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Purpose: Due to the increased axial coverage of multislice computed tomography (CT) and the

introduction of flat detectors, the size of x-ray illumination fields has grown dramatically, causing an in-

crease in scatter radiation. For CT imaging, scatter is a significant issue that introduces shading artifact,

streaks, as well as reduced contrast and Hounsfield Units (HU) accuracy. The purpose of this work is to

provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging.

Methods: The method starts with an estimation of coarse scatter profiles for a set of CBCT data in

either image domain or projection domain. A denoising algorithm designed specifically for Poisson

signals is then applied to derive the final scatter distribution. Qualitative and quantitative evaluations

using thorax and abdomen phantoms with Monte Carlo (MC) simulations, experimental Catphan

phantom data, and in vivo human data acquired for a clinical image guided radiation therapy were

performed. Scatter correction in both projection domain and image domain was conducted and the

influences of segmentation method, mismatched attenuation coefficients, and spectrum model as well

as parameter selection were also investigated.

Results: Results show that the proposed algorithm can significantly reduce scatter artifacts and recover

the correct HU in either projection domain or image domain. For the MC thorax phantom study, four-

components segmentation yields the best results, while the results of three-components segmentation

are still acceptable. The parameters (iteration number K and weight β) affect the accuracy of the

scatter correction and the results get improved as K and β increase. It was found that variations in

attenuation coefficient accuracies only slightly impact the performance of the proposed processing.

For the Catphan phantom data, the mean value over all pixels in the residual image is reduced from

−21.8 to −0.2 HU and 0.7 HU for projection domain and image domain, respectively. The contrast of

the in vivo human images is greatly improved after correction.

Conclusions: The software-based technique has a number of advantages, such as high computational

efficiency and accuracy, and the capability of performing scatter correction without modifying the

clinical workflow (i.e., no extra scan/measurement data are needed) or modifying the imaging hard-

ware. When implemented practically, this should improve the accuracy of CBCT image quantita-

tion and significantly impact CBCT-based interventional procedures and adaptive radiation therapy.
C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4943796]
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1. INTRODUCTION

Scatter contamination remains to be one of the most important

problems in cone beam computed tomography (CBCT)

imaging. Usually, artifacts are present when the model used

in the reconstruction algorithm is not consistent with the

projection data acquisition model. Despite extensive efforts

from the imaging science community, existing reconstruction

algorithms in clinically used CBCT systems do not model the

scatter radiation adequately, leading to severe scatter artifacts

and hindering the maximal utilization of the technology.

Indeed, scatter artifacts often manifest themselves as shading

or streaks between high contrast objects, reduced contrast

resolution, and inaccurate Hounsfield Units (HUs). Scatter

correction has been extensively studied in the past decades

but a clinically reasonable solution remains illusive. Current

scatter correction methods can be briefly classified into five

approaches: physical scatter rejection, analytical modeling,

Monte Carlo (MC) simulation, primary modulation, and

scatter measurements.

Physical scatter rejection techniques employ an air gap, an

antiscatter grid (ASG), or bow-tie filter in the data acquisition

systems.1–4 They usually yield insufficient correction and

additional scatter correction is recommended. Additionally,
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with the introduction of an antiscatter grid, soft-tissue

contrast-to-noise ratio (CNR) may be affected due to the

inevitable concomitant rejection of primary events. As thus

an undesired increase in dose would be necessary to achieve

prior image quality.3,5

In analytical modeling methods, a scatter potential which is

usually a function of primary signals convolved with a scatter

kernel is employed to estimate the scatter radiation distribution

in the measured raw data.6–19 These methods preserve the field-

of-view (FOV) and require no extra hardware and additional

scan. Computationally they are efficient with a predefined

kernel. The achievable accuracy of the methods depends, how-

ever, heavily on the reliability of the model used for scatter arti-

facts correction. MC simulation based methods, in which the

scatter kernel12,20–25 or the scatter radiation distribution25–35

is computed directly by following through the trajectories of

all involved photons, provide a more robust modeling of the

photon transport process. The technique is, however, compu-

tationally expensive and its potential for routine clinical use

remains questionable. For this reason, Monte Carlo simulation

is often used in combination with other approaches.16,36,37

Both spatial and temporal primary modulation methods

have been studied for scatter correction. The former38–42

assumes that scattered photons are predominantly low fre-

quency in their spatial distribution. With the presence of a

primary beam modulator, the primary signals are separated

from the scatter signals in the Fourier domain. On the other

hand, the scatter profile in the latter approach is assumed

to be unchanged by the temporal modulation of the primary

modulator .43 The approach relies on the use of a demodulation

method to estimate the primary signal. A drawback of these

methods is that they require some extra hardware support or

mechanical modification of the scanners.

Measurement-based scatter correction estimates scatter sig-

nals from blocked areas in partially blocked x-ray beam pro-

files.44–52 In this approach, the scatter photon distribution is

extracted by measuring the signals in periodically shadowed

regions of a beam modifying device placed between the x-ray

source and patient, under an underlying assumption that the

scatter signal is predominately low frequency in space.47 A

prescan with the beam modifier in place and with less view an-

gles than that of a norm scan is usually required.44,47,48 To avoid

double scans, scatter fluence estimation from pixel values near

the edge of the detector behind the collimators or in the “wing”

region was attempted.45,53,54 An advanced method using com-

pressed sensing optimization algorithm is also proposed to

estimate the scatter profile with the signals from the edges of

the field-of-view.53 Furthermore, the use of moving blockers to

avoid double scanning was investigated for improved CBCT

image quality.55–57 In addition to the above methods, post-

corrections using basis images and a level set method were

proposed to mitigate scatter induced cupping artifacts.15,58

In this work, a novel scatter correction method for CBCT

imaging is investigated. The essence of the approach is a

coarse-to-fine estimation of the scatter signals by effectively

utilizing the useful features of the system at various stages of

the calculation. Briefly, the calculation starts with a rough

estimation of the scatter profiles for a given set of data

in either image domain (ID) or projection domain (PD). A

denoising algorithm designed specifically for Poisson signals

is then applied to refine the scatter profiles to derive the

final scatter distribution. Extensive validation of the proposed

approach is carried out using MC simulations, phantom

measurements, and human data. Our results demonstrate that

the proposed approach is robust and works well in various

testing situations. The software-based technique has a number

of advantages, such as high computational efficiency and

accuracy, and the capability of performing scatter correction

without modifying the clinical workflow (i.e., no extra

scan/measurement data are needed) or modifying the imaging

hardware. When implemented practically, this should improve

the accuracy of CBCT image quantitation and significantly

impact CBCT-based interventional procedures and adaptive

radiation therapy.

