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Abstract—Prognostics predictions estimate the remaining use-
ful life of assets. This information enables the implementation
of condition-based maintenance strategies by scheduling inter-
vention when failure is imminent. Circuit breakers are key
assets for the correct operation of the power network, fulfilling
both a protection and a network reconfiguration role. Certain
breakers will perform switching on a deterministic schedule,
while operating stochastically in response to network faults.
Both types of operation increase wear on the main contact,
with high fault currents leading to more rapid ageing. This
paper presents a hybrid approach for prognostics of circuit
breakers, which integrates deterministic and stochastic operation
through Piecewise Deterministic Markov Processes. The main
contributions of this paper are (i) the integration of hybrid
prognostics models with dynamic reliability concepts for a more
accurate remaining useful life forecasting and (ii) the uncertain
failure threshold modelling to integrate and propagate uncertain
failure evaluation levels in the prognostics estimation process.
Results show the effect of dynamic operation conditions on
prognostics predictions and confirm the potential for its use
within a condition-based maintenance strategy.

Index Terms—Prognostics, dynamic reliability, circuit breaker,
uncertainty, hybrid model, physics of failure.

NOTATION

SF6 Sulphur hexafluoride

I2t Cumulative degradation

Z(t) Piecewise Deterministic Markov Process

Ψ(x, t) Deterministic motion at position x at time t
Xn State of the system after the jump n
Tn Time instant n
N(Xn, ·, ·) Renewal Markov kernel

s Time instant in the process state space

E Probability space

Q(z, ·) Probability of transition from z in E × E
tp Prognostics prediction time instant

RULtp Remaining useful life at tp
U Non-failed state of the system

U Failed state of the system

L(θ|x) Likelihood of a set of parameter values, θ,

given outcomes x
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µy1,...,yn
Conditional distribution of Z(t) given available

observations {y1, . . . , yn}
Rz(t) Reliability of the system at time t when the

initial state is z
f(t) Probability Density Function (PDF)

Ω(t) Stress signal

L(t) Ageing variable

β Shape parameter of the Weibull distribution

η Scale parameter of the Weibull distribution

fU PDF of the failure threshold

rU Randomly sampled failure threshold

tjump Jumping time or failure occurrence time

ttrip Instant in which the Circuit Breaker (CB)

receives open signal

topen Instant in which the CB reports being open

tswitch CB switching operation start time

tend switch CB switching operation finish time

tclear CB fault clearing operation open time

iRMS Current at the time of operation

ifault Fault current

µrep Constant repair rate

D Total number of network fault shocks

k1 Normalizing constant of the cumulative shocks

k2 Normalizing constant of the delay

sshock Shock occurrence indicator variable

I. INTRODUCTION

THE INCREASING complexity of power networks includ-

ing smart grid technologies requires efficient maintenance

solutions to ensure the safe and cost-effective operation of its

constituent assets [1]. Many of these assets are reaching the

end of their life and condition-monitoring and life extension

techniques are emerging as feasible technologies for enhanced

maintenance planning of these systems (e.g., [2], [3]). The

implementation of these approaches presents significant chal-

lenges for each specific asset.

Prognostics is the ability to acquire knowledge about events

before they actually occur [4]. In engineering, failure prog-

nostics aim to predict the Remaining Useful Life (RUL) of a

component after a fault is diagnosed, i.e., the fault-to-failure

progression of an asset (e.g., [2], [4], [5]).

Successful implementations of prognostic applications pro-

vide benefits for asset maintenance planning through the

extension of the useful life and reduction of maintenance
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actions. Consequently, condition-based asset maintenance poli-

cies which integrate prognostics predictions when planning a

maintenance schedule, can result in cost-effective operation of

assets (e.g., [6], [7], [8]).

However, some assets prove particularly challenging when

predicting failure, due to their operating regime incorporating

both deterministic and stochastic behavior. This paper intro-

duces a novel model-based hybrid approach to prognostics for

such assets, with a particular focus on power network circuit

breakers.

A. Circuit Breaker Operation

Circuit breakers are critical elements for the correct oper-

ation of the power network. Their objective is to interrupt

current flow, and they operate either:

1) in response to a network fault — fault operation;

2) or to reconfigure the network (e.g., for switching in

response to daily load changes) — switching operation.

Consider Fig. 1, where there are two paths for the generator

to supply the load (along line 1, and along lines 2 and 3). At

times of peak load, the current will flow along both paths. As

the loading drops to a level where a single path has sufficient

capacity for the current, circuit breakers A and B will operate

to switch out one path. Traditionally, there is one peak in the

load per day, so switching operations occur once per day.

However, if a fault occurs on line 1, circuit breakers A

and B should operate to clear the fault and protect the rest

of the network. A failure to operate will have significant

safety and financial consequences, since the network fault

will need to be cleared by a more distant circuit breaker,

which takes longer and removes more customers from service.

Accordingly, circuit breakers are required to have a very high

availability.

Line 1

Line 2
Line 3

G 

A B

G 

Circuit breaker

Generator

Load

Fig. 1. A network requiring the operation of circuit breakers

Fig. 2 shows the cross section of a sulphur hexafluoride

(SF6) circuit breaker comprised of main and parallel arcing

contact systems. The main contact conducts the current be-

tween the fixed and moving parts of the breaker and the arcing

contact takes care of the arcing during separation. The nozzle

guides SF6 gas to efficiently quench the arc.

The circuit breaker operates as follows [9], [10]:

• When the circuit breaker is in the closed position, the

current flows from the fixed main contact to the moving

main contact (Fig. 2, dashed-line empty arrowheads).

• When the circuit breaker begins to open as shown Fig.

2, there is no arc as the current keeps flowing from the

upper terminal to the moving parts through the fixed and

moving arcing contacts (see current in Fig. 2, dashed-line

filled arrowheads).

