
 Open access Journal Article DOI:10.1109/52.595902

A model-based interface development environment — Source link

A.R. Puerta

Institutions: Stanford University

Published on: 01 Jul 1997 - IEEE Software (IEEE Computer Society Press)

Topics: Interface control document, Interface description language, Adapter pattern, Natural user interface and
Interface metaphor

Related papers:

 Model-Based Design and Evaluation of Interactive Applications

 Encapsulating knowledge for intelligent automatic interaction objects selection

 A Unifying Reference Framework for multi-target user interfaces

 Retrospective and Challenges for Model-Based Interface Development

 Past, present, and future of user interface software tools

Share this paper:

View more about this paper here: https://typeset.io/papers/a-model-based-interface-development-environment-
1qb3feam9t

https://typeset.io/
https://www.doi.org/10.1109/52.595902
https://typeset.io/papers/a-model-based-interface-development-environment-1qb3feam9t
https://typeset.io/authors/a-r-puerta-17lmd7l9ue
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/journals/ieee-software-2xp8dbta
https://typeset.io/topics/interface-control-document-1adjm6gl
https://typeset.io/topics/interface-description-language-izzzlgqf
https://typeset.io/topics/adapter-pattern-920317gr
https://typeset.io/topics/natural-user-interface-1h5r1mpw
https://typeset.io/topics/interface-metaphor-2e6fsc2y
https://typeset.io/papers/model-based-design-and-evaluation-of-interactive-1ouixxrvnm
https://typeset.io/papers/encapsulating-knowledge-for-intelligent-automatic-49a9g6lq6b
https://typeset.io/papers/a-unifying-reference-framework-for-multi-target-user-1wz2xeuu06
https://typeset.io/papers/retrospective-and-challenges-for-model-based-interface-337flyrnyk
https://typeset.io/papers/past-present-and-future-of-user-interface-software-tools-4tyf5iisz8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-model-based-interface-development-environment-1qb3feam9t
https://twitter.com/intent/tweet?text=A%20model-based%20interface%20development%20environment&url=https://typeset.io/papers/a-model-based-interface-development-environment-1qb3feam9t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-model-based-interface-development-environment-1qb3feam9t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-model-based-interface-development-environment-1qb3feam9t
https://typeset.io/papers/a-model-based-interface-development-environment-1qb3feam9t

4 0 0 7 4 0 -7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 IEEE JULY / A UG US T 1 9 9 7

A Model-Based
Interface

Development
Environment

ANGEL R. PUERTA, Stanford University

Mobi-D is a highly

interactive environment

that represents

all relevant aspects

of interface design

in tightly connected

declarative models.

It supports

user-centered

development and

allows structured

design from abstract

objects like user tasks.

ost interface development problems can be
traced to two sources: the need for user-
centered design environments and the lack
of software systems that support all major de-
velopment stages. Developer-centered envi-
ronments, which are typical of most systems,

give ample support to using and managing widgets, organizing and
arranging layouts, and testing prototype interfaces, but fall short of
answering key questions such as how widgets in a given dialog box
can be used to accomplish a particular user task. The designer is
forced to rely on her own experience to answer such questions or
to distill a solution from loosely connected documentation.

In this article, I describe Mobi-D1,2 (Model-Based Interface
Designer), a comprehensive environment that supports user-
centered design through model-based interface development. In the
Mobi-D paradigm, a series of declarative models, such as user-task,
dialog, and presentation, are interrelated to provide a formal rep-
resentation of an interface design. This contrasts to model-based
systems, which use only one or two models in isolation and have no
explicit notion as to how the various model elements are organized
into an interface design.

M

.

I E E E S O FTW A R E 4 1

Mobi-D offers a complete set of tools
that support a clearly defined develop-
ment life cycle. In model-based develop-
ment, the interface is essentially an or-
ganized collection of interface objects.
Design proceeds in a structured manner
from abstract objects such as user tasks
to the integration of tasks with domain
elements and finally to an integrated in-
terface ready for testing. Benefits include
clearer communication throughout the
development process, earlier involve-
ment of the end user in key development
decisions, and greater potential for reuse.

