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Abstract 
 

Automated static analysis can identify potential 

source code anomalies early in the software process 

that could lead to field failures. However, only a small 

portion of static analysis alerts may be important to the 

developer (actionable).  The remainder are false 

positives (unactionable). We propose a process for 

building false positive mitigation models to classify 

static analysis alerts as actionable or unactionable 

using machine learning techniques. For two open 

source projects, we identify sets of alert characteristics 

predictive of actionable and unactionable alerts out of 

51 candidate characteristics. From these selected 

characteristics, we evaluate 15 machine learning 

algorithms, which build models to classify alerts.  We 

were able to obtain 88-97% average accuracy for both 

projects in classifying alerts using three to 14 alert 

characteristics. Additionally, the set of selected alert 

characteristics and best models differed between the 

two projects, suggesting that false positive mitigation 

models should be project-specific. 

 

1. Introduction 
 

Automated static analysis tools can  be used to 

identify potential source code anomalies, which we call 

alerts, early in the software process that could lead to 

field failures [9].  Ayewah et al. [2] state, “In many 

cases, the person who writes the code is responsible for 

reviewing the [alert], deciding whether it’s relevant, 

and resolving the issue.”  Inspection of each alert by a 

developer is required to determine if the alert is an 

indication of an important anomaly that the developer 

wants to fix, which we call a true positive (TP) or an 

actionable alert [3, 17].  When an alert is not an 

indication of an anomaly or is deemed unimportant to 

the developer (e.g. the alert indicates a programmer 

mistake inconsequential to program functionality), we 

call the alert a false positive (FP) or an unactionable 

alert [3, 17].  Static analysis tools may generate an 

overwhelming number of alerts [11], the majority of 

which are likely to be unactionable [9].  FP mitigation 

techniques utilize information about the alerts, called 

alert characteristics (AC), to prioritize alerts by the 

likelihood of being actionable or to classify alerts into 

actionable and unactionable groups [7, 10-12, 17, 19].  

Current models [7, 8, 10-12, 17, 19] do not 

systematically consider potential ACs or models, and 

could be improved by an investigation into the best 

predictors and models.  Additionally, models that work 

for one program may be ineffective on other programs.  

For any FP mitigation model, we want to extract two 

types of useful information from static analysis alert 

data: 1) sets of ACs that are predictive of actionable 

alerts; and 2) which models (using the predictive ACs) 

are best at classifying.   Machine learning can be used 

to identify predictive ACs and machine learners 

(specific machine learning algorithms) can generate 

models for classifying alerts.  

The goal of our research is to reduce the number of 

unactionable static analysis alerts requiring inspection 

by a developer.  We hypothesize that the important 

ACs and machine learners will vary by project. 

Therefore, we propose a four-stage FP mitigation 

model  building process via machine learning for 

building project-specific models: 1) gather the ACs 

about alerts generated from static analysis; 2) use 

attribute subset evaluation algorithms to select 

important sets of ACs; 3) use the selected ACs and 

machine learners to build predictive models; 4) select 

the best model by comparing their predictive power.   

To demonstrate our four-stage FP mitigation model 

building process, we performed a case study on two 

open source applications, jdom and org.eclipse 

.core.runtime (abbreviated as runtime), that are 

part of the FAULTBENCH [7] benchmark for evaluation 

of FP mitigation models.  For each project, we gathered 

the alerts; size and complexity metrics; source code 

history; and code churn. We considered rule-based, 

decision tree, linear function, k-nearest neighbor, and 

Bayesian network machine learners for building FP 

mitigation models. We compare the two subject 



programs to test our hypothesis that important ACs and 

machine learners will vary by project. 

 The rest of the paper is structured as follows: 

Section 2 presents related work, Section 3 describes the 

candidate ACs, Section 4 describes the model building 

process, Section 5 presents the research methodology, 

Section 6 presents the results, and Section 7 concludes 

and presents future work. 

 

2. Related work 
 

This section describes the related work in the areas 

of FP mitigation techniques and machine learning 

applied to software engineering problems. 

 

2.1. False positive mitigation techniques 
 

Our prior research [7, 8] has proposed a project-

specific, in-process, FP mitigation prioritization 

technique that utilizes the alert’s type and location at 

the source folder, class, and method levels.  The model, 

AWARE-APM [7, 8], uses developer feedback in the form 

of alert suppression and alert closures. Suppressing an 

alert is an explicit developer action to indicate the alert 

is unactionable.  Closure is determined by comparing 

subsequent static analysis runs.  If the alert is not in the 

later run, the alert is closed.  After a developer inspects 

the alert and takes an action on that alert, the 

prioritization of the remaining alerts is adjusted from 

the feedback.  We evaluated three versions of AWARE-

APM model on FAULTBENCH subject programs and 

found an average accuracy of 67-76% [7].  The 

precision and recall were in the 16-19% and 25-42% 

range, respectfully, for the benchmark programs.  The 

low accuracy suggests that while the models may work 

well for some programs, the models do not work well 

for others.  Additionally, the alert type and alert 

location together and in isolation may not be the best 

predictors of actionable alerts. 

