
A Model-Based Method for

Organizing Tasks in Product Development

Steven D. Eppinger
Daniel E. Whitney
Robert P. Smith
David A. Gebala

WP# 3569-93-MS Revised November 1993

To appear in Research in Engineering Design, 1994.

A Model-Based Method for Organizing
Tasks in Product Development

Steven D. Eppinger

Daniel E. Whitney

Robert P. Smith

David A. Gebala

Massachusetts Institute of Technology

Abstract

This research is aimed at structuring complex design projects in order to develop better

products more quickly. We use a matrix representation to capture both the sequence of and the

technical relationships among the many design tasks to be performed. These relationships define

the "technical structure" of a project which is then analyzed in order to find alternative sequences

and/or definitions of the tasks. Such improved design procedures offer opportunities to speed

development progress by streamlining the inter-task coordination. After using this technique to

model design processes in several organizations, we have developed a design management strategy

which focuses attention on the essential information transfer requirements of a technical project.

Acknowledgment

This research was conducted at the Massachusetts Institute of Technology. It was funded

jointly by National Science Foundation, General Motors Corporation, and MIT Leaders for

Manufacturing Program.

The four authors are affiliated with (respectively) MIT Sloan School of Management, MIT

Center for Technology, Policy, and Industrial Development, University of Washington, and

Motorola Inc.

page 2

Introduction

Intense competition forces firms to develop new products at an increasingly rapid pace.

This mandate places substantial pressure on engineering teams to develop better products and at

the same time to develop products faster. Engineering organizations have responded to these two
challenges by popularizing the concept of concurrent or simultaneous engineering.

Most of the literature on concurrent engineering describes a successful multi-functional
team approach to product development. It is recommended that the multiple issues be integrated by

allowing design engineers to work closely with manufacturing engineers, field service engineers,
and representatives of others interested in the manufacture and use of the product [6, 15, 37].
There are numerous anecdotes describing small projects (five to ten people) successfully using this

"team integration" approach. We call this concurrent engineering in the small. It works because

small teams can work closely together and the challenging technical issues are exposed and
resolved by mutual understanding.

In contrast, concurrent engineering in the large describes the challenges we see facing
larger projects (hundreds of people) where the development effort is decomposed into many

smaller projects, each possibly performed by a small team. The design of an automobile, aircraft,
or computer can involve thousands of engineers making millions of design decisions over several
years. None of these many tasks is performed in isolation [5]. Each design choice may be a
tradeoff affecting many other design parameters. Facilitating the transfer of information among
design groups is an essential organizational task of product design managers [2, 7, 19, 35]. Their
primary development challenge is to integrate the many sub-problem solutions into a well-designed

system. Some firms address this by assigning system engineers or conflict resolution engineers to
handle the interactions between sub-systems and to arbitrate the disputes between teams. The

trouble is that such interactions are often poorly understood and are rarely known in advance.

Most product development entails the redesign of existing items, rather than design of

entirely new items. We have observed that in most large firms there is a huge investment in
existing design procedures, often heavily bureaucratized. While these procedures seem to work

well, they may have grown up organically and historically. Without having been subjected to
careful analysis, the internal inefficiencies or irrationalities remain largely undetected.

The goal of this research is to assist large concurrent engineering projects to achieve the

benefits experienced by small teams which can discover technical interactions easily. We recognize

that every issue in a large project cannot be considered simultaneously by a focused team. We
have found that design managers need some tools to help structure projects effectively. To start,
we explicitly model such inter-task dependence and use this knowledge to redefine and reorganize

the engineering tasks.

This work departs from traditional project management and engineering design research in
two important ways. First, we consider relatively detailed models of the development procedures,

which allow us to understand the complex interactions among activities. These models permit us

page 3

to capture the basic iterative nature of design. (Whereas, traditional project management

models[39] utilize simple precedence network models that cannot depict iteration.) Second, by
explicitly modeling such coupling, we can attempt to reduce the complexity involved in large

projects by restructuring entire development procedures. (Whereas, most engineering design

research is aimed at improving the isolated effectiveness of the more focused engineering tasks.)

We aim to develop a design management strategy which can improve the product

development process by:

1. documenting existing procedures for scrutiny of the team,

2. resequencing and regrouping design tasks to reduce complexity,

3. sharing engineering data earlier and/or with known confidence,

4. redefining critical tasks to facilitate overall project flow,

5. exposing constraints and conflicts due to task interactions,

6. helping design managers to place emphasis on task coordination, and
7. allowing design iteration to be strategically planned.

Our approach involves mapping an existing or proposed design procedure into a simple

array representing the complex inter-relationships among the many design tasks which must be
accomplished. The argument for a design methodology which corresponds to the underlying

structure of the design problem has been articulated by Steward [32], Simon [25], and other

authors, most notably Alexander in the 1960s [1]. The analysis we will perform considers the

relative importance of each input to the design decisions, allowing the information requirements to

determine the appropriate scheduling of the activities. The result of this analysis is an array of

options for a manager or engineer to rearrange or reprioritize the tasks. Strategies include

decoupling and resequencing tasks, insertion of new decision points, splitting or condensing tasks,

and other schemes to improve the flow of information and decisions.

Sequencing Development Tasks

Creating a detailed information-flow description of a project involves explicitly mapping

out the technical aspects of the design procedure. We contend that to be most useful, the design
representation must include not only the sequence of the tasks but also the many technical and

informational relationships among the tasks. The description we use is based on Steward's design

structure matrix. However, before presenting this method, we will illustrate some general issues

in sequencing design tasks and transferring engineering information with a simple example.