2. METHODS AND MATERIALS

Measured projection data are comprised of primary and

scatter signals. A major task to remove the adverse effects of

scatters is to find the scattered radiation distribution. The true

signal is obtained by subtracting the scatter distribution from

the measured raw data, i.e.,

Ip(α,x⃗)= I(α,x⃗)− Is(α,x⃗), (1)

where Ip is the corrected projection data, namely, the esti-

mated primary projection data, I is the raw data, and Is is the

scatter signal. Indices α and x⃗ stand for projection view angle

and detector channel number, respectively. For simplicity, we

will drop the indices in the following descriptions.

The proposed method, as shown in Fig. 1, starts with

generating a coarse scatter by polychromatic reprojection

(Sec. 2.A). To obtain the coarse scatter, scatter contaminated

CBCT images reconstructed using the raw projection data

were segmented and a polychromatic reprojection of the

segmented images is performed with consideration of the

predetermined x-ray spectrum (Sec. 2.B) and known data

acquisition geometry. The reprojected data are then subtracted

from the measured raw projection data at each given view

angle to generate a coarse estimate of the scatter profile for

the subsequent denoising algorithm (Sec. 2.C).

2.A. Coarse scatter estimation

The uncorrected CT image is first segmented using the

OTSU method59 which exhaustively search the optimum

thresholds separating the image into different classes so that

their intraclass variance is minimal. Based on the segmented

image volume, the primary signal can be modeled as follows:

Îp = N

 Emax

0

dEΩ(E) η(E) exp


−

 l

0

µ(E, s)ds


, (2)

where N is the totalnumberofphotons,Ω(E) thepolychromatic

x-rayspectrum,andη(E) theenergy-dependentefficiencyofthe

detector. Emax is the maximum photon energy of the spectrum.

µ(E, s) is the energy-dependent linear attenuation coefficient

and l is the propagation path length (PPL) for each ray and is
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F. 1. Flowchart of the proposed scatter correction method. The method can start with either the raw projection data or a scatter contaminated volume as input.

calculatedusingaGPU-based ray-tracingalgorithm.60,61 Using

these notations, the flood field I0 is written as

I0= N

 Emax

0

dEΩ(E) η(E). (3)

After replacing N with I0 and substituting it into Eq. (2), the

result describes the estimated primary signal with flood field

I0,

Îp =
I0

 Emax

0
dEΩ(E) η(E) exp


−
 l

0
µ(E, s)ds


 Emax

0
dEΩ(E) η(E)

. (4)

Subtracting the above estimated primary signal from the

measured total projection data I, the coarse scatter signal Îs
becomes

Îs = I−
I0

 Emax

0
dEΩ(E) η(E) exp


−
 l

0
µ(E, s)ds


 Emax

0
dEΩ(E) η(E)

. (5)

Note that the segmented image volume is generated from a

scatter contaminated reconstruction, which is in turn used to

estimate the primary signals in our method.

2.B. Polychromatic spectrum estimation

To accurately calculate the primary signal Îp, the energy

spectrum Ω(E) used in the polychromatic reprojection should

be modeled precisely. In this study, an indirect transmission

measurement-based spectrum estimation method was em-

ployed to estimate an effective spectrum which can model the

polychromatic attenuation process of the projection data.62

The technique is briefly summarized below.

The method starts with the reconstruction of a volume

using the raw projection data. The first step of the spectrum

estimation is to segment the uncorrected images into different

components using OTSU method.59 By calculating the PPL

for each of the segmented components for each detector pixel,

we generate a set of polychromatic reprojection data using Eq.

(2) with the PPLs and an estimated polychromatic spectrum.

The estimated spectrum is then iteratively updated to minimize

the difference of the measured and reprojected data. To further

improve the robustness of the iterative spectrum estimation

procedure, the estimated spectrum is expressed as a weighted

summation of a set of model spectraΩi(E) which are obtained

using either Monte Carlo simulation or analytical spectrum

generators63,64 with different filtration, i.e., the estimated

spectrum Ω(E) can be expressed as follows:

Ω(E)=

M

i=1

ciΩi(E), (6)

with M the number of the model spectra, ci the unknown

weights. Based on the model spectra expression, the spectrum

estimation problem is formulated as the following iterative

optimization problem:

c= argminc ∥pm− p̂(c)∥2
2, such that

M

1

ci = 1, ci > 0. (7)

Here pm is the measured projection and p̂ is the polychromatic

reprojection and it is a function of the unknown weights

c, with both taken the logarithmic operation. Within the

study, only projections pm from experimental setups with

negligible scatter contaminations are used for the spectrum

estimation itself, as good spectrum estimations are required.
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The normalization constraint condition
M

1 ci = 1 and the non-

negative constraint condition ci > 0 are used to normalize the

estimated spectrum to unit area and to keep the solution of Eq.

(7) physically meaningful, respectively. Note that the detector

response, which can be regarded as the multiplication of

photon energy and the absorption efficiency for an energy inte-

grating detector,62 is included during the spectrum estimation.

2.C. Denoising the coarse scatter

Since the coarse scatter estimate Îs is dependent on the

segmentation procedure, it may yield inaccurate results, espe-

cially for low contrast objects that have similar attenuation

properties as the background material and for the edges of

two neighboring materials. To compensate for the inaccuracy

caused by segmentation, instead of regularizing the coarse

scatter using a convolution-based scatter model,65,66 in this

study, we directly denoise the coarse scatter (the residual of

the raw projection data and the polychromatic reprojection

data) using a statistical-based denoising algorithm.