Ruthruff et al. [17] screened 33 ACs from 1,652 

alerts sampled from Google’s code base (spanning 

multiple projects) to develop logistic regression models 

for predicting actionable and unactionable alerts.  

Ruthruff et al. describe a screening process whereby 

ACs were selected for the model.  The generated 

models contained 9-15 ACs and had an accuracy 

ranging from 71-87%.  Ruthruff et al. [17] compared 

their generated models to a linear regression model 

containing all ACs and models developed by Bell et al. 

[4, 15] for predicting the number of faults. Overall, the 

models generated by Ruthruff et al. generally had a 

higher accuracy than the other models.  Additionally, 

the time to gather the data to build the generated model 

was substantially shorter than the time to build the 

model with all ACs.  Many of the ACs suggested by 

Ruthruff et al. are used in our research in addition to 

other project specific metrics.  We also consider 

additional machine learners and built models for 

individual applications. 

Kim and Ernst [10, 11] describe two static analysis 

alert prioritization techniques that utilize data mined 

from source code repositories.  The first technique uses 

the average lifetime of alerts sharing the same type to 

prioritize the alert types [10]. The lifetime of an alert is 

the time (in days) between alert creation and alert 

closure.  Kim and Ernst assumed that alert types with 

shorter lifetimes have a higher ranking (e.g. alerts fixed 

quickly are likely important).   

The second technique is a history-based alert 

prioritization that weights alert types by the number of 

alerts closed by fault- and non-fault-fixes. A fault-fix is 

a source code change where the developer fixes a fault 

or problem and a non-fault-fix is a change where a fault 

is not fixed, like a feature addition [11].  Alerts may be 

closed during any code modification, and are therefore 

considered actionable, but Kim and Ernst expect that 

those alerts closed during fault-fixes are more 

important when predicting actionable alerts.  

The history-based alert prioritization presented by 

Kim and Ernst [11] improves the alert precision by over 

100% when compared to the precision when alerts are 

prioritized by tool severity.  However, the precision 

ranged from 17-67%, possibly due to alert closures 

lacking a causal relationship with the root cause of an 

anomaly-fix.  We include the alert lifetime, measured in 

revisions instead of days, as a candidate AC.  We also 

utilize source code repository mining for other ACs.  

Unlike Kim and Ernst, we are interested in prioritizing 

or classifying individual alerts rather than the alert type. 

Williams and Hollingsworth [19] created a static 

analysis tool which evaluates how often the return 

values of method calls are checked in source code.  A 

method is flagged with an alert when the return value 

for the method is inconsistently checked in calling 

methods.  Williams and Hollingsworth use the 

HISTORYAWARE prioritization technique to prioritize 

methods by the percentage of time the return value for 

the methods are checked in the software repository and 

the current version of the code.  The results show a FP 

rate of 70% and 76% when using the HISTORYAWARE 

prioritization technique on two case studies involving 

httpd1 and Wine2 applications, respectively.  The 

HISTORYAWARE technique mines data from the source 

code repository, which we also do, but for different 
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ACs.  Instead of using alert type specific information to 

identify actionable alerts, we use ACs that can 

prioritize or classify many alert types. 

Kremenek et al. [12] show that static analysis alerts 

in similar locations tend to be homogeneous.  On 

average, 88% of methods, 52% of files, and 13% of 

directories with two or more alerts contained 

homogeneous alerts.  Kremenek et al. created a 

FEEDBACK-RANK algorithm whereby the developer’s 

feedback is used to prioritize the remaining alerts.  The 

static analysis tools used by Kremenek et al. take 

advantage of understanding where the tool checked for 

an alert, but did not find a potential anomaly [13].  

Kremenek et al. [12] prioritize the alerts via a Bayesian 

Network [20]. 

 

2.2. Machine learning 
 

Machine learning “is the extraction of implicit, 

previously unknown, and potentially useful information 

about data” [20].  As discussed above, Kremenek et al. 

[12] used a Bayesian network and Ruthruff et al. [17] 

used logistic regression, both machine learners, to 

predict alerts. However, these are not the only machine 

learning techniques that could be applicable to FP 

mitigation. The following research discusses machine 

learning in the context of similar software engineering 

problems: identifying or predicting latent faults. 