Cap with bursting valve

Terminal

Insulating

enclosure

Fixed main contactFixed arcing contact
Blasting nozzle

Moving main contact

Moving arcing contact

Insulating tie-rod

Terminal

Current

Fig. 2. Cross section of a circuit breaker derived from [9].

• During the opening of the moving arcing contacts (Fig.

2, solid-line empty arrowheads) the current keeps flowing

due to the arc generated between the fixed and moving

contacts.

• The arc is quenched when the circuit breaker is in the

fully open position. In a high current situation (e.g.,

network fault) the puff of SF6 may be needed to quench

the arc.

Each operation places wear on the main contact of the

circuit breaker, which is proportional to the heating in the

contact caused by the arc. This wear is referred to as I2t,
meaning the square of the current, I , multiplied by the time

the arc is present, t [11]. Every time the circuit breaker

operates, more wear accumulates on the main contact. The

total cumulative wear increases monotonically by the I2t of

each operation.

Switching operations will tend to occur every day when the

current is at the same relatively low level. Since a lower current

can be broken more easily, the arc on the main contact will

not exist for long, and I , t, and correspondingly I2t will be

relatively low. Switching behavior is relatively deterministic,

as it occurs under the same conditions each day.

However, whenever a network fault occurs, the current can

increase by one or two orders of magnitude, and it takes longer

to quench the subsequent arc. This situation places far higher

I2t wear on the breaker. Different types of network fault,

such as phase-to-phase faults, single phase-to-ground faults,

and three phase-to-ground faults, will cause different levels of

fault current to flow. Since the type and severity of a fault

is stochastic, the value of I2t is also stochastic under fault

conditions.
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B. Circuit Breaker Failure Modes and Maintenance

As described above, operation of a circuit breaker places

cumulative wear on the main contact due to the presence of

the arc. If not maintained, the circuit breaker would eventually

reach a point of failure. Fail-to-open and fail-to-close are the

main failure modes of circuit breakers and excessive contact

wear is a critical event that directly causes the occurrence

of these failure modes [12], [13]. For more detailed failure

models of circuit breakers refer to [13], [14], [15].

In order to ensure current can be broken in a timely

manner, breaker maintenance tends to be scheduled period-

ically based on the number of operations (see Subsection

II-A). However, this preventive strategy does not take into

account the dynamics of the system such as the different

ageing effects of fault clearing operations versus switching

operations. Therefore, it may result in a conservative (hence

expensive) maintenance strategy which replaces assets even

with a significant remaining useful life.

So as to implement intelligent maintenance policies, diag-

nostics and prediction steps are needed to reveal the actual

state of the circuit breaker and predict its RUL, respectively

[5]. Although the implementation of diagnostics techniques

has been well studied for circuit breakers (see Subsection II-A

for circuit breaker diagnostics examples), prognostics models

for circuit breakers are scarce. Accordingly, so as to advance

in the RUL prediction of circuit breakers, the main focus of

this paper is on the prediction step.

In order to make prognostic predictions, it is necessary

to create a model which replicates the future behavior of

the circuit breaker and estimates the RUL from a specific

time instant onwards. To this end, it is crucial to select a

problem-specific prognostic prediction model depending on

the system requirements, available engineering resources (run-

to-failure data or physics-of-failure engineering knowledge),

and analyzed failure mode. See [16] for a prognostics model-

selection process according to design requirements.

The main contact wear occurs due to both deterministic

switching operation and stochastic network faults. Traditional

mathematical processes such as Gamma or Wiener processes

are not well suited for this problem because they model non-

monotonic and continuous monotonic degradation patterns

respectively [16].

Model-based hybrid prognostic approaches have the capa-

bility to combine continuous and discrete time behavior of the

system. This combination is suited to applications which need

to consider a deterministic system behavior (e.g., switching-

related degradation) where the deterioration is increased at

discrete time instants (e.g., network faults).

C. Contributions

It is possible to modify existing hybrid prognostics predic-

tion approaches (see Subsection II-B) in order to improve the

remaining useful life prediction accuracy.

On the one hand, in order to model the future behavior of the

asset, the discrete behaviour has been traditionally specified

with an a priori determined stochastic model. It is possible to

update this static model with deterministic operational signals

(e.g., network loading) that modify the stochastic behavior

according to the usage conditions. Dynamic reliability tech-

niques are capable of handling component interactions and

they constitute a more realistic system modelling for reliability

analysis [17]. This way, it is possible to update the static

failure model according to changes in the system operation,

and accordingly replicate and predict the future behavior of

the asset more accurately.

On the other hand, predicting the point in time at which

the failure of an asset will occur requires the specification

of a specific failure threshold. However, the definition of a

deterministic failure threshold can be a difficult task for real

applications. For a population of identical assets exposed to the

same loading, some will fail sooner than others, and population

failure time can be expected to conform to some distribution.

In this paper, the specification of the failure threshold is

included in the prognostics model as a Probability Density

Function (PDF), and we propagate the effect of the uncertainty

level to the final prognostic estimation.

Accordingly, the main contribution of this paper is the

integration of a model-based hybrid prognostics model with

dynamic reliability concepts for more accurate prognostics

predictions of circuit breakers. The second contribution is

the integration of an uncertain failure threshold level in the

prognostics estimation.

D. Organization

Section II discusses this work in the context of other relevant

work. Section III presents the generic proposed approach,

while Section IV outlines its application to circuit breakers.

Section V applies the proposed approach to a case study circuit

breaker. Finally, Section VI draws conclusions and identifies

future research challenges.