Consider two development tasks, labeled A and B. Figure 1 shows directed graphs

(digraphs) [36] of three possible ways in which the two can be related. If task B simply requires

the output of task A (or vice-versa), then the two tasks are dependent and would typically done in
series. On the other hand, the two would be entirely independent if tasks A and B could be
performed simultaneously with no interaction between the designers. Finally, if task A needs
information from task B, and also task B requires knowledge of task A's results, then the two
tasks are interdependent, or coupled.

page 4

Dependent Tasks Independent Tasks Interdependent Tasks
(Series) (Parallel) (Coupled)

Figure 1. Three Possible Sequences for Two Design Tasks

Coordinating either the dependent (series) tasks or the independent (parallel) tasks is quite

straightforward. Certainly with no limitation on resources, the parallel tasks can be completed

more quickly. The interdependent (coupled) tasks are much more challenging to organize, often

requiring much more design time and many iterations of information transfer [33].

To illustrate using a familiar theme, we can envision task A to represent a product design

function, and task B to represent the associated manufacturing engineering function. Then our

series model depicts the outdated "throw the design over the wall" methodology. The parallel tasks

model might then represent an idyllic view of simultaneous engineering, where both design and

manufacturing functions are given the same challenge, and they magically develop product and

process concurrently (without complex interactions). The coupled tasks model is a more realistic

diagram of simultaneous engineering, where the information transfer is essential and iteration is

typical.

The Design Structure System

Steward's design structure system [31, 32] uses a representation which allows the direct

coupling of any task to another. Figure 2 shows the design structure matrix in its original binary

form as described by Steward, where the design tasks to be performed are each represented by an

identically labeled row and column of the matrix. The marked elements within each row identify

which other tasks must contribute information for proper completion of the design. For example,

the marks in row D are in columns E, F, and L, indicating that execution of task D requires

information to be transferred from tasks E, F, and L. We would then desire these three tasks to be

performed before task D. (The diagonal elements in the matrix are essentially meaningless at this

point but are included to distinguish the diagonal and the upper and lower triangles of the matrix.)

A B

page 5

A

B

C
D

E

F

G

H

J

K

L

ABCDEFGH I JK L

Figure 2. A Binary Design Structure Matrix, Unpartitioned

The first step of design structure analysis is to find a sequence of these design tasks which

allows this matrix to become lower triangular. If the tasks can be sequenced so that each one can

be executed only after it receives all the information it requires from its predecessors, then no

coupling remains in the design problem. However, this rarely happens. Instead, analysis usually

yields a matrix in a block-lower-triangular form. The blocks on the diagonal depict coupling due to

feedback, and the remaining below-diagonal marks represent the feedforward of information to

later tasks. Figure 3 shows the above matrix after the twelve tasks have been rearranged

(partitioned) by interchanging rows and also swapping the corresponding columns to achieve a

more organized design sequence.

The partitioning process has sequenced the tasks to be performed in the order: B-C-A-K-

L-J-F-I-E-D-H-G. The matrix shows that task C is dependent upon task B, so they are

performed in the sequence B-C. Tasks A and K are both dependent upon task C but they can then

be completed in parallel (since task K does not depend upon task A, and vice-versa). The two

"blocks" encompassing the task sequences L-J-F-I and E-D-H identify two sets of coupled tasks,

the most challenging aspects of this design problem. Each of these two sets of tasks must be

performed simultaneously, and the information transfer required may take the form of iteration

and/or negotiation.

The matrix partitioning in Figure 3 is unique (in terms of grouping coupled tasks into

blocks); only the ordering of parallel activities and sequencing within the blocks depend on the

algorithm used to reorder the tasks. Several schemes for identifying the blocks are available,

including techniques based upon binary matrix algebra [12], a rule-based (expert system) analysis

[22, 23, 28], and Steward's loop tracing procedure [30]. We have also developed improved

partitioning algorithms which are discussed in another paper [8].

* X i

X . X

X ' X

. X XX X
I I

X X X

X X X *X X

X X

X XXXX X · x X X
X X · X

XX X .XX

x~~~i XXX

--

page 6

B C A K L J F I E D H G

X Series

X _

xx .
Xx

XX X

X

J rarallel

* X X

X X
X x

X X *

X X

X X

XX X

X X

Figure 3. The Binary Design Structure Matrix, Partitioned to Represent a Sequence

When the design structure matrix cannot be manipulated into lower triangular form, we

then seek a form that minimizes the size and number of the remaining blocks on the diagonal.

Collapsing these blocks into single tasks (as would be required for PERT analysis) would certainly

make the project appear to be simpler. In our example, we would combine tasks L, J, F, and I

into one task and then collapse tasks E, D, and H into another. We would be left with seven tasks

in lower-triangular form instead of the twelve tasks as shown. However, this approach hides the

real design problems and precludes any opportunity to further improve the design procedure by

applying other techniques.

Since the coupled blocks in the design structure matrix represent design iteration, choosing

the proper sequence to work through even these tasks is quite important. We believe that there is

significant advantage in performing the initial "guesswork" required to start the design iteration at a

specific task which may allow the design to converge quickly. This can reduce the time required

by the iterative process by isolating uncertainty and increasing the confidence associated with the

design decisions. Several algorithms also exist for sequencing within these blocks. This problem

is analogous to the analysis of chemical flow sheets [9, 10, 12]. Steward terms this procedure

tearing, since guessing the unknown information corresponds to elements being torn from the

matrix to get the iteration started. Effective tearing requires detailed knowledge of the problem

domain so that the less important elements are torn to leave the essential ones below the diagonal.

(Note that tearing does not actually alter the matrix by removing any of the marks, rather these

procedures simply find a suitable ordering within a block.)

An encouraging demonstration of Steward's matrix representation is found in recent work

at NASA [22, 23, 28]. As an example problem to test their rule-based partitioning algorithm, they

modeled the process of designing a complex spacecraft antenna system with over 50 interrelated

tasks [17]. The design structure analysis showed that in this design problem there is a small

B

C

A

K

L

J

F

I

E

D

H

G

Coupled

X

X

X
S

page 7

number of large subsystems containing from 5 to 20 tasks each. These coupled groups of tasks

are then performed in the sequence: actuators, sensors, structures, dynamics, controls, etc.