Brun and Ernst [5] present a technique that builds 

support vector machines and decision tree machine 

learners to classify and prioritize dynamic program 

properties by the likelihood the property is fault-

revealing.  Overall, Brun and Ernst found that the 

support vector machine learner increased the relevance 

of important program properties by 50 times for C 

programs and 4.8 times for Java programs. Brun and 

Ernst [5] suggest their program analysis technique of 

training and applying machine learners to identify 

program faults is applicable to static analyses.  We 

extend their technique into a process for applying 

machine learning to identifying both important ACs 

and actionable alerts, which also includes AC selection. 

Song et al. [18] use the association rule mining 

machine learner to find attribute patterns that are 

predictive of latent defects in the source code similar or 

related to previously-found defects.  Song et al. also use 

association rule mining to predict the effort to find and 

fix the defect.  Defects were predicted with an accuracy 

of 96.6%.  The defect isolation and fix efforts were 

compared with other machine learning techniques: 

PART, C4.5, and Naïve Bayes.  The association rule 

mining technique for defection isolation effort 

prediction had an average accuracy of 93.9% and was 

about 25% higher than the other machine learners.  The 

association rule mining technique for defect fix effort 

prediction had an average accuracy of 94.7% and was 

around 23% higher than the other machine learners.  

Unlike Song et al. we are only using machine learning 

to identify actionable static analysis alerts, and not the 

effort to fix them since the data is currently unavailable.  

While we are interested in potentially identifying rules, 

other machine learning techniques may be more 

applicable to identifying actionable alerts. 

Arisholm et al. [1] compared models built by 

various machine learners to predict locations in 

industrial Java software that are likely to contain faults.  

Arisholm et al. found that there were not many 

significant differences between the precision, recall, 

and the area under receiver operation characteristic 

(ROC) curves for the generated models.  However, they 

did find that the cost associated with the generated 

models were significantly different.  We are paralleling 

their research by evaluating machine learners for 

predicting actionable static analysis alerts.  

 

3. Alert characteristics 
 

False positive mitigation techniques have used 

several ACs, like alert type [10-12, 17], priority [11, 

17], and the history of code changes [17, 19] to predict 

or prioritize actionable alerts.  We have defined 51 

candidate ACs that apply to each alert.  These ACs 

come from three sources: a static analysis tool, a 

metrics tool, and the source code repository.  The ACs 

are presented in five categories in Sections 3.1 through 

3.5.  References are provided where ACs have been 

used in other FP mitigation models, and explanations 

about AC generation are presented where the name may 

be unclear. For a more detailed explanation, see [6]. 

 

3.1. Alert identifier and alert history 
 

A static analysis tool generates alert identifiers (the 

first eight characteristics below) at alert creation, and 

the alert history (the last characteristic below) is 

generated via a program that compares the alerts 

between software revisions.  The alert identifier and 

alert history characteristics are below: 

• Project name. 

• Package name: package name could be generalized 

to the folder containing a source file [7, 8, 12]. 

• File name [7, 8, 12].  

• Method signature: name and parameter types of 

the method or function containing the alert [7, 8, 

12].  An alert may not have an enclosing method.  

• Alert type: the type of potential anomaly (e.g. null 

pointer, etc.) [7, 8, 10, 11, 17, 19]. 



• Alert category: a high level categorization of alert 

types (e.g. security, correctness) [17]. 

• Priority: the priority of the alert defined by a static 

analysis tool [10, 17]. 

• File extension [17].  

• Number of alert modifications: the number of 

times an alert’s line number or priority has been 

changed over the alert’s lifetime.   

 

3.2. Software metrics  
 

Nagappan et al. [14] show that code complexity 

metrics correlate with failure-prone modules.  

Additionally, Bell et al. [4, 15] have utilized code size 

metrics to predict fault counts.  Actionable alerts could 

be considered faults; therefore, software metrics could 

be predictive of actionable alerts. For characteristics 

containing several granularities (e.g. method, file, etc.) 

the metric is collected for each level. The software 

metric characteristics used for this study are below: 

• Size: the number of non-comment source statements 

(NCSS) within the method, file [17], or package 

declaration containing the alert. 

• Number of methods: collected at the class and 

package levels. 

• Number of classes: collected at the file (e.g. inner 

classes) and package levels. 

• Cyclomatic complexity: measures the number of 

paths through a method [16] containing an alert.  

Ruthruff et al. [17] use indentation as a measure of 

complexity. 

 

3.3. Source code history  
 

The models by Williams and Hollingsworth [19], 

Kim and Ernst [10, 11], and Ruthruff et al. [17] use 

ACs obtained from a project’s source code repository 

to predict actionable alerts.  Instead of recordings the 

dates of a change, we use revisions.  A revision is a set 

of changes committed to the source code repository 

together. For all of the characteristics listed below, 

except developers, we record the revision number.  

