents the idea that the fault-sensitive block 

may require information from the fault-insensitive block 

Take, for example, the case of the helicopter transmission of focus in this thesis. 

The crack tip stress, which is an important parameter that is used to determine the crack 

growth rate, is calculated from a finite element analysis or FEA (see chapter 7). Crack tip 

stresses are dependent upon the crack length. Thus, crack tip stresses must be determined 

for different crack lengths. Each FEA simulation for determining a crack tip stress may 

take hours to complete. Needing multiple crack tip stresses could mean, therefore, that we 

must run FEA simulations for days before we can make a prognosis. This is completely 

unacceptable in system that can fail within the span of minutes. Therefore, the crack tip 

stresses corresponding to different crack lengths and different loads must be determined 

by this technique beforehand and kept stored for their use when required by a prognosis 

system. 
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6.3.5. The damage progression model 

To arrive at a prognosis, we must run a simulation with the damage progression 

model to observe how the fault will evolve. The simulation can consider the damage 

progression as a series of steps. At each step, the model uses specific values of (1) the 

fault-sensitive parameters and states, (2) the fault-insensitive parameters and states, and 

(3) the operating conditions prescribed by the loading profile. Since the fault is dynamic, 

all three sets of values can change from one step to the next. Thus, the three sets of values 

must be determined at each step of the simulation. 

The change in operating conditions at each step of the simulation is determined 

from the loading profile, in accordance with the descriptions of section 6.3.2. If 

applicable, the change in the fault-insensitive parameters and states is also determined 

considering the loading profile, because, as explained in section 6.3.3 they can have a 

dependency on it. In the first step of the simulation, the fault-sensitive parameters and 

states are determined from the initial conditions discussed in section 6.3.1. The operating 

conditions prescribed by the loading profile are also important here. For the following 

steps, the initial conditions are not needed, and instead, the results of the damage 

progression simulation from previous steps are used, as described in section 6.3.4.   
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7. PROGNOSIS OF THE HELICOPTER TRANSMISSION   

In this chapter, we briefly exemplify how the helicopter transmission problem 

described in section 3.1 might be prognosticated using model-based prognostics and 

applying the concepts and methods discussed in chapter 6. Our prognosis of the 

helicopter transmission problem will predict how the crack in the planetary carrier plate 

will grow given a specific load profile and thus have an opportunity to estimate when the 

component will fail. 

In the following sections, we first discuss briefly how the generic approach to 

model-based prognosis of section 6.2 might be used to design a prognostic system for the 

fracture problem of the helicopter transmission. However, we do not address this subject 

in detail, because such a task is beyond the reach of this thesis, and, as explained in that 

section, implementing the entire methodology for model-based prognostics is a complex 

task that requires the participation of a team of experts. To exemplify the use of the 

model-based prognostic approach, we assume that diagnostic activities precede the 

prognostic operation. In a real world implementation, diagnosis might be performed as 

discussed in chapter 5, but other techniques could be used as well. 

After establishing an approach to prognosis of the fracture problem, this chapter 

exemplifies how to use the modeling architecture of section 6.3 with a fracture mechanics 

model for characterizing the growth of the crack. This example uses a simplified model 

whose intent is only to illustrate the methodology. We finally run simulations of the crack 

progression and validate the results with experimental data. 

197 



 

7.1. Model-based prognosis of the helicopter transmission fault 

The ultimate objective of an engineering prognosis is to provide information 

about the remaining useful life or the expected time-to-failure of a system in operation. A 

prognosis of the helicopter transmission problem discussed in chapter 3 would be no 

different from this. The Georgia Institute of Technology and Impact Technologies LLC 

have worked in conjunction to realize a working demonstration of a prognostic system 

for experimental damage progression tests with the helicopter transmission (see Patrick et 

al., submitted for review). Because the task is so complex, it has been carried out by a 

team of researchers, with different aspects requiring the participation of specialists in the 

corresponding disciplines. This team activity is used here to provide validation and a 

means of refinement to the model-based prognostic architecture discussed in chapter 6. 

Figure 7.1 illustrates how the effort was implemented, and highlights the critical 

functional components of the prognosis task: 

• Loading Profile 

• Diagnosis 

• Crack Growth Model 

• Particle Filtering 
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Figure 7.1. Application of the technique of Figure 6.1 for performing model-

based prognostics to the helicopter transmission problem 

Observe that Figure 7.1 is an adaptation of the technique proposed by Figure 6.1 

in section 6.2. The diagnosis block of the diagram shown in Figure 7.1, above, was 

implemented as discussed in chapter 5. It provides information about the estimated crack 

length at a given point in time as evaluated from feature values. The feature values can be 

extracted from gearbox vibration signals in real time and be provided to a particle-

filtering algorithm for improving the state estimation task and updating parameters of the 

crack growth model. 

The particle-filtering algorithm is a state-of-the-art estimation technique used for 

a variety of activities. The particle-filtering technique has the ability to provide an 

estimate not just of the system state values characterized by the model, but also of the 

probability distribution, or probability density function (PDF) for these states (see, for 

example, Orchard et al., 2005, and Abbas et al., 2007). This distribution allows for 

performing uncertainty management and model adaptation simultaneously. The model 
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adaptation is carried out by updating, dynamically, the model parameters characterizing 

the fault progression. Projecting the PDF estimate in time, via simulations with the 

loading profile and the damage progression model, provides a means to make estimates 

of the RUL or TTF of the helicopter transmission component at fault. Implementation of 

the particle-filtering technique is outside the scope of this thesis. Its use with the 

helicopter transmission problem is studied by Orchard (to be published) and described in 

Patrick et al. (submitted for review). 

Using the predetermined loading profile, the crack-growth model block provides 

information about the progression of the fault. These two blocks are discussed in more 

detail in the following sections. 