II. RELEVANT WORK

A. Circuit Breaker Condition Monitoring

An average size utility can have thousands of circuit break-

ers complicating their inspection and maintenance. Accord-

ingly, electric utilities have traditionally performed preventive

time-periodic maintenance programs to assess the condition

of circuit breakers. The circuit breaker maintenance tends to

be scheduled periodically based on number of operations [9],

[10], [18]. Fig. 3 shows an example of operation-based mainte-

nance program, where the remaining number of operations can

be inferred from the current interrupted. For instance, if the

current interrupted remains lower than 2500 A the estimated

number of operations are 10000, however, it can decrease

down to 100 operations when the current interrupted is 25

kA.

The circuit breaker operation can be tracked through failure

precursor variables indicating degradation, such as SF6 density,

trip coil current profile or I2t cumulative degradation. These

variables have been used to propose a number of circuit

breaker data-mining and diagnostics approaches. The seminal

work in [19] presented an automated circuit breaker diag-

nostics system based on control signals implemented through

signal processing and expert system techniques. Similarly, a
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Fig. 3. Circuit breaker maintenance versus current interrupted [18].

data-mining process was proposed in [20] to derive data-driven

diagnostic indicators from features of the trip coil current

profile. This approach provides circuit breaker maintenance

decision support combining classification techniques and ex-

pert interpretation.

Data-mining techniques for circuit breaker’s condition anal-

ysis has also been applied more recently. Authors in [21]

applied fuzzy set theory to analyse and integrate different

circuit breaker operation and lifetime indices. Moreover ev-

idential reasoning generates the overall assessment of the

circuit breaker condition. A framework to assess the circuit

breaker condition using the control signal waveforms was

presented in [22]. The authors use classification techniques

to categorize the health of the circuit breakers with qualitative

(normal, alarm and emergency) and probabilistic quantitative

indices.

The implementation of prognostics models is not as well

studied as diagnostics techniques. As pointed out recently in

[23], the ability to predict the ageing of circuit breakers is not

fully developed, as they do not have a clearly defined physics-

of-failure equation model. To the best of authors’ knowledge,

only previous results in [24] indicate that it is possible to

establish a data-driven prognostics model to predict the RUL

from SF6 density data samples.

In this paper we focus on developing a model-based prog-

nostics approach to integrate engineering knowledge within

the prediction model as in [25], instead of using data-driven

prognostics prediction approaches (e.g., [6]). Accordingly, we

analyze the deterioration of circuit breakers based on I2t
cumulative degradation which requires considering simultane-

ously stochastic and deterministic operations.

B. Hybrid Prognostics Approaches

While a relatively new area, hybrid approaches have recently

gained interest in the engineering prognostics arena (e.g., [26],

[27]). Hybrid prognostics techniques integrate the continuous

and discrete behavior of systems, reflecting a more realistic

behavior of many industrial systems whose continuous-time

dynamics are affected by periodic discrete events.

Piecewise Deterministic Markov Processes (PDMPs) pro-

vide a generic mathematical framework to model hybrid

systems [28]. PDMPs represent deterministic trajectories inter-

spersed with random jumps. The deterministic motion models

the continuous phenomena (e.g., crack growth [26]) while

the stochastic motion models shocks which influence the

deterministic part of the system at random discrete times.

PDMPs have proven to be valid to create hybrid prognostics

applications [26], [29]. These approaches assume that the

system failure behavior is modelled with a shock model

which is designed a priori. The shock models determine the

future behavior of the system with discrete impacts on the

deterministic motion and it is expressed with homogeneous

Poisson processes with constant intensity. The approach in

[29] adds the random evolution of the system to the stochastic

shocks using continuous-time Markov chains.

PDMPs have also been used to solve dynamic reliability

problems (e.g., [30], [31]). Instead of considering a priori

established failure specifications of components, these ap-

proaches add the possibility to specify components with a

variable failure rate which depends on the operating conditions

of the system. This community has also started to create design

tools to create hybrid models from user-friendly specifications,

e.g., implementing PDMPs in Python [32] or linking reliability

analysis and multi-physics specification tools [33]. There are

other techniques which can also be used to solve dynamic

reliability problems such as Dynamic Bayesian Networks [34],

Stochastic Activity Networks [35], or Fluid Stochastic Petri

Nets [36].

Apart from PDMP models, there are other hybrid prog-

nostics approaches. A new formalism called Hybrid Particle

Petri Nets combines Petri nets with particle filtering for health

monitoring studies [37]. The model includes deterministic and

stochastic properties and it is mainly focused on diagnostics.

Recently Daigle et al. proposed a generic model-based

hybrid prognostics architecture inspired by hybrid bond graphs

[27]. The continuous dynamics are defined with a model

comprised of components, which in turn have variables with

constraints. The discrete dynamics are defined with finite

state machines that determine the switching behavior of each

component. The prediction task focuses on simulating the

model forward in time via Monte Carlo simulations until the

event under study occurs.

In short, existing PDMP approaches for prognostics ([26],

[29]) assume a static stochastic failure behavior and do not in-

tegrate the uncertainty that may surround the failure threshold

specification. On the other hand, the reliability community has

been using PDMPs to evaluate the system failure probability

by dynamically updating the stochastic failure probability of

systems with deterministic operational signals, but the system

failure probability has not then been used to make prognostic

predictions.

In this paper, we seek to improve prognostics predictions

by combining dynamic reliability and uncertainty approaches

with hybrid prognostics models. We focus on the use of

PDMPs for failure prognostics of hybrid systems because

it provides the flexibility to specify the ageing behavior of

systems with any PDF, and dynamic reliability approaches can

be integrated in a straightforward manner.
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III. INTRODUCING A NEW HYBRID PROGNOSTICS

APPROACH

This section introduces Piecewise Deterministic Markov

Processes (PDMP), and shows how to combine prognostics,

dynamic reliability techniques, and uncertainty in the failure

threshold within a PDMP framework. Sections III-A and III-B

review the existing literature on PDMPs and their use for prog-

nostics, respectively. Section III-C introduces the extensions

we propose for hybrid prognostics. After this, the following

section applies this framework specifically to prognostics of

circuit breaker ageing due to cumulative degradation.