It is well known that scatter signal is predominantly low

frequency in both spatial and temporal domains. By assuming

that the scatter photons Is arrive at a specific pixel under Pois-

son distributed statistics, it is possible to recover the noise-free

scatter projection Is from the coarse scatter Îs by using denois-

ing techniques specifically designed for signals that consider

the Poisson distributed origin. Such a possible algorithm to

yield a smooth scatter distribution from Îs was presented in

Ref. 67 and is used in this study. The denoising algorithm is

aimed to solve the following optimization problem:

Is = argminIs


dx⃗(Is− Îs logIs)+

β

2


dx⃗ |∇Is |

2. (8)

Note that Is and Îs are detector pixel dependent and the

integration will run over all of the detector pixels. The first

term of Eq. (8) is a data-fidelity term that considers the Poisson

statistics and keeps Is close to the data Îs, while the second

one is a regularization term to keep the solution Is smooth,

namely, being dominated with low frequency content. β is a

constant to determine the relative weight of the two terms.

This objective function is convex and can be solved using a

variational approach.67,68

The final numerical calculation expression suitable for

implementation using an iterative algorithm (the successive

over-relaxation algorithm is employed in this study) can be

formulated as follows:67

I
(k+1)
s (i, j) = (1−ω)I

(k)
s (i, j)

+
ω

4




I
(k)
s (i, j)−

1

β
*,1−

Îs(i, j)

I
(k)
s (i, j)

+-
 . (9)

Here (i, j) is the detector pixel location index.


Is(i, j)

stands for Is(i+1, j)+ Is(i, j +1)+ Is(i−1, j)+ Is(i, j −1) and

k is the iteration number. ω is an empirical value and ω = 0.8

is used during the processing.

The denoising above relies on the low frequency feature of

the scatter radiation. However, an ASG may be employed in

a realistic application and it is unclear whether the scatter

is still dominated by low frequency content in this case.

Figure 2 shows profiles of the scatter distributions of an

abdomen phantom with and without ASG. It is visible that the

magnitude of the scatter distribution decreases significantly

when the ASG is used. However, the global profile of the

scatter signal with ASG does not change significantly, namely,

the scatter radiation with ASG is still dominant in the low

frequency domain as that without ASG.

In addition, some of the commercial CBCT scanners have

incorporated built-in scatter correction procedures, such as

the kernel-based analytical modeling. In this case, the low

frequency feature of the scatter radiation is also employed

and the scatter signal calculated using the built-in methods is

generally smooth signals. Thus, it is assumed that the residual

scatter signal, which is the difference between the true scatter

signal and the scatter signal precalculated using the built-in

methods, is also a smooth signal and can be applied with the

denoising procedure.

2.D. Implementation of the method in image domain

The proposed method can also be applied on scatter

artifacts contaminated images or a volume as input. In some

clinical scanners, no access to the appropriate raw projection

data format is provided and therefore scatter correction can

only be accomplished in image domain. Based on the fact that

tomographic reconstruction is a linear process, i.e., the order of

summation and backprojection operations is interchangeable,

a scatter projection error ∆ps, which can be added linearly in

the logarithmic raw-data domain, is first calculated. Let pc be

F. 2. Profiles of the MC simulated scatter radiation of an abdomen phantom with and without ASG using MC simulation. (a) Without ASG, (b) with a 1D

ASG (grid density—80 lp/cm, grid ratio—6:1). (c) Scatter radiation line profiles without ASG (red), with ASG (blue), and their difference (green) (see color

online version).
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the scatter corrected projection value after taking logarithm,

its value is given by

pc = ln
I0

I− Is
. (10)

Since we have pc = p+∆ps and the logarithmic raw projection

data p= ln(I0/I), ∆ps can be expressed as

∆ps = ln
1

1−Isep
, (11)

where Is = Is/I0. In Eq. (11), p can be obtained by a forward

projection of the uncorrected images; thus in order to get

∆ps, we need to calculate Is, i.e., the predenoised ̂I s = Îs/I0.

Meanwhile, for each of the prelogarithmic projection data

I, we have I = I0e−p. After substituting this expression into

Eq. (5), the predenoised ̂I s can be calculated as follows:

̂I s = e−p−

 Emax

0
dEΩ(E) η(E) exp


−
 l

0
µ(E, s)ds


 Emax

0
dEΩ(E) η(E)

. (12)

From this, we can generate the denoised scatter estimate Is
and now all of the variables in Eq. (11) are known or can be

precalculated. We then reconstruct ∆ps to obtain the scatter

error images or volume ∆ f s. By simply adding the ∆ f s to the

uncorrected raw images or volume fu, we obtain the scatter

corrected image fc,

fc = fu+∆ f s. (13)

Note that these images are functions of spatial variable and

Eq. (13) is operated in a pixelwise fashion. It should be noted

that based on the assumption of Subsection 2.C, for the image

domain implementation, the input uncorrected image may be

an image that is preprocessed using the built-in methods and

residual shading artifacts are still presented.

2.E. Monte Carlo simulations

To validate the proposed algorithm, an anthropomorphic

thorax phantom and an abdomen phantom were used to gen-

erate MC simulation data with the 4-based MC simula-

tion package .69 To quantitatively and qualitatively inves-

tigate the effect of scatter artifacts reduction, a water insert

including three small low contrast compartments (adipose,

breast, and liver) is placed in the central area of the two phan-

toms. A bone insert is also included in the phantom. In the 

simulation of x-ray CT scanning, in order to store the targeted

events information, two types of sensitive detectors (the crys-

talSD and phantomSD) were defined. Physical interactions

including photoelectric, ionization, Compton-, Rayleigh-, and

multiple scattering within the sensitive detectors are recorded.

The crystalSD is attached to the CT detector to score the

photons that arrived at the detector, while the phantomSD

is attached to the CT phantom to retrieve information about

the Compton- and the Rayleigh-scattered events within the

phantom. For any volume attached to the sensitive detector,

information (such as energy deposition, geometrical informa-

tion, position and time, and types of interaction) is stored. The

object oriented data analysis framework  is used to extract

and analyze the recorded photon events.