Extensions to the Design Structure Matrix Representation

As presented by Steward, the binary design structure matrix represents only strict

precedence relations. (A task either does or does not depend upon another task.) In complex

design (sub-)problems, we find that the binary matrix is often crowded with weak dependences,

and this leads to an extremely coupled design matrix. Furthermore, there is no representation in

these models of task completion time, which could be used to understand overall project timing.

We therefore extend the basic representation by explicitly including measures of the degree

of dependence and of the task durations, so that we can use more sophisticated analytical

procedures to further improve the design process. Figure 4 shows a numerical design structure

matrix which uses values in the off-diagonal positions to represent the relative importance of each

task dependence. (Blanks are zeroes, depicting no task dependence.) The diagonal values

represent task completion time.

The rules for partitioning and tearing this matrix can now consider rearranging tasks to (for

example) minimize the iterative backtracking required within the coupled sub-systems by arranging

the more important feedback marks closer to the diagonal. For example in Figure 4, the tasks are

sequenced such that the lesser dependences lie further above the diagonal.

B C A K L J F I E D H G

B

C

A

K

L

J

F

I

E

D

H

G

1.

.54 2.

4.

.40.59 2.

.27 .9.

.45 .87 .0!

.38

.81

1.8.91 .2(

.94 3.4 .59

.51 2.1

.22.47 1.

.16 .28

.39 .92

.90 .05 .8C
I

.96 .88

8.5 .1

.45 3.3

.33 1..

Figure 4. A Numerical Design Structure Matrix

The numerical coupling values need not necessarily depict the strength of the task input

dependence. Other metrics to consider include task communication time, functional coupling [21],

physical adjacency, electrical or vibrational characteristics, parameter sensitivity, historical variance

of task results, certainty of planning estimates, or volume of information transfer. Furthermore,

i

L
6.7

page 8

each matrix element could instead be a vector of multiple measures, such as certainty and strength

of dependence. Note that each of these metrics results in a different representation of the process,

and appropriate analytical models would be required for each.

For example, if a task vitally depends on information from another task but that information

is known to lie within predictable limits, then the dependent task might be able to start based on a
good guess of the anticipated information. Thus the dependence would be represented as weak.

Similarly, if the task depends only slightly on information that is largely unpredictable, the

dependence might again be judged as weak. Contrarily, needed information with large impact and

large variability implies a strong dependence. (We cannot start without it, nor can we predict it

well enough.) An "importance ratio" can be calculated as the basis for determining the strength of

the dependence. This ratio would be similar in definition to Taguchi's "signal-to-noise" ratio used

to compare the relative effects of parameters [4]. To sequence a group of coupled tasks more

smoothly, we would begin with the one which is missing only information that is relatively certain.

Such a strategy would reduce the number of design iterations necessary.

Developing a numerical design structure model can be quite difficult; however, we can

suggest several schemes for finding the numerical values representing task dependence. The most

straightforward method is to combine this step with the initial data-gathering phase where the

dependences are identified in the first place. Alternatively, engineers can be interviewed
specifically to find the coupling strength for the dependences just in the blocks. We have had

success using both of these schemes. Other methods include analytical approaches where the

values could be extracted from an engineering task/parameter sensitivity analysis, or experimental

approaches where the values are found by testing. It is also likely that methods of constraint

propagation [20, 29, 34] can be used to help write the matrix representation automatically. Note

that in problems that are completely described by equations, the equations can be resequenced at
will if numerical solution methods are acceptable [38]. That is, the equivalent of a lower triangular

representation can always be found or simulated in such cases. In general, problems are only

partially described by equations, and a mixed approach is required.

To extend this concept, we have developed two design iteration models, each based upon a

different metric for task coupling and an associated set of assumptions about the underlying

engineering information transfer. Both of these models are intended to predict iteration time and

use task duration estimates in the diagonal positions. In the sequential iteration model, the off-

diagonal numerical values indicate the probability that one additional iteration will be necessary if

the interdependent tasks are performed in the specified order. The analysis supposes that within

the coupled/iterative portion of a design procedure, tasks are performed one at a time. After each is

executed, a probabilistic choice determines whether an earlier task is repeated or whether the

process progresses on toward completion. In a paper describing this work [26], we explain the
model and the Markov chain analysis used to determine iteration time.

The work transfer (parallel iteration) [27] model uses off-diagonal values which measure

what portion of information produced during the first iteration would need to be changed during
the second iteration. In this way the design process can be seen as a series of iterations of

decreasing duration. We assume that work progresses simultaneously on all of the tasks and that

page 9

they create rework for one another at various rates. We developed an analytical procedure for
computing the rate of convergence of the subproblems comprising this coupled system of tasks.
This approach involves analyzing the eigenstructure of the matrix and interpreting the mode shapes
contained in the eigenvectors. Using the eigenstructure analysis, we are able to identify the most
iterative subproblems (which we call design modes) within the matrix.

Exploring Design Structure Data

We have used the design structure system to represent product development procedures at
several different firms. In representing design process data, we have created two types of models:
high-level task-based descriptions, where the inter-task information transfer relationships can be

studied; and low-level parameter-based descriptions which document the technical interactions
among the engineering parameters. The two examples given here are from the automotive
industry; the first shows a task-level description, and the second example demonstrates a

parameter-level description of a design problem. We have found both types of descriptions to be
very useful and insightful in different ways; however they are complementary to one another, and
we will in the future attempt to collect enough detailed data to create hybrid models.