A. Preliminaries on PDMP

A PDMP process Z(t) couples a deterministic motion

denoted with a function Ψ and a jump process (Xn, Tn)n≥0

where Xn represents the state of the system after the jump n
at time Tn [28].

As defined in [26], the jump process follows a Markov

renewal process, where the next jump (Xn+1, Tn+1 − Tn)

depends on the past only through the value of the last position

Xn and the process restarts at each renewal time Ti. This law

is given by N(Xn, ·, ·), where N = (N(x, dz, dt)) is called

the renewal Markov kernel of the process [38].

Let us consider a probability space (E, ε) which represents

the values of the possible states of the system. As defined in

[26], a process Z with values in E is a PDMP if it can be

written as follows:

Z(t) = Ψ(Xn, t− Tn), Tn ≤ t < Tn+1 (1)

with the following assumptions:

1) Ψ(x, t+s) = Ψ(Ψ(x, t), s), for all (s, t) and s → Ψ(x, s)
is right continuous with left hand limits ∀x;

2) (Xn, Tn)n≥0 is a Markov renewal process, with T0 =
0 by convention, and with kernel N(x, dz, dt) =
dFx(t)Q(Ψ(x, t), dz) such as:

• dFx is the probability function of min(Sx, α(x))
with

– Sx random variable with hazard rate b(Ψ(x, t)),
– α(x) ∈ R+ deterministic time such as

α(Ψ(x, u)) = α(x) − u

• Q is a probability of transition on E × E.

The function dFx denotes the law of time before the next

jump from position x, Q(z, ·) represents the law of the position

after a jump from position z, and s denotes a time increment

in the process state space. Full detail is given in [26].

B. PDMP-based Prognostics

Adhering to the formal notation in [26], the system degrada-

tion is modelled using a PDMP process denoted Z = (Zt)t∈R+

with values in (E, ε) where the random variable Zt represents

the state of the system at time t.
Prognostics involves the prediction of the Remaining Useful

Life (RUL). If U denotes the non-failed state of the system,

then RUL at the prediction instant (tp), RULtp , can be defined

as the minimum time that the PDMP process Z needs to reach

the failed state in the process state space [26]. Formally,

RULtp = inf{s ≥ tp, Zs /∈ U} − tp (2)

The renewal process models damage events that occur

repeatedly over time, and which further degrade the system

until it reaches the failure state U . Renewals take place each

time a damage event occurs and they accumulate damage on

the system [38]. However, note that there is no asset repair

until reaching the failure state U .

When using PDMP for prognostics, it is necessary to

calculate the likelihood of the RUL prediction in (2) accord-

ing to available observations. At discrete observation times

0<t1<. . .<tp partial information of the system state is con-

sidered modelled by random variables {Y1,. . .,Yn}. Assuming

that observations {y1,. . .,yn} are available, the likelihood of

the RUL prediction is defined as,

L(RULtp |Y1 = y1, . . . , Yn = yn) (3)

A possible solution of (3) involves a two-step methodology

[26]. Firstly it is necessary to compute the conditional dis-

tribution of Zt for t > tp considering available observations

{Y1=y1,. . .,Yn=yn} denoted as µy1,...,yn
(t) and defined as:

µy1,...,yn
(t) = L(Zt|Y1 = y1, . . . , Yn = yn) (4)

Secondly the reliability of the system is calculated when the

initial state of the system is z, denoted Rz(t), and defined as

the probability of the process Z being in a non-failed state:

Rz(t) = P(Z(s) ∈ U ∀s ≤ t) (5)

Finally, the RUL likelihood given observations up to the

prediction time instant tp can be defined as follows:

P(RULtp >s|Y1=y1,...,Yn=yn)=

∫

E

Rz(s)µy1,...,yn
(tp)dz

(6)

Therefore, the computation of the RUL distribution focuses

on calculating the conditional distribution in (4) and quantify-

ing the reliability in (5). When considering the different future

conditions, only the second step is needed to recompute the

RUL.

C. Proposed Approach

For PDMP-based hybrid prognostics models, the reliability

model in (5) has been traditionally defined using a-priori

defined shock model [26], [29]. Dynamic reliability techniques

account for dynamic operation conditions and improve the

accuracy of the reliability model (5) for time-varying oper-

ation conditions. Additionally, the specification of the failure

state U is surrounded by uncertainty criteria. This threshold

determines the final RUL value (see (2)), but to the best of

authors’ knowledge this uncertainty has not been captured for

hybrid prognostics modeling approaches.

Fig. 4 shows the proposed approach for the prognostics

of hybrid systems, integrating the dynamic reliability and

uncertainty criteria with the prognostics method from the

literature. Next subsections explain each module in detail.
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Fig. 4. Prognostics under uncertainty and dynamic reliability driven future evolution.

1) Prognostics: The prognostics module implements the

model in (6) taking as input the likelihood of the actual system

state (diagnosis), the uncertain failure threshold, and the future

system behavior determined by the dynamic reliability and

system model blocks.

The prognostics module not only predicts the distribution of

the RUL of the asset under study (cf. Fig. 4), but it can also

predict the evolution of a property of interest before reaching

the failure threshold, e.g., remaining number of operations of

a circuit breaker before reaching the failure threshold.

2) Diagnostics: As the system under study deteriorates it

will go through several health states. The diagnostics module

focuses on the current health state estimation given all the

evidence up to the estimation time instant tp.

