
A Model Building Process for Identifying Actionable Static Analysis Alerts

Sarah Heckman and Laurie Williams

North Carolina State University

sarah_heckman@ncsu.edu and williams@csc.ncsu.edu

Abstract

Automated static analysis can identify potential

source code anomalies early in the software process

that could lead to field failures. However, only a small

portion of static analysis alerts may be important to the

developer (actionable). The remainder are false

positives (unactionable). We propose a process for

building false positive mitigation models to classify

static analysis alerts as actionable or unactionable

using machine learning techniques. For two open

source projects, we identify sets of alert characteristics

predictive of actionable and unactionable alerts out of

51 candidate characteristics. From these selected

characteristics, we evaluate 15 machine learning

algorithms, which build models to classify alerts. We

were able to obtain 88-97% average accuracy for both

projects in classifying alerts using three to 14 alert

characteristics. Additionally, the set of selected alert

characteristics and best models differed between the

two projects, suggesting that false positive mitigation

models should be project-specific.

1. Introduction

Automated static analysis tools can be used to

identify potential source code anomalies, which we call

alerts, early in the software process that could lead to

field failures [9]. Ayewah et al. [2] state, “In many

cases, the person who writes the code is responsible for

reviewing the [alert], deciding whether it’s relevant,

and resolving the issue.” Inspection of each alert by a

developer is required to determine if the alert is an

indication of an important anomaly that the developer

wants to fix, which we call a true positive (TP) or an

actionable alert [3, 17]. When an alert is not an

indication of an anomaly or is deemed unimportant to

the developer (e.g. the alert indicates a programmer

mistake inconsequential to program functionality), we

call the alert a false positive (FP) or an unactionable

alert [3, 17]. Static analysis tools may generate an

overwhelming number of alerts [11], the majority of

which are likely to be unactionable [9]. FP mitigation

techniques utilize information about the alerts, called

alert characteristics (AC), to prioritize alerts by the

likelihood of being actionable or to classify alerts into

actionable and unactionable groups [7, 10-12, 17, 19].

Current models [7, 8, 10-12, 17, 19] do not

systematically consider potential ACs or models, and

could be improved by an investigation into the best

predictors and models. Additionally, models that work

for one program may be ineffective on other programs.

For any FP mitigation model, we want to extract two

types of useful information from static analysis alert

data: 1) sets of ACs that are predictive of actionable

alerts; and 2) which models (using the predictive ACs)

are best at classifying. Machine learning can be used

to identify predictive ACs and machine learners

(specific machine learning algorithms) can generate

models for classifying alerts.

The goal of our research is to reduce the number of

unactionable static analysis alerts requiring inspection

by a developer. We hypothesize that the important

ACs and machine learners will vary by project.

Therefore, we propose a four-stage FP mitigation

model building process via machine learning for

building project-specific models: 1) gather the ACs

about alerts generated from static analysis; 2) use

attribute subset evaluation algorithms to select

important sets of ACs; 3) use the selected ACs and

machine learners to build predictive models; 4) select

the best model by comparing their predictive power.

To demonstrate our four-stage FP mitigation model

building process, we performed a case study on two

open source applications, jdom and org.eclipse

.core.runtime (abbreviated as runtime), that are

part of the FAULTBENCH [7] benchmark for evaluation

of FP mitigation models. For each project, we gathered

the alerts; size and complexity metrics; source code

history; and code churn. We considered rule-based,

decision tree, linear function, k-nearest neighbor, and

Bayesian network machine learners for building FP

mitigation models. We compare the two subject

programs to test our hypothesis that important ACs and

machine learners will vary by project.

 The rest of the paper is structured as follows:

Section 2 presents related work, Section 3 describes the

candidate ACs, Section 4 describes the model building

process, Section 5 presents the research methodology,

Section 6 presents the results, and Section 7 concludes

and presents future work.

2. Related work

This section describes the related work in the areas

of FP mitigation techniques and machine learning

applied to software engineering problems.

2.1. False positive mitigation techniques

Our prior research [7, 8] has proposed a project-

specific, in-process, FP mitigation prioritization

technique that utilizes the alert’s type and location at

the source folder, class, and method levels. The model,

AWARE-APM [7, 8], uses developer feedback in the form

of alert suppression and alert closures. Suppressing an

alert is an explicit developer action to indicate the alert

is unactionable. Closure is determined by comparing

subsequent static analysis runs. If the alert is not in the

later run, the alert is closed. After a developer inspects

the alert and takes an action on that alert, the

prioritization of the remaining alerts is adjusted from

the feedback. We evaluated three versions of AWARE-

APM model on FAULTBENCH subject programs and

found an average accuracy of 67-76% [7]. The

precision and recall were in the 16-19% and 25-42%

range, respectfully, for the benchmark programs. The

low accuracy suggests that while the models may work

well for some programs, the models do not work well

for others. Additionally, the alert type and alert

location together and in isolation may not be the best

predictors of actionable alerts.