Task-Level Design Description

Figure 5 shows one portion of the matrix representation for the design of a single
powertrain component at General Motors. To develop this matrix, we began with the company's
existing design process documentation, a set of existing IDEF diagrams which describe the "as-is"
component design procedure. (IDEF is a standardized process-diagramming technique used

extensively by US military contractors.) This modeling technique [13, 24] requires the model
authors to extensively interview members of the design organization (at many levels) to
characterize the relationships among the tasks. The legend in the figure identifies various task

coupling labels. The marks I and C represent two different types of task dependence: input and
control, which are defined by the IDEF methodology. Our interpretation is that the C marks depict

smaller dependence than do the I marks. We have labeled some of the above-diagonal marks F to
depict the feedbacks in the design procedure which drive iteration. (Most of the F marks were

originally I marks in the original IDEF model, but are explicit feedback in this particular task

sequence.) Finally, we have added the marks labeled A to improve the design process by
providing additional paths for information flow which were not present in the IDEF model.

The design matrix in Figure 5 appears in the exact sequence documented by the IDEF data.

That is, we found the design tasks to be naturally partitioned into the blocked form shown, with

four tightly linked blocks representing the major (iterative) design activities, coupled through only
a few tasks. Application of the partitioning algorithms discussed above would offer minor changes
in the task sequence. In this case we choose to study the existing process ordering to learn about
its underlying structure. The organizational structure suggested by this matrix would be four
design teams, each performing one of the major activities. In fact, that is the structure which is in

use at the company, perhaps having evolved to minimize the number of external feedback loops.

I I I
I I I

CCC C*
c Ccl

C
C

IC
C
C
C
C
C

I

I

I
. I

I I I

I
I

I II

page 10

Develop Design Concept 1
Develop Process Concept 2

Develop Production Concept 3
Determine Primary Characteristics 4

Determine Physical Requirements 5

Initiate/Monitor Build/Test 6
Review Eng. Change Requests 7

Coordinate Design 8
Schedule Work 9

Discuss with PFT 10
Create Layout 11

Check Geometry Markup 12
Write Detail Ticket 13

Write Specification 14

DetailCheck Camshaft 15
Develop Mockup & Illustrations 16

Store and Distrbute Drawings 17
Review Product Design 18

Develop Process Concept 19
Analyze and Build/Test Results 20

Determine Key Quality Char. 21
Determine FMEA for Process 22
Develop Equipment Concept 23
Determine FMEA for System 24

Develop Quality Plan 25
Verify (process?) Design 26
Analyze Manufacturability 27

Analyze Structure 28
Coordinate Analysis 29
Outsource Analysis 30

Inhouse Analysis 31
Verify Analysis Results 32

Analyze Tolerance (VSM) 33
Resolve Problems 34

1 2 3 4 5 6 7 8 9 1011 12 1314 15 1617 1819 20 2122 23 24 25 26 27 28 2 30 31 Ta3334

Product Design
C

C
C
C

CCC
CCC

CCC

CCC

II I I I

II I I I
II I I I
II I I I

I I 1111 I I
I I I I I I I I

C

Ci
I I

I

I I
I

I

F FF
II I

I
I ·

I I I I
I I I I I

FAA
Process Design

A

A

A
AA AAF

Manufac.
Analysis

C. I
C · I
CI I .

= Input F = Feedback
C = Control A = Addition

LEGEND

Figure 5. Task-Based Design Structure Matrixfor Component Design

Within each of these four blocks, the tasks are performed somewhat concurrently, as
suggested by the strong coupling. However, the overall project flow is largely sequential. For
example, the process design activity requires several inputs from the final stages of product design

(store and distribute drawings). One insight drawn from this model is that to begin process design
earlier, this dimensional information must be transferred sooner. The above-diagonal marks
labeled as feedback represent paths of information transfer requiring potentially long lead time
iterations, or "design rework" that is to be avoided if possible. We have found this sort of task-
level description to be useful in exposing the many forms of internal coupling in complex

development procedures.

To create a numerical task-based DSM, we have developed a simple four-level scheme
which works well for quantifying the dependence of information inputs to each task:

- -

-
II-

I . .I . .l
-

.

- - -

-
-- -�- - --- � ------ I-�

Concept Design F
F
F

FFF AA F
I

I I

.

I
I

I

I
I
I
I
I
I
I

I

I
I
I

.
I

I .

I
I
!

I
I I

page 11

High Information is required to begin the task.

Medium Information is required to end the task.

Low Information is needed only to check result compatibility.

Zero No information is required.

Parameter-Level Design Description

In other design process modeling efforts, we use a very different approach, and have found

very different results. To create a parameter-level description, we document the design process by
interviewing engineers only (not their managers). We ask the designers which parameters must be

known in order to set another design parameter. By documenting all of these precedence

relationships, we develop a "complete" description of the design problem. When partitioned, the

model identifies the flow of information required to develop the final design configuration from the

customer requirements.

Figure 6 shows the design matrix model developed through detailed study of automotive

brake systems. (This work was begun in a related study by Black [3] and was continued by Smith

in our group.) For the brake system model, the design parameters have names like: rotor diameter,

lining material, splash shield geometry, and booster travel. The full brake system model includes

more than 100 design parameters, and this large matrix is shown in Figure 6a to indicate the overall

structure obtained after partitioning. The brake system matrix shows that about one third of the

parameters can be determined rather sequentially beginning with the customer requirements. The

difficult portion of the design problem is described by the large block of more than 30 tasks

forming the center of the matrix. The remaining details of the design are worked out in the lower

portion of the matrix, which involves little iteration.

Knudle envelops & attach pts
Pressure at rr wheel lobde up

Brake torque vs. skid nM
Une pressure vs. brake torque
Splash shield geometryront
Drum envelops & atach pt
Bearing envelop & attach pts
Splash shield geomtry-rear
Air flow undm carwheel space
Wheel material
Wheel desIgn
Tire typ/materid
Vehicle deceleration rate
Temperature at components
Rotor cooling coetclernt
Lining-rear vol and area
Rotor width
Pedal attach pts
Dash deflection
Pedal force (required)
Uning mateial-trear

Pedal mechnical advantage
Uning-front vol & swept area
Uning material-ront
Booster reaction ratlo
Rotor dameter
Rotor envelope & attach ptr
Rotor Material

(a) (b)

Figure 6. Parameter-Based Design Structure Matrixfor Brake System Design

The center block is magnified in Figure 6b to display the coupling more clearly. These

parameters must be set through an iterative process, which in actual practice utilizes several

.0

I' .