Mobi-D is an ongoing Stanford
University project aimed at developing
the next generation of model-based in-
terface development software. It is a suc-
cessor of the Mecano project,3 a model-
based system that automatically generates
form-based interfaces from domain mod-
els. My group is currently using Mobi-D
to design several interfaces in the med-
ical and military logistics domains. Other
groups at Stanford have used Mobi-D’s
tools and development cycle concept to
reengineer existing interfaces or to eval-
uate prototypes.

We plan to eventually make Mobi-D
available to researchers and developers
in both industry and academia through a
standard licensing process.

OVERVIEW

Mobi-D offers three key innovations
to model-based interface development:

♦ Metalevel modeling language. Mobi-
D uses one language to define the com-
ponents, structure, and interrelations
within interface models, as well as the el-
ements of user interfaces. Consequently,
all types of interface model elements can
be explicitly interrelated, a client-server
framework is feasible (with the interface
model acting as the server), and runtime
support tools can be linked to the mod-
els. All these are important goals of
model-based environment research.

♦ Formal definition of interface design.
Because design relations are identified as

an explicit interface model component,
formal definitions of interface design and
related terms are possible, which the
boxed text “Key Terms in Model-Based
Development” provides. Interface design
becomes the set of relationships among
interface objects. It tells how, for exam-
ple, a given widget relates to the model’s
dialog structure or presentation scheme,
as well as to a domain element or to a
user task.

♦ Design philosophy of decision-making
support. Interface design supports the de-
cision making of developers and end
users, as opposed to just generating the
interface automatically—the approach
most existing model-based systems take.

Mobi-D also provides the following:
♦ Continuous end-user involvement. In

many instances, user-centered design fails
because of poorly understood or weak
connections between the task-analysis
and implementation phases. Mobi-D es-
tablishes clear communication between
the end user and interface developer, as

well as between the end user and devel-
oper and the interface design process it-
self. More important, this communica-
tion is grounded in a computational
model with defined operators and soft-
ware support. Thus, Mobi-D makes it
easy to engage the end user in the devel-
opment process, always keeping a rational
view of how design decisions affect user
tasks. The end user can more easily visu-
alize how a given widget affects the com-
pletion of a task, for example.

♦ Greater reuse potential. Because
complete interface designs are available
in declarative form, they can be in-
dexed, processed, and reused in other
applications.

Architecture. Figure 1 shows the archi-
tecture of the Mobi-D environment. The
interface model acts as a central repository
of knowledge about an interface design. It
is a declarative representation of all rele-
vant aspects of a user interface, including
its components and design. It typically

Application

Executable

interface

specification

Runtime system

Design relations

User tasks Domain objects

Dialogs

Knowledge bases

Style guides

Interface guidelines

Interface model

components

User types

Presentations

Interface

developer

End

user

Interactive

development tools

Application development environment

Design assistants

Model editors

Design critics

Runtime tools

Help generator

Usability analyzer

Automated

development tools

Layout generators

Dialog generators

Specification

generators

Application

developer

Interface

developer

End

user

Figure 1. Architecture of the Mobi-D environment for model-based interface develop-
ment. Mobi-D emphasizes clear communication between the end user and interface de-
veloper, allowing the end user to participate in more aspects of development.

.

4 2 JULY / A UG US T 1 9 9 7

embodies some number of interface
model components: design relations, user
tasks and domain objects, dialogs and pre-
sentations, and user types. The compo-
nents are models (user-task or presenta-
tion, for example) within the overall
interface model. The boxed text “How
Model-Based Interface Development
Evolved” describes how some model-
based systems use one or two of these
components as separate entities.

Developers access and modify the in-
terface model through tools that offer a
variety of functions and levels of auto-
mated support. In a model-based envi-
ronment, tools are typically grouped into
design-time tools, runtime tools, and
runtime systems. Design-time tools oper-
ate on an interface model to build an in-
terface design. They include interactive
development tools, such as a design assis-
tant, and automated development tools, such
as a layout generator.