Ruthruff et al. [17] screened 33 ACs from 1,652

alerts sampled from Google’s code base (spanning

multiple projects) to develop logistic regression models

for predicting actionable and unactionable alerts.

Ruthruff et al. describe a screening process whereby

ACs were selected for the model. The generated

models contained 9-15 ACs and had an accuracy

ranging from 71-87%. Ruthruff et al. [17] compared

their generated models to a linear regression model

containing all ACs and models developed by Bell et al.

[4, 15] for predicting the number of faults. Overall, the

models generated by Ruthruff et al. generally had a

higher accuracy than the other models. Additionally,

the time to gather the data to build the generated model

was substantially shorter than the time to build the

model with all ACs. Many of the ACs suggested by

Ruthruff et al. are used in our research in addition to

other project specific metrics. We also consider

additional machine learners and built models for

individual applications.

Kim and Ernst [10, 11] describe two static analysis

alert prioritization techniques that utilize data mined

from source code repositories. The first technique uses

the average lifetime of alerts sharing the same type to

prioritize the alert types [10]. The lifetime of an alert is

the time (in days) between alert creation and alert

closure. Kim and Ernst assumed that alert types with

shorter lifetimes have a higher ranking (e.g. alerts fixed

quickly are likely important).

The second technique is a history-based alert

prioritization that weights alert types by the number of

alerts closed by fault- and non-fault-fixes. A fault-fix is

a source code change where the developer fixes a fault

or problem and a non-fault-fix is a change where a fault

is not fixed, like a feature addition [11]. Alerts may be

closed during any code modification, and are therefore

considered actionable, but Kim and Ernst expect that

those alerts closed during fault-fixes are more

important when predicting actionable alerts.

The history-based alert prioritization presented by

Kim and Ernst [11] improves the alert precision by over

100% when compared to the precision when alerts are

prioritized by tool severity. However, the precision

ranged from 17-67%, possibly due to alert closures

lacking a causal relationship with the root cause of an

anomaly-fix. We include the alert lifetime, measured in

revisions instead of days, as a candidate AC. We also

utilize source code repository mining for other ACs.

Unlike Kim and Ernst, we are interested in prioritizing

or classifying individual alerts rather than the alert type.

Williams and Hollingsworth [19] created a static

analysis tool which evaluates how often the return

values of method calls are checked in source code. A

method is flagged with an alert when the return value

for the method is inconsistently checked in calling

methods. Williams and Hollingsworth use the

HISTORYAWARE prioritization technique to prioritize

methods by the percentage of time the return value for

the methods are checked in the software repository and

the current version of the code. The results show a FP

rate of 70% and 76% when using the HISTORYAWARE

prioritization technique on two case studies involving

httpd1 and Wine2 applications, respectively. The

HISTORYAWARE technique mines data from the source

code repository, which we also do, but for different

1 http://httpd.apache.org/
2 http://www.winehq.org/

ACs. Instead of using alert type specific information to

identify actionable alerts, we use ACs that can

prioritize or classify many alert types.

Kremenek et al. [12] show that static analysis alerts

in similar locations tend to be homogeneous. On

average, 88% of methods, 52% of files, and 13% of

directories with two or more alerts contained

homogeneous alerts. Kremenek et al. created a

FEEDBACK-RANK algorithm whereby the developer’s

feedback is used to prioritize the remaining alerts. The

static analysis tools used by Kremenek et al. take

advantage of understanding where the tool checked for

an alert, but did not find a potential anomaly [13].

Kremenek et al. [12] prioritize the alerts via a Bayesian

Network [20].

2.2. Machine learning

Machine learning “is the extraction of implicit,

previously unknown, and potentially useful information

about data” [20]. As discussed above, Kremenek et al.

[12] used a Bayesian network and Ruthruff et al. [17]

used logistic regression, both machine learners, to

predict alerts. However, these are not the only machine

learning techniques that could be applicable to FP

mitigation. The following research discusses machine

learning in the context of similar software engineering

problems: identifying or predicting latent faults.

Brun and Ernst [5] present a technique that builds

support vector machines and decision tree machine

learners to classify and prioritize dynamic program

properties by the likelihood the property is fault-

revealing. Overall, Brun and Ernst found that the

support vector machine learner increased the relevance

of important program properties by 50 times for C

programs and 4.8 times for Java programs. Brun and

Ernst [5] suggest their program analysis technique of

training and applying machine learners to identify

program faults is applicable to static analyses. We

extend their technique into a process for applying

machine learning to identifying both important ACs

and actionable alerts, which also includes AC selection.

Song et al. [18] use the association rule mining

machine learner to find attribute patterns that are

predictive of latent defects in the source code similar or

related to previously-found defects. Song et al. also use

association rule mining to predict the effort to find and

fix the defect. Defects were predicted with an accuracy

of 96.6%. The defect isolation and fix efforts were

compared with other machine learning techniques:

PART, C4.5, and Naïve Bayes. The association rule

mining technique for defection isolation effort

prediction had an average accuracy of 93.9% and was

about 25% higher than the other machine learners. The

association rule mining technique for defect fix effort

prediction had an average accuracy of 94.7% and was

around 23% higher than the other machine learners.