L '

I.. I -i~~~~~~b/'~~~ ':~':
i at

I III~ -. · *

I''I . *

* s I I V.. ·* _.%1 . , * .:

: . ' ,.'.

· · · ·
·

· ·.... m..
.'1 ' " , ·· 1 '

I , i,
'. ' 'I ." : ''" i .";;'-

X X
* X X X

X X X X

· X X X

X · X X XX XX
X

X * X X

X X · X X
X X, X

. X
X * X

X ·

XXX X X X

X XX X
X XX X X X

X X X
X X · X X

· XX

X X

X. XX X XX
X · X XX

X X X
X X XX X

XX X. X
XX XX XX

X
X X XX.

I

page 12

computer simulations to predict brake system performance. Unfortunately this block also includes

the prototyping and testing tasks, which take a considerable amount of time. (We find these tasks

in the iterative design loop because certain design parameters require the test results in order to be
finalized.) The engineers found the exposure of technical interactions in this case to be quite

enlightening - many asked for a copy of the matrix diagram as it was taking shape, since this was

the first time anyone had created a picture of the whole process. Similarly, managers appreciated

the matrix model for its power to explain the complex flow of information within the iteration

process. This model helped to launch our related work on modeling design iteration in which we

analyze the mechanisms driving iterative problem solving [27].

Hybrid Design Models

An important extension to this modeling work involves developing hybrid models - those

which contain both task-level and parameter-level information. This is desirable because both the

higher-level task models and the lower-level parametric models are somewhat insufficient. The

former ignore too many important technical details, while the latter lack the overall context. (For

example, in the brake system model, we find that some of the most important redesign loops
involve managerial decisions that are required when key design constraints cannot be met or when

time and budget adjustments are needed.) We strive to create hybrid models which embody both

types of features. Such a model enables the study of the important feedback marks lying far above

the diagonal, linking the blocks of tightly coupled task activity.

We have found that tasks can often be described as sets of parameters to be determined.
These parameters are usually coupled within each task. Using a hybrid model, the coupling

between tasks becomes exposed in sufficient detail to consider redefining tasks by re-grouping

parameters into new tasks. This is simply accomplished by modeling the design process as

existing tasks first, parameters second, and finally re-partitioning the matrix into new task groups.

Creating new models and redefining the inter-block constraints may provide new

opportunities for innovative design management. We call this designing the design process, or

"meta-design", discussed in the following section.

Strategies for Designing Better Design Processes

Analyzing the technical structure of a development project can identify opportunities to

improve the design process. This is particularly true if we are willing to modify the process by re-

defining tasks to alter their inherent coupling. To illustrate design improvement strategies, we

present two conflicting approaches to consider: removing coupling versus adding coupling.

Decoupling Tasks To Speed Design

A loosely coupled group of tasks can sometimes be split up into two or more smaller, more

tightly coupled groups by artificial decoupling, which involves actually removing one or more task

dependences (one or more marks) from the matrix. This can be accomplished in several ways,

including the creation of an additional task to be performed earlier in the design procedure. The

definition of this new task would require the parties associated with the removed dependence to

page 13

agree ahead of time on the relevant task interfaces. Another approach to this artificial decoupling
strategy is illustrated by the following example obtained by comparing the actual design procedures
in two firms developing nearly identical products (an electro-mechanical instrument cluster) for the
same customer (General Motors) [14].

Designers in one firm recognize three aspects of the product (the casing, wiring, and
optics) to be so tightly coupled that they must be designed simultaneously, requiring lengthy
negotiation (five to ten design iterations, taking up to six months) before enough detail can be
settled to tool the first working prototype. The design structure matrix describing this procedure is
shown in Figure 7a. The designers in the competing firm believe that a first prototype must be
delivered much more quickly and that it is acceptable for the wiring inside such a prototype to be
untidy (rather than hard tooled). They have developed the design procedure illustrated by Figure
7b, where the wiring is absent from the design iteration loop. Since only the casing and optical

engineers are involved at first, the design is completed more quickly (in two iterations, taking only
a few weeks) and the prototype is built with crude wiring. The final wiring layout is eventually
completed for the second prototype. The wiring was artificially decoupled from the design in order
to speed development.

u1 m I Il I
Casing Design X X Casing Design
Wiring Details XOptical Layout
Optical Layout XX Wiring Plan
First Prototype X X X W First Prototype

I % - I I

' Wiring Revision
· aSecond Prototyp

%~~"·

I rIl I
I -%I I

(a) (b)

Figure 7. Instrument Design Task Matrices

The artificial decoupling strategy of Figure 7b clearly departs from the recommendations of
concurrent engineering which are embodied in the procedure of Figure 7a. Decoupling is

successful in this case because the coupling of the wiring detail is mostly unilateral. The feedback
from wiring to the other two design tasks is less important. This is recognized and exploited by

the faster design group, where the wiring engineers are given little opportunity to influence the
earlier design stages. One potential criticism for this less coupled but faster design procedure is
potentially inferior quality due to the absence of one important voice in the early phase of the

design process. In fact, it is true that the quick but relatively poor wiring represents a lesser-
quality prototype; however, we observed that this faster design firm ultimately achieves superior
quality which we believe is due to two factors: First, the casing and optics designers are provided

with some basic understanding of the wiring constraints. Second, the wiring is easily revised as
necessary before the second prototype is built, whereas the slower design firm has greater
difficulty revising their (hard-tooled) version.

I

i
I
I

page 14

Increasing Coupling to Improve Design Quality

An increased coupling strategy is the essential basis of simultaneous engineering and

design for manufacture (DFM). In the traditional (sequential) design process, depicted by the
matrix in Figure 8a, the product designers would perform their design tasks somewhat

independently from the manufacturing engineers. In the modern (concurrent) design process,

Figure 8b, the practice of DFM mandates that these two activities be performed simultaneously.