7.2. Damage progression model of the planetary carrier crack 

This section illustrates how the model-based prognostic simulation methodology 

proposed in section 6.3 can be used for characterizing the growth of the crack in the 

planetary carrier plate of the helicopter transmission. The first step is to apply the 

diagram of Figure 6.2 to the crack problem. An adaptation of this architecture is 

suggested in Figure 7.2. 
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Figure 7.2. Application of the technique of Figure 6.2 for performing model-

based simulation of the damage progression in the planetary carrier plate 

To exemplify and validate this approach, we utilize data from the helicopter 

transmission experiments with a growing crack (see section 3.2). Let us now consider 

each of the blocks present in the diagram of Figure 7.2. 

7.2.1. Initial conditions: the starting crack length 

As described in section 3.2, the experiment of focus tested a planetary carrier 

plate with a seeded fracture. The experiment was able to measure the growth of the crack 

caused by the operational loads of the functioning planetary gear transmission. The initial 

crack length was 1.34 inches long. The crack did not grow at the same rate in all of the 

directions of the crack front, including the length or depth. As will be seen, the fact that 

the crack grew at different rates in the inboard and outboard directions is of particular 

importance. These directions of growth are represented in Figure 7.3. The crack reached 
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the outer edge of the circumference of the plate at a total length of about 4.8 inches, at 

which point the planetary carrier plate started to experience increased deformations. 

Inboard direction
 of  crack  growth

Outboard direction 
of crack growth 

Crack

  Crack 
length

 

Figure 7.3. Definition of the crack length and the inboard and outboard directions 

of crack growth on the planetary carrier plate 

7.2.2. Loading profile 

The crack growth experiment applied load cycles by varying the engine torque 

continuously to make the crack grow. These cycles were designed by the technical 

leaders of the experiment to resemble a helicopter taking off the ground, hovering for 

some time and then landing, in what is called a ground-air-ground (GAG) cycle. GAG 

cycles are comprised of a succession of increasing and decreasing engine torques with 

short “dwelling” periods maintaining constant torque levels. An illustration of an 

approximate succession of typical GAG cycles is shown in Figure 7.4. 
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Figure 7.4. Illustration of the application of ground-air-ground (GAG) cycles in 

the operation of the helicopter transmission during the crack progression 

experiment 

The experiment was run for more than 1000 GAG cycles, but we focus here only 

on a subset of these. GAG cycles were applied at a rate of about 25 cycles per hour, and 

most of them had similar patterns, except for a few initial GAG cycles that were used for 

calibration and baseline data retrieval. The first 320 GAG cycles varied the torque from 

about 20% of nominal engine torque to 120%. The next GAG cycles up to number 1000 

varied the torque from about 20% to 93%. In this work, we assume that GAG cycles have 

the patterns illustrated in Figure 7.5, and that nominal engine torque is 54,000 lb·ft. 
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Figure 7.5. Approximate pattern of individual GAG cycles used in the crack 

progression experiments. a) Pattern assumed used in GAG cycles 1 through 320. 

b) Pattern assumed used in GAG cycles beyond 320 

GAG cycles are comprised of a series of load sub-cycles corresponding to 

different operating mechanisms in the gearbox. Sahrmann (2004) characterized the three 

most significant series of sub-cycles as follows: 

1) a cyclic load with an amplitude of about A1 = 10% of nominal engine torque occurring 

at a rate of one cycle per revolution of the planetary carrier plate, i.e., with a 

frequency of about f1 = 4.3 Hz; 

2) a cyclic load with an amplitude of about A2 = 5% of nominal engine torque occurring 

at a rate of four cycles per revolution of the planetary carrier plate, i.e., with a 

frequency of about f2 = 17.2 Hz; and 

3) a cyclic load with an amplitude of about A3 = 2% of nominal engine torque occurring 

at the planetary gear tooth meshing frequency, i.e., with a frequency of about f3 = 

980.4 Hz. 
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The addition of these loads produces a more complex loading profile than is 

evidenced by the GAG cycle shapes discussed above. The effect of these sub-cycles is 

illustrated in Figure 7.6. 
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Figure 7.6. Assumed composite loading of the planetary gearbox; a) the engine 

torque load of a single GAG cycle; b) the effect of the cyclic loads present once 

and four times per revolution of the planetary carrier plate; c) the load effect of the 

gear meshing action 

7.2.3. The fault-insensitive parameters 

Some examples of the fault insensitive parameters of the damage progression 

model are basic geometrical dimensions of the planetary carrier plate, the forces acting on 

the plate and material properties. The major geometrical dimensions of the plate are an 

obvious set of fault-insensitive parameters. Conversely, dimensions of the crack are not. 

The forces acting on the planetary carrier plate resulting from the application of 

the loading profile are taken as fault-insensitive, i.e., we are assuming that the load will 
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not vary significantly with the crack growth. The load is applied as described in section 

5.4.1. The damage progression model uses some common material properties, such as the 

density, Poisson’s ratio, and the Young modulus of the plate alloy, and some not so 

common, such as certain fracture parameters. These latter will be discussed in subsequent 

sections. 

7.2.4. The fault-sensitive parameters 

There are two sets of fault-sensitive parameters in the damage progression model 

of the planetary carrier plate. The first set contains the geometric dimensions of the crack, 

i.e., the length of the crack and its inboard and outboard increments, and crack depth. The 

second set contains the geometric crack-tip stress intensity factors, which are parameters 

that characterize the physical mechanisms driving the crack growth. These are discussed 

in more detail in sections 7.3 and 7.4, further below. 

7.2.5. The crack growth model 

To simulate the growth of the crack, it is necessary to rely on a mathematical 

description of the crack growth (i.e., a crack growth equation) in conjunction with a 

means to consider the changes in the geometry of the plate caused by the growth of the 

crack. The crack growth equation used is a basic characterization. Although 

representations that are more accurate exist, we select this one for reasons of simplicity. 

Details on the crack growth equation are presented in section 7.3. 

206 



 

The effect of the crack geometry is determined using finite element analysis. 

ANSYS (see section 5.4) was again used, but in a different operating mode than in 

chapter 5. Instead of the deformation analysis carried out for diagnosing the crack, we 

execute a crack-tip stress analysis. As will be seen in section 7.3, the crack-tip stresses 

are critical parameters driving the crack growth. The use of ANSYS for this task is 

described in section 7.4. 