For industrial systems, it is very difficult to physically assess

the state of the system. Normally, this is diagnosed through the

collected signals and knowledge of the system deterioration

process. This process is not deterministic because there are

noise terms involved in the data gathering process. Therefore

the health state is represented with a probability density func-

tion. As indicated in (4): the system health state µy1,...,yn
(t)

is estimated evaluating the likelihood of the collected signals

{y1, . . . , yn} with respect to the system state {Y1, . . . , Yn}
given the degradation process Zt.

This module is commonly implemented using filtering tech-

niques such as the Bayesian particle filter [2], [5], but it can

be also implemented using other probabilistic state-estimation

techniques such as Hidden Markov Models [39] or Dynamic

Bayesian Networks [40].

3) System Model and Dynamic Reliability: The system

model defines the degradation behaviour of the asset under

study. This model includes deterministic and stochastic equa-

tions to define the behavior of the asset and inter-relationships

between these equations, i.e., how shocks affect the determin-

istic motion and vice-versa (see Section IV for an example).

The dynamic reliability model predicts the random shock

instants which impact the system model of the asset under

study. Dynamic reliability approaches focus on updating dy-

namically the probability density function representing the

system failure state according to operational conditions (e.g.,

[30]-[33]). For instance, the Weibull distribution allows the

specification of a time-varying failure rate of the system (λ(t))
with the following density function:

f(t) = (
β

η
) · (

t

η
)β−1 · e(

−t
η

)β (7)

where β is the shape parameter and η is the scale parameter.

It is possible to generalize this relationship with an ageing

variable L(t) that accounts for the real utilization of the asset

under study [31]. In this paper, we extend this relationship for

a general stress signal Ω(t) (e.g., the current a circuit breaker

must interrupt) to be applied in prognostics studies (cf. (5)).

The ageing process is defined with the differential equation:

dL

dt
= Ω(t) (8)

Accordingly, we can redefine the variable failure rate and

the PDF of the Weibull distribution changing the calendar time

variable t in (7) with the ageing variable L(t) [31]:

f(L(t)) = (
β

η
) · (

L(t)

η
)β−1 · e(

−L(t)
η

)β (9)

where L(t) is determined by the solution of (8).

The analytic solution of these systems is not trivial due to

the non-linearities involved. A trade-off decision is needed

between the complexity of the analytic solution and com-

putational cost of simulations. In this paper we focus on

simulation techniques based on the following basic reliability

theory concepts [41].

The probability of a continuous random variable X to take

a value within [a, b] can be defined with the integration of the

Probability Density Function (PDF) fx(x),

P[a ≤ X ≤ b] =

∫ b

a

fx(x)dx (10)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 7

An alternative definition is the following:

P[t ≤ X ≤ t+∆t] =

∫ t+∆t

t

fx(x)dx = fx(t)∆t (11)

That is, if ∆t is an infinitely small period, the probability

that X is within [t, t+∆t] is fx(t)∆t.

In order to simulate the non-linear failure PDF which is

dependent on non-linear equations, the approximation fx(t)∆t
can be used to evaluate the failure probability and determine

the failure occurrence time. Implementing stochastic Monte

Carlo simulations, at each simulation step ∆t this condition is

evaluated as in the inverse transform sampling method [31]:

fx(t)∆t ≥ r (12)

where r is a random number drawn from the uniform distri-

bution r ∼ U([0, 1]).

The time instant at which the condition in (12) is satisfied

represents the time at which the stochastic jump process

occurs, and it is denoted tjump. By the law of large numbers

[42], tjump identifies PDF occurrence time and enables the

approximation of the non-linear failure PDF such as in (9).

4) Failure Threshold Uncertainty: Prognostics applications

are surrounded by uncertain information criteria that need to

be integrated and propagated in the prediction model [43]. One

specific example of interest is the definition of the failure zone.

The exact specification of this threshold value is a complex

task.

The PDF of the failure threshold (fU(t)) indicates the

uncertainty surrounding the failure threshold value. We have

extended the calculation of RUL in (6) to include uncertainty

criteria by adding a process to evaluate and classify predictions

with randomly sampled failure threshold values as follows:

1) Random sampling: sample a failure threshold rU ran-

domly from the failure threshold PDF fU(t).
2) RUL estimation: perform RUL computations with rU .

3) Classification: take the resultant PDF of the RUL esti-

mation and classify the frequency of occurrence of the

maximum RUL estimation.

The repeated execution of steps 1-3 generates a PDF

(histogram) with the maximum failure probability RUL es-

timations. The classification of the results in step 3 can

be done in different ways. For instance, it is possible to

create a 3-dimensional plot which shows the different RUL

PDF estimations for the different failure threshold values rU .

However, as a more informative (and intuitive) representation,

RUL prediction values with maximum probability have been

used to create another distribution function (see Section V).

5) Benefits of the approach: The proposed approach pro-

vides a more accurate estimate of the remaining useful life

of the asset under study (see next section for numerical

examples). Potentially this estimation may have benefits for

the maintenance of the asset under study through the imple-

mentation of fit-for-purpose maintenance planning strategies

which can reduce maintenance costs by operating assets for

longer with the assurance that it will not fail [44].

As shown in the next section with a circuit breaker case

study, traditional approaches with periodical operation-based

maintenance schedule [18] or approaches which use static

and deterministic operation logic [26] estimate a conservative

number of remaining number of operations. Interestingly,

the proposed approach updates this estimate with real usage

scenarios, and consequently it makes possible to adapt conser-

vative calculations with more realistic figures improving the

accuracy of the RUL estimation.