Below are the source code history characteristics: 

• Alert open revision [10]. 

• Developers: set of developers who made changes to 

the file containing an alert between the alert’s open 

revision and the prior revision analyzed [10]. 

• File creation revision [17].  

• File deletion revision.  Alerts closed due to a file 

deletion are not considered actionable [10, 11, 17].  

These alerts are removed if the file deletion revision 

is less than or equal to the closure revision. 

• Latest modification revision: last modification to a 

file, package, or project on or before the last 

revision. 

 

3.4. Source code churn  
 

Source code churn measures the amount of change 

made to a file, package, or project over time [17].  Each 

of the general code churn metrics are measured 

between the prior analyzed revision and the open 

revision for the alert.  The churn metrics are measured 

for the file, package, and project that contain the alert.  

The source code churn characteristics are below: 

• Added lines [17]. 

• Deleted lines [17]. 

• Growth: the difference between added and deleted 

lines [17]. 

• Total modified lines: the sum of added and deleted 

lines [17]. 

• Percent modified lines: percent of total modified 

lines out of all modified lines for the project [17]. 

 

3.5. Aggregate characteristics 
 

Aggregate candidate ACs come from the above ACs 

and provide a deeper understanding about an alert. 

Prior models measure age in days [10, 17]. Instead, we 

measure age as the number of revisions between two 

revisions.  Using revisions is still a measure of time, but 

also provides a measure of work. The aggregate 

characteristics are below: 

• Total alerts for revision: number of alerts 

identified on or before an alert’s open revision.  If 

an alert is opened and 10 other alerts already exist, 

the number of alerts for the revision is 11. 

• Total open alerts for revision: number of open 

alerts identified on or before an alert’s open 

revision.  Continuing with the above example, 

suppose that three of the 10 existing alerts are 

closed.  Therefore, the number of open alerts for the 

revision is eight.   

• Alert lifetime: the age of the alert [10].  For a 

closed alert, the alert lifetime is the difference 

between the close and open revisions.  Otherwise, 

the lifetime is the difference between the last 

revision in the study and the open revision. 

• File age: the age of the file [17].  For a deleted file, 

the file age is the difference between the deletion 

and creation revision.  Otherwise, the file age is the 

difference between the last revision in the study and 

the file creation revision. 



• Alerts for an artifact: the number of alerts in the 

method [7, 8], file [7, 8, 17], package [7, 8], or 

project [17] containing an alert across all revisions. 

• Staleness: amount of time between last revision and 

the last change of the file, package, or project [17].  

 

4. Model building process 
 

Witten and Frank [20] outline a strategy for using 

machine learning to find patterns in data.  For the rest 

of this section, we describe the process we used, based 

on Witten and Frank’s strategy, to gather data, select 

ACs, create, and evaluate machine learning models. 

Teams can use the proposed process to build FP 

mitigation models using their development history.  

Periodically, the team can use the process to rebuild 

models using their most recent development activity. 

 

4.1. Data Collection 
 

There are four steps of data collection required to 

gather all of the defined ACs: 1) generate the subject 

revision history; 2) the subject build process; 3) alert 

classification; and 4) AC generation.  

 

4.1.1. Generate subject revision history.  The history 

for the subject programs comes from source code 

repository, like CVS3 or SVN4.  If the subject program 

does not have a source code repository, the release 

history can be used instead.  For projects with a large 

revision history, using a subset of revision can reduce 

the analysis time. 

 

4.1.2. Subject build process. For each revision in the 

full or subset history, we check out and build the 

project and any associated projects required for a 

complete build.  If the project does not build, we move 

on to the next full or subset revision.  Projects that do 

not build provide inconsistent static analysis data.  

After building the project(s), we gather size and 

complexity metrics and static analysis alerts using tools 

appropriate to the programming language and 

environment.  

 

4.1.3. Alert classification. The alert classification as 

actionable or unactionable is our dependent variable in 

machine learning. An analysis program classifies the 

automatically findable actionable alerts.  Starting with 

the earliest revision, the sets of alerts between two 

revisions are compared. An alert is identified by the 

project name, package name, file name, method 
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signature, alert type, and one of either the FindBugs [9] 

identifier or line number. Alerts within the same 

revision that share the same identifying details are 

duplicate alerts and are considered as the same alert 

within the revision.  Comparisons of the alerts between 

revisions, using the identifying details, classify the 

actionable alerts for a project. 

When iterating through the revisions, an alert is 

opened if the alert is not in any of the prior revisions [7, 

8].  An alert closure occurs when the alert was in a 

prior revision, but is not reported in a later revision [7, 

8].  An alert is reopened if the alert was closed in a 

prior revision and reported in a later revision.  We only 

consider the last alert closure, if there is one, for 

identifying actionable alerts. 