For the analysis, primary projection data, scatter only pro-

jection data, and primary plus scatter projection data were ex-

tracted independently. The primary photon events were defined

as photons which are scored by the crystalSD and did not un-

dergo interactions in the phantom. The scattered photon events

were defined as photons which are scored by the crystalSD

and have at least one Compton- or Rayleigh-scatter interac-

tion in the phantom. Since energy-integrating detectors are

commonly used in clinical applications, total energy deposited

in a specific time interval and at a specific detector pixel is

considered as the projection data of the specific pixel in the

specific view angle. One of the advantages of using MC simu-

lations is that they can differentiate primary photons and scatter

photons. The primary plus scatter projection data, referred to as

the total projection data, correspond to the realistic projection

data acquired using a CBCT scanner and are corrected using

the proposed algorithm. Thus the estimated scatter signal and

the corrected image can be compared directly to the true scatter

signal and the primary image (reconstructed using primary

projection data and served as the ground truth), respectively.

For computational purpose, a parallel geometry and a plane

x-ray source (2D 320×120 mm2 rectangle source) were used in

the MC simulations. The distance from the source to the center

of rotation is 750 mm and the distance from the detector to the

center of rotation is 450 mm. A circular scan was simulated

where a total of 360 projections per rotation are acquired

over an angular range of 360◦. The detector element size is

1×36 mm2 (width×height) and the detector consists of 320 de-

tector columns. Since the correction is performed in projection

domain, the reprojection geometry should be the same with the

MC geometry, namely, a parallel reprojection geometry. The

material of the detector elements is CsI and its thickness is

1 mm. For clinical CBCT scanners, the thickness of the CsI

crystals in the flat-detectors is usually 600 µm. We slightly

increased the crystal thickness to 1 mm here to improve the

absorption efficiency. The polychromatic x-ray source spec-

trum is 125 kVp and it is generated using the  soft-

ware63 with 5 mm aluminum filtration. For each of the simu-

lations, a total number of 3×1010 photons were emitted and

the whole simulation time took about one week on a computer

node machine which equipped 32 cores of Opteron 6134.

Since scatter radiation affects the spectrum estimation, the

5 mm aluminum filtered 125 kV polychromatic spectrum was

first recovered using a water cylinder phantom in 2D setup. In

this case, the effect of scatter radiation is negligible. During

spectrum estimation, ten  (Ref. 63) model spectra were

used and the hardest spectrum was employed as initial guess

for optimization problem Eq. (7).

2.E.1. Calculation in projection and image domain

We first investigate the scatter correction for the anthropo-

morphic thorax phantom and the abdomen phantom in projec-

tion and image domain. Primary projections and primary

plus scatter (total) projections were used to reconstruct the

primary images and the total images, respectively, using a FBP

algorithm with the band-limited Ramp filter (i.e., Ram–Lak

filter) whose cutoff frequency is set to the Nyquist frequency.

Medical Physics, Vol. 43, No. 4, April 2016
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During the correction, the denoising was performed with

β = 100 and K = 500. A quantitative analysis on the corrected

images was applied to test the accuracy of the HUs for different

regions of interest (ROIs) in the water insert by comparing

them to the values of the primary image.

2.E.2. Segmentation

The polychromatic reprojection is performed using the

uncorrected CBCT images with all relevant structures (such

as adipose, soft tissue, and bone) segmented. However, due to

the limited contrast resolution, structures with similar atten-

uation coefficient may not be differentiated from each other

during the segmentation, which may affect the final results. To

evaluate the influence of segmentation, different segmentation

methods (two-, three-, and four-component segmentation)

were performed for the same uncorrected CBCT images. A

polychromatic reprojection was then performed for each of

the segmented images. For all of the scenarios, β and K are

set to 10 000 and 1700, respectively. The resulting scatter

corrections were then evaluated in accordance to the accuracy

of HUs for the different segmentation methods. Furthermore,

we compared the results to a perfect segmentation where each

component was well identified.

2.E.3. Parameters selection

In order to optimize the denoising parameters β and itera-

tion number K in Eq. (9), scatter corrections in both projec-

tion and image domains using different β and K values were

performed for the anthropomorphic thorax phantom. The HU

accuracy for different ROIs was used again to quantitatively

and qualitatively characterize the quality of the corrections.

2.E.4. Robustness evaluation

As mentioned above, an attenuation coefficient needs to be

assigned to each of the segmented components. The attenua-

tion values are usually obtained from the NIST database and

then interpolated for all energies between 0 and 150 keV with

the spline method. These values are regarded as the standard

attenuation coefficients. However, in realistic applications, the

attenuation coefficients may deviate from the standard values.

For example, a fatty body may have lower attenuation coeffi-

cients than the standard tissue. Thus, it is necessary to inves-

tigate the robustness of the proposed method against the as-

signed attenuation coefficients. In this evaluation, the assigned

attenuation coefficients were scaled by 95% and 105% inten-

tionally. The results with the mismatched attenuation coeffi-

cients were compared to those without variations.

In order to further evaluate the effect of the spectrum model

on scatter correction, we have also corrected the thorax phan-

tom using mismatched spectra on purpose. Specifically, two

mismatched spectra (1 mm aluminum softer and harder than

the true spectrum) were used to test the effect of spectrum

model. Results obtained using the mismatched spectra (labeled

as A and B) were compared to those without variations by

quantitatively measuring the ROIs labeled on the inserts.

In addition, a high frequency bar pattern has been added

to the thorax phantom to test the performance of the method.

Due to the huge computational cost, we have generated the

data in a synthetic fashion. We first forward projected the high-

frequency structure (bar pattern) to obtain a set of projection

data, which were then added to the previously generated raw

total projection data. In this case, we have assumed that the

influence of the bar pattern on the scatter distribution is negli-

gible (the bar pattern is small compared to the phantom). The

attenuation coefficient of the bar pattern is consistent with the

attenuation coefficient of the bone structure in the CT image.

To obtain the ground truth, the bar pattern was also added to

the primary CT image. The scatter corrections were performed

in image domain.