Depending on the real usage, the difference between dy-

namic reliability based prognostics predictions and traditional

or static approaches varies. In the analysed case study, it is

possible to run the asset under study longer with the assurance

that it will not fail, and undertake maintenance actions less

frequently. However, it may also be the case that the real usage

is more stressed than traditional or static approaches, and this

would lead to an earlier maintenance action.

In order to quantify the maintenance benefits a cost-benefit

assessment is needed because the condition-based technologies

and engineering efforts also incur costs. The cost assessment

is beyond the scope of this paper. Please see [44] for the

cost-benefit assessment of different maintenance strategies

including the prognostics-updated predictive maintenance.

IV. APPLICATION TO CIRCUIT BREAKER PROGNOSTICS

The Cumulative Degradation (CD) of a circuit breaker is

defined by the current in the arc between the fixed and moving

contacts which forms while the breaker is opening (cf. Fig. 2).

Formally it is defined as [11]:

CD =

∫ topen

ttrip

i2 · dt (13)

where i is the instantaneous current and t is the arc time. Since

arc time is difficult to measure, it can be approximated by the

time between the circuit breaker receiving the signal to open

(ttrip) and the time the breaker reports being open (topen).

The current that flows in the circuit breaker during its

opening is different depending on the reason for its operation.

Namely, current during switching operation is generally much

lower than fault current. However, the effect of all operations

is measured with the same three variables: shock instant, shock

strength, and shock duration.

Network switching is the periodic operation of the circuit

breaker in order to reconfigure the network. Its instantaneous

effect on the cumulative degradation is small because the

current (shock strength) is small and can be cleared quickly

(shock duration). However, in the long run, reconfiguration

in response to a daily load cycle can lead to a considerable

number of network switching operations that contribute to the

ageing of the circuit breaker. Hence, switching can be said to

affect the cumulative degradation with periodic shock instants

and a constant shock strength:

i(t) =

{

iRMS if t = [tswitch, tswitch + tend switch],

0 otherwise.
(14)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 8

where iRMS is the root mean square current at the time of

the operation, and tswitch and tend switch are periodic on/off

times that determine the shock duration.

Fault clearing is a stochastic event that occurs when the

electrical network protected by the circuit breaker experiences

a fault. After the fault occurs, it is assumed that the circuit

is returned to service with a constant exponential repair rate

with parameter µrep. The shock instant depends on the time

of the network fault, which is specified with a PDF which

depends on a stress signal. The stress signal Ω(t) modifies an

a priori specified PDF of circuit reliability according to the

network load. In this case, the chance of the circuit faulting

is assumed to increase with load, but this property does not

hold universally. For a rural network with a non-load-related

reliability, for example, the circuit reliability PDF should be

specified appropriately.

In order to calculate the future shock instants, we solve Eqs.

(7)-(11) for each simulation step ∆t taking into account pos-

sible future stress profiles (daily load profiles) and checking if

the acceptance condition in (12) is satisfied. If the acceptance

test is passed, then we use the current time instant as the

occurrence of a network fault denoted as tjump.

The definition of a deterministic function which defines the

fault current is not feasible for generically capturing the wide

range of types of fault which may occur. However, based

on engineering knowledge, we can define a current interval

[iA, iB] for a given circuit and sample randomly the fault

current ifault according to ifault ∼ U([iA, iB]). This will

determine the shock intensity of the fault clearing operation.

The open time of the circuit breaker for fault clearing can

be defined with a random variable tclear which obeys the

exponential distribution tclear ∼ exp(λ). It may be expected

that repeated fault operation places particular stress on the

circuit breaker, with a consequential effect on opening times.

This can be modeled by (15), which takes account of the

cumulative effect of fault current stress.

shock =
d=D
∑

d=1

Ω(tjump)/k1 (15)

where D is the total number of network fault shocks, k1
is a normalizing constant, and Ω(tjump) is the stress signal

evaluated at the shock instant tjump.

These random shocks have an effect on the circuit breaker

operation by increasing the shock duration and accordingly

affecting the cumulative degradation. Therefore, we define the

shock duration as shock duration = tclear + delay, where

delay includes the effect of cumulative shocks on the open

time and is defined as follows:

delay =

d=D
∑

d=1

shock · eshock/k2 (16)

where shock variable is computed in (15), k2 is a normalizing

constant, and D is defined as in (15). For each shock instant,

an extra delay is added to the open time of the circuit breaker.

Depending on the process under study, it is possible to tune

the normalizing constants from historical delay data so as to

match the effect of cumulative shock processes or they can

be identified from real values (e.g., spring constant in a valve

[26]). A possible extension of the shock model could be to

analyse the effect of the number of circuit breaker operations

on the failure PDF in (9) — see Section VI.

The stochastic events in (15) and (16) affect the determin-

istic motion in (13) at discrete time instants by modifying the

shock intensity and duration. These equations are embedded

in Fig. 4 as follows:

• The system model block embeds (13)-(16).

• The dynamic reliability formulation is given by (7)-(9)

and the computation of the circuit failure time (tjump) is

calculated with the condition in (12). The repair behavior

of the circuit is defined with an exponential distribution

with a constant repair rate µrep.

• Diagnostics and uncertainty are expressed with PDFs

µy1,...,yn
(t) and fU (t) respectively.

Fig. 5 outlines the flowchart of the circuit breaker prognos-

tics algorithm making use of the proposed approach.

Fig. 5. Circuit breaker prognostics algorithm.
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Apart from the RUL estimation, we also calculate the

remaining number of circuit breaker operations. To this end,

we only change the time-dependent variables in (2) with

number of operations and accordingly estimate the number of

operations until reaching the failure threshold. The proposed

approach involves the following steps:

#1 Randomly sample the failure threshold (rU ) according to

the PDF of the failure zone fU (t).
#2 Randomly sample the initial health state (i2t init) ac-

cording to the PDF of the actual health state µy1,...,yn
(t).