The classifications of alerts that remain open at the 

last revision of the source code are unknown.  There 

are two possibilities of classification for these alerts.  

The first is to have a developer inspect some or all of 

the open alerts and determine if the alert is actionable 

or unactionable. By inspecting all of the alerts there is a 

full oracle.  The other option is to classify all of the 

open alerts as unactionable.  The reasoning is that if 

developers have not fixed the anomaly associated with 

the alert during the history of the project, the alert may 

not be important.  

Alert classification follows the steps below: 

1. If the alert was closed after going through all of the 

revision history for the project, the alert is actionable. 

2. If the alert was closed due to a file deletion, the alert 

is neither actionable nor unactionable, and is 

removed from the alert set used in model building. 

3. The remaining alerts can be classified via inspection 

or all can be marked as unactionable. 

 

4.1.4. AC generation. The analysis program continues 

by generating the AC values for each alert.  Because we 

consider each distinct alert individually, the ACs are 

specific to that alert though the AC may have the same 

value as similar alerts (e.g. alerts opened during the 

same revision will have the same alerts for revision 

value). 

 

4.2. AC selection 
 

AC selection is important in machine learning 

because redundant and irrelevant characteristics reduce 

classifier performance [20].  Additionally, there could 

be diminishing returns whereby an AC contributes so 

insignificantly to a model that the time for collection of 

an AC outweighs the small increase in predictive 

power.  We want to choose the best subset of candidate 

ACs to use when classifying alerts as actionable or not.  

Attribute selection algorithms identify the ACs that are 



associated with the alert’s classification, and any 

algorithms appropriate to the data under analysis can be 

applied.    

 

4.3. Machine learning model creation 
 

After the ACs are generated for each alert and the 

alert oracles are supplied, machine learning is applied 

to the alert set to generate models for predicting 

actionable and unactionable alerts.  When building 

models we do ten, ten-fold cross validations [20].  In 

cross validation, the set of alerts are randomly 

separated into ten approximately equal sets, and nine of 

the sets train the model that is tested by the last set.  

Each of the ten sets is a test set, and the process is 

repeated ten times.  

 

4.4. Model evaluation  
 

We are interested in three metrics to evaluate how 

well each machine learner performs: precision, recall, 

and accuracy [7].  Precision is the percentage of alerts 

classified as actionable that were actionable.  Recall is 

percentage of alerts classified as actionable out of all 

actual actionable alerts.  Accuracy is the percentage of 

correct actionable and unactionable classifications. 

 

5. Research methodology 
 

The goal of our research is to reduce the number of 

unactionable static analysis alerts requiring inspection 

by a developer.  We hypothesize that the important 

ACs and machine learning algorithms will vary by 

project. Therefore, we want to use the proposed model 

building process to identify and compare the best ACs 

and models for two subject programs.  The remainder 

of this section outlines the research methodology for 

using the model building process on our subject 

programs. 

The subjects programs, jdom and runtime, are 

part of the FAULTBENCH v0.1 [7] benchmark.  

FAULTBENCH contains a suite of subject open-source 

programs written in Java, static analysis alert oracles 

for the last revision of the program, and repeatable 

procedures for evaluating FP mitigation techniques.  

The alert oracles are stored in spreadsheets that identify 

the alerts generated by FindBugs [9] and are classified 

via inspection of the alert by Heckman [7].  

Demographics about the subjects used in this study are 

in Table 1.  We use the FAULTBENCH alert oracle and 

evaluation metrics to compare different machine 

learners for FP mitigation over the history of the 

subject programs.  

The history of each subject program was obtained 

by mining the source code repository.  Evaluation of 

each revision provides the most accurate alert history; 

however, there were over 1000 revisions for both 

projects. We only evaluated every 25th revision starting 

with the first revision.  Additionally, the last revision 

was included.  

Our subject programs are written in Java, and data 

collection consisted of batch scripts that would check 

out each revision from CVS, build the revision, and run 

the JavaNCSS5 metrics tool and the FindBugs [9] static 

analysis program.  The jdom project contained build 

scripts, while runtime was built using a headless 

Eclipse6 build process.  The metrics and alerts were 

recorded in .xml files. 

Weka [20] is used for AC selection and model 

building.  Weka [20] is a free machine learning tool 

developed by Witten and Frank at the University of 

Waikato in New Zealand.  Weka contains standard 

machine learning algorithms for attribute selection and 

model building using cross-fold validation. We are 

interested in identifying one or more ACs that are 

correlated with an alert’s classification.  However, AC 

sets with more than 15 ACs were not considered.  Too 

many ACs may reduce the predictive power of a model 

and the data collection and model building times may 

increase with additional ACs [20].   