This is beneficial because the production expertise is brought into the early design stages (often
causing much iteration), resulting in designs which are simpler to manufacture - higher quality
design. However, the added coupling in the design process in fact slows product development

considerably. Advocates of this philosophy would argue that overall design time can still be
reduced because the need for later (more lengthy) iteration is therefore lessened. This is
particularly true if the feedback from manufacturing engineering to design was indeed present in

the original design procedure. This feedback is shown in Figure 8a by the + marks which depict

redesign activity addressing the production problems which inevitably arise. Concurrent

engineering has therefore both strengthened the relationships and rearranged the tasks, which

appears to improve quality and may accelerate the project as well.

Design Valve Train + Design Valve Train X X

Design Cylinder Head + + Design Cylinder Head X X X

Manufacturing Analysis X X

Production Engineering X X X

Manufacturing Analysis X X L
Production Engineering X X

(a) (b)

Figure 8. Sequential and Concurrent Design Procedures

A Development Process Strategy

It has become accepted that adding coupling in a design process is helpful to improve

product quality because it can provide feedback of multiple perspectives to early design decisions.

However, since this strategy usually does increase iteration, potentially causing the design process

to take more time to execute, one must not implement this scheme to the fullest extreme; too much

feedback could actually stall design progress. If the matrix were full of marks because every

decision were allowed to directly influence every other decision, then the design procedure might
involve unacceptably many iterations. A compromise must be made to optimize the tradeoff

between reducing design time and improving design quality. To achieve this, tasks must be

defined and arranged so that rapid iteration and task integration can be achieved.

Figure 9 depicts an effective design management strategy which represents a hybrid of the

sequential and concurrent schemes discussed above. We documented this example while working
with a major semiconductor company (Intel Corporation) to help them understand the efficiency of

their development process [16]. The matrix shown in Figure 9 includes several major iterative

page 15

blocks representing the tightly coupled sub-systems which are developed in truly concurrent

fashion. Note that many of these concurrent activity blocks are overlapped, requiring a great deal

of coordination. The matrix also identifies which sets of activities can be executed in parallel and
which should be attempted sequentially. Above the iterative sub-system development blocks lie the

most important elements of this development procedure: the system-level feedback. The few
feedback marks which are above the block-diagonal partitioning drive the longer iterations among

the sub-systems. Since these iterations may involve major development efforts (costly design

rework), they must be managed very carefully - by using CAD tools to accelerate such rework,

and by avoiding the need for this rework whenever possible. The third level of iteration shown in

the matrix is what we call generational learning feedback. These marks at the far upper right

represent the lessons learned late in the project that must be passed on to the next generation of the

product since it is too late to make such changes to the current product.

Set cutomer target
Batimam sales voium
Establish pricing directimn
Scedule project timime
Developmana methods

Macro tu cconsuatint
Financial analysis
Develop program map
Creatm initial QPD matrix
Set tchnical requirements
Writ cto specification

High-level modeling

Writs target specifiation
leveop tt plan
Develop vidati pn
Build bas prototype

Functional modelingl
Develop product modubs
Lay out integration
InMration modeling
Randan temting
Develop tat parameters

Finalize schmatics
Validation simulation
Reliability modeling
Complets poduct layout
Continuity verification
Dosg rule clock
Design package
Gumte ma,
Verify mask in fab
Run wafs
Sot watn
Creatm tst programs
Debug products
Package products

Functionality testing
Send smpes to cmom
PFedhack from custoamm

Verify ample functionality
Approve packaged products
Envirmental validation
Complete product validation
Develop tch. pblications
Develop service onms
Determine marktins am
Licensring strategy
Cram dmntration

Coirm quality goals
Life testing
Infut mortality testin
Mf. process tabilizatin

Develop fld support pila
Thrmal testing

Confirm process standards
Confirm pacp stmrds
Final certification

Vdoume production

Prpe distribumtion mtworkDeliver product to cestomnrs

X X

K X X
KK-fx

I(

X X

X X X' f Concurrent Activity Blocks

.xxxl/

x:. %
[..I -X X X

x x :x x,
X x X x x[

x x x x x % X
K K

% % x % X x

x x xx XX

x x x x X

x % %r xl

x x
x x

x
x i

X X

%

X X X

.KKKKKKXs

K.

X' X %

'K ' XX:

K KKX : f
X X

5KKX
x x x K %

X X K

X

X

X Kx
55K

X

i

f
Irx 77II

K K

Sequential ActvitlesW '- 'x ~ ~ ~~~ ·x x x -I...--~-
!X X % I

Parallel Activity Bloc

x K

Generational Learning Feedback

Potential Iterative Loops

/
Ki

K *K

X X

*K.4 -

x K'. -7rx
I

XI I

x x x I

KKKKKKK

x x

x % xx .

X
X

X %KS
KKKK

X
%

X X XKK

X XKK

Figure 9. Structured Development Process Strategy (Semiconductor Design)

iK K I

_ _ _ _ _ __I _ L _ _ ·1 _i _ _ _ I _ � _ _ _ _�· _ _ I _ _ I ·· 1� _ I_ _�I _� _ _· 1 1� I _ _ _ ·· I I ···_ II _ _ _ _ _� ·· _ _s·Y·l·_
I """" L. M U UM n U L. UWn LAU MM LA M";M. Q . . . I, M . .UM M . M 1A'GI 1 . C.U I C- r n L

I II I mtH-- wt-- g-- m--- o- w- - .40 - - - -- -- -- -- --
- -

- - mm--mm-----mmm---m-! Wmmmemmmmme

_ __
-1

-- - m --- m--m--m bmmlmm~lmmmm ------- ~

-- _ mil. m mmi pB

� . ..�.-�� .I-�-�---�··�-·I·�-��-�

I

It
% %

X'

X

X xx X x x xx x!