Runtime tools use an interface model
to support end-user activities, such as
generating animated help or collecting
and analyzing usability data. A runtime
system takes an executable interface spec-

ification generated from an interface
model and allows various individuals
(such as the developer and end user) to
preview, run, and test the interface.

The tools may also use additional
knowledge bases about design guidelines
and principles to operate on the interface
model or to advise the developer. An in-
terface model may be transformed into
an executable interface specification.
This specification includes a coupling
mechanism with application-specific
code to deliver a final application.

Development cycle. Figure 2 shows the
Mobi-D development cycle. All the
processes are fully interactive and may in-
volve the end user. The cycle is iterative:
It begins with the elicitation of user tasks
(on the left). An interactive Mobi-D tool
lets the end user enter a textual task de-
scription. The tool elicits key terms such
as objects and actions and guides the end
user in editing and refining the terms into
a structured user-task description. The
developer uses this description to build
the user-task and domain models in par-
allel with the help of Mobi-D’s model-

editing tools. He then integrates the mod-
els so that domain objects are related to
the user tasks for which they are relevant.

The decision support mechanisms in
Mobi-D use the user-task and domain
models to recommend presentation and
interaction techniques. Mobi-D displays
these recommendations to guide the de-
veloper during design and to ensure that
all task and data elements are embodied in
the interface. In effect, Mobi-D walks the
developer through the selection and lay-
out of interface components, providing for
each subtask a choice of optional compo-
nents preconfigured for the task data. For
example, if the user must enter a number,
Mobi-D provides a choice of slider and
text-entry widgets with labels and range
bounds that are consistent with the model.
The developer can select the slider, posi-
tion it in the dialog window, resize it, edit
its label, change its color, and so on. The
end user then tests the resulting interface.

SAMPLE APPLICATION

To illustrate Mobi-D’s capabilities,

KEY TERMS IN MODEL-BASED INTERFACE DEVELOPMENT

Because one language is used to capture the interrelationships of the various models, it becomes possible to define a set of
terms. These foundational terms make relationships explicit and help clarify communication among the interface stakeholders.

Interface model. An interface model is a declarative representation of all relevant aspects of a user interface, including the
components and design of that interface. It typically embodies a number of interface objects at different levels of abstraction:
user tasks, domain elements, presentations, dialogs, user types, and design relations. These objects are normally organized
into models (user-task or presentation models, for example) within the overall interface model. Interface models are expressed
via an interface modeling language.

Interface modeling language. A language that defines the organization, components, and relationships of interface models. It is
used to build interfaces and interface designs.

Interface. An organized collection of interface objects.

Interface design. A set of relationships among interface objects in an interface. It answers the question of how, for example, a
given widget relates to a dialog structure, to a presentation scheme, to a domain element, and to a user task.

Model-based interface development environment. A software environment that supports the creation of interface designs under a
specific interface modeling language. Environment tools are typically grouped into design-time tools, runtime tools, and
runtime systems. It is characterized by the connectedness of the models and components within it. It differs from a model-
based interface development system, which may use one or possibly two models, but without an explicit definition of how the
models are organized into an interface design.

Design-time tools. The set of software tools that operates on an interface model to build an interface design. They may be
further classified into interactive tools (such as a model editor), or automated tools (such as a layout generator).

Runtime tools. The set of software tools that use an interface model to support end-user activities, such as generating animated
help or collecting and analyzing usability data.

Runtime system. A system that takes an executable interface specification generated from an interface model and allows the
previewing, running, and testing of the interface. In some model-based environments, these functions are provided in an
interpretative fashion (the runtime system immediately reflects changes to the interface model). In others, recompilation is
needed to update the executable interface specification.

.