2.F. Physical phantom experiments

The proposed algorithm was also evaluated for experi-

mental data of a Catphan600 phantom (The Phantom Labo-

ratory, Salem, NY), scanned using a CBCT on-board imager

(Varian 2100EX System, Varian Medical Systems, Palo Alto,

CA). The acquisition parameters of the experimental scan

are listed in Table I. A total of 678 projections were evenly

acquired in a 360◦ rotation with 2× 2 binning and without

bow-tie filter. Both wide collimation and narrow collimation

modes were applied with the same scan parameters where the

narrow collimation is considered as the scatter-free reference

for comparison. During the correction, the 100 kVp poly-

chromatic spectrum was estimated using the raw projection

data of a narrow collimated water tank phantom. Quantitative

analyses including line profiles as well as the mean values over

all pixels in the difference images (primary minus corrected)

were performed.

2.G. Patient study

Patient data from a human pelvis scan were also used

to evaluate the proposed method. These data were acquired

in half-fan mode using the state-of-the-art CBCT imaging

system of the Varian TrueBeam system (Varian Medical

Systems, Palo Alto, CA). The tube potential was set to

125 kVp. It has to be noted that the uncorrected images

acquired on the scanner have been processed with built-in

T I. Acquisition parameters for the experimental phantom scan.

Parameter Value

Source to detector distance 1500 mm

Source to isocenter distance 1000 mm

Number of view angle 678

Tube potential 100 kVp

Tube current 20 mA

Pulse width 20 ms

Cone angle for narrow scan 0.5◦

Cone angle for wide scan 10◦

Detector size 397×298 mm2

Detector pixel array 1024×768 after 2×2 rebinning
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F. 3. The 125 kV polychromatic spectrum estimated using a water phan-

tom. The initial guess for the spectrum recovery problem corresponds to the

hardest model spectrum.

scatter and bow-tie correction algorithms. To determine the

fixed kV spectrum used in the correction, we choose aluminum

as the filtration material and tuned the filtration thickness (i.e.,

extend or reduce the thickness of the aluminum filter), until

a reasonable correction was obtained. The spectrum is not

estimated in this case with the proposed method because a

bow-tie filter is employed in the raw data acquisition. Thus,

in order to accurately model the polychromatic projection

process, a spectrum along each fan angle would have to

be estimated. This would make the whole scatter correction

procedure much more complex. In addition, built-in scatter

and other correction algorithms impact the spectrum esti-

mation and should be taken into account. However, this is

difficult in realistic applications since most of commercial

algorithms are proprietary. Hence, we corrected the patient

case in image-domain and tuned the spectrum to the optimum.

A three-component segmentation (adipose, tissue, and bone)

was performed during the correction. To evaluate the results,

quantitative measurements of contrast and noise in tissue and

adipose were performed, where contrast is defined as

Contrast=
�����
HUT −HUB

HUB

�����, (14)

where HUT and HUB are mean signal intensities of the ROI

on target (tissue or adipose) and background (air).

3. RESULTS

3.A. Monte Carlo simulations

3.A.1. Calculation in projection domain
and image domain

In order to perform the polychromatic reprojection, we first

recover the 125 kV spectrum using 10 model spectra which

F. 4. 1D projections of true scatter, coarse scatter, and denoised scatter for an anthropomorphic thorax phantom and an abdomen phantom.
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F. 5. Results of scatter corrections for the MC simulation data of the thorax phantom and the abdomen phantom in both PD and ID. (a) CT images. Display

window: [−1200 HU, 500 HU] for thorax phantom images and [−300 HU, 300 HU] for the water insert images and the abdomen phantom. [(b) and (c)] Results

of HU numbers at labeled ROIs of the water insert of the thorax phantom and the abdomen phantom before and after scatter correction.

are generated using the  software. Figure 3 shows the

spectrum estimated using the water phantom, together with the

true spectrum and the initial guess. Mean energy difference

and normalized root mean square error between the estimated

spectrum and the true spectrum are 0.031 keV and 0.42%,

respectively.

Figure 4 shows the 1D projections of the MC reference

scatter, coarse scatter, and the denoised scatter for the anthro-

pomorphic thorax phantom and the abdominal phantom. The

denoised scatter distributions are obtained with β = 100 and

K = 500. As can be seen, the coarse scatter distributions

match globally to the true scatter profiles but they contain
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T II. Noise levels of the MC simulation studies of the thorax phantom

and the abdomen phantom.

Phantom ROIs Primary Total Corrected (PD) Corrected (ID)

Thorax

Breast 43 36 50 51

Adipose 42 36 50 49

Liver 46 39 52 54

Abdomen

Breast 88 72 111 115

Adipose 93 71 121 126

Liver 106 73 125 132

edge errors and low contrast errors caused by the inaccurately

segmented structure contours. In the denoised scatter, these

errors are smeared out and fit the true reference scatter

quite well. Note that, for the same incident x-ray intensity,

the magnitude of the scatter signal of the thorax phantom

is much larger than the magnitude of the scatter signal

of the abdomen phantom, as the abdomen phantom has a

larger attenuation and can absorb more scatter and primary

photons.

Figure 5(a) shows the results of the scatter correction

using the proposed method for the MC simulation data of

the thorax phantom and the abdomen phantom within both

projection domain and image domain. The primary images

were reconstructed using primary projections and they are

therefore scatter-free images [first row of Fig. 5(a)]. The

total images [second row of Fig. 5(a)] were reconstructed

using total projections (primary signal plus scatter signal).

Scatter induced shading artifacts and streaks are clearly visible

in the images. Scatter corrections were performed in both

F. 6. The influence of the segmentation methods on the accuracy of the scatter correction is shown for the thorax phantom in both PD and ID. (a) Results of

different segmentation methods. Display window: [−1200 HU, 500 HU] for the thorax phantom images and [−300 HU, 300 HU] for the water insert images.