#3 Check the network switching condition and if satisfied,

increase the cumulative degradation and circuit breaker

operation counter.

#4 Check if a network fault has occurred:

– Obtain the jump time tjump with function

GetJumpT ime and check if tjump > 0.

GetJumpT ime implements the condition in

(12), i.e., tjump > 0 iff the condition in (12) is true.

If true:

– Calculate the stochastic open time for fault clearing

(tclear) with function GetOpenT ime using inver-

sion sampling [42]: tclear = F−1(r), where F−1 is

the quantile function and r ∼ U([0, 1]).
– For each shock occurrence (identified by the sshock

variable) calculate its effect on the delay, increase the

cumulative degradation accordingly, and increase the

circuit breaker operation counter.

#5 RUL calculation for the k-th Monte Carlo trial - cf. (2).

#6 RUL and remaining circuit breaker operations probability

calculation after K Monte Carlo trials.

#7 Classification of uncertainty results first creating a PDF

with kernel density estimation [45] and then taking the

RUL and remaining circuit breaker operation values with

the maximum probability.

#8 Estimate the PDF of the remaining useful life and remain-

ing number of circuit breaker operations with randomly

sampled failure threshold values.

V. CASE STUDY

The Power Networks Demonstration Centre (PNDC) is

an 11kV/400V test facility for demonstrating smart grid

technologies, located near Glasgow, UK. It was designed to

accommodate significant levels of automation and communi-

cations, embedded generation, and fault-throwing capability,

with the intention of trialling equipment and procedures for a

distribution network of the future [46]. One of the 11kV circuit

breakers at PNDC was selected for testing the hybrid prognos-

tics approach. After conducting a workshop with engineers,

Table I displays the variables for circuit breaker prognostics

experiments and their values.

According to the fault levels experienced at PNDC (Table I,

ifault) and manufacturer specifications (Fig. 3) the standard

maintenance strategy for the chosen breaker is to replace it

every 10 years or after performing 10000 operations.

In an online context, the actual health of the circuit breaker

can be monitored through I2t data samples {y1, . . . , yp},

and predictions of RUL made on an on-going basis. For the

TABLE I
VARIABLES FOR CIRCUIT BREAKER PROGNOSTICS EXPERIMENTS

Variable Type Distribution Value
ifault stochastic uniform [35, 250] A

circuit fault stochastic weibull β=36, η=100

repair rate stochastic exponential µrep=0.25

fU (t) stochastic normal
mean=666667 hrs;

std. dev.=400 hrs

tclear stochastic exponential λ=1e5

switching period

(tswitch)
constant - every 12 hrs

switch. duration

(tend switch)
constant - 60 msec

k1 constant - 200

k2 constant - 1e9

purpose of this study, we assume a prediction time instant

where the circuit breaker is diagnosed at 94% of the pre-

planned maintenance period. That is, the remaining number of

circuit breaker operations is 600 or equivalently the remaining

useful life is 0.6 years. The health state estimation indicated

in (4) can be implemented using filtering techniques (see

Subsection III-C2). Fig. 6 shows the estimated health state

of the asset at the prediction time instant.

Fig. 6. I2t state at prediction time instant tp=9.4 years.

For future prediction instants, we compare the use of

both static and dynamic reliability profiles. The static profile

implements the shock instants according to a constant load

profile, i.e., traditional PDMP-based prognostics prediction

method (e.g., [26]). In contrast, dynamic reliability profiles

modify the static behavior according to the applied load. Fig.

7 shows the different types of daily load profiles (Ω(t) in (8)).

Fig. 7. Analyzed daily load profiles.

Different current load profiles impact the PDMP model in

different ways and accordingly determine the future RUL and

remaining number of circuit breaker operation values.
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Fig. 8 shows the effect of network fault events on the open

time delay of the circuit breaker. Note that the delay increases

only with network faults and not with switching operations.

Fig. 8. Effect of network faults on the open time.

In Fig. 8 the circuit breaker switching duration starts to

deviate from normal behavior after 450 further network fault

events approximately (cf. low dashed line). After this threshold

value, the circuit breaker starts to operate in a degraded

mode owing to the cumulated network faults. These faults

increase the delay exponentially (cf. (16)) until the circuit

breaker reaches the failure limit of the cumulative degradation

(cf. upper dashed line, CB Fault event). Due to lack of real

information, we have not taken into account previous cumula-

tive delay. However, if the designer has this information, the

accumulated delay should be added to the process in Fig. 8.

Taking a fixed failure threshold value (mean value of fU (t)
in Table I), Fig. 9 shows different predictions of the remaining

number of operations according to the daily load profiles

shown in Fig. 7. While the constant load profile specified

according to the static reliability model shows the most con-

servative estimate, different predictions estimated with typical

daily load profiles show an extended number of remaining

circuit breaker operations. This highlights the importance of

accurate load forecasting on circuit breaker prognostics.

Fig. 9. Prediction of remaining number of operations.

Note that the static reliability driven prediction in Fig. 9

does not match with the pre-planned maintenance strategy

of 600 remaining circuit breaker operations. This is because

the default maintenance strategy implements an average es-

timation of cumulative degradation levels with fixed time

intervals and constant current values. Using condition-based

maintenance strategies, even with static reliability models,

gives less pessimistic results. The static PDMP model includes

random intervals for fault current and open time affected

by random shocks. When we adapt the PDMP model with

dynamic daily load profiles, we can see that the number of

operations increases in proportion to the network load.

It should also be noted that the values in Fig. 9 show the

remaining number of operations until circuit breaker failure,

while maintenance strategies are required to adopt a safety

margin for a timely maintenance [47].

