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Abstract
We construct a cofibrantly generated model structure on the

category of flows such that any flow is fibrant and such that
two cofibrant flows are homotopy equivalent for this model
structure if and only if they are S-homotopy equivalent. This
result provides an interpretation of the notion of S-homotopy
equivalence in the framework of model categories.

1. Geometric models of concurrency

Algebraic topological models have been used now for some years in concurrency
theory (concurrent database systems and fault-tolerant distributed systems as well)
[23]. The earlier models, progress graph (see [6] for instance) have actually appeared
in operating systems theory, in particular for describing the problem of “deadly em-
brace” (as E. W. Dijkstra originally put it in [8], now more usually called deadlock)
in “multiprogramming systems”. They are used by J. Gunawardena in [25] as an
example of the use of homotopy theory in concurrency theory. Later V. Pratt intro-
duced another geometric approach using strict globular ω-categories in [32]. Some
of his ideas would be developed in an homological manner in E. Goubault’s PhD
[22], using bicomplexes of modules. The ω-categorical point of view would be devel-
oped by the author mainly in [13] [14] [15] [16] using the equivalence of categories
between the category of strict globular ω-categories and that of strict cubical ω-
categories [1]. The mathematical works of R. Brown et al. [5] [4] and of R. Street
[34] play an important role in this approach.

The ω-categorical approach also allowed to understand how to deform higher di-
mensional automata (HDA) modeled by ω-categories without changing their compu-
ter-scientific properties (deadlocks, unreachable states, schedules of execution, final
and initial points, serializability). The notions of spatial deformation and of temporal
deformation of HDA are indeed introduced in [12] in an informal way.

Another algebraic topological approach of concurrency is that of local po-space
introduced by L. Fajstrup, E. Goubault and M. Raussen. A local po-space is a gluing
of topological spaces which are equipped with a closed partial ordering representing
the time flow. They are used as a formalization of higher dimensional automata
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which model concurrent systems in computer science. Some algorithms of deadlock
detection in PV diagrams have been studied within this framework [10].

The notion behind all these geometric approaches is the one of precubical set.
Roughly speaking, a n-dimensional cube [0, 1]n represents the concurrent execution
of n independant processes. A precubical set is a family of sets (Kn)n>0 (the el-
ements of Kn being called the n-dimensional cubes) together with face operators
∂α

i : Kn+1 −→ Kn for 1 6 i 6 n and with α ∈ {−, +} satisfying ∂α
i ∂β

j = ∂β
j−1∂

α
i for

i < j. These face operators encode how the n-cubes are located with respect to one
another in the precubical set. The prefix “pre” means that there are no degeneracy
maps at all in the data. R. Cridlig presents in [7] an implementation with CaML of
the semantics of a real concurrent language in terms of precubical sets, demonstrat-
ing the relevance of this approach. Since this category is sufficient to model HDA,
why not deal directly with precubical sets ? Because the category of precubical sets
is too poorly structured. For instance there are not enough morphisms to model
temporal deformations (see also the introduction of [14] for some further closely
related reasons).

In [20], some particular cases of local po-spaces are introduced by E. Goubault
and the author: the globular CW-complexes. The corresponding category is big
enough to model all HDA. Moreover the notion of spatial and temporal defor-
mations can be modeled within this category. It became possible to give a precise
mathematical definition of two globular CW-complexes to be S-homotopy equivalent
and T-homotopy equivalent (S for space and T for time !). By localizing with re-
spect to the S-homotopy and T-homotopy equivalences, one obtains a new category,
that of dihomotopy types, whose isomorphism classes are globular CW-complexes
having the same computer scientific properties. It then became possible to study
concurrency using only this quotient category of dihomotopy types.

Not only globular complexes allow to model dihomotopy, but they also allow
to take out pathological situations appearing in the local po-space framework and
which are meaningless from a computer scientific viewpoint. For example, the ra-
tional numbers Q equipped with the usual ordering is a local po-space and the total
disconnectedness of Q means nothing in this geometric approach of concurrency.

The purpose of this paper is the introduction of a new category, the category of
flows, in which it will be possible to embed the category of globular CW-complexes
and in which it will be possible to define both the class of S-homotopy and T-
homotopy equivalences. Due to the length of this work, the construction and the
study of the functor from the category of globular CW-complexes to that of flows
is postponed to another paper.

Figure 1 is a recapitulation of the geometric models of concurrency, including the
one presented in this paper.

2. Outline of the paper

Section 4 defines the category of flows Flow after a short introduction about
compactly generated topological spaces. It is proved that Flow is complete and
cocomplete. Several particular and important examples of flows are also introduced.
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Figure 1: Comparison of geometric models of HDA

Section 5 is devoted to proving that for any flow Y , the functor FLOW(−, Y )
from the opposite of the category of flows to that of topological spaces commutes
with all limits where FLOW(X, Y ) is the set of morphisms of flows from X to
Y endowed with the Kelleyfication of the compact-open topology. This fact will
be of crucial importance in several places of the paper. This result turns out to
be difficult to establish since the underlying topological space of a colimit of flows
is in general not isomorphic to the colimit of the underlying topological spaces.
This result actually requires the introduction of the category of non-contracting
topological 1-categories and of a closed monoidal structure on it. Section 6 shows
that any flow is a canonical colimits of globes and points. This is a technical lemma
which is also of importance for several proofs of this paper. Section 7 defines the
class of S-homotopy equivalences in the category of flows. The associated cylinder
functor is constructed. Section 8 is devoted to an explicit description of U £ X
for a given topological space U and a given flow X. Section 9 describes a class
of morphisms of flows (the ones satisfying the S-homotopy extension property)
which are closed by pushouts and which contains useful examples as the inclusion
Glob(∂Z) −→ Glob(Z) where (Z, ∂Z) is a NDR pair of topological spaces. The
main result of Section 10 is that any morphism of flows satisfying the S-homotopy
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extension property induces a closed inclusion of topological spaces between the path
spaces. This allows us to prove in Section 11 that the domains of the generating
cofibrations and of the generating trivial cofibrations of the model structure are
small relatively to the future class of cofibrations of the model structure. Section 11 is
therefore the beginning of the construction of the model structure. Section 12 recalls
some well-known facts about cofibrantly generated model categories. Section 13
characterizes the fibrations of this model structure. Section 14 explains why it is
necessary to add to the set of generating cofibrations the morphisms of flows C :
∅ −→ {0} and R : {0, 1} −→ {0}. Section 15 provides an explicit calculation
of the pushout of a morphism of flows of the form Glob(∂Z) −→ Glob(Z). This
will be used in Section 16. The main result of Section 15 is that if ∂Z −→ Z
is an inclusion of a deformation retract, then any morphism of flows which is a
pushout of Glob(∂Z) −→ Glob(Z) induces a weak homotopy equivalence between
path spaces. Section 16 and Section 17 conclude the construction of the model
structure recapitulated in Section 18. Section 19 checks that two cofibrant-fibrant
flows are homotopy equivalent for this model structure if and only if they are S-
homotopy equivalent.

3. Warning

This paper is the first part of a work which aims at introducing a convenient
categorical setting for the homotopy theory of concurrency. This part is focused on
the category of flows itself, its basic properties, the notion of S-homotopy equiva-
lence, weak or not, and the model structure. The relation between the category of
globular CW-complexes and the one of flows is explored in [17]. A detailed abstract
(in French) of this work can be found in [18] and [19].

4. The category of flows

4.1. Preliminaries about the compactly generated topological spaces
This section is a survey about compactly generated spaces which gives enough

references for the reader not familiar with this subject. Cf. [3], [30] and the appendix
of [28].

By a compact space, we mean a compact Hausdorff topological space. Let T be
the category of general topological spaces with the continuous maps as morphisms.

Definition 4.1. A continuous map f : A −→ B is an inclusion of spaces if f is
one-to-one and if the canonical set map

Top(Z,A) −→ {g ∈ Top(Z, B), g(Z) ⊂ f(A)}
induced by the mapping g 7→ f ◦g is a bijection of sets. In other terms, a continuous
map f : A −→ B is an inclusion of spaces if for any set map g : Z −→ A such that
f ◦ g is continuous, then g is continuous.

Definition 4.2. A continuous map f : A −→ B is closed if for any closed subset
F of A, the subset f(F ) is closed in B.
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Definition 4.3. A quotient map is a continuous map f : X −→ Y which is onto
and such that U ⊂ Y is open if and only if f−1(U) is open in X. In other term, Y
is given with the final topology associated to f .

Definition 4.4. A k-space X is a topological space such that for any continuous
map f : K −→ X with K compact, U ⊂ X is open (resp. closed) if and only if
f−1(U) is open (resp. closed) in K. The corresponding category with the continuous
maps as morphisms is denoted by kTop.

A topological space X is a k-space if and only if there exists a disjoint sum of
compacts

⊕
i∈I Ki and a quotient map

⊕
i∈I Ki −→ X [3]. The inclusion functor

kTop −→ T has a right adjoint and a left inverse k : T −→ kTop which is called
the Kelleyfication functor. The category kTop is complete and cocomplete where
colimits are taken in T and limits are taken by applying k to the limit in T [33]
[29]. The identity map k (X) −→ X is continuous because the topology of k (X)
contains more opens than the topology of X.

Definition 4.5. A topological space X is weak Hausdorff if and only if for any
continuous map f : K −→ X with K compact, the subspace f(K) is closed in X.

If X is a k-space, then X is weak Hausdorff if and only if its diagonal ∆X =
{(x, x) ∈ X × X} is a closed subspace of X × X, the latter product being taken
in kTop [31]. If X is a weak Hausdorff topological space, then k(X) is still weak
Hausdorff.

If X is a weak Hausdorff topological space, then X is a k-space if and only if
X ∼= lim−→K⊂X

K as topological space where K runs over the set of compact subspaces
of X: a subset F of k (X) is closed (resp. open) if and only if for any compact C of
X, F ∩ C is a closed (resp. open) subspace of X.

Definition 4.6. A compactly generated topological space is by definition a weak
Hausdorff k-space. The corresponding category with the continuous maps as mor-
phims is denoted by Top.

Let wH be the category of weak Hausdorff topological spaces. Generally colimits
in wH do not coincide with colimits in T . But

Proposition 4.7. [28] A transfinite composition of injections and pushouts of
closed inclusions of compactly generated topological spaces is still weak Hausdorff
(and therefore a compactly generated topological space).