Results from the finite element analysis are input into the crack growth equation 

to determine the crack progression curve. This defines our crack growth model. The 

approach is illustrated in Figure 7.7. 
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Figure 7.7. Crack growth model used in the helicopter transmission problem 
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7.3. The crack growth equation used 

7.3.1. The perspective of linear elastic fracture mechanics 

One of the most important areas of research in the field of fracture mechanics is 

the area of fatigue crack growth. This discipline studies the propagation of cracks in 

materials resulting from the application of cyclic loads. For materials with linear 

behavior, and whose basic properties are constant in time, the field of linear elastic 

fracture mechanics (LEFM) provides adequate characterizations of the behaviors of 

fracture and crack growth. Of particular importance to this thesis is the ability of LEFM 

to characterize crack growth under fatiguing loads. 

There are two mainstream perspectives for studying fatigue crack growth 

phenomena. One considers the stress fields around cracks and its initial focus is on the 

crack tip regions, later to consider, indirectly, the geometric properties of the cracked 

bodies. See Figure 7.8. The other approach focuses on the body as a whole and uses 

energy considerations to arrive at a description of failure in the body. In this case, the 

stress fields near the crack tips are indirectly considered (see Sanford, 2003, chapter 7). 

Our focus here is on the first approach. 
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Figure 7.8. Basic geometric definitions in fracture studies. a) Illustration of a 

solid body with an edge crack; the crack length a is measured from the edge of the 

body to the crack tip. b) Illustration of the stress fields appearing when the crack 

opens in response to the application of forces. c) The three-dimensional 

consideration of a crack tip is referred to as the crack front 
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7.3.2. Geometric crack-tip stress intensity factors 

As described below, we consider fracture mechanisms involving the stress fields 

around crack tips or crack fronts. The description of stress fields involves the 

determination of the directional components of the stresses present in specific spatial 

locations of a body. The theory of LEFM suggests that, in general, the stresses near a 

crack tip behave linearly along specific directions, and can be represented by scaling 

some function of the spatial location considered, and of the configuration (or mode) of 

the load applied to the body, i.e., 

 )ionconfigurat load,,( θσ rfK ⋅= , (7.1) 

where σ is a directional component of the stress at the location described by the polar 

coordinates (r,θ), and K is a constant scale factor providing linearity. 

The scale factor K in Equation 7.1 is an important parameter characterizing the 

stress fields near a crack tip, and is known as the geometric stress intensity factor. An 

important property of K is that it is also able to relate the geometric properties of the 

cracked body and the geometry of the crack to the load applied to the body. LEFM 

generally characterizes this relationship in the form 

 )shapecrack geometry,body (S faK ⋅⋅= π , (7.2) 

where S is a remote load applied to the body and a is the crack length. Equations 7.1 and 

7.2 show that the geometric stress intensity factor K offers a means to relate the stresses 

near the crack tip, which ultimately drive crack growth, with the geometric parameters 
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describing the cracked body, including the shape and length of the crack. For this reason, 

its significance in the study of fractures is enormous. 

7.3.3. The limiting cases of plane stress and plane strain 

To simplify the analysis, many problems in fracture mechanics, although spatial, 

are reduced to a two-dimensional state of stress. This assumption is sometimes valid and 

provides a good approximation to the actual three-dimensional stresses occurring in solid 

bodies. The problem reduction assumes that either plane strain conditions or plane stress 

conditions govern near the crack tip (see Anderson, 1995, p. 82). Neither of the two cases 

occurs in general, but the conditions are limiting cases and can provide information of 

extreme values. The actual conditions of the material near a crack tip is thus somewhere 

in between the two cases, although it is generally acknowledged that plane strain 

conditions are a closer approximation, except for thin plates with cracks spanning the 

entire width. 

Therefore, as we model the crack, we can use these limiting cases to determine 

bounds for our model estimates of the crack-tip stress intensity factors. We thus know 

that the actual conditions occurring in the plate can be described with a value of stress 

intensity K that is between the values of Kpε at plane strain conditions and Kpσ at plane 

stress conditions, i.e., 

 . (7.3) σε pp KKK >>
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7.3.4. Paris Law and Elber’s crack closure model 

In the early 1960s, Paris and Erdogan (1963) proposed that fatigue crack growth 

could be generally characterized with an equation of the form 

 mKC
dN

da
)(Δ= , (7.4) 

where da/dN is the increase in the crack length a per each cycle number N of applied 

load; C and m are material constants determined empirically; and the term ΔK, referred to 

as the stress intensity range describes the change in applied stresses at the crack tip. 

Equation 7.4 has become widely known as the Paris Law of crack growth. The 

values of the constants C and m can be related to the crack growth-rate curve of a given 

material. The crack growth rate is generally an exponential function that, in a log-log plot 

is approximately linear in certain regions for most metallic materials. The constants 

describe the geometry of such a linear relation, as illustrated in Figure 7.9. The models in 

this thesis used 1/2in

ksi10 107331.7 −×=C  and m = 3.5074. 

Although Paris’ relation holds approximately true for most metallic materials 

under specific cyclic loading conditions, it typically needs adaptations to reproduce a 

variety of effects and growth mechanisms. For example, the relation focuses on the stress 

intensity range 

  (7.5) minmax KKK −=Δ

while discarding the possible effects of the mean level of the stress intensity, illustrated in 

Figure 7.10, which has been widely accepted to be an important parameter affecting the 
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crack growth rate. Kmax and Kmin are the maximum and minimum values of the cyclic 

geometric crack-tip stress intensity factors. The basic properties of stress intensity factors 

were described in section 7.3.2. 
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Figure 7.9. Fatigue-crack-propagation data for Ti-6Al-4V titanium alloy. 

Relationship to the values of the constants C and m of Paris Law is illustrated. 

Adapted from Rice et al. (2003) 
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Figure 7.10. Illustration of constant-amplitude load cycles at different mean levels 

of the stress intensity. Reproduced from Sanford (2003), p. 292 

Another shortcoming of Equation 7.4 is that it does not take into account the 

important effect of plasticity-induced crack closure. This mechanism, which in general 

causes retardation of the crack growth, will be explained in section 7.5. 