The experiments in Fig. 9 have been performed with a

fixed failure threshold. However, this assumption may not be

realistic and we include uncertainty estimations based on the

probability density function of the failure threshold, fU (t).
Taking the PDMP model with static load as a reference

model and focusing on the remaining useful life prediction

of the circuit breaker, Fig. 10 shows different estimations with

randomly sampled failure threshold values (cf. Table I, fU(t)).

Fig. 10. RUL estimations with randomly sampled failure threshold values.

Each of the random failure threshold trials in Fig. 10 cor-

responds to a randomly sampled value from fU(t). While this

information is useful to see the effect of the failure threshold

on the RUL prediction, as a more informative representation,

we take the maximum likelihood value for each of the RUL

estimations in Fig. 10 and then we apply kernel density

estimation (cf. Subsection III-C and Fig. 5, step #8). Fig. 11

shows the final PDF which integrates uncertainty criteria.

Fig. 11. RUL estimation with uncertainty prediction criteria.

Fig. 11 shows that when the uncertainty in the failure

threshold is included, the shape and maximum likelihood

values of the PDF of remaining useful life change accordingly.

In this case, the prediction with failure threshold uncertainty

information predicts an extended RUL value (dashed line)

compared with the fixed failure threshold estimation (solid

line).

The final effect of the uncertain failure threshold level on

the RUL prediction depends on the adopted failure threshold

distribution fU (t). If the designer has a better informed knowl-

edge of the failure threshold, fit-for-purpose failure threshold

distributions may be used which can lead to more accurate

results.
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As confirmed with the results shown in this section, the

combined use of dynamic reliability and hybrid prognos-

tics models improves the accuracy with respect to periodic

operation-based maintenance schedules and hybrid prognostics

models with static reliability models (Fig. 9). Besides, the

integration of the uncertainty information in the failure thresh-

old enables the evaluation of the effect of alternative failure

threshold values on the final prediction estimations (Fig. 10)

and prediction of the most likelihood useful life according to

maximum RUL estimation values (Fig. 11).

While the models and algorithms presented in Section III

are generic, Sections IV and V show the application of the

proposed model to circuit breakers. The particular degradation

equations and dynamic operation conditions depend on the

asset under study. However, the theoretical framework can be

generally applied to hybrid systems which degrade according

to deterministic and stochastic events, with the particularity

that the stochastic degradation process is modulated by deter-

ministic signals, such as usage, load, or temperature.

In the case study we performed 104 Monte Carlo iterations

(K in Fig. 5), for each of the 100 random samples of the

initial heath state (I in Fig. 5), and these were repeated for

25 randomly sampled failure threshold values (J in Fig. 5),

which gives a total of 25×106 iterations.

The main limitation of the proposed approach is the simu-

lation time. The lower the current load profile, the longer the

simulation time. With a standard desktop Intel i7 with 8 cores,

simulation times range from 8 hours (static load in Fig. 7) up

to 240 hours (load C in Fig. 7). There are also other factors

that affect the simulation time:

• Health state at prediction time: the better the health of

the asset, the longer the simulation time.

• Failure threshold: the greater the failure threshold the

longer the simulation time.

• Accuracy of the results: the higher the required accuracy,

the higher the simulation time.

Although maintenance is normally planned months ahead of

the failure occurrence, depending on the prognostics prediction

horizon, the simulation time may be a critical factor. In order

to alleviate long simulation periods, we have used Matlab’s

parallel computing toolbox. However, we also plan to study

analytical techniques to speed-up the simulation time (see next

section).

VI. CONCLUSIONS

Circuit breakers are essential for the correct behavior of

the power network. Circuit breakers exhibit a hybrid operation

mode which integrates stochastic and deterministic operations.

Accordingly we have presented a hybrid approach for prognos-

tics of circuit breakers using Piecewise Deterministic Markov

Processes.

The proposed approach extends existing hybrid prognostics

techniques in two ways. On the one hand, it enables a more

accurate remaining useful life forecast through integration with

dynamic reliability techniques. That is, we update a priori

defined fault conditions dynamically according to operation

signals, e.g., daily load profiles of the power network. On

the other hand, the proposed approach evaluates the effect of

uncertain failure evaluation levels in the prognostics estimation

process in order to handle the uncertainty that surrounds the

specification of a failure threshold.

The presented approach enables fit-for-purpose maintenance

planning for the circuit breaker, knowing that the predictions

are tailored to the specific operational and failure circum-

stances of a given breaker. In the analysed case study, results

show that the predictions incorporating dynamic reliability

and uncertainty management lead to longer time horizon

predictions of RUL, compared to predictions which do not

use dynamic reliability concepts. However, the final prediction

always depends on the specific usage of the breaker and

knowledge of the failure threshold. This is why specific

operational conditions and failure threshold specification have

to be included on a case-by-case basis.

The confidence depends in part on the accuracy of fore-

casting the circuit load profile. While traditionally the load

profile of a given circuit may remain relatively static over

time, technologies associated with smart grids such as electric

vehicles and demand-side management mean that loading is

varying more than ever before. However, this presents another

reason for tracking actual circuit breaker wear instead of

planning maintenance on a periodic schedule.

Future work can address the following points:

• Validation of results: validate predictions with real run-

to-failure circuit breaker data.

• Shock models: analyse the effect of making the PDF of

failure dependent on the number of operations.

• System-level prognostic prediction: integrate other failure

modes (e.g., SF6 density, trip coil current) to obtain a

complete prognostic model of the circuit breaker.

• Variable repair rates: apply dynamic reliability techniques

to model condition-dependent repair rates, e.g., dependent

on failed components or available repair resources.

• Simulation time: speed up simulations with dynamic

stopping criteria such as in [48], where the number of

Monte Carlo iterations are determined dynamically based

on accuracy monitoring and confidence levels.
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