I E E E S O FTW A R E 4 3

we used it to design an interface in the
logistics domain. The interface is part of
a system that will let users visualize and
operate on logistics data and functions in
a military theater of operations. As such,
it must provide access to a distributed in-
formation space and be able to adapt to
the needs of many different user types.
The examples given here are from the
development of a subset of the interface,
which lets a requisitions officer select the
best possible sources for a given supply.
The officer views a list of available sup-
pliers and ranks them according to a set
of criteria, such as how much surplus
each supplier has, how quickly it can de-
liver, and how much risk is involved. At
any time, the officer can select a supply
source and evaluate the transportation
risks from source to destination. Once

the officer selects a source, he places the
order either through e-mail or by phone.

Eliciting the user tasks. One of the central
activities of any user-centered design is
the construction of a user-task model.
This process requires close collaboration
between an end user, or domain expert,
and an interface developer. Mobi-D in-
volves the end user directly in the devel-
opment of user-task models.

Figure 3 shows two screens in the
elicitation phase. In Figure 3a, the end
user describes the task informally, not
worrying how it may eventually be con-
verted into a computer model. He then
identifies key actions and things relevant
to the task (boxes at right in Figure 3a).
In Figure 3b, the end user, with the help
of the developer, has worked out an out-

line of the user tasks.
The development of the task outline

serves two purposes. First, it establishes
an organized channel of communication
between end users and developers. This
reduces the chances of misunderstood or
incomplete requirements. Second, it pro-
vides a software product that the devel-
oper can use directly in the next phase.

User-task and domain modeling. After a
user-task outline is completed, the de-
veloper starts interacting directly with
Mobi-D to create user-task and domain
models. Mobi-D reads a skeleton of
these models directly from the task out-
line and then, with input from the de-
veloper and possibly the end user, refines
them by setting properties for each sub-
task and domain object. The user-task

User-task modeling

Domain modeling

Task-domain integration

User-task elicitation

Presentaion design

Dialog design

User testing

Figure 2. The interactive, user-centered development cycle in Mobi-D.

Figure 3. Mobi-D’s user-task elicitation stage: (a) an informal task description, followed by a list of key items (boxes at right) and
(b) a formal task outline, generated with help from the developer.

(A) (B)

.

4 4 JULY / A UG US T 1 9 9 7

Most early interface models had no computational
equivalent.1 They were used to define components and their
functionality and guide the design of interfaces and interface
development environments. L-CID is an example of a system
based on an abstract interface model.1 L-CID implements a
model of an intelligent interface in a blackboard architecture.
It was used to rapidly prototype machine-learning-based in-
teraction techniques for user interfaces.

Data models. The data model was the first type of explicit
model to appear in model-based interface development. It
was borrowed directly from the data structures defined by
the application and proved to be useful in generating the
widgets of an interface by matching data types with widget
types. Systems such as UIDE2 and Don2 used data models
and applied some type of layout algorithm to produce
complete static interface layouts.

However, developers could not obtain a specification of
interface behavior from data models, so more expressive
models were needed. Current model-based environments
typically use data definitions as a subcomponent of their in-
terface model.

Domain models. Advances in software engineering allowed
model-based systems to move beyond simple data models.
Thus, systems started to use entity-relationship data models
(Genius3), enhanced data models (Trident4) or object-
oriented data models (Fuse5). Eventually, these models led to
fully declarative domain models, such as those in Mecano
(see main text),that could effectively express the relationships
among the objects in a given domain. As a consequence, it
became possible for the first time to automatically generate
partial specifications of dynamic interface behavior along
with a static layout.

Application models. Though elaborate, domain models do not
describe semantic functions in the application’s functional
core that are associated to objects in a domain. To address
this lack, some model-based systems—including UIDE,2

Trident,4 and Humanoid6—introduce an application model
in various forms. The goal of these models is to make it
easier to declare interface behavior. The UIDE application
model, for example, consists of application actions,
interface actions, and interaction techniques. The
developer assigns parameters, preconditions, and post-
conditions to each action and then uses them to control the
user interface at runtime.