Unlike Song et al. we are only using machine learning

to identify actionable static analysis alerts, and not the

effort to fix them since the data is currently unavailable.

While we are interested in potentially identifying rules,

other machine learning techniques may be more

applicable to identifying actionable alerts.

Arisholm et al. [1] compared models built by

various machine learners to predict locations in

industrial Java software that are likely to contain faults.

Arisholm et al. found that there were not many

significant differences between the precision, recall,

and the area under receiver operation characteristic

(ROC) curves for the generated models. However, they

did find that the cost associated with the generated

models were significantly different. We are paralleling

their research by evaluating machine learners for

predicting actionable static analysis alerts.

3. Alert characteristics

False positive mitigation techniques have used

several ACs, like alert type [10-12, 17], priority [11,

17], and the history of code changes [17, 19] to predict

or prioritize actionable alerts. We have defined 51

candidate ACs that apply to each alert. These ACs

come from three sources: a static analysis tool, a

metrics tool, and the source code repository. The ACs

are presented in five categories in Sections 3.1 through

3.5. References are provided where ACs have been

used in other FP mitigation models, and explanations

about AC generation are presented where the name may

be unclear. For a more detailed explanation, see [6].

3.1. Alert identifier and alert history

A static analysis tool generates alert identifiers (the

first eight characteristics below) at alert creation, and

the alert history (the last characteristic below) is

generated via a program that compares the alerts

between software revisions. The alert identifier and

alert history characteristics are below:

• Project name.

• Package name: package name could be generalized

to the folder containing a source file [7, 8, 12].

• File name [7, 8, 12].

• Method signature: name and parameter types of

the method or function containing the alert [7, 8,

12]. An alert may not have an enclosing method.

• Alert type: the type of potential anomaly (e.g. null

pointer, etc.) [7, 8, 10, 11, 17, 19].

• Alert category: a high level categorization of alert

types (e.g. security, correctness) [17].

• Priority: the priority of the alert defined by a static

analysis tool [10, 17].

• File extension [17].

• Number of alert modifications: the number of

times an alert’s line number or priority has been

changed over the alert’s lifetime.

3.2. Software metrics

Nagappan et al. [14] show that code complexity

metrics correlate with failure-prone modules.

Additionally, Bell et al. [4, 15] have utilized code size

metrics to predict fault counts. Actionable alerts could

be considered faults; therefore, software metrics could

be predictive of actionable alerts. For characteristics

containing several granularities (e.g. method, file, etc.)

the metric is collected for each level. The software

metric characteristics used for this study are below:

• Size: the number of non-comment source statements

(NCSS) within the method, file [17], or package

declaration containing the alert.

• Number of methods: collected at the class and

package levels.

• Number of classes: collected at the file (e.g. inner

classes) and package levels.

• Cyclomatic complexity: measures the number of

paths through a method [16] containing an alert.

Ruthruff et al. [17] use indentation as a measure of

complexity.

3.3. Source code history

The models by Williams and Hollingsworth [19],

Kim and Ernst [10, 11], and Ruthruff et al. [17] use

ACs obtained from a project’s source code repository

to predict actionable alerts. Instead of recordings the

dates of a change, we use revisions. A revision is a set

of changes committed to the source code repository

together. For all of the characteristics listed below,

except developers, we record the revision number.

Below are the source code history characteristics:

• Alert open revision [10].

• Developers: set of developers who made changes to

the file containing an alert between the alert’s open

revision and the prior revision analyzed [10].

• File creation revision [17].

• File deletion revision. Alerts closed due to a file

deletion are not considered actionable [10, 11, 17].

These alerts are removed if the file deletion revision

is less than or equal to the closure revision.

• Latest modification revision: last modification to a

file, package, or project on or before the last

revision.

3.4. Source code churn

Source code churn measures the amount of change

made to a file, package, or project over time [17]. Each

of the general code churn metrics are measured

between the prior analyzed revision and the open

revision for the alert. The churn metrics are measured

for the file, package, and project that contain the alert.

The source code churn characteristics are below:

• Added lines [17].

• Deleted lines [17].

• Growth: the difference between added and deleted

lines [17].

• Total modified lines: the sum of added and deleted

lines [17].

• Percent modified lines: percent of total modified

lines out of all modified lines for the project [17].

3.5. Aggregate characteristics

Aggregate candidate ACs come from the above ACs

and provide a deeper understanding about an alert.

Prior models measure age in days [10, 17]. Instead, we

measure age as the number of revisions between two

revisions. Using revisions is still a measure of time, but

also provides a measure of work. The aggregate

characteristics are below:

• Total alerts for revision: number of alerts

identified on or before an alert’s open revision. If

an alert is opened and 10 other alerts already exist,

the number of alerts for the revision is 11.