Proposition 4.8. [31] [29] The inclusion functor wH −→ T has a left adjoint H.
If X is a k-space and if R is an equivalence relation, then H(X/R) is equal to X/R
where the topological closure R of R is defined as the intersection of all equivalence
relations containing R and whose graph is closed in X × X. In particular, if the
graph of R is closed in X ×X, then X/R is weak Hausdorff.

Proposition 4.9. [33] [29] If i 7→ Xi is any small diagram in Top, then the limit
in Top coincides with the Kelleyfication of the limit in T and with the Kelleyfication
of the limit in wH. Moreover the underlying set of this limit coincides with the limit
in the category of sets of the underlying sets of the Xi.



Homology, Homotopy and Applications, vol. 5(1), 2003 554

If X is a weak Hausdorff topological space, then a subset Y of X equipped
with the relative topology is weak Hausdorff as well. If X is a compactly generated
topological space, then a subset Y of X equipped with the relative topology is then
weak Hausdorff. But it is not necessarily a k-space. To get back a k-space, it is
necessary to consider the Kelleyfication k(Yr) of Yr (Y equipped with the relative
topology).

Proposition 4.10. [33] [29] Let us denote by TOP (X,−) the right adjoint of the
functor −×X : Top −→ Top. Then

1. If Cop (X,Y ) is the set Top (X,Y ) equipped with the compact-open topology
(i.e. a basis of opens is given by the sets

N (C,U) := {f ∈ Top (X, Y ) , f (C) ⊂ U}
where C is any compact subset of X and U any open subset of Y ), then there
is a natural bijection TOP (X, Y ) ∼= k (Cop (X, Y )).

2. There is a natural isomorphism of topological spaces

TOP (X × Y,Z) ∼= TOP (X,TOP (Y, Z)) .

3. There are natural isomorphisms of topological spaces

TOP

(
lim−→

i

Xi, Y

)
∼= lim←−

i

TOP (Xi, Y )

and

TOP

(
X, lim←−

i

Yi

)
∼= lim←−

i

TOP (X, Yi) .

Similar results can be found in [36] [37] with slightly bigger categories of topo-
logical spaces than the one we are using in this paper.

In the sequel, all topological spaces will be supposed to be compactly gener-
ated (so in particular weak Hausdorff). In particular all binary products will be
considered within this category.

4.2. Definition of a flow
Definition 4.11. A flow X consists of a topological space PX, a discrete space X0,
two continuous maps s and t from PX to X0 and a continuous and associative map

∗ : {(x, y) ∈ PX × PX; t(x) = s(y)} −→ PX

such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism of flows f : X −→ Y
consists of a set map f0 : X0 −→ Y 0 together with a continuous map Pf : PX −→
PY such that f(s(x)) = s(f(x)), f(t(x)) = t(f(x)) and f(x ∗ y) = f(x) ∗ f(y). The
corresponding category will be denoted by Flow.

The continuous map s : PX −→ X0 is called the source map. The continuous
map t : PX −→ X0 is called the target map. One can canonically extend these two
maps to the whole underlying topological space X0 t PX of X by setting s (x) = x
and t (x) = x for x ∈ X0.
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X

TIME

Figure 2: Symbolic representation of Glob(X) for some topological space X

The discrete topological space X0 is called the 0-skeleton of X. The 0-dimensional
elements of X are also called states or constant execution paths.

The elements of PX are called non constant execution paths. If γ1 and γ2 are
two non-constant execution paths, then γ1 ∗ γ2 is called the concatenation or the
composition of γ1 and γ2. For γ ∈ PX, s (γ) is called the beginning of γ and t (γ)
the ending of γ.

Notation 4.12. For α, β ∈ X0, let Pα,βX be the subspace of PX equipped the
Kelleyfication of the relative topology consisting of the non-execution paths of X
with beginning α and with ending β.

Definition 4.13. Let X be a flow. A point α of X0 such that there is not any
non-constant execution path γ with t (γ) = α (resp. s (γ) = α) is called an initial
state (resp. a final state).

4.3. The globe of a topological space
As in [20], but here for the framework of flows, we are going to introduce the no-

tion of globe of a topological space. It will be important both for computer scientific
and purely mathematical reasons.

For X a topological space, let Glob (X) be the flow defined by

Glob (X)0 = {0, 1} and PGlob (X) = X

with s = 0 and t = 1 (cf. Figure 2). The Glob mapping induces a canonical functor
from the category Top of topological spaces to the category Flow of flows.

As a particular case of globe is that of a singleton. One obtains the directed
segment

−→
I . It is defined as follows:

−→
I 0 = {0, 1}, P−→I = {[0, 1]}, s ([0, 1]) = 0 and

t ([0, 1]) = 1.
If Z1, . . . , Zp are p topological spaces with p > 2, the flow

Glob(Z1) ∗Glob(Z2) ∗ · · · ∗Glob(Zp)

is the flow obtained by identifying the final state of Glob(Zi) with the initial state
of Glob(Zi+1) for 1 6 i 6 p− 1.
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Notation 4.14. If X and Y are two flows, let us denote by FLOW(X, Y ) the
space of morphisms of flows Flow(X, Y ) equipped with the Kelleyfication of the
compact-open topology.

Proposition 4.15. Let X be a flow. Then there is a natural homeomorphism PX ∼=
FLOW

(−→
I , X

)
.

Proof. If we have an element u of PX, consider the morphism of flows Fγ defined
by Fγ (0) = s(u), Fγ (1) = t(u) and Fγ ([0, 1]) = u. And reciprocally a morphism

F ∈ Flow
(−→

I , X
)

can be mapped on an element of PX by F 7→ F ([0, 1]). Hence
the bijection between the underlying sets. This bijection is an homemorphism since
for any topological space Z, one has the homeomorphism TOP({0}, Z) ∼= Z.

4.4. Higher dimensional automaton and flow
This example is borrowed from [20]. An example of progress graph, that is of

higher dimensional automaton, is modeled here as a flow.
The basic idea is to give a description of what can happen when several processes

are modifying shared resources. Given a shared resource a, we see it as its associated
semaphore that rules its behaviour with respect to processes. For instance, if a is an
ordinary shared variable, it is customary to use its semaphore to ensure that only one
process at a time can write on it (this is mutual exclusion). A semaphore is nothing
but a register which counts the number of times a shared object can still be accessed
by processes. In the case of usual shared variables, this register is initialized with
value 1, processes trying to access (read or write) on the corresponding variable
compete in order to get it first, then the semaphore value is decreased: we say
that the semaphore has been locked1 by the process. When it is equal to zero, all
processes trying to access this semaphore are blocked, waiting for the process which
holds the lock to relinquish it, typically when it has finished reading or writing on
the corresponding variable: the value of the semaphore is then increased.

When the semaphores are initialized with value one, meaning that they are as-
sociated with shared variables accessed in a mutually exclusive manner, they are
called binary semaphores. When a shared data (identified with its semaphore) can
be accessed by one or more processes, meaning that the corresponding semaphore
has been initialized with a value greater than one, it is called a counting semaphore.

Given n deterministic sequential processes Q1, . . . , Qn, abstracted as a sequence
of locks and unlocks on (semaphores associated with) shared objects,

Qi = R1a1
i .R

2a2
i · · ·Rniani

i

(Rk being P or V 2), there is a natural way to understand the possible behaviours
of their concurrent execution, by associating to each process a coordinate line in
Rn. The state of the system corresponds to a point in Rn, whose ith coordinate
describes the state (or “local time”) of the ith processor.

1Of course this operation must be done “atomically”, meaning that the semaphore itself must be
handled in a mutually exclusive manner: this is done at the hardware level.
2Using E. W. Dijkstra’s notation P and V [8] for respectively acquiring and releasing a lock on a
semaphore.
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Figure 3: Example of a progress graph

Consider a system with finitely many processes running altogether. We assume
that each process starts at (local time) 0 and finishes at (local time) 1; the P
and V actions correspond to sequences of real numbers between 0 and 1, which
reflect the order of the P ’s and V ’s. The initial state is (0, . . . , 0) and the final state
is (1, . . . , 1). An example consisting of the two processes T1 = Pa.Pb.V b.V a and
T2 = Pb.Pa.V a.V b gives rise to the two dimensional progress graph of Figure 3.

The shaded area represents states which are not allowed in any execution path,
since they correspond to mutual exclusion. Such states constitute the forbidden
area. An execution path is a path from the initial state (0, . . . , 0) to the final state
(1, . . . , 1) avoiding the forbidden area and increasing in each coordinate - time can-
not run backwards. This entails that paths reaching the states in the dashed square
underneath the forbidden region, marked “unsafe” are deemed to deadlock, i.e. they
cannot possibly reach the allowed terminal state which is (1, 1) here. Similarly, by
reversing the direction of time, the states in the square above the forbidden region,
marked “unreachable”, cannot be reached from the initial state, which is (0, 0) here.
Also notice that all terminating paths above the forbidden region are “equivalent”
in some sense, given that they are all characterized by the fact that T2 gets a and b
before T1 (as far as resources are concerned, we call this a schedule). Similarly, all
paths below the forbidden region are characterized by the fact that T1 gets a and b
before T2 does.

We end up the paragraph with the Swiss Flag example of Figure 3 described as
a flow.

Let n > 1. Let Dn be the closed n-dimensional disk defined by the set of points
(x1, . . . , xn) of Rn such that x2

1 + · · ·+ x2
n 6 1 endowed with the topology induced

by that of Rn. Let Sn−1 = ∂Dn be the boundary of Dn for n > 1, that is the set
of (x1, . . . , xn) ∈ Dn such that x2

1 + · · · + x2
n = 1. Notice that S0 is the discrete
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Figure 4: Example of a flow

two-point topological space {−1, +1}. Let D0 be the one-point topological space.
Let S−1 = ∅ be the empty set.