Other partial models. Application and domain models are consid-
ered partial interface models because they do not cover all the
relevant aspects of an interface design. Naturally, other partial
interface models have emerged over the years. User-task, dia-
log, and presentation models are the most significant.
Additional partial models, such as platform, user, and
workplace models have been defined but have not been used
much in practice and so have little software support. Instead
many systems have subsumed the characteristics of these
models into the presentation and dialog models.

User-task models. The user-task model is the most crucial in
supporting a user-centered design philosophy. It describes the
tasks an end user performs and dictates what interaction capa-
bilities must be designed. The model typically involves
elements such as goals, actions, and domain objects. Goals
specify when a desired state is met, sequences of actions
define procedures to achieve a goal, and domain objects rep-
resent elements that must be displayed in the interface to
complete each task in the model. Adept,7 Fuse,5 Tadeus,8 and
Trident4 embed various forms of user-task models.

The user-task model represents a significant advance in
model-based development. It establishes a methodology for
task-based design: the user-task model drives the generation
of alternative design solutions to support the same interactive
task. Adept provides an integrated design support environ-
ment for this methodology.

Dialog model. The dialog model describes the human-
computer conversation. It specifies when the end user can
invoke functions through various triggering mechanisms (push
buttons, commands, and so on) and interaction media (voice
input, touch screen, and so on), when the end user can select or
specify inputs, and when the computer can query the end user
and present information. Many dialog models have shown evi-
dence of success: dialog nets (Genius,3 Tadeus8), attributed
grammars (Boss5), state-transition diagrams (Trident4), dialog
templates (Humanoid6). However, no consensus of an ultimate
dialog modeling technique has emerged.

Presentation model. The presentation model specifies how
interaction objects (or widgets) appear in the different dialog
states. It generally consists of a hierarchical decomposition of
the possible screen displays into groups of interaction objects.
By definition, presentation and dialog models are closely in-
terrelated, which is why some model-based development en-
vironments consider them together: ITS9 typically falls in this
category by providing a style library. A style is a coordinated
set of decisions on presentation and dialog used consistently
throughout a family of applications.

Comprehensive models. Partial models have led to current
efforts to define comprehensive interface models, like
Mobi-D (described in the main article) and Mastermind.10

This evolution has followed that of component development
itself. As interface models have evolved from data models to
comprehensive model-based environments, there has been a
corresponding move from elementary toolkit library
components to basic textual or graphical editors, to
prepackaged elements such as ActiveX that can be used to
construct interfaces piecewise. This confluence of
comprehensive interface models and complex primitives is
what gives model-based development its solid foundation.
The technology would have limited applicability if it did not
have rich interface models; if no suitable primitives were
available, programmers would have to model at a very low
detail level (almost at a programming level).

This foundation will serve as a basis for an increasing num-
ber of user-centered interface development environments that

HOW MODEL-BASED INTERFACE DEVELOPMENT HAS EVOLVED

.

I E E E S O FTW A R E 4 5

and domain models are the foundation
of an interface design.

The decision support tools in Mobi-
D provide recommendations for presen-
tation and dialog design in accordance
with the structure and properties of these
models.

Figure 4a and 4b show views of the
user-task and domain models in the cor-
responding Mobi-D editors. The editors
are divided into three panes. The top left
pane shows the current model; the bot-
tom pane shows the properties of the se-
lected object. The top right pane lists
prototype objects available for use in the
current model via a drag-and-drop op-
eration. Developers can make an object
from the current model a prototype by
dragging it into the top right pane.
Because prototype objects are organized
as user-task or domain models, Mobi-D
can save them apart from the current
model for reuse in a future design.

Figure 4c shows the integration of the
user-task and domain models. When the
developer assigns a domain element to a
specific user task, Mobi-D creates a de-
sign relation. The set of all design rela-
tions in an interface constitutes the in-
terface design. Eventually, the user-
task-to-domain-element relations ex-
pand to include presentation and dialog
elements. Because Mobi-D interface
models store these relations explicitly,
developers and end users have a frame-
work for rationally visualizing and
reusing interface designs.