• Total open alerts for revision: number of open

alerts identified on or before an alert’s open

revision. Continuing with the above example,

suppose that three of the 10 existing alerts are

closed. Therefore, the number of open alerts for the

revision is eight.

• Alert lifetime: the age of the alert [10]. For a

closed alert, the alert lifetime is the difference

between the close and open revisions. Otherwise,

the lifetime is the difference between the last

revision in the study and the open revision.

• File age: the age of the file [17]. For a deleted file,

the file age is the difference between the deletion

and creation revision. Otherwise, the file age is the

difference between the last revision in the study and

the file creation revision.

• Alerts for an artifact: the number of alerts in the

method [7, 8], file [7, 8, 17], package [7, 8], or

project [17] containing an alert across all revisions.

• Staleness: amount of time between last revision and

the last change of the file, package, or project [17].

4. Model building process

Witten and Frank [20] outline a strategy for using

machine learning to find patterns in data. For the rest

of this section, we describe the process we used, based

on Witten and Frank’s strategy, to gather data, select

ACs, create, and evaluate machine learning models.

Teams can use the proposed process to build FP

mitigation models using their development history.

Periodically, the team can use the process to rebuild

models using their most recent development activity.

4.1. Data Collection

There are four steps of data collection required to

gather all of the defined ACs: 1) generate the subject

revision history; 2) the subject build process; 3) alert

classification; and 4) AC generation.

4.1.1. Generate subject revision history. The history

for the subject programs comes from source code

repository, like CVS3 or SVN4. If the subject program

does not have a source code repository, the release

history can be used instead. For projects with a large

revision history, using a subset of revision can reduce

the analysis time.

4.1.2. Subject build process. For each revision in the

full or subset history, we check out and build the

project and any associated projects required for a

complete build. If the project does not build, we move

on to the next full or subset revision. Projects that do

not build provide inconsistent static analysis data.

After building the project(s), we gather size and

complexity metrics and static analysis alerts using tools

appropriate to the programming language and

environment.

4.1.3. Alert classification. The alert classification as

actionable or unactionable is our dependent variable in

machine learning. An analysis program classifies the

automatically findable actionable alerts. Starting with

the earliest revision, the sets of alerts between two

revisions are compared. An alert is identified by the

project name, package name, file name, method

3 http://ximbiot.com/cvs/wiki/
4 http://subversion.tigris.org/

signature, alert type, and one of either the FindBugs [9]

identifier or line number. Alerts within the same

revision that share the same identifying details are

duplicate alerts and are considered as the same alert

within the revision. Comparisons of the alerts between

revisions, using the identifying details, classify the

actionable alerts for a project.

When iterating through the revisions, an alert is

opened if the alert is not in any of the prior revisions [7,

8]. An alert closure occurs when the alert was in a

prior revision, but is not reported in a later revision [7,

8]. An alert is reopened if the alert was closed in a

prior revision and reported in a later revision. We only

consider the last alert closure, if there is one, for

identifying actionable alerts.

The classifications of alerts that remain open at the

last revision of the source code are unknown. There

are two possibilities of classification for these alerts.

The first is to have a developer inspect some or all of

the open alerts and determine if the alert is actionable

or unactionable. By inspecting all of the alerts there is a

full oracle. The other option is to classify all of the

open alerts as unactionable. The reasoning is that if

developers have not fixed the anomaly associated with

the alert during the history of the project, the alert may

not be important.

Alert classification follows the steps below:

1. If the alert was closed after going through all of the

revision history for the project, the alert is actionable.

2. If the alert was closed due to a file deletion, the alert

is neither actionable nor unactionable, and is

removed from the alert set used in model building.

3. The remaining alerts can be classified via inspection

or all can be marked as unactionable.

4.1.4. AC generation. The analysis program continues

by generating the AC values for each alert. Because we

consider each distinct alert individually, the ACs are

specific to that alert though the AC may have the same

value as similar alerts (e.g. alerts opened during the

same revision will have the same alerts for revision

value).

4.2. AC selection

AC selection is important in machine learning

because redundant and irrelevant characteristics reduce

classifier performance [20]. Additionally, there could

be diminishing returns whereby an AC contributes so

insignificantly to a model that the time for collection of

an AC outweighs the small increase in predictive

power. We want to choose the best subset of candidate

ACs to use when classifying alerts as actionable or not.

Attribute selection algorithms identify the ACs that are

associated with the alert’s classification, and any

algorithms appropriate to the data under analysis can be

applied.

4.3. Machine learning model creation

After the ACs are generated for each alert and the

alert oracles are supplied, machine learning is applied

to the alert set to generate models for predicting

actionable and unactionable alerts. When building

models we do ten, ten-fold cross validations [20]. In

cross validation, the set of alerts are randomly

separated into ten approximately equal sets, and nine of

the sets train the model that is tested by the last set.

Each of the ten sets is a test set, and the process is

repeated ten times.