Thus, in order to approximate better the growth pattern of the crack in the 

planetary carrier plate of the helicopter transmission, an adaptation of Paris Law 

proposed by Elber (1971) is used. Elber suggested an empirical correction for Paris’s 

crack growth model that takes into account both of the effects mentioned before. His 

model characterizes the crack growth rate as 

 mKC
da

)(Δ=

KUKeff Δ⋅=Δ

, (7.6) eff
dN

where 

  (7.7) 
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is known as the effective stress intensity range. U is a correction factor that allows for the 

consideration of both the mean level of the stress intensity and the retardation effects of 

crack closure. 

Katcher and Kaplan (1974) determined that the value of U for Ti-6Al-4V, the 

material of the carrier plate (see Sahrmann, 2004), is approximated by the relation 

 , (7.8) RU 82.073.0 +=

where R is the ratio of Kmin to Kmax for an individual cycle of load, i.e., 

 
max

min

K

K
R = . (7.9) 

Kmin and Kmax are as defined by Figure 7.10. However, Equation 7.8 is valid for 

cycles exhibiting constant amplitude. If variable-amplitude loading is to be applied, the 

equation must be appropriately interpreted on a cycle-by-cycle basis. This subject will be 

considered in more detail in section 7.5. 

Knowing the values of Kmin and Kmax for each load cycle and the loading profile 

makes it possible to integrate (numerically) the crack growth relation prescribed by 

Equation 7.6 and estimate the crack growth pattern. We will approximate the values of 

Kmin and Kmax from finite element analysis as discussed in section 7.4. 

It is worthwhile to note that the crack growth description suggested here is used 

with the intention to approximate roughly the progression of the crack length. The 

purpose here is only to illustrate the model-based prognostic architecture proposed in 
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chapter 6. More information on the principles of crack growth modeling can be found in 

Sanford (2003), Anderson (1995) and Dowling (1999). 

7.4. Determination of the static crack-tip stress intensity factors 

through FEA 

7.4.1. Preliminary considerations 

A commercial software package for Finite Element Analysis, or FEA, known as 

ANSYS (see section 5.4), was used to determine the crack-tip stress intensity factors K of 

different crack sizes. It is necessary to determine the stress intensity factors at different 

crack lengths because, as shown in Equation 7.3, they are dependent on the crack length 

and shape. Nevertheless, it is not necessary to determine the stress intensity factors for 

different values of the load applied, and a static-load realization can suffice, because, as 

Equation 7.3 once again shows, the intensity factors for linear materials such as the one 

under consideration typically vary linearly with the value of the load S applied. To 

determine the values of K for different loads can be done by scaling the value of K for a 

particular instance of static load.  

7.4.2. Determination of the static crack-tip stress intensity factors as a function of 

crack length and shape 

Finite element modeling of cracks requires special modeling considerations, 

including node duplication inside the crack faces (explained earlier in section 5.4.2), and 

the use of collapsed elements (also called singular, or degenerate elements) around the 

crack tip. Collapsed elements provide a good approximation of the stress field gradients 
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on the crack tip neighborhood using few finite elements. Furthermore, there are 

mathematical relations tying node displacements to the value of the corresponding stress 

intensity factor K at the crack tip (see Sanford, 2003, chapter 4). Element collapsing is 

illustrated in Figure 7.11. 
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Figure 7.11. Collapsing of the side of a finite element to be used for modeling and 

simulating crack tip stresses and displacements 

Using these considerations, it is possible to approximate the values of the stress 

intensity factor K for different crack lengths and at different locations along the crack 

front. See, for example, Figure 7.12. 
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Figure 7.12. Illustration of how crack-tip stress intensity factors can be 

determined for different lengths and at different locations along the crack front. 

Different locations are here identified with a “ratio” dimension particular to 

different crack lengths and shapes 
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Figure 7.13 illustrates the planetary carrier plate model used for analyzing crack-

tip stresses. It is worthwhile to note that the plate design is simpler than that used in 

chapter 5. More emphasis was placed on the design of the crack shape in this model than 

in geometric details of the plate. 

 
Meshing

and 
simulation 

of static 
loading 

Crack 
plane

Crack 
plane Open

2-inch 
crack

 

Figure 7.13. Three-dimensional computer model of the planetary carrier plate as 

used for crack-tip stress studies. Plate deformation shown is exaggerated for 

illustrative purposes 

Figure 7.14 illustrates how some of the concepts discussed above were applied to 

the finite element model. 
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Figure 7.14. Details on the finite element modeling of crack tips. a) 1.5-inch-long 

crack. b) 3-inch-long crack. c) View of the design of collapsed elements located 

on a region of the crack front. d) Deformation of collapsed elements and 

corresponding opening of the crack caused by the application of load; ranges of 

stress intensity are also shown, in Pa. Amount of deformation shown is 

exaggerated for illustrative purposes 
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Using this modeling technique, crack lengths ranging from 1.5 to 4.5 inches were 

simulated for locations near the top of the plate on both the inboard and outboard sides of 

the crack tips, i.e., at location ratios corresponding to about 0.05 and 0.95 of those 

illustrated in Figure 7.12. ANSYS provided the crack-tip stress intensity factors shown in 

Table 7.1 at 100% (i.e., 54,000 lb·ft) of nominal engine torque. 

Table 7.1. Crack-tip stress intensity factors obtained from ANSYS. The simulations were 

run using the same half-lengths in the inboard and outboard sides of the crack, i.e., 

inboard length = outboard length = (total length / 2) 

Inboard* Outboard* Total 
Crack 
Length 
(inches) 

K 
plane strain 

K 
plane stress 

K 
plane strain 

K 
plane stress 

1.5 57.39 51.13 73.58 65.56 

2 58.03 51.71 67.97 60.56 

2.5 52.67 46.94 56.42 50.28 

3 51.03 45.48 54.12 48.24 

3.5 56.27 50.13 70.56 62.88 

4 69.90 62.30 64.60 57.57 

4.5 71.32 63.55 72.25 64.38 

*K units are ksi / in
½

   

7.4.3. Determination of crack-tip stress intensity factors as a function of applied 

load (torque) 

All the values of K presented in section 7.4.2, above, were obtained from 

simulations with a static torque corresponding to 100% of nominal engine torque (54,000 

lb⋅ft). However, the value of K is expected to vary linearly with the load application. 