We considered three search strategies for selecting 

ACs [20]: BestFirst, GreedyStepwise, and RankSearch.  

All three algorithms finish quickly.  BestFirst and 

GreedyStepwise add ACs as they increase the 

predictive power of the set.  RankSearch evaluates each 

AC individually and returns the best ACs.  For 

RankSearch, we evaluated the ACs by the information 
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Table 1: Subject programs 

 jdom runtime 

Domain data format software 

dev. 

Size (LOC) 9035-13146 2066-15516 

Time Frame  

(mm/dd/yy) 

05/27/00 –

11/22/07 

05/02/01 –

08/07/08 

# of Revisions 1165 1324 

# Sampled 

Revisions 

48 54 

# Built Revisions 29 41 

Total Alerts 420 853 

Actionable Alerts 163 756 

Unactionable Alerts 215 36 

Deleted Alerts 42 65  



gained from that AC and the ratio of the information 

gain to the number and size of possible AC values. 

The attribute subsets were evaluated using three 

algorithms [20]: CfsSubsetEval, WrapperSubsetEval, 

and ConsistencySubsetEval.  CfsSubsetEval [20], 

identifies subsets of ACs that are highly predictive but 

unrelated to or independent of the other ACs in the set.    

The second attribute selection algorithm, 

WrapperSubsetEval [20], uses a machine learner and 

cross-validation to choose the best attribute set.    We 

used the J4.8 decision tree machine learner, which is 

based on the C4.5 algorithm, because the learner can 

mimic the decisions a developer may make when 

inspecting an alert. The third attribute selection 

algorithm, ConsistencySubsetEval [20], finds attribute 

sets that have consistent class values (actionable or 

unactionable) within the full set of alerts.  Using 

homogeneous ACs should help classification. 

The following machine learning algorithms could 

classify alerts in ways understandable to developers: 

classification rules, decision trees, linear models, k-

nearest neighbor, and Bayesian networks.  

Additionally, each machine learning algorithm builds 

classification models with nominal independent 

variables. Classification rules provide a set of 

conditions that, if met, provide the classification for the 

alert [20].  Decision trees involve tests at each node that 

lead down different paths of a tree [20].  Linear models 

work best on numeric data and provide a mathematical 

equation of the predicted ranking or classification of an 

alert [17, 20]. Nearest neighbor algorithms investigate 

the k nearest neighbors and weigh the contribution of 

each neighbor by a distance measure to classify alerts 

[20].  Bayesian networks are a probabilistic model of 

the selected attributes [12, 20].  Each machine learner 

was run with default options in Weka [20] unless 

otherwise stated. 

 

6. Research results 
 

We hypothesize that the important ACs and machine 

learners will vary by project. The selected ACs and the 

best models for the two subject programs are compared 

to evaluate the hypothesis.  

 

6.1. Selected ACs 
 

The number of ACs selected ranged from four to 13 

for jdom and from three to 14 for runtime.  For all 

attribute subset evaluators, BestFirst and 

GreedyStepwise identified the same ACs.  Overall, 

both projects had five distinct sets of 15 or less ACs, 

which demonstrates that there are alert characteristics 

for both projects that are predictive of actionable or 

unactionable alerts.  Table 2 lists the number of times 

that an AC is contained in one of the five distinct AC 

sets for each project.   

The alert lifetime was in every AC subset for both 

jdom and runtime, which implies that the length of 

time the alert is in the code is predictive of the 

actionablility of the alert.  Kim and Ernst [10] 

hypothesize that alerts with short lifetimes are more 

likely to be actionable alerts; however, in our data there 

is not a clear binary split between the lifetime of 

actionable and unactionable alerts.  Some of the alerts 

with the shortest lifetime were unactionable. 

The file name and method name ACs, as alert 

identifiers, were selected for both jdom and 

runtime.  The runtime project also contains the 

package name and bug type alert identifiers.  These 

ACs were selected either by the ConsistencySubsetEval 

or the CfsSubsetEval information gain RankSearch, 

which implies that these ACs tend to be homogeneous 

within a specific value and have many possible values.  

While these ACs are project specific and easy to obtain, 

they may not be the most predictive, especially if the 

AC value uniquely identifies an alert. 