4.4. Model evaluation

We are interested in three metrics to evaluate how

well each machine learner performs: precision, recall,

and accuracy [7]. Precision is the percentage of alerts

classified as actionable that were actionable. Recall is

percentage of alerts classified as actionable out of all

actual actionable alerts. Accuracy is the percentage of

correct actionable and unactionable classifications.

5. Research methodology

The goal of our research is to reduce the number of

unactionable static analysis alerts requiring inspection

by a developer. We hypothesize that the important

ACs and machine learning algorithms will vary by

project. Therefore, we want to use the proposed model

building process to identify and compare the best ACs

and models for two subject programs. The remainder

of this section outlines the research methodology for

using the model building process on our subject

programs.

The subjects programs, jdom and runtime, are

part of the FAULTBENCH v0.1 [7] benchmark.

FAULTBENCH contains a suite of subject open-source

programs written in Java, static analysis alert oracles

for the last revision of the program, and repeatable

procedures for evaluating FP mitigation techniques.

The alert oracles are stored in spreadsheets that identify

the alerts generated by FindBugs [9] and are classified

via inspection of the alert by Heckman [7].

Demographics about the subjects used in this study are

in Table 1. We use the FAULTBENCH alert oracle and

evaluation metrics to compare different machine

learners for FP mitigation over the history of the

subject programs.

The history of each subject program was obtained

by mining the source code repository. Evaluation of

each revision provides the most accurate alert history;

however, there were over 1000 revisions for both

projects. We only evaluated every 25th revision starting

with the first revision. Additionally, the last revision

was included.

Our subject programs are written in Java, and data

collection consisted of batch scripts that would check

out each revision from CVS, build the revision, and run

the JavaNCSS5 metrics tool and the FindBugs [9] static

analysis program. The jdom project contained build

scripts, while runtime was built using a headless

Eclipse6 build process. The metrics and alerts were

recorded in .xml files.

Weka [20] is used for AC selection and model

building. Weka [20] is a free machine learning tool

developed by Witten and Frank at the University of

Waikato in New Zealand. Weka contains standard

machine learning algorithms for attribute selection and

model building using cross-fold validation. We are

interested in identifying one or more ACs that are

correlated with an alert’s classification. However, AC

sets with more than 15 ACs were not considered. Too

many ACs may reduce the predictive power of a model

and the data collection and model building times may

increase with additional ACs [20].

We considered three search strategies for selecting

ACs [20]: BestFirst, GreedyStepwise, and RankSearch.

All three algorithms finish quickly. BestFirst and

GreedyStepwise add ACs as they increase the

predictive power of the set. RankSearch evaluates each

AC individually and returns the best ACs. For

RankSearch, we evaluated the ACs by the information

5 http://www.kclee.de/clemens/java/javancss/
6 Eclipse is an integrated development environment with incremental

build. A headless version of Eclipse runs without the user interface.

Table 1: Subject programs

 jdom runtime

Domain data format software

dev.

Size (LOC) 9035-13146 2066-15516

Time Frame

(mm/dd/yy)

05/27/00 –

11/22/07

05/02/01 –

08/07/08

of Revisions 1165 1324

Sampled

Revisions

48 54

Built Revisions 29 41

Total Alerts 420 853

Actionable Alerts 163 756

Unactionable Alerts 215 36

Deleted Alerts 42 65

gained from that AC and the ratio of the information

gain to the number and size of possible AC values.

The attribute subsets were evaluated using three

algorithms [20]: CfsSubsetEval, WrapperSubsetEval,

and ConsistencySubsetEval. CfsSubsetEval [20],

identifies subsets of ACs that are highly predictive but

unrelated to or independent of the other ACs in the set.

The second attribute selection algorithm,

WrapperSubsetEval [20], uses a machine learner and

cross-validation to choose the best attribute set. We

used the J4.8 decision tree machine learner, which is

based on the C4.5 algorithm, because the learner can

mimic the decisions a developer may make when

inspecting an alert. The third attribute selection

algorithm, ConsistencySubsetEval [20], finds attribute

sets that have consistent class values (actionable or

unactionable) within the full set of alerts. Using

homogeneous ACs should help classification.

The following machine learning algorithms could

classify alerts in ways understandable to developers:

classification rules, decision trees, linear models, k-

nearest neighbor, and Bayesian networks.

Additionally, each machine learning algorithm builds

classification models with nominal independent

variables. Classification rules provide a set of

conditions that, if met, provide the classification for the

alert [20]. Decision trees involve tests at each node that

lead down different paths of a tree [20]. Linear models

work best on numeric data and provide a mathematical

equation of the predicted ranking or classification of an

alert [17, 20]. Nearest neighbor algorithms investigate

the k nearest neighbors and weigh the contribution of

each neighbor by a distance measure to classify alerts

[20]. Bayesian networks are a probabilistic model of

the selected attributes [12, 20]. Each machine learner

was run with default options in Weka [20] unless

otherwise stated.