Hence, for the variations in the load prescribed by the loading profile discussed in section 

7.2.2, instantaneous values of K corresponding to instantaneous values of load can be 
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estimated proportionally from the static values provided by Table 7.1. The operation is 

performed as 

 100

%

100Load S
100

Load %
KKK ⋅=⋅= , (7.10) 

where KLoad is the expected value of K at some specific “% Load” and K100 corresponds 

to the values shown in the table;  represents the proportion of the load applied to the 

plate with respect to the application of 100% of nominal engine torque. For example, the 

instantaneous value of the crack tip stress intensity factor of a 2-inch crack near the 

inboard-side crack tip (location ratio = 0.05) at 80% of nominal engine torque, assuming 

that plane stress conditions are present, is approximately equal to 

%S

 

 1/2in

ksi
80  37.41)71.51(

100

80
=⋅=K . (7.11) 

7.5. Application of the loading profile in the crack growth model 

7.5.1. Preliminary considerations 

As expressed in section 7.3, progression of the crack length on the planetary 

carrier plate can be approximately described by numerical integration of Equation 7.6. 

However, to obtain a numerical description of the increase in crack length as a function 

of the load cycles applied, we must first determine the values of the effective crack-tip 

stress intensity range ΔKeff at each load cycle. 
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In section 7.4 we derived a way to approximate, through modeling, instantaneous 

values of K within the loading profile. However, according to Equation 7.6, to 

characterize crack growth, we must approximate the values of ΔKeff corresponding to 

individual cycles with particular values of Kmax and Kmin. Furthermore, the values of ΔKeff 

must be determined considering the cycle shapes prescribed by the loading profile and 

the effect of crack closure. The following sections illustrate how this can be done. 

7.5.2. Plasticity-induced crack closure 

Let us describe the maximum and minimum values of the cyclic load applied to a 

material by Smax and Smin respectively. The load is assumed applied far from the crack 

region, i.e., it is a remote load. When Smax is applied, the corresponding large values of 

stress σ near the crack tip cause plastic deformation
17

 of the material around the crack 

tip. The value of the stress determines the amount of deformation. After the maximum 

load Smax is reached, load diminishes in the cycle until it reaches the minimum load value 

Smin. Although stresses near the crack tip also diminish, the plastic deformation causes 

the appearance of residual compressive stresses behind the crack tip (i.e., in the region 

where material has just separated). These compressive stresses are illustrated by negative 

values of the vertical stress σ in Figure 7.15. The compressive stresses have a tendency to 

close the crack opening behind the crack tip, so that, when the stress is diminishing in the 

cycle, once the crack closes, further reductions in the stress do not influence the crack 

growth, as the crack tip has become “shut” inside the deformed material. 

                                                 
17 Plastic deformation is irreversible deformation experienced by the material, and is as opposed to elastic 

deformation, which is temporary and recovered by the material when the stresses are removed. 
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Figure 7.15. Illustration of the stresses appearing in the material around the crack 

tip in the wake of plasticity-induced crack closure. The illustration represents a 

discretized description, along the direction of crack growth (x), of the local 

vertical stresses σ resulting from the application of a remote cyclic load with 

maximum and minimum values of Smax and Smin, respectively. This description is 

used by Newman (1995) to model fatigue crack-growth under the presence of 

crack closure. Parameters α and σy are known as the constraint factor and the flow 

stress, respectively, and are used to characterize plasticity. Reproduced from 

Anderson (1995), p. 540 
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Similarly, when the applied load starts to increase following the reaching of Smin, 

the load will not effect crack growth until the compressive stresses are overcome and the 

crack re-opens. The value of local stress needed to re-open the crack is known as the 

crack-opening stress, and is denoted by σop. 

 

7.5.3. Effective crack-tip stress intensity range 

Let us denote by Kop the crack-tip stress intensity factor corresponding to the 

presence of local stresses given by σop, i.e., Kop is the instantaneous value of K when σ = 

σop. 

Elber (1971) suggested that once crack closure appears, all the cycles reaching 

values of Kmin below that of Kop should be regarded as cycles with Kmin=Kop. The reason 

for this is that, once the crack closes, the remaining part of the load cycle below Kop does 

not effect crack growth. See Figure 7.16. Thus, ΔKeff is calculated from all the cycles 

having Kmax above Kop as 

 . (7.12) opmax KKKeff −=Δ
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Figure 7.16. Definition of the effective crack-tip stress intensity range. 

Reproduced from Anderson (1995), p. 521 

Although the validity of Elber’s results and characterizations has been sometimes 

questioned (see, for example Shih and Wei, 1974), it is generally acknowledged that 

Elber’s relation has considerable merit, and has thus been used and referenced widely by 

the literature. Here, we regard Elber’s characterization as a good approximation for our 

modeling purposes. 

By considering individual load cycles, each with a local maximum and local 

minimum of load S, we can estimate the values of Kmax and Kmin for each cycle. The 

cycles are determined from the patterns described in section 7.2.2. The corresponding 

values of ΔK at each load cycle can be determined from Equation 7.5. The value of ΔKeff 

can be determined by considering the loading profile cycle patterns and applying the 

relations provided by Equations 7.7, 7.8 and 7.9 to find Kop and thus characterize crack 

closure. The application of the loading cycle patterns is done under the consideration of 

variable-amplitude loading, i.e., where the cycles are considered individually because the 

loads change from one cycle to the next. This procedure is described in the section 

following. 
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It should be noted that there are multiple techniques available to model the growth 

of cracks under variable-amplitude loading, and there can be effects beyond plasticity-

induced crack closure influencing the crack growth rate. For example, a variety of load 

interaction effects can be considered, for which strip-yield models or yield-zone models, 

such as that of Willenborg, can be useful (see Sander, 2004). This thesis uses a crack 

closure model with an analysis that approximates a cycle-by-cycle consideration because 

of its simplicity, the ties of the present work to that of other researchers involved with the 

helicopter problem under consideration, and the availability of empirical data for the 

material under consideration. 