Consider the discrete set SW 0 = {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3, 4, 5}. Let

S = {((i, j), (i + 1, j)) for (i, j) ∈ {0, . . . , 4} × {0, . . . , 5}}
∪ {((i, j), (i, j + 1)) for (i, j) ∈ {0, . . . , 5} × {0, . . . , 4}}
\ ({((2, 2), (2, 3)), ((2, 2), (3, 2)), ((2, 3), (3, 3)), ((3, 2), (3, 3))})

The flow SW 1 is obtained from SW 0 by attaching a copy of Glob(D0) to each pair
(x, y) ∈ S with x ∈ SW 0 identified with 0 and y ∈ SW 0 identified with 1. The
flow SW 2 is obtained from SW 1 by attaching to each square ((i, j), (i + 1, j + 1))
except (i, j) ∈ {(2, 1), (1, 2), (2, 2), (3, 2), (2, 3)} a globular cell Glob(D1) such that
each execution path ((i, j), (i+1, j), (i+1, j +1)) and ((i, j), (i, j +1), (i+1, j +1))
is identified with one of the execution path of Glob(S0) (there is not a unique choice
to do that). Let SW = SW 2 (cf. Figure 4 where the bold dots represent the points
of the 0-skeleton). The flow SW represents the PV diagram of Figure 4.

4.5. Limit and colimit in Flow
Theorem 4.16. [2] [29] (Freyd’s Adjoint Functor Theorem) Let A and X be locally
small categories. Assume that A is complete. Then a functor G : A −→ X has a left
adjoint if and only if it preserves all limits and satisfies the following “Solution Set
Condition”. For each object x ∈ X, there is a set of arrows fi : x −→ Gai such that
for every arrow h : x −→ Ga can be written as a composite h = Gt ◦ fi for some i
and some t : ai −→ a.

Theorem 4.17. The category Flow is complete and cocomplete. In particular, a
terminal object is the flow 1 having the discrete set {0, u} as underlying topological
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space with 0-skeleton {0} and path space {u}. And an initial object is the unique
flow ∅ having the empty set as underlying topological space.

Proof. Let X : I −→ Flow be a functor from a small category I to Flow. Let Y
be the flow defined as follows:

1. The 0-skeleton Y 0 of Y is defined as being the limit as sets lim←−I

(
X (i)0

)

equipped with the discrete topology.

2. Let α, β ∈ lim←−I

(
X (i)0

)
and let αi (resp. βi) be the image of α (β) in X (i)0.

Then let Pα,βY := lim←−i
Pαi,βi

X (i) where the limit is taken in Top.

3. For α, β, γ ∈ lim←−I

(
X (i)0

)
, let αi (resp. βi, γi) be the image of α (resp. β, γ)

in X (i)0. Then the composition map ∗ : Pα,βY × Pβ,γY −→ Pα,γY is taken
as the limits of the ∗i : Pαi,βiX (i)× Pβi,γiX (i) −→ Pαi,γiX (i).

One does obtain a flow which is the limit lim←−i∈I
X (i). To prove that Flow is co-

complete, it suffices to prove that the constant diagram functor ∆I from Flow to
the category FlowI of diagrams in Flow over the small category I has a left adjoint
using Theorem 4.16. The functor ∆I commutes with limits. It suffices now to find
a set of solutions. Consider a diagram D of FlowI . There is a class of solutions by
taking all morphisms f : D → ∆IY for Y running over the category Flow and for f
running over the set of morphisms from D to ∆IY . Then one can suppose that Y is
the subflow generated by the image of D, so that the cardinal card(Y ) of Y satisfies
card(Y ) 6 ℵ0 × card(D). Then it suffices to consider the set {Zi, i ∈ I} of isomor-
phism classes of flows whose underlying set is of cardinal less than ℵ0 × card(D).
Then card(I) 6 2(ℵ0×card(D))5 . So I is a set. Therefore

⋃
i∈I FlowI (D, ∆I (Zi)) is

a set as well. One has obtained a set of solutions.

5. Morphisms of flows and colimits

The aim of this section is the proof of the following theorem:

Theorem 5.1. (Theorem 5.10) Let FLOW (X, Y ) be the set of morphisms of flows
from X to Y equipped with the Kelleyfication of the compact-open topology. Then
the mapping

(X, Y ) 7→ FLOW (X,Y )

induces a functor from Flow×Flow to Top which is contravariant with respect to
X and covariant with respect to Y . Moreover:

1. One has the natural homeomorphism

FLOW

(
lim−→

i

Xi, Y

)
∼= lim←−

i

FLOW (Xi, Y )

for any colimit lim−→i
Xi in Flow.
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2. One has the natural homeomorphism

FLOW

(
X, lim←−

i

Yi

)
∼= lim←−

i

FLOW (X,Yi)

for any finite limit lim←−i
Xi in Flow.

5.1. Non-contracting topological 1-category
Definition 5.2. A non-contracting topological 1-category X is a pair of compactly
generated topological spaces (X0,PX) together with continuous maps s, t and ∗
satisfying the same properties as in the definition of flow except that X0 is not
necessarily discrete. The corresponding category is denoted by 1Cattop1 .

Definition 5.3. A non-contracting topological 1-category X is achronal if PX = ∅.

Theorem 5.4. The category 1Cattop1 is complete and cocomplete. The inclusion
functor ω̃ : Flow −→ 1Cattop1 preserves finite limits.

Proof. Let X : I −→ 1Cattop1 be a functor from a small category I to 1Cattop1 .
Then consider the topological 1-category Y defined as follows:

1. Let Y 0 := lim←−i
X (i)0, the limit being taken in Top.

2. Let PY := lim←−i
PX (i), the limit being taken in Top.

3. Let Y = Y 0tPY equipped with the source map, target map and composition
law limits of the source maps, target maps and composition laws of the X (i).

The 1-category Y is clearly the limit lim←−X in 1Cattop1 . The cocompleteness of
1Cattop1 is then proved using the “solution set condition” recalled in Theorem 4.16
as in the proof of Theorem 4.17. A finite limit of discrete topological spaces is
discrete. So to be able to conclude that the functor ω̃ preserves finite limits, it then
suffices to compare the construction of limits in Flow in the proof of Theorem 4.17
and the construction of limits in 1Cattop1 in this proof.

Using the above constructions, one sees that the 0-skeleton functor

(−)0 : 1Cattop1 −→ Top

does commute with any limit. However the 0-skeleton functor (−)0 : Flow −→ Top
only commutes with finite limits. On the contrary, both 0-skeleton functors (−)0 :
1Cattop1 −→ Top and (−)0 : Flow −→ Top do commute with any colimit.

The functor ω̃ : Flow −→ 1Cattop1 does not preserve general limits. As coun-
terexample, take the achronal 1-categories Z/pnZ equipped with the discrete topol-
ogy and consider the tower of maps Z/pn+1Z −→ Z/pnZ defined by x 7→ p.x. Then
the limit in Flow is the achronal flow having as 0-skeleton the set of p-adic integers
Zp and the limit in 1Cattop1 is a totally disconnected achronal 1-category.

Theorem 5.5. The inclusion functor ω̃ : Flow −→ 1Cattop1 has a right adjoint
that will be denoted by D̃. In particular, this implies that the canonical inclusion
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functor Flow −→ 1Cattop1 preserves colimits. Moreover, one has D̃ ◦ ω̃ = IdFlow

and

lim←−
i

Xi
∼= lim←−

i

D̃ ◦ ω̃ (Xi) ∼= D̃

(
lim←−

i

ω̃ (Xi)

)
.

If Set is the category of sets, then the forgetful functor ω : Top −→ Set has a
left adjoint: the functor X 7→ Dis (X) which maps a set X to the discrete space
Dis (X). So

Top (Dis (X) , Y ) ∼= Set (X, ω (Y )) .

Proof. Let C be an object of 1Cattop1 . Then:

• Let D̃ (C)0 := C0 equipped with the discrete topology.

• If (α, β) ∈ D̃ (C)0 × D̃ (C)0, let Pα,βD̃ (C) be the subspace of PC of execution
paths x such that s(x) = α and t(x) = β equipped with the Kelleyfication of
the relative topology.

• Let PD̃ (C) =
⊔

(α,β)∈ eD(C)0× eD(C)0 Pα,βD̃ (C) with an obvious definition of the
source map s, the target map t and the composition law ∗.

Let f ∈ Flow
(
X, D̃ (Y )

)
. Then the composite X0 −→ D̃ (Y )0 −→ Y 0 is contin-

uous. And for any α, β ∈ X0, Pα,βX −→ Pf(α),f(β)Y −→ Y is continuous as well.

Reciprocally, a map g ∈ 1Cattop1 (ω̃ (X) , Y ) provides g0 ∈ Top
(
ω̃ (X)0 , Y 0

) ∼=
Set

(
ω ◦ ω̃ (X)0 , ω

(
Y 0

))
since ω̃ (X)0 is a discrete space and provides a continu-

ous map

Pg ∈ Top (Pω̃ (X) ,PY ) ∼= Top


 ⊔

(α,β)

Pα,βX,PY


 −→

∏

(α,β)

Top
(
Pα,βX,PD̃Y

)
.

Hence the natural bijection

Flow
(
X, D̃ (Y )

) ∼= 1Cattop1 (ω̃ (X) , Y ) .

5.2. Tensor product of non-contracting topological 1-categories
The purpose of this section is the construction of a closed symmetric monoidal

structure on 1Cattop1 . Let
1CATtop

1 (Y, Z)

be the set 1Cattop1 (Y, Z) ⊂ TOP (Y,Z) equipped with the Kelleyfication of the
relative topology induced by that of TOP (Y, Z).

Proposition 5.6. Let X and Y be two objects of 1Cattop1 . There exists a unique
structure of topological 1-category X ⊗ Y on the topological space

(
X0 t PX) ×(

Y 0 t PY )
such that

1. (X ⊗ Y )0 = X0 × Y 0 .
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2. P (X ⊗ Y ) = (PX × PX) t (
X0 × PY

) t (
PX × Y 0

)
.

3. s (x, y) = (s(x), s(y)), t (x, y) = (t(x), t(y)), (x, y) ∗ (z, t) = (x ∗ z, y ∗ t).

Proof. Obvious.

Proposition 5.7. Let X and Y be two objects of 1Cattop1 . Let f and g be two
morphisms in 1Cattop1 from

−→
I ⊗ X to Y . Let us suppose that for any y ∈ Y ,

f (1⊗ y) = g (0⊗ y). Then for any y ∈ X, the following equality holds

f ([0, 1]⊗ s(y)) ∗ g ([0, 1]⊗ y) = f ([0, 1]⊗ y) ∗ g ([0, 1]⊗ t(y))

Denote the common value by (f ∗ g) ([0, 1]⊗ y). Let

(f ∗ g) (0⊗ y) = f (0⊗ y)

and
(f ∗ g) (1⊗ y) = g (1⊗ y) .