6. Research results

We hypothesize that the important ACs and machine

learners will vary by project. The selected ACs and the

best models for the two subject programs are compared

to evaluate the hypothesis.

6.1. Selected ACs

The number of ACs selected ranged from four to 13

for jdom and from three to 14 for runtime. For all

attribute subset evaluators, BestFirst and

GreedyStepwise identified the same ACs. Overall,

both projects had five distinct sets of 15 or less ACs,

which demonstrates that there are alert characteristics

for both projects that are predictive of actionable or

unactionable alerts. Table 2 lists the number of times

that an AC is contained in one of the five distinct AC

sets for each project.

The alert lifetime was in every AC subset for both

jdom and runtime, which implies that the length of

time the alert is in the code is predictive of the

actionablility of the alert. Kim and Ernst [10]

hypothesize that alerts with short lifetimes are more

likely to be actionable alerts; however, in our data there

is not a clear binary split between the lifetime of

actionable and unactionable alerts. Some of the alerts

with the shortest lifetime were unactionable.

The file name and method name ACs, as alert

identifiers, were selected for both jdom and

runtime. The runtime project also contains the

package name and bug type alert identifiers. These

ACs were selected either by the ConsistencySubsetEval

or the CfsSubsetEval information gain RankSearch,

which implies that these ACs tend to be homogeneous

within a specific value and have many possible values.

While these ACs are project specific and easy to obtain,

they may not be the most predictive, especially if the

AC value uniquely identifies an alert.

Both projects had AC subsets that contained the

number of functions in file and package. Additionally,

Table 2: Selected ACs

Alert Characteristics jdom runtime

package name 0 1

file name 1 2

method name 1 2

bug type 0 2

alert category 1 0

file size 1 0

package size 2 0

number of functions in file 1 3

number of functions in package 1 2

open revision 1 3

developer 0 1

file creation revision 3 2

latest file modification 1 3

latest package modification 1 0

package growth lines 1 0

total alerts for revision 2 3

total open alerts for revision 3 3

alert lifetime 5 5

file age 2 0

alerts in file 3 0

alerts in package 2 0

file staleness 1 2

the alert’s open revision and the counts of alerts at each

open revision (e.g. total alerts for revision and total

open alerts for revision) were important for both

projects. Finally, both jdom and runtime share

several file characteristics like file creation revision,

latest file modification, and file staleness, which most

likely follows from the conjecture that there must be a

change in a file for either alert creation or closure.

What may be more interesting is what ACs were not

included in any AC subset. All but one (e.g. package

growth lines) of the churn metrics were not included,

which is similar to Ruthruff et al.’s [17] findings.

Additionally, the method size, number of alerts in

method, and cyclomatic complexity were also

unimportant, potentially because the method granularity

is too low level for an accurate prediction. The number

of classes in file and package level were unimportant

while the number of functions was important.

While half of the selected ACs were common

between jdom and runtime, the other half of ACs

were different and suggest that there is not a generic set

of ACs for all FP mitigation models. Therefore,

supporting our hypothesis, AC selection should be

project-specific.

6.2. Machine learners analysis

The average precision, recall, and accuracy of the

subject programs are presented in Table 3. All of the

machine learners and AC subsets have greater than

65% accuracy for jdom with an average accuracy of

87.8%. Additionally, the precision and recall for jdom

were 89% and 83%, respectively. The runtime

project had a much higher precision, recall, and

accuracy at 98%, 99%, and 96.9%, respectively.

These values surpass the precision reported by Kim

and Ernst [11]. Many of the individual machine

learner, AC subset pairs performed even better than the

models presented by Ruthruff et al. [17] suggesting

that fewer characteristics are required to obtain good

accuracy, and alert classification by project may be

more accurate.

For the jdom project, 56.9% of alerts were

unactionable, while 4.5% of alerts were unactionable

for runtime. Unlike jdom, most of the alerts for

runtime (95%) were closed by the last revision. We

can look at the average confusion matrix [1, 20] for

jdom and runtime in Table 4. The average

confusion matrix contains the average values of the

classifications for each cross-validation. There were 37-

38 alerts tested for each validation run for jdom and

79-80 alerts tested for runtime. For both jdom and

runtime, there are less than four incorrectly classified

instances, which show the models minimize the number

of unactionable alerts a developer may inspect while

maximizing the number of alerts provided for

inspection.

The accuracy of the individual machine learners and

each AC subset for jdom for the selected ACs are

presented in Table 5. Each column represents the set of

ACs given to the machine learner (by row) [20]. The

machine learners are divided by type: the first five are

rule based learners; the next four are decision tree

learners; simple logistic regression is a linear learner;

the following three are k-nearest neighbor learners; and

the final two are Bayesian learners. The best model

and AC subset pair for jdom was KStar and

ConsistencySubsetEval with BestFirst search. KStar is

a nearest neighbor search meaning that for jdom,

similar alerts were predictive of new alerts. Overall,

the Decision Table (rules), J4.8 (tree), LMT (tree with

logistic regression), KStar (nearest neighbor), and IBk

(nearest neighbor) were the best machine learners.