More details on the mechanism of plasticity-induced crack closure can be found 

in Sanford (2003). Summaries on techniques for modeling crack growth with variable-

amplitude loading are offered by Dowling (1999) and Murthy et al. (2004). Important 

advances in applied modeling of fatigue crack growth with the consideration of crack 

closure are attributable to Newman (1995, 1984), who also developed a computer 

program to simulate and analyze fatigue crack growth (see Newman, 1992). 

7.5.4. Application of variable-amplitude loading 

We now proceed to the determination of the values of ΔKeff for individual load 

cycles in the loading profile of the planetary carrier plate. To this effect, we must 

characterize the value of Kop at which crack closure occurs. 
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First, observing the form of Equation 7.7 we note that U must be restricted to lie 

in the range 0 < U ≤ 1 because the crack growth rate is only slowed by the effect of crack 

closure, and not sped up. From Equation 7.8, this means that, for Ti-6Al-4V, the value of 

R must be smaller than 0.33 if crack closure is to affect the crack growth behavior. 

From the consideration of the cycle patterns of the loading profile (see section 

7.2.2), we observe that only the engine torque cycling of each GAG cycle is capable of 

reaching the ratio of R<0.33. None of the sub-cycles of load is capable of causing crack 

closure on their own, since their R ratio is too large. 

We have two different patterns for the GAG cycles, so their patterns of crack 

closure are different. Let us consider them separately. 

7.5.4.1. GAG cycles varying the load from 20% to 120% of nominal engine torque 

Since we have assumed that the values of K vary linearly with load applied (see 

section 7.4.3), we can use Equation 7.8 to estimate R from 

 
%

max

%

min

max

min

max

min

S

S

S

S
===

K

K
R , (7.13) 

where 

 
 torqueengine nominal of 100%at  S

S
S min%

min = , (7.14) 

 
 torqueengine nominal of 100%at  S

S
S max%

max = . (7.15) 
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Using  = 20% and  = 120% we have that R=16.7%. In this way, from 

Equation 7.7, we obtain U=0.867. 

%

minS %

maxS

Using the relations provided by Equations 7.5, 7.7 and 7.12 we arrive at 

 . (7.16) )( minmaxmaxop KKUKK −−=

Once again, using the linear relationship that exists between the applied load and 

K, it can be shown that  

 ,  (7.17) )SS(SS minmaxmaxop −−= U

from which it follows that 

 ,  (7.18) )SS(SS %

min

%

max

%

max

%

op −−= U

where 

 
 torqueengine nominal of 100%at  S

S
S

op%

op = . (7.19) 

With this relation, we proceed to estimate the value of engine torque at which Kop 

must occur. Substituting values for   and U in Equation 7.18 we find that  = 

33.3%. See 

%

minS , %

maxS %

opS

Figure 7.17. 
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Figure 7.17. Illustration of the crack closure threshold for GAG cycles 1 through 

320. a) The crack closure threshold location is illustrated over the pattern of a 

GAG cycle; compare to Figure 7.5a. b) The “effective” portion of a GAG cycle 

causing crack growth 

Thus, ΔKeff occurs only within the range of applied engine torque going from 

33.3% to 120%. Furthermore, following Elber’s criterion, none of the sub-cycles below 

33.3% of engine torque grow the crack, because both their Kmax and Kmin values are 

below Kop. 

We can use the time axis of Figure 7.17(b) to estimate how many of the sub-

cycles are effective at growing the crack. The amount of time during which the load in a 

GAG cycle is below the closure threshold is the time interval between t1 and t2. Only the 

sub-cycles outside this interval are effective at growing the crack. Such effective sub-

cycles occur in (134 s × 0.867 + 10 s) = 126.18 s, corresponding to about 87.6% of the 

total number of sub-cycles. This result characterizes ΔKeff, and allows the use of Equation 

7.6 to determine the growth pattern of the crack in GAG cycles 1 through 320. 
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7.5.4.2. GAG cycles varying the load from 20% to 93% of nominal engine torque 

The procedure followed in this section is virtually identical to that of section 

7.5.4.1. Only the numerical values change. Thus, we only present the results and not the 

entire process. 

Since  is now 93%, Equations 7.13 and 7.7 yield, respectively, R = 21.5% 

and U = 0.9

%

maxS

06. 

From Equation 7.18, we find  = 26.86%, and thus only about 91.25% of the 

sub-cycles are effective at growing the crack. This result characterizes ΔKeff for GAG 

cycles 321 and beyond. 

%

opS

7.5.4.3. Application of load cycles 

We would now like to apply Equation 7.6 to determine the effect of the individual 

load cycles within the loading profile on the crack growth pattern. In the ideal case, we 

would want to consider the cycle shapes in the loading profile and apply these to the 

crack growth equation to determine the individual crack progression increments da/dN. 

Such procedure, known as cycle counting, is a standard procedure followed in studies and 

modeling of crack propagation. The cycle shapes must be considered individually to 

determine when a specific load cycles is complete and what its amplitude is, as illustrated 

in Figure 7.18. 
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Figure 7.18. Example of simplified rainflow cycle counting. Reproduced from 

ASTM (2005) 
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There exist a variety cycle counting techniques, including level-crossing counting, 

peak counting, “rainflow” counting, etc. See, for example, ASTM (2005). Here, however, 

we exploit the regular pattern of our loading profile to simplify the analysis and 

approximate a solution to cycle counting. 