Both projects had AC subsets that contained the 

number of functions in file and package.  Additionally, 

Table 2: Selected ACs 

Alert Characteristics jdom runtime 

package name 0 1 

file name 1 2 

method name 1 2 

bug type 0 2 

alert category 1 0 

file size 1 0 

package size 2 0 

number of functions in file 1 3 

number of functions in package 1 2 

open revision 1 3 

developer 0 1 

file creation revision 3 2 

latest file modification 1 3 

latest package modification 1 0 

package growth lines 1 0 

total alerts for revision  2 3 

total open alerts for revision 3 3 

alert lifetime 5 5 

file age 2 0 

alerts in file 3 0 

alerts in package 2 0 

file staleness 1 2  



the alert’s open revision and the counts of alerts at each 

open revision (e.g. total alerts for revision and total 

open alerts for revision) were important for both 

projects.  Finally, both jdom and runtime share 

several file characteristics like file creation revision, 

latest file modification, and file staleness, which most 

likely follows from the conjecture that there must be a 

change in a file for either alert creation or closure. 

What may be more interesting is what ACs were not 

included in any AC subset.  All but one (e.g. package 

growth lines) of the churn metrics were not included, 

which is similar to Ruthruff et al.’s [17] findings.  

Additionally, the method size, number of alerts in 

method, and cyclomatic complexity were also 

unimportant, potentially because the method granularity 

is too low level for an accurate prediction.  The number 

of classes in file and package level were unimportant 

while the number of functions was important.  

While half of the selected ACs were common 

between jdom and runtime, the other half of ACs 

were different and suggest that there is not a generic set 

of ACs for all FP mitigation models.  Therefore, 

supporting our hypothesis, AC selection should be 

project-specific. 

 

6.2. Machine learners analysis 
 

The average precision, recall, and accuracy of the 

subject programs are presented in Table 3. All of the 

machine learners and AC subsets have greater than 

65% accuracy for jdom with an average accuracy of 

87.8%.  Additionally, the precision and recall for jdom 

were 89% and 83%, respectively.  The runtime 

project had a much higher precision, recall, and 

accuracy at 98%, 99%, and 96.9%, respectively.   

These values surpass the precision reported by Kim 

and Ernst [11].  Many of the individual machine 

learner, AC subset pairs performed even better than the 

models presented by Ruthruff et al. [17] suggesting  

that fewer characteristics are required to obtain good 

accuracy, and alert classification by project may be 

more accurate. 

For the jdom project, 56.9% of alerts were 

unactionable, while 4.5% of alerts were unactionable 

for runtime.  Unlike jdom, most of the alerts for 

runtime (95%) were closed by the last revision. We 

can look at the average confusion matrix [1, 20] for 

jdom and runtime in Table 4.  The average 

confusion matrix contains the average values of the 

classifications for each cross-validation. There were 37-

38 alerts tested for each validation run for jdom and 

79-80 alerts tested for runtime.  For both jdom and 

runtime, there are less than four incorrectly classified 

instances, which show the models minimize the number 

of unactionable alerts a developer may inspect while 

maximizing the number of alerts provided for 

inspection. 

The accuracy of the individual machine learners and 

each AC subset for jdom for the selected ACs are 

presented in Table 5.  Each column represents the set of 

ACs given to the machine learner (by row) [20]. The 

machine learners are divided by type: the first five are 

rule based learners; the next four are decision tree 

learners; simple logistic regression is a linear learner; 

the following three are k-nearest neighbor learners; and 

the final two are Bayesian learners.  The best model 

and AC subset pair for jdom was KStar and 

ConsistencySubsetEval with BestFirst search.  KStar is 

a nearest neighbor search meaning that for jdom, 

similar alerts were predictive of new alerts.  Overall, 

the Decision Table (rules), J4.8 (tree), LMT (tree with 

logistic regression), KStar (nearest neighbor), and IBk 

(nearest neighbor) were the best machine learners.   

The best model and AC subset pair for runtime 

with 98.7% accuracy was IBk and ACs selected with 

Wrapper using J4.8 and BestFirst search.  Like KStar, 

IBk is also a nearest neighbor algorithm.  The only 

other model with over 98% average accuracy was JRip, 

a rules based learner.  The poor performers for 

runtime were Conjunctive Rules at 95.4% accuracy, 

Bayes Net at 95.8%, and Naïve Bayes at 90.84% 

accuracy.  The best models for the two subject 

programs differed which supports our hypothesis that 

FP mitigation models should be project specific. 

 

6.3. Time analysis 
 

An additional consideration in FP mitigation is the 

time to obtain AC data and train the model.  Table 6 

Table 3: Average precision, recall, and 
accuracy 

Project Average 

Precision 

Average 

Recall 

Average 

Accuracy 
jdom 89.0% 83.0% 87.8% 
runtime 98.0% 99.0% 96.8%  

Table 4: Confusion matrix 

  Actual classification 

  Actionable Unactionable 

  jdom runtime jdom runtime 

Positive 13.6 74.5 2.0 
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presents the time for data collection and model building 

for the subject programs to the nearest minute.  The 

model building time is the average time for each of the 

ten, ten-fold cross validations for each of the selected 

AC sets across all of the machine learners.  The most 

costly individual model to build for jdom and 

runtime was LMT at an average of 25-42 seconds. 