Then f ∗g yields an element of 1Cattop1

(−→
I ⊗X, Y

)
and one has moreover (f ∗ g)∗

h = f ∗ (g ∗ h). At last, this composition yields a continuous map from the fiber
product

1CATtop
1

(−→
I ⊗X,Y

)
×1CATtop

1 (X,Y ) 1CATtop
1

(−→
I ⊗X,Y

)

given by the inclusions {0} ⊂ −→
I and {1} ⊂ −→

I to 1CATtop
1

(−→
I ⊗X,Y

)
.

Proof. First of all, one has

f ([0, 1]⊗ s(y)) ∗ g ([0, 1]⊗ y)

= f ([0, 1]⊗ s(y)) ∗ g (0⊗ y) ∗ g ([0, 1]⊗ t(y)) since g morphism of 1Cattop1

= f ([0, 1]⊗ s(y)) ∗ f (1⊗ y) ∗ g ([0, 1]⊗ t(y)) by hypothesis

= f ([0, 1]⊗ y) ∗ g ([0, 1]⊗ t(y)) since f morphism of 1Cattop1

The equalities

(f ∗ g) (0⊗ x ∗ y) = (f ∗ g) (0⊗ x) ∗ (f ∗ g) (0⊗ y)

and
(f ∗ g) (1⊗ x ∗ y) = (f ∗ g) (1⊗ x) ∗ (f ∗ g) (1⊗ y)

are trivial. Because of the symmetries, it remains to check that

(f ∗ g) ([0, 1]⊗ x ∗ y) = (f ∗ g) (0⊗ x) ∗ (f ∗ g) ([0, 1]⊗ y)

to get f ∗ g ∈ 1Cattop1

(−→
I ⊗X,Y

)
. And one has

(f ∗ g) ([0, 1]⊗ x ∗ y) = f ([0, 1]⊗ (x ∗ y)) ∗ g ([0, 1]⊗ t (x ∗ y))
= f (0⊗ x) ∗ f ([0, 1]⊗ y) ∗ g (0⊗ t(y)) ∗ g ([0, 1]⊗ t(y))
= f (0⊗ x) ∗ f ([0, 1]⊗ y) ∗ f (1⊗ t(y)) ∗ g ([0, 1]⊗ t(y))
= f (0⊗ x) ∗ f ([0, 1]⊗ y) ∗ g ([0, 1]⊗ t(y))
= (f ∗ g) (0⊗ x) ∗ (f ∗ g) ([0, 1]⊗ y) .
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At last, one has to check that (f ∗ g) ∗ h = f ∗ (g ∗ h). Once again, the equalities

((f ∗ g) ∗ h) (0⊗ x) = (f ∗ (g ∗ h)) (0⊗ x)

and

((f ∗ g) ∗ h) (1⊗ x) = (f ∗ (g ∗ h)) (1⊗ x)

are trivial. And one has

((f ∗ g) ∗ h) ([0, 1]⊗ x) = (f ∗ g) ([0, 1]⊗ s(x)) ∗ h ([0, 1]⊗ x)
= f ([0, 1]⊗ s(x)) ∗ g ([0, 1]⊗ s(x)) ∗ h ([0, 1]⊗ x)
= f ([0, 1]⊗ s(x)) ∗ (g ∗ h) ([0, 1]⊗ x)
= (f ∗ (g ∗ h)) ([0, 1]⊗ x) .

The continuity of ∗ is due to the fact that we are working exclusively with compactly
generated topological spaces.

Theorem 5.8. The tensor product of 1Cattop1 is a closed symmetric monoidal
structure, that is there exists a bifunctor

[1Cattop1 ] : 1Cattop1 × 1Cattop1 −→ 1Cattop1

contravariant with respect to the first argument and covariant with respect to the
second argument such that one has the natural bijection of sets

1Cattop1 (X ⊗ Y, Z) ∼= 1Cattop1

(
X, [1Cattop1 ] (Y,Z)

)

for any topological 1-categories X, Y and Z.

Proof.

Construction of [1Cattop1 ] (Y, Z)

1. [1Cattop1 ] (Y, Z)0 := 1CATtop
1 (Y,Z)

2. P[1Cattop1 ] (Y, Z) := 1CATtop
1

(−→
I ⊗ Y, Z

)

3. the source map and target map are induced respectively by the morphisms
{0} ⊂ −→

I and {1} ⊂ −→
I

4. the composition law is defined by Proposition 5.7.

Construction of the set map Φ : 1Cattop1 (X ⊗ Y, Z) −→
1Cattop1

(
X, [1Cattop1 ] (Y, Z)

)
(with f ∈ 1Cattop1 (X ⊗ Y, Z))

1. for x ∈ X0, Φ (f) (x) is the morphism of flows from Y to Z defined by

• Φ(f) (x) (y) = f (x⊗ y).

2. for x ∈ PX, Φ (f) (x) is the morphism of flows from
−→
I ⊗ Y to Z defined by

• Φ(f) (x) (0⊗ y) = f (s (x)⊗ y)
• Φ(f) (x) (1⊗ y) = f (t (x)⊗ y)
• Φ(f) (x) ([0, 1]⊗ y) = f (x⊗ y).
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Construction of the set map Ψ :
1Cattop1

(
X, [1Cattop1 ] (Y, Z)

)
−→ 1Cattop1 (X ⊗ Y,Z) (with

g ∈ 1Cattop1

(
X, [1Cattop1 ] (Y, Z)

)
)

1. Ψ (g) (x0 ⊗ y) = g (x0) (y) for (x0 ⊗ y) ∈ X0 × Y

2. Ψ (g) (x⊗ y) = g (x) ([0, 1]⊗ y) for (x⊗ y) ∈ PX × Y .

Φ (f) (x ∗ x′) = Φ (f) (x) ∗ Φ(f) (x′) (with x, x′ ∈ PX)

1. Φ (f) (x ∗ x′) (0⊗ y) = f (s (x)⊗ y)

2. Φ (f) (x ∗ x′) ([0, 1]⊗ y) = f ((x ∗ x′)⊗ y)

3. Φ (f) (x ∗ x′) (1⊗ y) = f (t (x′)⊗ y)

Φ (f) (s (x)) = s (Φ (f) (x)) and Φ (f) (t (x)) = t (Φ (f) (x))

1. Φ (f) (s (x)) = f (s (x)⊗−) = s (Φ (f) (x))

2. Φ (f) (t (x)) = f (t (x)⊗−) = t (Φ (f) (x)).

Ψ (g) ((x0 ⊗ y) ∗ (x0 ⊗ y′)) = Ψ (g) (x0 ⊗ y) ∗ Ψ (g) (x0 ⊗ y′) (with
g ∈ Flow

(
X, [1Cattop1 ] (Y, Z)

)
, x0 ∈ X0, y, y′ ∈ PY )

Ψ (g) ((x0 ⊗ y) ∗ (x0 ⊗ y′)) = Ψ (g) ((x0 ⊗ (y ∗ y′)))
= g (x0) (y ∗ y′)
= g (x0) (y) ∗ g (x0) (y′)
= Ψ (g) (x0 ⊗ y) ∗Ψ(g) (x0 ⊗ y′) .

Ψ(g) ((x0 ⊗ y) ∗ (x⊗ y′)) = Ψ (g) (x0 ⊗ y)∗Ψ(g) (x⊗ y′) (with g ∈
Flow

(
X, [1Cattop1 ] (Y, Z)

)
, x0 ∈ X0, x ∈ PX, y, y′ ∈ PY )

Ψ (g) ((x0 ⊗ y) ∗ (x⊗ y′)) = Ψ (g) (x⊗ (y ∗ y′))
= g (x) ([0, 1]⊗ (y ∗ y′))
= g (x) (0⊗ y) ∗ g (x) ([0, 1]⊗ y′)
= Ψ (g) (x0 ⊗ y) ∗Ψ(g) (x⊗ y′)

s (Ψ (g) (x⊗ y)) = Ψ (g) (s (x)⊗ s (y)) (with x ∈ PX, y ∈ Y )

s (Ψ (g) (x⊗ y)) = s (g (x) ([0, 1]⊗ y))
= g (x) (s ([0, 1]⊗ y))
= g (x) (0⊗ s (y))
= (s (g (x))) (s (y))
= (g (s (x))) (s (y))
= Ψ (g) (s (x)⊗ s (y))
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s (Ψ (g) (x0 ⊗ y)) = Ψ (g) (x0 ⊗ s (y)) (with x0 ∈ X0, y ∈ Y )

s (Ψ (g) (x0 ⊗ y)) = s (g (x0) (y))
= g (x0) (s (y))
= Ψ (g) (x0 ⊗ s (y))

Φ ◦Ψ = Id1Cattop
1 (X,[1Cattop

1 ](Y,Z))
Let x0 ∈ X0 and y ∈ Y . Then

Φ (Ψ (g)) (x0) (y) = Ψ (g) (x0 ⊗ y) = g (x0) (y)

therefore Φ (Ψ (g)) (x0) = g (x0). And for x ∈ PX,
1. Φ (Ψ (g)) (x) (0⊗ y) = Ψ (g) (s(x)⊗ y) = g (s(x)) (y)
2. Φ (Ψ (g)) (x) (1⊗ y) = Ψ (g) (t(x)⊗ y) = g (t(x)) (y)
3. Φ (Ψ (g)) (x) ([0, 1]⊗ y) = Ψ (g) (x⊗ y) = g (x) ([0, 1]⊗ y).

Ψ ◦ Φ = Id1Cattop
1 (X⊗Y,Z)

With f ∈ 1Cattop1 (X ⊗ Y, Z), x0 ∈ X0 and y ∈ Y , one has

Ψ (Φ (f)) (x0 ⊗ y) = Φ (f) (x0) (y) = f (x0 ⊗ y)

and for x ∈ PX,

Ψ (Φ (f)) (x⊗ y) = Φ (f) (x) ([0, 1]⊗ y) = f (x⊗ y) .

The continuity of Φ (f)

1. The continuity of Φ (f)0 : X0 −→ 1CATtop
1 (Y,Z) because

Φ (f)0 ∈ Top
(
X0,TOP (Y, Z)

) ∼= Top
(
X0 × Y,Z

)
.