We can calculate the values of ΔKeff for each particular load cycle of the loading 

profile. We determine individual load cycles considering the torque cycle and all the sub-

cycle series described in section 7.2.2. The torque cycle is fully characterized by the 

variation of load between Sop and Smax, so that, substituting Equation 7.10 for each of 

these two parameters in 7.12, we have 

 . (7.20) %

op100

%

max100cycle torque, SS ⋅−⋅=Δ KKKeff

 

 The sub-cycles are characterized by loads with varying amplitudes as prescribed 

by the loading profile. We can represent the load variation of sub-cycles with values of 

 and n  that are particular to each individual sub-cycle within each sub-cycle 

series. These values are calculated considering the load effect of the torque cycle and the 

additional load contributed by a sub-cycle series. For the case we have 

%

maxS %

miS

%

maxS

 . (7.21) 
{ 32143421

series cycle-sub the
fromon Contirbuti

%

cycle  torquethe
fromon Contributi

%

cycle-sub load
particular aFor 

%

cycle-sub max, SSS nA+=

Similarly, for  we have %

minS

 . (7.22) nA%%%

cycle-sub min, SSS −=
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The values of  used in Equations 7.21 and 7.22 correspond to instantaneous 

values of the load caused by the torque cycle, so that  can take on any value 

corresponding to engine torques between 20% and 120% of the nominal. It is clear that 

all of the individual sub-cycles, which are more than a hundred thousand within each 

GAG cycle, have unique values of  and . Therefore, to simplify the 

calculation of the effect of individual sub-cycles, we will now assume that the effect of 

all of the sub-cycles within a sub-cycle series can be approximated by the effect of one 

“average” sub-cycle. Thus, instead of considering the variation range of , we focus on 

the mean value of the effective load within the torque cycle, i.e., 

%S

%S

cycle

%

cycle-sub max,S %

-sub min,S

%S

 , (7.23) neffeffn A%

 mean,

%

 mean,

%

 max, SSS +=

and 

 , (7.24) neffeffn A%

 mean,

%

 mean,

%

 min, SSS −=

where  and  characterize the effective load of all the sub-cycles within each 

sub-cycle series n, for n = 1 to 3, and characterizes the mean effective load 

applied to the average sub-cycle. 

%

 max,S n

%

 min,S n

%

 mean,S eff

The value of ΔKeff driving crack growth from particular series of sub-cycles can 

now be approximated substituting the values of  and  in Equation 7.10 and 

then again in Equation 7.5 to obtain 

%

 max,S n

%

 min,S n

 . (7.25) %

,min100

%

,max100, SS nnneff KKK ⋅−⋅=Δ
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Substituting Equations 7.23 and 7.24 in Equation 7.25, we find that we can 

approximate the value of ΔKeff for the sub-cycle series as 

 

 . (7.26) %

 mean,100, S2 effnneff KAK ⋅⋅=Δ

Equations 7.20 and 7.26 characterize the values of ΔKeff for the four different 

cycle patterns involved in a GAG cycle, which ultimately drive crack growth. To 

approximate the crack growth progression pattern we can substitute these values in 

Equation 7.6 to determine the contributions of each of the four cycle series to the crack 

development. Thus, we write 

 

44 344 21
444 3444 2143421

series cycle-sub     
each ofon Contributi

3

1

,

cycle (GAG) torque
ofon Contributi   

cycle torque,

cycleGAG per        
incrementgrowth Crack 

)()( ∑
=

Δ+Δ=
n

m

neff

m

eff KCKC
dN

da
. (7.27) 

Equation 2.27 approximately models the crack growth progression in the 

planetary carrier plate providing crack length increments for each complete GAG cycle. 

To approximate better the crack progression, Equation 2.27 should be applied separately 

for the inboard and outboard directions of crack growth. The application of the equation 

should also be done using the stress intensity factors obtained in section 7.4.2 and 

summarized earlier in Table 7.1, and with the loading profile parameters obtained in 

sections 7.5.4.1 and 7.5.4.2, which are summarized in Table 7.2, below. 
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Table 7.2. Summary of assumed loading profile parameters for the crack growth 

experiment with the helicopter transmission planetary carrier plate 

 
Parameter 

GAG cycles 
1 to 320 

GAG cycles 
beyond 320 

%

minS 20% 20% 

%

maxS 120% 93% 

Effective time fraction 87.6% 91.25% 

%

opS 33.3% 26.86% 

T
o

rq
u

e
 (

G
A

G
) 

c
y
c

le
 

%

mean,S eff

(*)
74.30% 59.33% 

Amplitude, A1 10% 

Frequency, f1 4.3Hz 

Cycles per GAG cycle 619.2 

S
u

b
-c

y
c
le

 s
e

ri
e

s
 

1
 

Effective cycles per GAG cycle,

effN ,1
524.4 565.0 

Amplitude, A2 5.22% 

Frequency, f2 17.2 Hz 

Total cycles per GAG cycle 2,477 

S
u

b
-c

y
c
le

 s
e
ri

e
s
 

2
 

Effective cycles per GAG cycle,

effN ,2
2,169.9 2260.3 

Amplitude, A3 2% 

Frequency, f3 980.4 Hz 

Total cycles per GAG cycle 141,178 

S
u

b
-c

y
c
le

 s
e
ri

e
s
 

3
 

Effe G cycle,

effN ,3
123,671.9 128,824.9 

ctive cycles per GA

 

(*) Note that 
2

SS %

op

%

max%

mean,

+
≠effS  because the torque cycle remains at Smax and 

Sop for different amounts of time (see Figure 7.17) 
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7.6. Simulation of damage progression and model validation 

The crack growth model described in this chapter has been implemented with the 

approach to model-based prognosis proposed in section 6.2, and the model-based 

damage-progression simulation architecture of section 6.3. The result of this effort has 

been an adequate characterization of the growth of the crack in the planetary carrier plate. 

To verify the effectiveness of the model, we use experimental data from the 

damage-progression tests (experiments with a growing crack) carried out with a planetary 

carrier plate (see section 3.2). 