LMT is a tree with logistic regression functions at the 

leaves.  

Our data collection times take into account gathering 

all of the AC data.  When considering smaller sets of 

ACs, the time for data collection will decrease.  Larger 

revision windows would also decrease the time to 

gather AC data.  Additionally, recent alert data could be 

considered (e.g. history from the past three months) 

because more recent alert data could predict better than 

the full project history. 

 

6.4. Threats to validity 
 

There are three main threats to validity for this 

work: construct validity, internal validity, and external 

validity.  The threat to construct validity is in the 

measurement and calculations of the ACs.  The 

measurement were based on related work, and 

modifications occurred when the conditions of the 

experiment required variation of the measurements.  

Each calculation is explained briefly in Section 3 and in 

more detail in [6].   

For this research, internal validity concerns how 

data were gathered and aggregated.  A script gathered 

data for each revision, and a Java program generated 

each of the ACs.  Errors within the script or program 

could invalidate some of the results.  The script was 

manually tested, while the program has a suite of 

automated unit test cases to verify the data are read 

correctly and new data are generated properly. 

While the goal of FAULTBENCH is to minimize 

external validity (generalizability of results) by 

providing a breath of sample programs, we only 

evaluated two of the six benchmark programs because 

they were the largest projects with the longest and most 

stable revision history.  Therefore, our results may not 

generalize, but additional running of the process on 

other subjects will minimize this threat to validity.  

 

7. Conclusions and future work 
 

 We present a process for using machine learning to 

create FP mitigation models that consists of 1) AC data 

collection; 2) AC subset selection; and 3) model 

building via machine learners; and 4) model selection.  

We hypothesize that the important ACs and machine 

learners will vary by project. We found the common 

ACs for jdom and runtime are: file name, method 

name, number of functions in a file and package, alert 

creation revision, file creation revision, latest file 

Table 5: Accuracy results of machine learners on jdom 

Classifier Cfs 

BestFirst 

Cfs 

RankSearch 

GainRatio 

Consistency 

BestFirst 

Wrapper 

BestFirst 

Wrapper 

RankSearch 

GainRatio 

Average 

Decision Table 92.8 91.9 90.5 90.9 91.4 91.5 

Conjunctive Rule 79.8 79.7 71.0 66.8 80.3 75.5 

PART 91.3 92.8 78.0 91.7 93.3 89.4 

Ridor 89.9 90.7 89.5 89.3 90.2 90.0 

JRip 91.3 92.8 98.2 88.6 98.2 90.8 

ADTree 89.5 91.1 84.5 88.5 90.9 88.9 

J48 90.9 92.2 86.2 93.0 92.5 91.0 

REPTree 89.5 90.6 81.3 88.4 89.3 98.8 

LMT 90.1 92.4 88.9 92.0 92.9 91.2 

Simple Logistic 

Reg. 

89.8 

90.4 85.8 73.5 93.0 86.5 

KStar 92.5 92.5 987 98.4 91.3 93.5 

LWL 82.8 88.2 72.5 70.4 87.9 80.3 

IbK 94.1 93.0 88.1 90.0 93.3 91.7 

Bayes Net 89.8 88.0 91.3 88.7 82.7 88.1 

NaïveBayes 84.6 83.8 83.9 67.2 80.8 80.1 

Average 89.2 90.0 85.3 84.8 89.5 87.8  

Table 6: Time for data collection and model 
training 

Subject Data Collection 

(hh:mm:ss) 

Model Building  

(hh:mm:ss) 
jdom 01:23:23 < 00:00:01 
runtime 02:16:33 00:00:04  



modification, total alerts and total open alerts for a 

revision, and the alert lifetime.  Eleven additional ACs 

were specific to one of the two projects.  The best 

model for jdom was the k-nearest neighbor model, 

KStar, and for runtime was the k-nearest neighbor 

model, IBk.   The difference between selected ACs and 

the best models between projects suggests that FP 

mitigation models should be project-specific. 

Further work is required to evaluate the generated 

models to ensure they are not overfit and predictive of 

future alerts.  If these models predict future alerts well, 

then the models should be evaluated against models 

proposed in the literature [7, 8, 10-12, 19].  Additional 

work in finding important ACs and models is required 

to provide additional evidence to the findings.  Finally, 

the important ACs uncovered by this research could be 

used to generate more intuitive models from static 

analysis domain knowledge that may perform better 

than the models generated from machine learning. 
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