2. The continuity of PΦ(f) : PX −→ 1CATtop
1

(−→
I ⊗ Y, Z

)
because

PΦ(f) ∈ Top
(
PX,TOP

(−→
I × Y, Z

)) ∼= Top
(
PX ×−→I × Y, Z

)
.

The continuity of Ψ (g)
The continuity of Ψ (g) comes again from the canonical bijections of sets

Top
(
X0,TOP (Y, Z)

) ∼= Top
(
X0 × Y, Z

)

and
Top

(
PX,TOP

(−→
I × Y, Z

)) ∼= Top
(
PX ×−→I × Y,Z

)

and also from the fact that the underlying topological space of a given 1-category X
is homeomorphic to the disjoint sum of topological spaces X0tPX. This completes
the proof.

Corollary 5.9. Let X and Y be two topological 1-categories. Then one has the
homeomorphisms

1CATtop
1 (lim−→

i

Xi, Y ) ∼= lim←−
i

1CATtop
1 (Xi, Y )
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and

1CATtop
1 (X, lim←−

i

Yi) ∼= lim←−
i

1CATtop
1 (X, Yi)

for any colimit lim−→i
Xi and any limit lim←−i

Yi in 1Cattop1 .

In both following calculations, one uses the fact that the following natural home-

omorphism holds in 1Cattop1 :
(
lim←−i

Xi

)0 ∼= lim←−i

(
X0

i

)
. The latter homeomorphism

may be false in Flow since the 0-skeleton is always discrete in the latter category.

Proof. One has:

1CATtop
1

(
lim−→

i

Xi, Y

)
∼=

(
[1Cattop1 ]

(
lim−→

i

Xi, Y

))0

∼=
(

lim←−
i

[1Cattop1 ] (Xi, Y )

)0

∼= lim←−
i

(
[1Cattop1 ] (Xi, Y )

)0

∼= lim←−
i

1CATtop
1 (Xi, Y )

and

1CATtop
1

(
X, lim←−

i

Yi

)
∼=

(
[1Cattop1 ]

(
X, lim←−

i

Yi

))0

∼=
(

lim←−
i

[1Cattop1 ] (X, Yi)

)0

∼= lim←−
i

(
[1Cattop1 ] (X, Yi)

)0

∼= lim←−
i

1CATtop
1 (X, Yi) .

5.3. Important consequence for the category of flows
As an application of the preceding results, one proves the following crucial the-

orem:

Theorem 5.10. Let FLOW (X,Y ) be the set of morphisms of flows from X to Y
equipped with the Kelleyfication of the compact-open topology. Then the mapping

(X, Y ) 7→ FLOW (X,Y )

induces a functor from Flow×Flow to Top which is contravariant with respect to
X and covariant with respect to Y . Moreover:
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1. One has the natural homeomorphism

FLOW

(
lim−→

i

Xi, Y

)
∼= lim←−

i

FLOW (Xi, Y )

for any colimit lim−→i
Xi in Flow.

2. One has the natural homeomorphism

FLOW

(
X, lim←−

i

Yi

)
∼= lim←−

i

FLOW (X,Yi)

for any finite limit lim←−i
Xi in Flow.

The functor FLOW(X,−) cannot commute with any limit. Indeed, with X =
{0}, one has FLOW(X,Y ) ∼= Y 0 as space. However, a limit of a diagram of discrete
topological space may be totally disconnected without being discrete.

This is the reason why we make the distinction between the set of morphisms
Flow(X,Y ) from a flow X to a flow Y and the space of morphisms FLOW(X, Y )
from a flow X to a flow Y .

Proof. Since ω̃ preserves colimits by Theorem 5.5, one has:

FLOW

(
lim−→

i

Xi, Y

)
∼= 1CATtop

1

(
ω̃

(
lim−→

i

Xi

)
, ω̃ (Y )

)

∼= 1CATtop
1

(
lim−→

i

ω̃ (Xi) , ω̃ (Y )

)

∼= lim←−
i

1CATtop
1 (ω̃ (Xi) , ω̃ (Y ))

∼= lim←−
i

FLOW (Xi, Y )

Since ω̃ preserves finite limits by Theorem 5.4, one has:

FLOW

(
X, lim←−

i

Yi

)
∼= 1CATtop

1

(
ω̃ (X) , ω̃

(
lim←−

i

Yi

))

∼= 1CATtop
1

(
ω̃ (X) , lim←−

i

ω̃ (Yi)

)

∼= lim←−
i

1CATtop
1 (ω̃ (X) , ω̃ (Yi))

∼= lim←−
i

FLOW (X,Yi) .

One does not need actually the previous machinery of tensor product of 1-
categories to prove the isomorphism of topological spaces

FLOW

(
X, lim←−

i

Yi

)
∼= lim←−

i

FLOW (X, Yi)
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for any finite limit lim←−i
Yi of Flow. Indeed one sees that the forgetful functor X 7→

X0 t PX from Flow to Top induces the inclusion of topological spaces

FLOW

 
X, lim←−

i

Yi

!
⊂ TOP

 
X0, lim←−

i

Y 0
i

!
×

Y

(α,β)∈X0×X0

TOP

 
Pα,βX, lim←−

i

Pαi,βiYi

!

where αi (resp. βi) is the image of α (resp. β) by the composite X0 −→ lim←−i
Y 0

i −→
Y 0

i . Since the right member of the above inclusion is isomorphic to

lim←−
i


TOP

(
X0, Y 0

i

)×
∏

(α,β)∈X0×X0

TOP (Pα,βX,Pαi,βiYi)




then the conclusion follows.
On the contrary, the forgetful functor X 7→ X0tPX from Flow to Top does not

commute at all with colimits, even the finite ones, because colimits in 1-categories
may create execution paths. So the tensor product of 1-categories seems to be
required to establish the other homeomorphism.

6. Flow as a canonical colimit of globes and points

In the sequel, one will implicitely use the category D (Flow) of diagrams of
flows. The objects are the functor D : I −→ Flow where I is a small category. A
morphism from a diagram D : I −→ Flow to a diagram E : J −→ Flow is a functor
φ : I −→ J together with a natural transformation µ : D −→ E ◦φ. A morphism of
diagram (φ, µ) : D −→ E gives rise to a morphism of flows lim−→D −→ lim−→E. Since
Flow is complete and cocomplete, then D (Flow) is complete and cocomplete as
well [24].

In this section, we prove that any flow is the colimit in a canonical way of globes
and points. This technical tool will be used in the sequel of the paper.

Theorem 6.1. Any flow is the colimit in Flow of points and globes in a canonical
way, i.e. there exists for any flow X a diagram D (X) of flows containing only points,
globes and concatenations of globes such that the mapping X 7→ D (X) is functorial
and such that X ∼= lim−→D (X) in a canonical way.

Proof. Let X be a flow and let α, β and γ be three points (not necessarily distinct)
of its 0-skeleton. Consider the diagram of Figure 5 where the map

Glob (Pα,βX × Pβ,γX) −→ Glob (Pα,βX) ∗Glob (Pβ,γX)

is induced by the map (x, y) 7→ x ∗ y (where ∗ is the free concatenation) and where
the map

Glob (Pα,βX × Pβ,γX) −→ Glob (Pα,γX)

is induced by the composition law of X. Then consider the diagram D (X) obtained
by concatening all diagrams as that of Figure 5. It is constructed as follows:
• the underlying small category I (X) of D (X) is the free category generated

by the set of objects X0∪X0×X0∪X0×X0×X0×{0, 1} and by the arrows
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– iα,β
1 : α −→ (α, β) and iα,β

2 : β −→ (α, β)
– rα,β,γ : (α, β, γ, 0) −→ (α, β, γ, 1) and pα,β,γ : (α, β, γ, 0) −→ (α, γ)
– jα,β,γ

1 : α −→ (α, β, γ, 0) and jα,β,γ
3 : γ −→ (α, β, γ, 0)

– kα,β,γ
1 : α −→ (α, β, γ, 1), kα,β,γ

2 : β −→ (α, β, γ, 1) and kα,β,γ
3 : γ −→

(α, β, γ, 1)
– hα,β,γ

1 : (α, β) −→ (α, β, γ, 1) and hα,β,γ
3 : (β, γ) −→ (α, β, γ, 1)

• D (X) (α) = {α}, D (X) (α, β) = Glob (Pα,βX)
• D (X) (α, β, γ, 0) = Glob (PαβX × Pβ,γX)
• D (X) (α, β, γ, 1) = Glob (PαβX) ∗Glob (Pβ,γX)

• D (X)
(
iα,β
1

)
is the canonical inclusion

{α} −→ Glob (Pα,βX)

• D (X)
(
iα,β
2

)
is the canonical inclusion

{β} −→ Glob (Pα,βX)

• D (X)
(
rα,β,γ

)
is the canonical projection

Glob (Pα,βX × Pβ,γX) −→ Glob (Pα,βX) ∗Glob (Pβ,γX)

sending (x, y) to x ∗ y.
• D (X)

(
pα,β,γ

)
: Glob (PαβX × Pβ,γX) −→ Glob (Pα,γX) is the morphism in-

duced by the composition law of X

• D (X)
(
jα,β,γ
1

)
(resp. D (X)

(
jα,β,γ
3

)
) is the canonical inclusion from {α} (resp.

{γ}) to
Glob (Pα,βX × Pβ,γX)

• D (X)
(
kα,β,γ
1

)
(resp. D (X)

(
kα,β,γ
2

)
, D (X)

(
kα,β,γ
3

)
) is the canonical inclu-

sion from {α} (resp. {β}, {γ}) to

Glob (PαβX) ∗Glob (Pβ,γX)

• D (X)
(
hα,β,γ

1

)
is the canonical inclusion

Glob (Pα,βX) −→ Glob (Pα,βX) ∗Glob (Pβ,γX)

• D (X)
(
hα,β,γ

3

)
is the canonical inclusion

Glob (Pβ,γX) −→ Glob (Pα,βX) ∗Glob (Pβ,γX)

Let T be a flow. Let f : lim−→i∈I(X)
D (X) (i) −→ T be a morphism of flows. Notice

that all morphisms of flows in the diagram D (X) are source and target preserving.
So f yields a well-defined set map g0 from Y 0 = X0 to T 0. Moreover the morphism
f yields a continuous map fα,β : Pα,βX −→ Pf(α),f(β)T and for any (α, β, γ) ∈
Y 0 × Y 0 × Y 0, a continuous map

fα,β,γ,0 : Pα,βX × Pβ,γX −→ Pf(α),f(γ)T
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Glob (Pα,γX)

Glob (Pα,βX × Pβ,γX)

pα,β,γ

OO
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²²
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{α}
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Figure 5: The flow X as a colimit of globes and points

and another continuous map

fα,β,γ,1 : Pα,βX∪Pβ,γX∪Pα,βX×Pβ,γX −→ Pf(α),f(β)T ∪Pf(β),f(γ)T ∪Pf(α),f(γ)T

which satisfy various commutativity conditions. In particular all these maps define
a unique continuous map gα,β : Pα,βX −→ Pf(α),f(β)T thanks to hα,β,γ

1 and hα,β,γ
3

(these latter being inclusions). For x ∈ Pα,βX and y ∈ Pβ,γX, one has:

gα,γ (x ∗ y) = gα,γ

(
pα,β,γ (x, y)

)

= fα,β,γ,0 (x, y)
= fα,β,γ,1

(
rα,β,γ (x, y)

)

= fα,β,γ,1 (x ∗ y)
= fα,β,1 (x) ∗ fβ,γ,1 (y) since f morphism of flows !