[(b) and (c)] Results of the difference to the primary references of the reconstruction values in HU numbers for different ROIs of the water insert. L, W, T, and

B stand for lung, water, tissue, and bone, respectively.
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F. 7. Line profiles of the true scatter, coarse scatter, denoised coarse scatter and the difference between the coarse scatter and true scatter for the thorax

phantom with (a) four-, (b) three-, and (c) two-components segmentation methods.

projection domain [third row of Fig. 5(a)] and image domain

[fourth row of Fig. 5(a)], showing that shading artifacts were

significantly reduced in both cases. Figures 5(b) and 5(c)

depict the HUs of breast, adipose, liver, and bone inserts

[shown in Fig. 5(a)] of the primary, total, and scatter corrected

images. Compared to the scatter-free primary images, the HUs

of the total images were greatly reduced for both the thorax

phantom and the abdomen phantom. After scatter correction

in either projection domain or image domain, the HUs were

successfully recovered.

Noise levels of the MC simulation studies of the thorax

phantom and the abdomen phantom are depicted in Table II.

As can be seen, the total images have the lowest noise levels

as they have the most photon counts. After scatter correction,

noise levels increase because the subtracted denoised coarse

scatter is a low frequency signal and noise is left in the

corrected projection data.

3.A.2. Segmentation

The influence of different segmentation methods on the

accuracy of the scatter correction for the thorax phantom

is depicted in Fig. 6. The scatter correction was performed

in both projection domain and image domain. For the four-

components segmentation, where lung, water, tissue, and bone

were identified with thresholds−802,−408,−40, and 242 HU,

the adipose low contrast insert was missed due to the presence

of a high MC noise level and shading artifacts. Besides, a part

of the lung area was also identified as air because of the

presence of streak artifacts which is shown between the bone

insert and the spine. However, in this case, scatter artifacts

were still significantly reduced [Fig. 6(a), first row]. For

the three-components segmentation case, where lung, tissue,

and bone were identified with thresholds −855, −382, and

229 HU, the corrected images are still acceptable [Fig. 6(a),

second row]. There are residual shading artifacts for the

corrected images when only two-components segmentation

was performed, where only lung and tissue were identified

[Fig. 6(a), third row].

Figures 6(b) and 6(c) show the HU difference between

the corrected images for the different segmentation methods

and the primary image for the projection and image domain

implementation, respectively. The uncorrected images were

reconstructed using total projections. Corrected (L, T) [corre-

sponds to the third row of Fig. 6(a)] means that the

proposed scatter correction method was performed using

two-components segmentation where lung and tissue were

identified, and so on. Compared to the HU differences

of the uncorrected image, the differences of the corrected

images are significantly reduced. Note that when the two-

components segmentation was performed, the spine and bone

inserts were identified as tissue. Thus, the photon counts

of the polychromatic reprojection data were overestimated,

underestimating the scatter contribution in both coarse and

denoised scatters. In this case, there are residual scatter

artifacts [Fig. 6(a), third row] and the HUs of the corrected

images are less than that of the primary images. When the

three-components segmentation was performed, the water

insert was identified as tissue, which has a slightly larger

attenuation coefficient. Thus the photon counts of the poly-

chromatic reprojection were underestimated, overestimating

the scatter contribution in both coarse and denoised scatters.

In this case, the corrected images are slightly overcorrected

and the HUs of the corrected images are higher than

the HUs of the primary images. The perfect segmentation

result shows that minor segmentation errors in the four-

component segmentation have no significant influence in the

correction.

To further demonstrate that the proposed scatter correction

method is not very sensitive on segmentation errors, line

profiles of the true, coarse, and denoised scatters as well

as the difference between the coarse and true scatter of

the thorax phantom using four-, three- and two-components

segmentation are depicted in Fig. 7. When four-components

segmentation was applied [shown in Fig. 7(a)], the denoised

scatter profile fits the true scatter quite well, although the

adipose was identified as water. This can be attributed

to the mitigating effect of the denoising procedure on

the error (dashed box). The incorrect segmentation caused

error was reduced after denoising. The same effect can be

seen in Fig. 7(b) where the three-components segmentation

was applied. In this case, both adipose and water inserts

were identified as tissue, enhancing the error. However, the

denoising procedure significantly reduced the errors. This

is the reason why the three-components segmentation still

yields acceptable results [Fig. 6(a), second row]. For the two-
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F. 8. The influence of the iteration number K and β on the accuracy of the scatter correction is shown for the water insert of the thorax phantom. (a) Image

reconstructed using primary signal. From (b) to (h) Scatter correction results using different number of iteration K . From (i) to (l) Scatter correction results

using different β. [(m) and (n)] Difference to the primary references of the HU numbers of the low contrast inserts after scatter correction using different K and

β. Display window for the images: [−300 HU, 300 HU].

components segmentation, where bone, adipose, and water

inserts were all identified as tissue [Fig. 7(c)], the denoising

procedure partly compensated the error. However, the coarse

scatter was still significantly underestimated, causing residual

scatter artifacts [Fig. 6(a), third row].

Based on these results, the four-components segmentation

is used for all further simulation studies.

3.A.3. Parameters selection

In Fig. 8, the influence of the iteration number K and

parameter β on the accuracy of the scatter correction is

shown for the water insert of the thorax phantom. As can

be seen, the HUs of the low contrast inserts were gradually

recovered as K was increased from 100 to 1700, while

keeping β as 10 000 [Figs. 8(b)–8(h)]. This is because the

high frequency content in the coarse scatter is smeared out

as K is increased, leaving only low frequency content in the

profiles which should represent the true scatter profile. Thus,

the proposed method can regain HU accuracy even though

the segmentation was badly performed. The HU differences

between the reference primary image and the corrected image

of the low contrast inserts are shown in Fig. 8(m). The

differences to the primary values are significantly reduced
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F. 9. Results of the water insert of the thorax phantom using mismatched attenuation coefficients. [(a) and (b)] Correction with 95% and 105% of the standard

bone attenuation coefficient, respectively. [(c) and (d)] Correction with 95% and 105% of the standard tissue attenuation coefficient, respectively. (e) Results of

the difference to the primary references. Display window for the images: [−300 HU, 300 HU].

as K increases. When K = 1700, the HU differences are less

than 5 HUs for all of the three low contrast inserts.