Presentation and dialog design. As Figure
2 shows, presentation and dialog designs
occur in parallel in Mobi-D. Decision
support tools examine the user-task and
domain models, along with perhaps a set

Figure 4. Model editing and integration in Mobi-D: (a) editing the user-task model,
(b) editing the domain model, and (c) integrating the models.

(A)

(B)

(C)

will support a robust development cycle and a range of
interface designs.

REFEREN CES

1. A. Puerta, “The Study of Models of Intelligent Interfaces,” Proc. Int’l
Workshop Intelligent User Interfaces, ACM Press, New York, 1993,
pp. 71-78.

2. J.D. Foley, “History, Results and Bibliography of the User Interface
Design Environment (UIDE): An Early Model-Based System for User
Interface Design and Implementation,” Proc. Eurographics Workshop
Design, Specification, Verification of Interactive Systems, F. Patern, ed., 1995,
http://www.info.fundp.ac.be/~jvd/dsvis/dsvis94.html.

3. C. Janssen, A. Weisbecker, and J. Ziegler, “Generating User Interfaces
from Data Models and Dialogue Net Specifications,” Proc. Conf. Human
Factors in Computing Systems: InterCHI ’93, ACM Press, New York, 1993,
pp. 418-423.

4. J. Vanderdonckt and F. Bodart, “Encapsulating Knowledge for
Intelligent Automatic Interaction Objects Selection,” Proc. Conf. Human

Factors in Computing Systems: InterCHI ’93, ACM Press, New York, 1993,
pp. 424-429.

5. F. Lonczewski and S. Schreiber, “The FUSE-System: an Integrated User
Interface Design Environment,” Proc. CADUI 96, J. Vanderdonckt, ed.,
http://www.info.fundp.ac.be/~jvd/dsvis/cadui96.html.

6. P. Szekely, P. Luo, and R. Neches, “Beyond Interface Builders: Model-
Based Interface Tools,” Proc. Conf. Human Factors in Computing Systems:
InterCHI ’93, ACM Press, New York, 1993, pp. 383-390.

7. S. Wilson and P. Johnson, “Bridging the Generation Gap: From Work
Tasks to User Interface Designs,” Proc. CADUI 96, J. Vanderdonckt, ed.,
http://www.info.fundp.ac.be/~jvd/dsvis/cadui96.html.

8. E. Schlungbaum and T. Elwert, “Automatic User Interface Generation
from Declarative Models,” Proc. CADUI 96, J. Vanderdonckt, ed.,
http://www.info.fundp.ac.be/~jvd/dsvis/cadui96.html.

9. C. Wiecha et al., “ITS: A Tool for Rapidly Developing Interactive
Applications,” ACM Trans. Information Systems, July 1990, pp. 204-236.

10. P. Szekely et al., “Declarative Interface Models for User Interface
Construction Tools: The Mastermind Approach,” in Engineering for
Human-Computer Interaction, L. Bass and C. Unger, eds., Chapman &
Hall, London, 1995, pp. 120-150.

.

4 6 JULY / A UG US T 1 9 9 7

of interface guidelines, and recommend
the widgets, or interaction elements (in-
teractors), that should be used to com-
plete each subtask in the user-task model.
The developer can override any of the
recommendations made and choose dif-
ferent elements.

Figure 5 shows a snapshot of the pre-
sentation and dialog design process.
The right side of the window depicts the
palette of interactors that Mobi-D has
arranged for the developer. The left side

is the canvas, where the developer can
drop and lay out selected interactors.
Mobi-D steps the designer through
each subtask in the user-task model and
ranks available interactors according to
guidelines and to the type of data that
each interactor must display. The de-
veloper is free to choose any available
interactor. By following this process,
Mobi-D makes sure that each user task
defined in the user-task model is ap-
propriately displayed and completed in

the resulting interface.
Because of the clear connection be-

tween presentation and dialog design and
the user-task and domain models, Mobi-
D makes it easier to obtain input and ad-
vice from the end user during this phase.
Because the end user can better visualize
how each interactor relates to the task
outline built at the beginning of the de-
velopment cycle, he can make more in-
formed decisions and gain better insight
into the effect each interface element has

Figure 5. A snapshot of the design of a presentation and dialog using Mobi-D.