The best model and AC subset pair for runtime

with 98.7% accuracy was IBk and ACs selected with

Wrapper using J4.8 and BestFirst search. Like KStar,

IBk is also a nearest neighbor algorithm. The only

other model with over 98% average accuracy was JRip,

a rules based learner. The poor performers for

runtime were Conjunctive Rules at 95.4% accuracy,

Bayes Net at 95.8%, and Naïve Bayes at 90.84%

accuracy. The best models for the two subject

programs differed which supports our hypothesis that

FP mitigation models should be project specific.

6.3. Time analysis

An additional consideration in FP mitigation is the

time to obtain AC data and train the model. Table 6

Table 3: Average precision, recall, and
accuracy

Project Average

Precision

Average

Recall

Average

Accuracy
jdom 89.0% 83.0% 87.8%
runtime 98.0% 99.0% 96.8%

Table 4: Confusion matrix

 Actual classification

 Actionable Unactionable

 jdom runtime jdom runtime

Positive 13.6 74.5 2.0

1.4

P
re

d
ic

te
d

cl
as

si
fi

ca
ti

o
n

Negative 2.7 1.1 19.5

2.2

presents the time for data collection and model building

for the subject programs to the nearest minute. The

model building time is the average time for each of the

ten, ten-fold cross validations for each of the selected

AC sets across all of the machine learners. The most

costly individual model to build for jdom and

runtime was LMT at an average of 25-42 seconds.

LMT is a tree with logistic regression functions at the

leaves.

Our data collection times take into account gathering

all of the AC data. When considering smaller sets of

ACs, the time for data collection will decrease. Larger

revision windows would also decrease the time to

gather AC data. Additionally, recent alert data could be

considered (e.g. history from the past three months)

because more recent alert data could predict better than

the full project history.

6.4. Threats to validity

There are three main threats to validity for this

work: construct validity, internal validity, and external

validity. The threat to construct validity is in the

measurement and calculations of the ACs. The

measurement were based on related work, and

modifications occurred when the conditions of the

experiment required variation of the measurements.

Each calculation is explained briefly in Section 3 and in

more detail in [6].

For this research, internal validity concerns how

data were gathered and aggregated. A script gathered

data for each revision, and a Java program generated

each of the ACs. Errors within the script or program

could invalidate some of the results. The script was

manually tested, while the program has a suite of

automated unit test cases to verify the data are read

correctly and new data are generated properly.

While the goal of FAULTBENCH is to minimize

external validity (generalizability of results) by

providing a breath of sample programs, we only

evaluated two of the six benchmark programs because

they were the largest projects with the longest and most

stable revision history. Therefore, our results may not

generalize, but additional running of the process on

other subjects will minimize this threat to validity.

7. Conclusions and future work

 We present a process for using machine learning to

create FP mitigation models that consists of 1) AC data

collection; 2) AC subset selection; and 3) model

building via machine learners; and 4) model selection.

We hypothesize that the important ACs and machine

learners will vary by project. We found the common

ACs for jdom and runtime are: file name, method

name, number of functions in a file and package, alert

creation revision, file creation revision, latest file

Table 5: Accuracy results of machine learners on jdom

Classifier Cfs

BestFirst

Cfs

RankSearch

GainRatio

Consistency

BestFirst

Wrapper

BestFirst

Wrapper

RankSearch

GainRatio

Average

Decision Table 92.8 91.9 90.5 90.9 91.4 91.5

Conjunctive Rule 79.8 79.7 71.0 66.8 80.3 75.5

PART 91.3 92.8 78.0 91.7 93.3 89.4

Ridor 89.9 90.7 89.5 89.3 90.2 90.0

JRip 91.3 92.8 98.2 88.6 98.2 90.8

ADTree 89.5 91.1 84.5 88.5 90.9 88.9

J48 90.9 92.2 86.2 93.0 92.5 91.0

REPTree 89.5 90.6 81.3 88.4 89.3 98.8

LMT 90.1 92.4 88.9 92.0 92.9 91.2

Simple Logistic

Reg.

89.8

90.4 85.8 73.5 93.0 86.5

KStar 92.5 92.5 987 98.4 91.3 93.5

LWL 82.8 88.2 72.5 70.4 87.9 80.3

IbK 94.1 93.0 88.1 90.0 93.3 91.7

Bayes Net 89.8 88.0 91.3 88.7 82.7 88.1

NaïveBayes 84.6 83.8 83.9 67.2 80.8 80.1

Average 89.2 90.0 85.3 84.8 89.5 87.8

Table 6: Time for data collection and model
training

Subject Data Collection

(hh:mm:ss)

Model Building

(hh:mm:ss)
jdom 01:23:23 < 00:00:01
runtime 02:16:33 00:00:04

modification, total alerts and total open alerts for a

revision, and the alert lifetime. Eleven additional ACs

were specific to one of the two projects. The best

model for jdom was the k-nearest neighbor model,

KStar, and for runtime was the k-nearest neighbor

model, IBk. The difference between selected ACs and

the best models between projects suggests that FP

mitigation models should be project-specific.