X %

X

X

% X
I

i
X

l
mI

X X X

i

i
X

K

% %

X X

X

page 16

We believe that this example demonstrates a carefully structured development process. In

our experience with industrial projects, we have found such a matrix to be obtained through careful

planning and reflection by the development team and its leaders. Dramatic improvements in

development time require a sophisticated understanding of interrelationships and iteration drivers.

To create a superior development process strategy, the design team leaders must take systematic

steps toward improvement. Design managers can implement this scheme by following the plan
outlined below.

1) Engage designers and engineers in a development process modeling activity. We have

found that model development requires approximately one month's effort for an engineer or
manager familiar with the entire process (to create a matrix model with about 50 interacting

tasks or parameters). This activity can sometimes be accelerated using surveys or team

meetings instead of individual interviews. Using the matrix format to display the model

builds group consensus and forms the basis for process analysis and coordination.

2) Find an appropriate set of major tasks into which the overall project may be divided. The

best partitioning may not coincide with natural or traditional subsystems. Rather they may
be found in other areas where many tasks are inherently tightly coupled due to the

underlying problem structure.

3) Facilitate design iteration within these very tightly coupled task blocks. This may require

design automation tools, improved channels of communication, and/or changes in group
membership or organization. When implemented properly, more iterations would actually

be conducted in less time, focusing on the most important issues.

4) Allow many tasks to be performed in parallel when possible. This may be accomplished

by encouraging all participants to identify where their needed information is generated and

to collect those inputs as soon as they are available.

5) Remove some of the less important task couplings which might otherwise cause wasteful
iteration. These may be very difficult to recognize and would generally be a matter of

conflicting opinions, however the leverage gained by streamlining a few tasks may be

substantial if this allows many others to be more productive as well.

6) Most importantly, design managers must decide strategically where to place the important

iteration drivers. Some of these longer feedback loops are essential to the current design.

Others are for generational learning to improve future design efforts. The key feedback

elements must be preserved and these loops should be shortened where possible by

performing coupled tasks closely together .

7) Direct an ongoing effort to continuously modify and improve the matrix design process

model. Solicit suggestions for improvement while spreading process understanding

throughout the organization.

page 17

Conclusion

We recognize that product development is difficult for several reasons: products can be
technologically complex; a complete design procedure may involve millions of tasks; and all the

tasks are coupled in some manner, making iteration an inherent characteristic of the design activity.

We claim that the design process can be performed more successfully if it can be organized more

sensibly.

An industrial product development process involves many interrelated engineering design
procedures. The first step in improving such a process is to model and understand it. However,

the design process has so far lacked convincing and effective models that permit analysis and

systematic development of improvements. The design structure matrix and its associated process

modeling effort is a step in this direction. It assumes that the basic elements of a design process

are tasks that require input information, take time to execute, and produce decisions or output

information for transfer to other tasks. It further assumes that a major route to process

improvement, other than making each task more efficient, is to resequence individual tasks or

groups of tasks so that required information is available sooner and available information is used

sooner. An important extension to the resequencing paradigm is to redefine tasks by breaking

them up into parameters and recombining these into new tasks. We observe that this can often be

accomplished by careful scrutiny of the development procedure, which is facilitated by the design

structure matrix.

Practical results of this approach take several forms. Even without applying algorithms for

resequencing tasks, one can use the design structure matrix as a display of the existing design

process or of the designers' view of the process. The matrix graphically displays all the existing

information flows and makes it easy to see the difficulties in the form of coupling and unnecessary

delays. Engineers can thus find their place in a large and dispersed activity. Pracht showed that

even a simple directed graph was a powerful visual aid in decision making [18], and we have

found that the matrix format reveals even more surprising features, including some problems that

can be easily remedied. While this approach to design process improvement requires a detailed

process model, this requirement is common to all past successful process improvement efforts.

The resulting matrix can also be used as a management tool to redirect engineering effort to tasks

involved in key iterations. Design reviews and progress assessments can also be based on the

matrix, with managers assuring that required information is transmitted, received, and utilized in a

timely manner so that critical tasks can be accomplished as efficiently as possible.

In the future, our research and interaction with industry will produce computer tools that

permit managers to find optimum ways of restructuring more complex design tasks, exposing

problems and creating unique solutions that could not be found just by manually inspecting the

matrix. One can also imagine the matrix augmented with designers' names, phone numbers,

electronic mail addresses, datafile names, and other information. Such information will make

designers' work and communication more efficient and make the structure of engineering design

databases more consistent with the needs of the design process and its information flows.

page 18

We have begun related work on modeling the solution of iterative design procedures such
as the portions represented by the coupled blocks in design structure matrices [26, 27]. We are
also investigating methods for overlapping nominally sequential tasks in product development by

transferring preliminary information before the engineering work is completed [11]. We have been

applying the methods outlined in this paper to document, study, and improve design procedures in
various frmns with rather complicated product development practices (including semiconductor,

telecommunication, aerospace, and automotive industries.)

Bibliography

[1] C. Alexander. Notes on the Synthesis of Form, Harvard University Press, Cambridge,
Massachusetts, 1964.

[2] T. Allen. Managing the Flow of Technology: Technology Transfer and the Dissemination
of Technological Information Within the R&D Organization, MIT Press, Cambridge, MA,
1977.

[3] T.A. Black. A Systems Design Methodology Applied to Automotive Brake Design, MIT,
Masters Thesis, 1990.

[4] D.M. Byrne and S. Taguchi. "The Taguchi Approach to Parameter Design", Quality
Progress. December 1987, pp. 19-26.

[5] K.B. Clark and T. Fujimoto. Product Development Performance: Strategy, Organization,
and Management in the World Auto Industry, Harvard Business School Press, Boston,
1991.

[6] J.W. Dean Jr. and G.I. Susman. "Organizing for Manufacturable Design", Harvard
Business Review. January-February 1989, pp. 28-36.