Similar results can be seen for the parameter β which deter-

mines the relative importance of the data fidelity term and the

regularization term in Eq. (8), i.e., the low contrast visibility

was gradually recovered as β is increased [Figs. 8(i)–8(l)]

while keeping the iteration number K as 1700. The differences

to the primary HUs are greatly reduced as β increases

[Fig. 8(n)], i.e., the regularization term is more pronounced.

When β is larger than 1000, the HU differences to the primary

HUs are negligible, suggesting that the error content of the

coarse scatter is well smeared out and the proposed method

yields a low contrast resolution that can be compared to the

primary images.

3.A.4. Robustness evaluation

In this section, we investigate the influence of the mis-

matched attenuation coefficients on the scatter correction

results. Figure 9 shows the results of the water insert of the

thorax phantom using mismatched attenuation coefficients. To

quantitatively depict the accuracy of HUs after correction with

mismatched attenuation coefficients, the difference between

the corrected images and the primary reference in HU

for the different ROIs of the water insert is calculated

[shown in Fig. 9(e)]. As can be seen, when the assigned

attenuation coefficients of bone were scaled by 95% and

105%, a significant removal of scatter artifacts is still achieved,

reducing the HU error from −120 HUs to below −40 HUs.

When the attenuation coefficient of tissue was scaled by 105%,

the HU error can be reduced lower than 20 HU. However, the

95% scaled tissue still misses the correct HU in the liver by

−60 HU.

Table III shows quantitative measurements of the ROIs

labeled on breast, adipose, and liver inserts for scatter

corrections using mismatched source spectra. Compared to

the HU values of the total image, all of the three corrections

significantly recover the HU accuracy. However, corrections

with the mismatched spectra show degraded quantitative

accuracy, as expected. When the softer spectrum A is used,

the method tends to underestimate the coarse scatter, yielding

an under-correction. On the contrary, the method tends to

over-correct the image when the harder spectrum B is used.

Figure 10 shows results of the scatter correction for the

thorax phantom with bar pattern. It is visible that shading

artifacts were significantly reduced. Line profile suggests that

HU accuracy is greatly improved and spatial resolution is well

preserved after correction.

3.B. Experimental phantom results

Figure 11 shows the CT images and the corresponding

difference images of the Catphan®600 phantom with and

T III. Results of scatter correction using mismatched spectra A and B.

HU values of the ROIs that labeled on the inserts are measured.

ROIs Primary Total

Standard

correction

Correction

with A

Correction

with B

Breast 23 −97 22 14 41

Adipose −81 −168 −78 −82 −72

Liver 85 −42 82 73 94
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F. 10. Results of the thorax phantom with bar pattern. (a) Primary image, (b) total image, (c) corrected image, (d) line profiles [the red line in (a)] of images.

HU accuracy is greatly improved and spatial resolution is well preserved after scatter correction. Display window for the CT images: [−1200 HU, 500 HU].

without scatter correction. The narrow image was recon-

structed using narrow collimation projection data which was

considered as the scatter-free data; thus the narrow image

was served as reference for comparison. The wide image was

reconstructed using wide collimation projection data and it

contains scatter radiation. In the reconstructed image, shading

artifacts are visible. The difference image depicts that the

HU accuracy is reduced by the presence of artifacts. Shading

artifacts were greatly reduced in the scatter corrected images

for both the projection and image domain implementations.

Note that the wide collimation scan and the narrow collimation

scan are two independent scans and the registration cannot be

perfect; thus there are edge fringes in the difference images.

Line profiles (illustrated as dashed line in Fig. 11) of the

Catphan®600 phantom with and without scatter correction

are shown in Fig. 12. As can be seen, the HUs of the

wide collimation image were significantly reduced by scatter

radiation. After correction with the proposed method, scatter

induced HU reduction was successfully recovered and the

profiles match the reference profile quite well. The mean

value over all pixels in the difference image is reduced from

−21.8 to −0.2 HU and 0.7 HU for PD and ID corrections,

respectively.

3.C. Patient study

The uncorrected image, segmented image, and the PPLs for

the segmented components for the pelvis scan are depicted

in Fig. 13. Figure 14 shows CT images of an in vivo

pelvis scan with the kV CBCT imaging system of the

Varian TrueBeam system (Varian Medical Systems, Palo Alto,

CA). It can be seen that a dark region or “black hole”

is present in the uncorrected images. In order to obtain a

reasonable correction, it is expected that adipose and tissue

have uniform HUs in the dashed box in the first row of

Fig. 14. However, visual inspection of the corrected images

shows nonuniformity and residual scatter artifacts in the

form of shading areas. Hence, the spectrum was gradually

tuned until adipose and tissue uniformity was achieved. After

scatter correction, the HUs of the dark region and the missing

anatomical structures are successfully recovered. Both tissue

and adipose contrasts have been improved from 0.85 and
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F. 11. Catphan®600 phantom with and without scatter correction. The difference images show each image subtracted with the narrow collimation image.

Display window: [−200 HU, 200 HU] for both the CBCT images and the difference images.

0.85 to 0.96 and 0.90, respectively. Note that due to the

limitation of access to the raw projection data, the correction

of this clinical case was performed in image domain and the

uncorrected images have been preprocessed using the built-in

bow-tie and scatter correction algorithms implemented by the

vendor.

4. DISCUSSION

The proposed method can be used either prospectively or

retrospectively for improved CBCT imaging. The compu-

tational demand of the method depends mainly on the

polychromatic reprojection and the denoising procedure. The

computing time of the former case is similar to that of the

backprojection. The denoising procedure can be implemented

in a parallel fashion using GPU acceleration.60,67 It was found

that it took about 1 min to correct a typical Varian clinical

F. 12. Line profiles of the Catphan®600 phantom without and with scatter

correction using both PD and ID methods.

dataset (512×512×81) using a NVIDIA GeForce GTX 480

card; thus the method is suitable for clinical applications. It

is worthwhile to mention that this method can be applied

to both flat detector-based CBCT and spiral CBCT scanners

(without ASG), especially to dual source dual energy CT

scanners where convolution-based techniques do not work

for cross-scatter.70 The method, which allows to correct the

scatter artifacts in scale of minutes, could potentially be used

in spiral CBCT (without antiscatter grid) and flat detector

CBCT.