Figure 6. The sample interface ready for user testing.

.

I E E E S O FTW A R E 4 7

on the overall task. When the interface
design is completed (see Figure 6), the
end user can test it and again provide
feedback on the way the design relates to
the constructed interface model.

Mobi-D is the most recent step in
the evolution of model-based in-

terface development systems. I expect
this technology to continue to evolve.
I also believe it will significantly affect
the way interfaces, and consequently
applications, are built in the future.
This paradigm has the potential to in-
fluence several areas outside develop-
ment life-cycle activities.

First, usability engineers can use in-
terface models to support and integrate
experiment design, data collection, and

results analysis. They can precisely map
the actions of an actual user during an in-
teraction session to a user-task model.
They can also correct deficiencies in us-
ability more efficiently by examining the
relations between user actions and the el-
ements of an interface model. In this
manner, usability processes can be inte-
grated into the development cycle and
offer software support.

Second, some model-based environ-
ments, like Mobi-D, support interface de-
sign by offering guidance, not by au-
tomating the process. As such they are
actually CAD tools, advisers that assist in-
terface designers in selecting design op-
tions by proposing accurate and reliable
values that rely on design knowledge.
The recommendations do not limit flex-

ibility but rather organize decision mak-
ing. Throughout the development cycle,
the designer remains free to control each
step by deciding which is the right value
for each design option. Tedious or repe-
titious tasks, on the other hand, are auto-
mated so that efficiency is increased.

Finally, because the design environ-
ment must treat interface primitives as
encapsulated objects with predefined
functionality, model-based development
systems are a good fit for Internet-based
user interfaces that rely on elements such
as Java applets or ActiveX controls. The
modularity of those elements suggests a
component-based framework for inter-
face development that model-based sys-
tems can exploit to establish a method-
ology for distributed interfaces. ◆

ACKN OWLED GMEN T S

The work on Mobi-D is supported by the Defense Advanced Research Projects Agency
under contract N66001-96-C-8525. David Maulsby contributed significantly to the design of
the Mobi-D tools. I also thank Eric Cheng, Kjetil Larsen, Justin Min, and Chung-Man Tam
for their work on the development of Mobi-D. Finally, I thank Egbert Schlungbaum, Jean
Vanderdonckt, and Pedro Szekely for their comments and opinions on an earlier version of
this article.

REFEREN CES

1. A. Puerta, “The MECANO Project: Comprehensive and Integrated Support for Model-Based
Interface Development,” Proc. CADUI 96, J. Vanderdonckt, ed., http://www.info.fundp.ac.be/~jvd/
dsvis/cadui96.html.

2. A. Puerta and D. Maulsby, “Management of Interface Design Knowledge with MOBI-D,” Proc. Int’l
Conf. Intelligent User Interfaces, ACM Press, New York, 1997 (to be published).

3. A. Puerta, “Model-Based Automated Generation of User Interfaces,” Proc. Nat’l Conf. Artificial
Intelligence, MIT Press, Cambridge, Mass., 1994, pp. 471-477.

Angel Puerta is a research

scientist at Stanford Univ-

ersity, where he leads a

team of researchers work-

ing on Mobi-D and where

he developed Mecano. He

has published numerous

articles on model-based

interface development and

has an upcoming book on

the subject from Kluwer

Academic Publishers.

Puerta received a PhD in computer engineering

from the University of South Carolina. He is a mem-

ber of the steering committee for the annual confer-

ence on intelligent user interfaces and a member of

the program committee of the annual Computer-

Human Interaction conference. He is a member of

the IEEE and ACM.

Readers can contact Puerta at Stanford Univ-

ersity, MSOB x215, Stanford, CA 94305-5479;

puerta@smi.stanford.edu. For additional informa-

tion on Mobi-D, contact http://www-smi.stanford.

edu/projects/mecano.

.