[7] P.F. Drucker. "The Discipline of Innovation", Harvard Business Review. May-June 1985,
pp. 67-72.

[8] D.A. Gebala and S.D. Eppinger. Methods for Analyzing Design Procedures, ASME
Conference on Design Theory and Methodology, Miami, September 1991, pp. 227-233.

[9] D.M. Himmelblau. "Decomposition of Large Scale Systems, Part 1: Systems Composed of
Lumped Parameter Elements", Chemical Engineering Science. vol. 21, 1966, pp. 425-438.

[10] E. Kehat and M. Shacham. "Chemical Process Simulation Programs, Part 2: Partitioning
and Tearing of System Flowsheets", Process Technology International. vol. 18, no. 3,
March 1973, pp. 115-118.

[11] V. Krishnan, S.D. Eppinger and D.E. Whitney. A Model-Based Frameworkfor
Overlapping Product Development Activities, MIT Sloan School of Management Working
Paper, November 1993.

[12] W.P. Ledet and D.M. Himmelblau. "Decomposition Procedures for the Solving of Large
Scale Systems", Advances in Chemical Engineering. vol. 8, 1970, pp. 185-254.

[13] D.A. Marca and C.L. McGowan. SADT: Structured Analysis and Design Technique,
McGraw Hill, New York, 1988.

page 19

[14] D.A. Marshall. Dynamic Benchmarking: A Comparative Study of Automotive Suppliers,
MIT, Masters Thesis, 1991.

[15] J.L. Nevins and D.E. Whitney. Concurrent Design of Products and Processes, McGraw
Hill, New York, 1989.

[16] S.M. Osborne. Product Development Cycle Time Characterization Through Modeling of
Process Iteration, MIT, Masters Thesis, 1993.

[17] S.L. Padula, C. Sandridge, R.T. Haftka and J.L. Walsh. "Demonstration of
Decomposition and Optimization in the Design of Experimental Space Systems". In J.-F.
M. Barthelemy, Ed. Recent Advances in Multidisciplinary Analysis, NASA Langley
Research Center, Hampton, Virginia, 1988, pp. 297-316.

[18] W.E. Pracht. "Gismo: A Visual Problem-Structuring and Knowledge-Organization Tool",
IEEE Transactions on Systems, Man, and Cybernetics. vol. SMC-16, no. 2, March/April
1986, pp. 265-270.

[19] J.B. Quinn. "Managing Innovation: Controlled Chaos", Harvard Business Review. May-
June 1985, pp. 73-84.

[20] J.R. Rinderle and V. Krishnan. "Constraint Reasoning in Design", International
Conference on Design Theory and Methodology. Chicago, September 1990.

[21] J.R. Rinderle and N.P. Suh. "Measures of Functional Coupling in Design", ASME
Journal of Engineering for Industry. November 1982, pp. 383-388.

[22] J.L. Rogers. DeMAID: A Design Manager's Aide for Intelligent Decomposition User's
Guide, NASA Technical Memorandum, 101575, March 1989.

[23] J.L. Rogers and S.L. Padula. An Intelligent Advisorfor the Design Manager, NASA
Technical Memorandum, 101558, February 1989.

[24] D.T. Ross. "Structured Analysis (SA): A Language for Communicating Ideas", IEEE
Transactions on Software Engineering. vol. SE-3, no. 1, January 1977, pp. 16-34.

[25] H.A. Simon. The Sciences of the Artificial, MIT Press, Cambridge, Massachusetts, 1970.

[26] R.P. Smith and S.D. Eppinger. A Predictive Model of Sequential Iteration in Engineering
Design, MIT Sloan School of Management Working Paper, no. 3160, Revised November
1991.

[27] R.P. Smith and S.D. Eppinger. Identifying Controlling Features of Engineering Design
Iteration, MIT Sloan School of Management Working Paper, no. 3348, rev. September
1992.

[28] J. Sobieszczanski-Sobieski. Multidisciplinary Optimization for Engineering Systems:
Achievements and Potential, NASA Technical Memorandum, 101566, March 1989.

[29] D. Sriram and M.L. Maher. "Representation and Use of Constraints in Structural Design",
AI in Engineering. Springer-Verlag, Southampton, UK, April 1986.

[30] D.V. Steward. "Partitioning and Tearing Systems of Equations", SIAM Journal of
Numerical Analysis. ser. B, vol. 2, no. 2, 1965, pp. 345-365.

^�YIP� "-""�--L�-··--·�·""-^·"----"-·�·���-`��-

page 20

[311 D.V. Steward. "The Design Structure System: A Method for Managing the Design of
Complex Systems", IEEE Transactions on Engineering Management. vol. EM-28, no 3,
August 1981, pp. 71-74.

[321 D.V. Steward. Systems Analysis and Management: Structure, Strategy, and Design,
Petrocelli Books, New York, 1981.

[33] N.P. Suh. The Principles of Design, Oxford University Press, New York, 1990.

[34] G.J. Sussman and G.L. Steele. "Constraints -- A Language for Expressing Almost-
Hierarchical Descriptions", Artificial Intelligence. vol. 14, 1980, pp. 1-39.

[35] E. von Hippel. The Sources of Innovation, Oxford University Press, New York, 1988.

[36] J.N. Warfield. "Binary Matrices in System Modeling", IEEE Transactions on Systems,
Man, and Cybernetics. vol. SMC-3, no. 5, September 1973, pp. 441-449.

[37] D.E. Whitney. "Manufacturing By Design", Harvard Business Review. July-August 1988,
pp. 83-91.

[38] D.E. Whitney and M. Milley. "CADSYS: A New Approach to Computer-Aided Design",
IEEE Transactions on Systems, Man, and Cybernetics. vol. SMC-4, no. 1, January 1974,
pp. 50-58.

[39] J.D. Wiest and F.K. Levy. A Management Guide to PERT/CPM, Prentice-Hall,
Englewood Cliffs, New Jersey, 2nd Edition, 1977.