= fα,β,γ,1

(
hα,β,γ

1 (x)
)
∗ fα,β,γ,1

(
hα,β,γ

3 (y)
)

= fα,β (x) ∗ fβ,γ (y)
= gα,β (x) ∗ gβ,γ (y)

So g yields a well-defined morphism of flows from X to T . Conversely from a
morphism of flows from X to T , one can construct a morphism of flows from
lim−→i∈I(X)

D (X) (i) to T . So one has the natural bijection of sets

Flow

(
lim−→

i∈I(X)

D (X) (i) , T

)
∼= Flow (X, T )

Hence by Yoneda, the flow X is the colimit of this diagram and moreover everything
is canonical. The functoriality of D is obvious.
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Corollary 6.2. Let P (X) be a statement depending on a flow X and satisfying
the following property: if D : I −→ Flow is a diagram of flows such that for any
object i of I, P (D (i)) holds, then P

(
lim−→D

)
holds. Then the following assertions

are equivalent:
(i) The statement P (X) holds for any flow X of Flow.
(ii) The statements P ({∗}) and P (Glob (Z)) hold for any object Z of Top.

Proof. The implication (i) =⇒ (ii) is obvious. Conversely if (ii) holds, then

P (Glob (Z1) ∗Glob (Z2))

holds for any topological spaces Z1 and Z2 since Glob (Z1)∗Glob (Z2) is the colimit
of the diagram of flows

{∗} ∗7→1 //

∗7→0

²²

Glob (Z1)

Glob (Z2)

containing only points and globes. The proof is complete with Theorem 6.1.

7. S-homotopy in Flow

7.1. Synchronized morphism of flows
Definition 7.1. A morphism of flows f : X −→ Y is said synchronized if and only
if it induces a bijection of sets between the 0-skeleton of X and the 0-skeleton of Y .

7.2. S-homotopy of flows
We mimick here the definition of the S-homotopy relation for globular complexes

[20].

Definition 7.2. Let f and g be two morphisms of flows from X to Y . Then f
and g are S-homotopic or S-homotopy equivalent if there exists a continuous map
H : [0, 1] × X −→ Y such that, with H (u,−) = Hu, for any u ∈ [0, 1], Hu is a
morphism of flows from X to Y with H0 = f and H1 = g. In particular, this implies
that f and g coincide on the 0-skeleton X0 of X and that for any x0 ∈ X0, for any
u ∈ [0, 1], f (x0) = H (u, x0) = g (x0). This situation is denoted by f ∼S g. This
defines an equivalence relation on the set Flow (X,Y ).

Following Proposition 4.15, one then obtains the natural definition

Definition 7.3. Two elements of the path space PX of a flow X are said S-
homotopic if the corresponding morphisms of flows from

−→
I to X are S-homotopy

equivalent.

Definition 7.4. Two flows X and Y are S-homotopic or S-homotopy equivalent if
there exists two morphisms f : X −→ Y and g : Y −→ X such that f ◦g ∼S IdY and
g◦f ∼S IdX . The maps f and g are called (reciprocal) S-homotopy equivalences. The
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S-homotopy relation is obviously an equivalence relation. We say that the mapping
g is a S-homotopic inverse of f .

Because of the discreteness of the 0-skeleton of any flow, a S-homotopy equiva-
lence is necessarily synchronized.

Proposition 7.5. Let f and g be two morphisms of flows from X to Y . Then f
and g are S-homotopic if and only if there exists a continuous map

h ∈ Top ([0, 1],FLOW (X,Y ))

such that h (0) = f and h (1) = g.

Proof. Let H : [0, 1]×X −→ Y be the S-homotopy from f to g. Then H provides
an element of Top ([0, 1],TOP (X,Y )) which is by definition of a S-homotopy also
an element of Top ([0, 1],FLOW (X,Y )). Conversely, an element h of

Top ([0, 1],FLOW (X, Y ))

yields an element of Top ([0, 1],TOP (X, Y )) ∼= Top ([0, 1]×X, Y ) which is by
construction a S-homotopy from f to g.

7.3. Pairing £ between a topological space and a flow
Notation 7.6. Let U be a topological space. Let X be a flow. The flow {U,X}S is
defined as follows:

1. The 0-skeleton of {U,X}S is X0.

2. For α, β ∈ X0, the topological space Pα,β{U,X}S is TOP(U,Pα,βX).

3. For α, β, γ ∈ X0, the composition law

∗ : Pα,β{U,X}S × Pβ,γ{U,X}S −→ Pα,γ{U,X}S

is the composite

Pα,β{U, X}S × Pβ,γ{U, X}S
∼= TOP (U,Pα,βX × Pβ,γX) −→ TOP (U,Pα,γX)

induced by the composition law of X.

If U = ∅ is the empty set, then {∅, Y }S is the flow having the same 0-skeleton
as Y and exactly one non-constant execution path between two points of Y 0.

Theorem 7.7. Let U be a topological space. The mapping Y 7→ {U, Y }S yields a
functor from Flow to itself. Moreover one has

1. one has the natural isomorphism of flows {U, lim←−i
Xi}S

∼= lim←−i
{U,Xi}S

2. if Y = Y 0, then {U, Y }S = Y

3. if U and V are two topological spaces, then {U × V, Y }S
∼= {U, {V, Y }S}S.

Proof. The functoriality of {U,−}S is obvious. Following the proof of Theorem 4.17,
it is clear that the functor {U,−}S does preserve limits in Flow. By definition,

{U × V, Y }0S ∼= {U, {V, Y }S}0S ∼= Y 0
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and for α, β ∈ Y 0, one has

Pα,β{U × V, Y }S = TOP (U × V,Pα,βY )

and

Pα,β{U, {V, Y }S}S = TOP (U,TOP (V,Pα,βY )) .

Therefore {U × V, Y }S
∼= {U, {V, Y }S}S .

Theorem 7.8. Let U be a topological space. The functor {U,−}S has a left adjoint
which will be denoted by U £−. Moreover:

1. one has the natural isomorphism of flows

U £
(

lim−→
i

Xi

)
∼= lim−→

i

(U £ Xi)

2. there is a natural isomorphism of flows {∗}£ Y ∼= Y

3. if Z is a topological space, one has the natural isomorphism of flows

U £ Glob (Z) ∼= Glob (U × Z)

4. for any flow X and any topological space U , one has the natural bijection of
sets

(U £ X)0 ∼= X0

5. if U and V are two topological spaces, then (U × V ) £ Y ∼= U £ (V £ Y ) as
flows

6. for any flow X, ∅£ X ∼= X0.

If u ∈ U , the image of x ∈ X by the canonical morphism of flows X −→
{u}£ X −→ U £ X is denoted by u £ x.

Proof. In the category of Flow, let us start with the class of solutions f : Z −→
{U, Y }S for f running over the set Flow (Z, {U, Y }S) and for Y running over the
class of flows. Consider the commutative diagram

Z
f //

f

##GGGGGGGGG {U, Y ′}S

²²
{U, Y }S

where Y ′ is the subflow generated by the elements of f (Z) (U) and where the vertical
map is induced by the inclusion Y ′ ⊂ Y . So one still has a set of solutions by consid-
ering only the flows Y such that the cardinal card(Y ) of the underlying set satisfies
card(Y ) 6 ℵ0×card(Z)×card(U). Let {Zi, i ∈ I} be the set of isomorphism classes
of flows whose underlying set is of cardinal less than ℵ0× card(Z)× card(U). Then
card(I) 6 2(ℵ0×card(Z)×card(U))5 so I is a set. Then the class

⋃
i∈I Flow (Z, {U,Zi}S)

is a set as well and one gets a set of solutions. The first assertion is then clear using
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Theorem 4.16. One has Flow ({∗}£ X, Y ) ∼= Flow (X, {{∗}, Y }S) ∼= Flow (X, Y )
so by Yoneda {∗}£ X ∼= X for any flow X. One has

Flow (U £ Glob (Z) , Y ) ∼= Flow (Glob (Z) , {U, Y }S)
∼=

⊔

(α,β)∈Y 0×Y 0

Top (Z,TOP (U,Pα,βY ))

∼=
⊔

(α,β)∈Y 0×Y 0

Top (U × Z,Pα,βY )

∼= Flow (Glob (U × Z) , Y )

So by Yoneda U £ Glob (Z) ∼= Glob (U × Z). One has

Flow (U £ {∗}, Y ) ∼= Flow ({∗}, {{∗}, Y }S)
∼= {{∗}, Y }0S
∼= Flow ({∗}, Y )

so by Yoneda, U £ {∗} ∼= {∗}. Hence (U £ X)0 ∼= X0 if X is a point or a globe.
Hence the result by Corollary 6.2. One has

Flow ((U × V ) £ X, Y ) ∼= Flow (X, {V × U, Y }S)
∼= Flow (X, {V, {U, Y }S}S)
∼= Flow (V £ X, {U, Y }S)
∼= Flow (U £ (V £ X) , Y )

so by Yoneda (U × V ) £ X ∼= U £ (V £ X).

Take a flow X and a topological space U . One knows that X is the colimit in
a canonical way of points and globes (Theorem 6.1). Since U £ {∗} ∼= {∗} and
U £Glob (Z) ∼= Glob (U × Z), and since the functor U £− commutes with colimits,
one can represent U £ X as the colimit of the diagram of Figure 6 with an obvious
definition of the arrows (in particular rα,β,γ

U uses the diagonal U −→ U × U).