It has to be noted that the selection of the denoising

parameters depends on the segmented image. In this study,

since the noise level of the MC simulation data is very high,

relatively large K and β values were used to smooth the

segmentation error and to yield a denoised scatter distribution

that fits to the true scatter well enough. To our belief, most

of the clinical images have a much lower noise level and the

images are superior for segmentation than the images from

the MC simulation data in this study. For example, compared

to the MC simulation studies, it only took 280 iterations to

yield acceptable results for the in vivo data.

Different from the MC and the experimental phantom

studies where dedicated spectrum estimation was performed

as a general procedure of system calibration of scatter

correction, for the retrospective patient study, no spectral

estimation was done to reflect the realistic situation. In the

latter case, only different filtrations were tested for optimal

scatter correction as the details of filtration during the patient

scanning were not known. For prospective studies or clinical

applications in the future where dedicated scatter free data

are not available, spectrum estimation method that is a part of

the scatter correction framework may not provide sufficient

accuracy. In these cases, other spectrum estimation methods,

e.g., Ref. 71 can be employed or the spectrum can be

estimated from known filtration obtained from the scanning

protocol.
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F. 13. Uncorrected image, segmented image, and corresponding propagation path length in the segmented materials for a pelvis scan. (a) Uncorrected pelvis

image. (b) Three-components (adipose, tissue, and bone) segmentation image. Propagation path length in (c) tissue, (d) adipose, and (e) bone. Note that the unit

for propagation path length is millimeter.

Since the subtracted denoised coarse scatter is a low

frequency signal, noise is left in the corrected projection data,

enhancing the noise level of the CT images. However, the

enhanced noise can be efficiently reduced by many existing

algorithms, such as the penalized weighted least-squares

(PWLS) algorithm.72,73 In this study, we have employed

the Poisson statistic-based denoising model to refine the

coarse scatter signal. Other methods can be also used

to refine the coarse scatter. For example, a convolution-

based scatter model66 and a similar method74 that uses the

Savitzky–Golay filter to smooth the residual image between

the uncorrected image and a template image were proposed

recently.

The evaluation studies did not take into account the

potential impact of bow-tie filters. When a bow-tie filter is

used in data acquisition, the bow-tie specifications need to be

incorporated into the reprojection procedure for the projection

domain implementation. In principle, the spectrum estimation

method62 can calculate spectra along different fan angles; thus

the scatter correction method can be expanded to work also

with bow-tie filters. However, in this case, the polychromatic

reprojection procedure would be much more complicated as

each fan angle corresponds to a different spectrum and one

may want to use a single effective spectrum. For the patient

study, the scatter correction was performed in image-domain

and the spectrum was tuned to yield reasonable results. Here,

the spectrum can be regarded as an effective spectrum that

incorporates all of the effects of data acquisition and built-in

correction algorithms.

Comparing the HUs of the corrected images and the

primary images in Figs. 5(b) and 5(c), and the HUs of the

corrected images and the narrow image in Fig. 12, one can see

that the proposed method yields quantitative values close to

the reference ones. The interpretation of the narrow image as a

scatter-free reference image might be questionable as a certain

amount of scatter remains. However, the scatter amplitude is

negligible compared to that in the wide scan. Nevertheless,

the HU consistency demonstrates the potential of the method

to provide quantitative CBCT imaging with flat detectors.

In image-guided radiation therapy (IGRT), diagnostic

multidetector CT (MDCT) images are acquired for treatment

planning prior to the start of patient treatments. Hence, a

MDCT-based shading correction method was proposed for flat

detector CBCT systems.75,76 Clinical cases processed using

this method have shown promising results. The proposed

method has a workflow similar to the MDCT-based method.

Compared to the MDCT-based method where the primary

projections are generated by a forward projection of the

registered MDCT images, the proposed method generates the

primary projections using a polychromatic reprojection with

the segmented uncorrected image, suggesting no need of an

additional MDCT acquisition beforehand.

One of the potential limitations of the proposed method

is that it assumes a linear signal response for detector

pixels and does not consider dynamic range limitation. In

practice, the dynamic range of the flat detector is limited, and

thus the detector pixels may work in a nonlinear response

region, especially for pixels exhibiting photon starvation or

pixels with saturated x-ray flux. As a result, the estimated

primary signal Îp cannot match the real primary data, which

may cause negative values in the scatter estimate. Thus a

non-negative constraint is usually applied and the scatter

fraction clipping technique14 is also employed to partially

compensate the limitation.
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F. 14. Scatter correction for a pelvis CBCT scan using the kV imaging system of the Varian TrueBeam system. Axial view, coronal view, and sagittal view

are depicted respectively. The three ROIs (labeled as A-adipose, B-background, and T-tissue) are used to calculate contrast before and after scatter correction.

Display window: [−200 HU, 100 HU] for all images.

5. CONCLUSIONS

In summary, this work investigates a novel scatter correc-

tion method for high quality CBCT imaging. In this technique,

after the initial CBCT image reconstruction with the raw

projection data, the uncorrected images were segmented

for the purpose of subsequent polychromatic reprojection

and scatter estimation. The scatter correction then proceeds

in two steps: (1) estimating the coarse scatter profile by

computing the difference between the measured raw data and

a polychromatic reprojection of a segmented image volume,

where the energy spectrum for the polychromatic reprojec-

tion calculation was obtained by an indirect transmission

measurement-based spectrum estimation method;62 and (2)

improving the accuracy of the scatter radiation distribution

by applying a denoising algorithm. A detailed evaluation

study indicated that the scatter artifacts, such as cupping

and streaks, were mitigated significantly after correction with

the proposed method. The results also demonstrated that a

significant increase in image uniformity and HU accuracy

were achieved after correction. On the practical aspect, the

proposed method requires minimal increase in computational
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cost with no modification in system hardware or clinical

workflow. When implemented practically, this should lead to a

significant clinical impact in image-guided interventions and

adaptive radiation therapy treatment planning based on CBCT.
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