Crack length measurements were obtained throughout the experiment using crack 

length gages. Crack length gages are standard instrumentation devices that detect discrete 

increments in the length of fractures. Crack gages are adhered to the surface that the 

crack is expected to cross when growing. Each gage is installed making sure that a series 

of parallel delicate electrical connection lines inside the gage are perpendicular to the 

direction of crack growth. As the crack progresses, the connection lines are broken, thus 

providing information of the crack reach. Crack gages are shown in Figure 7.19. Each 

discrete crack length measurement obtained is referred to as a “ground truth” point. By 

interpolating the ground truth crack lengths with respect to the GAG cycle numbers, it is 

possible to characterize the progression of the crack length. 
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Figure 7.19. Instrumentation for measuring the progression in length of a crack 

and certain localized strains on the root of a planet gear mounting post of a 

planetary carrier plate with a seeded fracture. The fracture “seed” is a small notch 

generated through electrical discharge machining (EDM). Reproduced from 

Vachtsevanos et al. (2006) 

The experiment was run with a slight modification to the mechanical 

configuration of the gearbox. The intention of this modification was to increase the 

stresses in the carrier plate and increase the crack growth rate. The modification was 

deemed to increase the stresses of the plate by about 5%. Thus, the model presented in 

section 7.5 and characterized by Equations 7.27, 7.26 and 7.20 was modified to run 

simulations using a similar increase in the values of Smax and all S , i.e., they were 

scaled with a factor of 1.05. 

%

 max, n

Figure 7.20 shows a comparison between the results of the 

crack-growth model simulations and the ground truth points. 
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Figure 7.20. Comparison of crack growth model of the planetary carrier plate and 

experimental crack growth data 

The results presented in Figure 7.20 demonstrate that it is possible to implement a 

damage progression model using the architecture proposed in section 6.3. With the 

availability of such a damage progression model, it is possible to implement a model-

based prognostic architecture for the planetary carrier plate that utilizes model adaptation 

algorithms and uncertainty management techniques in the spirit of the methodology 

proposed in section 6.2. Such an effort is beyond the scope of this thesis, but has actually 

been carried out in a team effort. The description of such work is presented in Patrick et 

al. (submitted for review) and Orchard (to be published). 
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8. CONCLUSIONS AND FUTURE WORK 

A generic approach to designing model-based engineering diagnostic and 

prognostic systems has been presented in this thesis. The methodology has been 

successfully tested and partially validated by applying it to the case of diagnosing a 

fracture fault in a helicopter transmission gearbox and characterizing its progression. 

Further validation is, nevertheless, possible, and this remains as an area of future work. 

Such additional validation can be provided by more experimentation with the helicopter 

transmission of consideration, as discussed below, and by the employing of the modular 

methodologies proposed in this thesis with other engineering applications and systems. 

The modeling approaches for both diagnosis and prognosis presented in this thesis 

were set up in analogous ways. Both modeling techniques consider how to adapt and 

implement a model to achieve their respective objectives. For the case of diagnostics, 

such consideration is the use of what has been designated a “reverse engineering 

approach”. This approach allows for the use of a model in the problems of fault detection 

and identification. For the case of prognostics, the model is used as part of a “generic” 

approach to model-based prognostics. This generic approach enables the use of 

information from a variety of sources to arrive at reliable prognoses of the remaining life 

of engineering system components, including diagnosis, usage patterns, uncertainty 

management techniques, model adaptation algorithms, and the aforementioned damage 

progression model. 
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Another, more important, analogy between the model-based approaches to 

diagnosis and prognosis is the procedure presented to adapt and implement models for 

their respective uses. Although in general a model used in the task of diagnosing a system 

is not likely to be the same as that of prognosis, the two approaches follow a comparable 

treatment of the model parameters, starting by classifying them as either fault-sensitive or 

fault-insensitive. Both approaches also provide an opportunity to use experimental data to 

calibrate the model and consider different operating conditions to enhance the replication 

of the behaviors observed in the modeled systems when a fault is present. 

Analogies cannot go very far here, however. There are important fundamental 

differences in the use that diagnostics and prognostics make of models, one of which 

being that, for diagnostics, it is possible to consider a fault as a static event, whereas for 

prognostics, the definition of the fault must be dynamic. The approach presented takes 

into consideration several aspects such as this. 

It was mentioned in the thesis that one of the most important disadvantages of the 

model-based approach to diagnostics and prognostics is that modeling can be a complex 

and involved task. Even for the illustrative purposes of the present work, such task was 

no exception. The models required for both diagnosis and prognosis required much 

consideration and careful adaptations to enable their practical implementation. It follows 

thus that an area of future work related to this thesis involves the development of 

techniques for simplifying modeling efforts. 
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This difficulty notwithstanding, the modular methodology for designing model-

based diagnostic and prognostic architectures presented in this thesis proved immensely 

helpful in addressing the multiple modeling aspects that required consideration, and was 

verified to be a valuable guide for directing and focusing invested efforts. 

Similarly, the approach to combine the use of parameters that are determined on-

line with parameters that are determined off-line, suggested by this thesis, proved 

advantageous as well. The utility of such technique was not only in assisting analysis, but 

also in facilitating the running of simulations of damage progression in the helicopter 

transmission. This was important because some of the models required considerable 

amounts of computing resources to derive useful results, more than what could be 

considered “practical” for a working implementation of a diagnosis or prognosis system 

of an engineering system in operation. This tool has almost certainly brought the applied 

architecture a step closer to becoming a suitable candidate for a working implementation 

of a health management system for the helicopter transmission. 

Related to this is the fact that team members of the structural integrity prognosis 

system (SIPS) program sponsored by DARPA are expected to complete another round of 

testing of helicopter transmissions with damage progression tests. These tests will 

continue to offer a chance to validate diagnosis and prognosis techniques such as those 

presented in this thesis. The experiments also intend to offer an opportunity to develop an 

integrated health management system that will be able to detect a crack in the planetary 

carrier plate of the main transmission gearbox, assess its length and prognosticate its 

growth. This task shares a few common characteristics with this thesis. Both intend not 
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only to increase safety on the thousands of helicopters in operation with a potential to 

develop this kind of fault, but also to offer advances in the state-of-the-art in applied 

diagnosis and prognosis of engineering systems, and validation for the still-emergent 

discipline of engineering prognostics. 
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