7.4. Cylinder functor for the S-homotopy of flows
Theorem 7.9. Let U be a connected non-empty topological space. Let X and Y be
two flows. Then one has a natural bijection of sets

Flow (X, {U, Y }S) ∼= Top (U,FLOW (X,Y ))

and so
Flow (U £ X, Y ) ∼= Top (U,FLOW (X, Y )) .

Proof. It suffices to prove the first bijection by Theorem 7.8. Let

f ∈ Flow (X, {U, Y }S) .

Then f induces a set map from X0 to Y 0 (but Y 0 ∼= Top(U, Y 0) since U is con-
nected) and a continuous map from PX to TOP(U,PY ). So one has the inclusion
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Figure 6: Representation of the flow U £ X

of sets

i1 : Flow (X, {U, Y }S) ⊂ Top (X,TOP (U, Y )) .

The inclusion of sets FLOW (X,Y ) −→ TOP (X,Y ) induces an inclusion of sets

i2 : Top (U,FLOW (X, Y )) −→ Top (U,TOP (X, Y )) .

But Top (X,TOP (U, Y )) ∼= Top (U,TOP (X, Y )). And it is then easy to see that
i1 and i2 have the same image. So the sets Flow (X, {U, Y }S) and

Top (U,FLOW (X, Y ))

are bijective.

Definition 7.10. Let C be a category. A cylinder is a functor I : C −→ C together
with natural transformations i0, i1 : IdC −→ I and p : I −→ IdC such that p ◦ i0 and
p ◦ i1 are the identity natural transformation.

Corollary 7.11 (Cylinder functor). The mapping X 7→ [0, 1]£X induces a func-
tor from Flow to itself which is a cylinder functor with the natural transformations
ei : {i} £ − −→ [0, 1] £ − induced by the inclusion maps {i} ⊂ [0, 1] for i ∈ {0, 1}
and with the natural transformation p : [0, 1] £ − −→ {0} £ − induced by the con-
stant map [0, 1] −→ {0}. Moreover, two morphisms of flows f and g from X to Y
are S-homotopic if and only if there exists a morphism of flows H : [0, 1]£X −→ Y
such that H ◦ e0 = f and H ◦ e1 = g. Moreover e0 ◦H ∼S Id and e1 ◦H ∼S Id.

Proof. Consequence of Theorem 7.9, Proposition 7.5 and Theorem 7.8 and of the
connectedness of [0, 1].
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8. Explicit description of U £ X

Proposition 8.1. Let X and Y be two flows. Let U be a topological space. Then
one has a bijection between the elements of Flow (U £ X,Y ) and the elements f of
Set

(
X0, Y 0

)×Top (U × PX, Y ) such that

• f
(
X0

) ⊂ Y 0

• f (U × PX) ⊂ PY
• for any u ∈ U , f (u, x ∗ y) = f (u, x) ∗ f (u, y) if x, y ∈ PX and if tx = sy

• for any u ∈ U , s(f (u, x)) = f (s(x)) and t(f (u, x)) = f (t(x)) if x ∈ PX.

Proof. The set Flow (U £ X, Y ) is isomorphic to the set Flow (X, {U, Y }S), hence
the result.

Proposition 8.2. The forgetful functor υ from Flow to the category of diagrams

D of topological spaces over the small category 1
s // 0 1

too such that D(0)
is a discrete topological space has a left adjoint called the free flow generated by the
diagram.

Proof. The forgetful functor preserves limits because of the construction of the limit

in Flow. Let D be a diagram over 1
s // 0 1

too with D (0) discrete. Let us
start from the class of solutions f : D −→ υ (X) when X runs over the class of
flows and for a given X where f runs over Flow (D, υ (X)). Then one can replace
X by the subflow generated by the finite composition of elements of f (D). So one
can suppose that the cardinal card(X) of X satisfies card(X) 6 ℵ0×card(D) where
card(D) is the cardinal of D. By choosing one equivalence class of flows for the class
of flows X such that card(X) 6 ℵ0 × card(D), one has obtained a set of solutions.
Hence the result by Theorem 4.16.

Corollary 8.3. Let U be a topological space. Let X be a flow. Then the flow U £X
is the free flow generated by the diagram D of spaces defined by D (1) = U × PX,
D (0) = X0, s (u, x) = s(x), t (u, x) = t(x) divided by the identifications (u, x) ∗
(u, y) = (u, x ∗ y).

Proof. The identifications generates an equivalence with closed graph since the
composition law of X is continuous. Therefore the quotient equipped with the final
topology is still weak Hausdorff, and therefore compactly generated. This is then a
consequence of Yoneda’s lemma.

9. S-homotopy extension property

Definition 9.1. Let i : A −→ X be a synchronized morphism of flows and let Y be a
flow. The morphism i : A −→ X satisfies the S-homotopy extension property for Y
if for any morphism f : X −→ Y and any S-homotopy h : [0, 1]£A −→ Y such that
for any a ∈ A, h (0 £ a) = f (i (a)), there exists a S-homotopy H : [0, 1] £ X −→
Y such that for any x ∈ X, H (0 £ x) = f (x) and for any (t, a) ∈ [0, 1] × A,
H (t £ i (a)) = h (t £ a).
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Definition 9.2. A synchronized morphism i : A −→ X satisfies the S-homotopy
extension property if i : A −→ X satisfies the S-homotopy extension property for
any flow Y .

Let i : A −→ X be a morphism of flows and let (Y, B) be a pair of topological
spaces. Then one can consider the pushout

B £ A //

IdB �i

²²

Y £ A

²²
B £ X // (Y £ A) tB�A (B £ X)

The commutativity of the diagram

B £ A //

IdB �i

²²

Y £ A

²²
B £ X // Y £ X

provides a canonical morphism of flows (Y, B)£i : (Y £ A)tB�A(B £ X) −→ Y £X
such that

((Y, B) £ i) (y £ a) = y £ i (a),

((Y, B) £ i) (b £ a) = b £ i (a),

((Y, B) £ i) (b £ x) = b £ x

with x ∈ X, y ∈ Y , a ∈ A and b ∈ B.

Notation 9.3. The morphism of flows ([0, 1], {0}) £ i will be denoted by ψ(i).

Theorem 9.4. Let i : A −→ X be a morphism of flows. Then the following asser-
tions are equivalent:

1. the morphism i satisfies the S-homotopy extension property

2. the morphism of flows ψ(i) has a retract r, that is to say there exists a mor-
phism of flows

r : [0, 1] £ X −→ ([0, 1] £ A) t{0}�A ({0}£ X)

such that r ◦ ψ(i) = Id([0,1]�A)t{0}�A({0}�X).

Proof. Giving two morphisms of flows f : X −→ Y and h : [0, 1] £ A −→ Y
such that h (0 £ a) = f (i (a)) for any a ∈ A is equivalent to giving a morphism of
flows still denoted by h from ([0, 1] £ A) t{0}�A ({0}£ X) to Y . The S-homotopy
extension problem for i has then always a solution if and only for any morphism
of flows h : ([0, 1] £ A) t{0}�A ({0}£ X) −→ Y , there exists a morphism of flows
H : [0, 1]£X −→ Y such that H ◦ψ(i) = h. Take Y = ([0, 1] £ A)t{0}�A ({0}£ X)
and let h be the identity map of Y . This yields the retract r. Conversely, let r be
a retract of i. Then H := h ◦ r is always a solution of the S-homotopy extension
problem.
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Theorem 9.5. Let (Z, ∂Z) be a NDR pair of topological spaces. Then the canon-
ical morphism of flows Glob(∂Z) −→ Glob(Z) satisfies the S-homotopy extension
property.

Proof. Since (Z, ∂Z) is a NDR pair, then [0, 1] × ∂Z t{0}×∂Z Z −→ [0, 1] × Z has
a retract. Therefore the morphism of flows

Glob
(
[0, 1]× ∂Z t{0}×∂Z Z

) −→ Glob ([0, 1]× Z)

has a retract. But

Glob
(
[0, 1]× ∂Z t{0}×∂Z Z

) ∼= [0, 1] £ Glob(∂Z) t{0}�Glob(∂Z) Glob(Z)

and Glob ([0, 1]× Z) ∼= [0, 1] £ Glob(Z). The proof is complete thanks to Theo-
rem 9.4.

Theorem 9.6. Let U be a connected non empty space. Let X and Y be two flows.
Then there exists a natural homeomorphism

TOP(U,FLOW(X, Y )) ∼= FLOW(U £ X, Y ).

Proof. We already know by Theorem 7.9 that there exists a natural bijection

Top(U,FLOW(X,Y )) ∼= glTop(U £ X, Y ).

Using the construction of £, Corollary 6.2 and Theorem 5.10, it suffices to prove the
homeomorphism for X = X0 and X = Glob(Z). The space FLOW(X0, Y ) is the
discrete space of set maps Set(X0, Y 0) from X0 to Y 0. Since U is connected, then
TOP(U,FLOW(X0, Y )) ∼= Set(X0, Y 0). In the other hand, FLOW(U £X0, Y ) ∼=
FLOW(X0, Y ) ∼= Set(X0, Y 0), hence the result for X0. At last, for any topological
space W ,

Top (W,TOP (U,FLOW (Glob (Z) , Y )))
∼= Top (W × U,FLOW (Glob (Z) , Y ))
∼= glTop ((W × U) £ Glob (Z) , Y )
∼= glTop (Glob (W × U × Z) , Y )

and Top(W,FLOW(U £ Glob(Z), Y ) ∼= Top(W,FLOW(Glob(U × Z), Y )). It is
then easy to see that both

glTop(Glob(W × U × Z), Y )

and

Top(W,FLOW(Glob(U × Z), Y ))

can be identified to the same subset of Top([0, 1]×W ×U ×Z, Y ). Hence the result
by Yoneda.