Further work is required to evaluate the generated

models to ensure they are not overfit and predictive of

future alerts. If these models predict future alerts well,

then the models should be evaluated against models

proposed in the literature [7, 8, 10-12, 19]. Additional

work in finding important ACs and models is required

to provide additional evidence to the findings. Finally,

the important ACs uncovered by this research could be

used to generate more intuitive models from static

analysis domain knowledge that may perform better

than the models generated from machine learning.

8. Acknowledgements

This research is funded by an IBM PhD Fellowship

awarded to the first author for the 2008-2009 academic

year. The authors would like to thank the North

Carolina State University RealSearch Reading Group

for their feedback on this paper.

9. References

[1] E. Arisholm, L. C. Briand, and M. Fuglerud, "Data

Mining Techniques for Building Fault-proneness Models

in Telecom Java Software," 18th IEEE International

Symposium on Software Reliability Engineering,

Trollhattan, Sweden, November 5-9, 2007, pp. 215-224.

[2] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix,

and W. Pugh, "Using Static Analysis to Find Bugs," in

IEEE Software. vol. 25, no. 5, 2008, pp. 22-29.

[3] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and

Y. Zhou, "Evaluating Static Analysis Defect Warnings

On Production Software," 7th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and

Engineering, San Diego, CA, USA, June 13-14, 2007,

pp. 1-8.

[4] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, "Looking

for Bugs in All the Right Places," International

Symposium on Software Testing and Analysis, 2006, pp.

61-71.

[5] Y. Brun and M. D. Ernst, "Finding Latent Code Errors

via Machine Learning Over Program Executions," 26th

International Conference on Software Engineering,

Edinburgh, Scotland, May 26-28, 2004, pp. 480-490.

[6] S. Heckman and L. Williams, "A Measurement

Framework of Alert Characteristics for False Positive

Mitigation Models," North Carolina State University

TR-2008-23, October 6, 2008.

[7] S. Heckman and L. Williams, "On Establishing a

Benchmark for Evaluating Static Analysis Alert

Prioritization and Classification Techniques," 2nd

International Symposium on Empirical Software

Engineering and Measurement, Kaiserslautern,

Germany, October 9-10, 2008, pp. 41-50.

[8] S. S. Heckman, "Adaptively Ranking Alerts Generated

from Automated Static Analysis," in ACM Crossroads.

vol. 14, no. 1, 2007, pp. 16-20.

[9] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy,"

19th ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications,

Vancouver, British Columbia, Canada, October 24-28,

2004, pp. 132-136.

[10] S. Kim and M. D. Ernst, "Prioritizing Warning

Categories by Analyzing Software History,"

International Workshop on Mining Software

Repositories, Minneapolis, MN, USA, May 19-20, 2007,

p. 27.

[11] S. Kim and M. D. Ernst, "Which Warnings Should I Fix

First?," 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

Dubrovnik, Croatia, September 3-7, 2007, pp. 45-54.

[12] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler,

"Correlation Exploitation in Error Ranking," 12th ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, Newport Beach, CA, USA, 2004,

pp. 83-93.

[13] T. Kremenek and D. Engler, "Z-Ranking: Using

Statistical Analysis to Counter the Impact of Static

Analysis Approximations," 10th International Static

Analysis Symposium, San Diego, California, 2003, pp.

295-315.

[14] N. Nagappan, T. Ball, and A. Zeller, "Mining Metrics to

Predict Component Failures," 28th International

Conference on Software Engineering, Shanghai, China,

May 20-28, 2006, pp. 452-461.

[15] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where the

Bugs Are," International Symposium on Software

Testing and Analysis, 2004, pp. 86-96.

[16] R. S. Pressman, Software Engineering: A Practitioner's

Approach, 6th ed. Boston: McGraw Hill, 2005.

[17] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum,

and G. Rothermel, "Predicting Accurate and Actionable

Static Analysis Warnings: An Experimental Approach,"

30th International Conference on Software Engineering,

Leipzig, Germany, May 10-18, 2008, pp. 341-350.

[18] Q. Song, M. Shepperd, M. Cartwright, and C. Mair,

"Software Defect Association Mining and Defect

Correction Effort Prediction," IEEE Transactions on

Software Engineering, vol. 32, no. 2, pp. 69-82,

February, 2006.

[19] C. C. Williams and J. K. Hollingsworth, "Automatic

Mining of Source Code Repositories to Improve Bug

Finding Techniques," IEEE Transactions on Software

Engineering, vol. 31, no. 6, pp. 466-480, 2005.

[20] I. H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques, 2nd ed.

Amsterdam: Morgan Kaufmann, 2005.