Theorem 9.7. A morphism of flows i : A −→ X satisfies the S-homotopy extension
property if and only if for any flow Y , the continuous map i∗ : FLOW(X,Y ) −→
FLOW(A, Y ) is a Hurewicz fibration.
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Proof. For any topological space M , one has

Top([0, 1]×M,FLOW(A, Y )) ∼= Top(M,TOP([0, 1],FLOW(A, Y )))

since Top is cartesian closed and

Top(M,TOP([0, 1],FLOW(A, Y ))) ∼= Top(M,FLOW([0, 1] £ A, Y ))

by Theorem 9.6. Considering a commutative diagram like

{0} ×M� _

²²

φ // FLOW(X, Y )

i∗

²²
[0, 1]×M

ψ //

k

77nnnnnn
FLOW(A, Y )

is then equivalent to considering a commutative diagram of topological spaces

M

²²

// FLOW({0}£ X,Y )

²²
FLOW([0, 1] £ A, Y ) // FLOW({0}£ A, Y )

Using again Theorem 5.10, considering such a commutative diagram is equivalent to
considering a continuous map M −→ FLOW(Mi, Y ). Finding a continuous map k
making both triangles commutative is equivalent to finding a commutative diagram
of the form

M
φ //

=

²²

FLOW(Mi, Y )

M
` //___ FLOW([0, 1] £ X, Y )

ψ(i)∗

OO

If i : A −→ X satisfies the S-homotopy extension property, then ψ(i) : Mi −→
[0, 1] £ X has a retract r : [0, 1] £ X −→ Mi. Then take ` = φ ◦ r. Conversely, if `
exists for any M and any Y , take M = {0} and Y = Mi and φ(0) = IdMi. Then
`(0) is a retract of ψ(i). Therefore i : A −→ X satisfies the S-homotopy extension
property.

Corollary 9.8. Let i : A −→ X satisfy the S-homotopy extension property. Let
f : A −→ Y be a morphism of flows. Consider the pushout in Flow

A
i //

f

²²

X

²²
Y

j // Z

Then the canonical morphism from Y to Z satisfies the S-homotopy extension prop-
erty. In other terms, the pushout of a morphism of flows satisfying the S-homotopy
extension property still satisfies the S-homotopy extension property.
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Corollary 9.9. Let Z be a compact space and let ∂Z ⊂ Z be a compact subspace
such that the canonical inclusion is a NDR pair. Let U be a flow. Then the canonical
restriction map

FLOW (Glob (Z) , U) −→ FLOW (Glob (∂Z) , U)

is a Hurewicz fibration.

10. Morphisms of flows inducing a closed inclusion of path
spaces

Proposition 10.1. [28] If j : X −→ Y and r : Y −→ X are two continuous maps
with r ◦ j = Id, then j is a closed inclusion and r is a quotient map.

Notation 10.2. Denote by INC the class of morphisms of flows f : X −→ Y such
that Pf : PX −→ PY is a closed inclusion of topological spaces.

The purpose of this section is to collect some important examples of morphisms
of INC. This section provides the necessary preparatory lemmas for the use of the
“Small Object Argument” further in this paper.

Proposition 10.3. Let A be a flow. Then the morphism of flows θ : A −→ [0, 1]£A
defined by θ(a) = 1 £ a belongs to INC.
Proof. The mapping U 7→ U £ X for a given flow X is functorial with respect to
U . So one can consider r : [0, 1] £ A −→ A defined by r(t £ a) = a.

Definition 10.4. If i : A −→ X is a morphism of flows, then the mapping cylinder
Mi of i is defined by the pushout of flows

A
a 7→0�a//

i

²²

[0, 1] £ A

²²
X // Mi

Proposition 10.5. Let i : A −→ X be a synchronized morphism of flows. Then the
canonical morphism of flows θ : A −→ Mi such that θ(a) = 1 £ a belongs to INC.
Proof. First of all, since i is synchronized, one can consider that A0 = X0. Let

Ni = ([0, 1] £ A) tA0 X.

Then there exists a canonical morphism of flows φ : Ni −→ Mi which is constant
on the 0-skeleton and such that φ : PNi −→ PMi is onto. Let us consider the
equivalence relation R on PNi associated to φ, i.e. xRy if and only if φ(x) = φ(y).
The graph of R is the inverse image of the diagonal of PMi. The latter is closed in
PMi×PMi since PMi is a k-space which is weak Hausdorff. Therefore the graph of
R is closed in PNi×PNi. So the quotient PNi/R equipped with the final topology
is still weak Hausdorff and thus a compactly generated topological space. There
exists a canonical continuous map PNi/R −→ PMi which is an isomorphism of
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sets. The topological space PNi/R yields a flow Y and a commutative diagram of
flows

A
a 7→0�a//

i

²²

[0, 1] £ A

²²
X // Y

Therefore there exists a morphism of flows Mi −→ Y because of the universal
property satisfied by Mi. So the bijection σ : PNi/R −→ PMi is actually an
homeomorphism and the continuous map φ : PNi −→ PMi is a quotient map. The
map θ : A −→ Mi is equal to the composite

A ∼= {1}£ A −→ Ni −→ Mi

One has PNi ∼= P([0, 1] £ A) t Z for some topological space Z: the topological
space Z consists of all free compositions of executions paths of Ni containing an
element of X. Therefore the morphism of flows A −→ Ni is a closed inclusion of
topological spaces. Let g : Z −→ A be a set map such that θ ◦ g : Z −→ PMi is
continuous. Let F be a closed subspace of A. Then F is mapped to a closed subspace
G of PNi. Since G = σ−1(σ(G)), then σ(G) is a closed subspace of PMi. Therefore
g−1(F ) = (θ ◦ g)−1(σ(G)) is a closed subspace of Z. Therefore g is continuous.

Theorem 10.6. Let i : A −→ X satisfy the S-homotopy extension property. Then
i ∈ INC.
Proof. We follow the proof of the fact that any Hurewicz cofibration of compactly
topological spaces is a closed inclusion given in the appendix of [28].

Let us consider the commutative diagram of flows

A
θ //

i

²²

Mi

²²
X

i1 // [0, 1] £ X

where θ(a) = 1£a and i1(x) = 1£x. Then i1 has a retract and therefore is a closed
inclusion. The map θ is a closed inclusion as well by Proposition 10.5. Since j has a
retract by Theorem 9.4, then j ◦ θ is a closed inclusion. moreover i1 is one-to-one.
Therefore i is a closed inclusion.

11. Smallness argument

Any ordinal can be viewed as a small category whose objects are the elements
of λ, that is the ordinal γ < λ, and where there exists a morphism γ −→ γ′ if and
only if γ 6 γ′.

Definition 11.1. Let C be a cocomplete category. Let λ be an ordinal. A λ-sequence
in C is a colimit-preserving functor X : λ −→ C. Since X preserves colimits, for all
limit ordinals γ < λ, the induces map lim−→β<γ

Xβ −→ Xγ is an isomorphism. The
morphism X0 −→ lim−→X is called the transfinite composition of the Xγ −→ Xγ+1.
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Definition 11.2. Let κ be a cardinal. An ordinal λ is κ-filtered if for any A ⊂ λ
with |A| 6 κ where |A| is the cardinal of A, then sup A < λ.

Definition 11.3. Let C be a cocomplete category. Let D be a collection of morphisms
of C. Let κ be a cardinal. An object A of C is κ-small with respect to D if for any λ-
sequence X where λ is a κ-filtered ordinal, and where each arrow Xβ −→ Xβ+1 lies
in D for β < λ, then one has the bijection lim−→β<λ

C(A,Xβ) −→ C(A, lim−→β<λ
Xβ).

We say that A is κ-small relative to D if it is κ-small relative to D for some cardinal
κ.

Definition 11.4. Let C be a cocomplete category. Let I be a set of morphisms of C.
Then a relative I-cell complex f : A −→ B is a transfinite composition of pushouts of
elements of I. In other terms, there exists an ordinal λ and a λ-sequence X : λ −→ C
such that f is the composition of X and such that for each β with β + 1 < λ, there
is a pushout square as follows

Cβ //

gβ

²²

Xβ

²²
Dβ // Xβ+1

such that gβ ∈ I. We denote the collection of relative I-cell complexes by I-cell. If
∅ is the initial object of C and if X is an object of C such that ∅ −→ X is a relative
I-cell complex, then one says that X is a I-cell complex.

Proposition 11.5. Any flow A is sup(ℵ0, card(A))-small relative to INC where
card(A) is the cardinal of the underlying topological space of A.

Proof. One has a canonical one-to-one set map

lim−→
β<λ

Flow(A,Xβ) −→ Flow(A, lim−→
β<λ

Xβ).

Let f ∈ Flow(A, lim−→β<λ
Xβ). Since the 0-skeleton of a colimit of flows is the colimit

of the 0-skeletons, then for any a ∈ A0, f(a) ∈ X0
βa

for some βa < λ. There ex-

ists a canonical continuous map lim−→β<λ
PXβ −→ P

(
lim−→β<λ

Xβ

)
where lim−→β<λ

Xβ

is the colimit of the flows Xβ . Any element of P
(
lim−→β<λ

Xβ

)
is a finite compos-

ite x1 ∗ · · · ∗ xr of elements x1 ∈ Xβ1 , . . . , xr ∈ Xβr for some finite integer r.
Since λ is sup(ℵ0, card(A))-filtered, it is ℵ0-filtered. So β = sup(β1, . . . , βr) < λ
and x1, . . . , xr ∈ PXβ . So x1 ∗ · · · ∗ xr ∈ PXβ . Therefore any execution path x ∈
P

(
lim−→β<λ

Xβ

)
belongs to some PXβx for some βx < λ. Since λ is sup(ℵ0, card(A))-

filtered, it is card(A)-filtered. Therefore sup(βa, . . . , βx) < λ. So f factors through
a map g : A −→ Xβ with β < λ. The map g : A −→ Xβ is automatically continu-
ous because all continuous maps between path spaces are inclusions of topological
spaces.

Definition 11.6. A morphism of flows f : X −→ Y is a weak S-homotopy equiv-
alence if f is synchronized and if f induces a weak homotopy equivalence from PX
to PY .
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Notation 11.7. Let S be the subcategory of weak S-homotopy equivalences. Let Igl

be the set of morphisms of flows Glob(Sn−1) −→ Glob(Dn) for n > 0. Let Jgl be the
set of morphisms of flows Glob(Dn) −→ Glob([0, 1] ×Dn). Notice that all arrows
of S, Igl and Jgl are synchronized. At last, denote by Igl

+ be the union of Igl with
the two morphisms of flows R : {0, 1} −→ {0} and C : ∅ ⊂ {0}.

Proposition 11.8. The domains of Igl
+ are small relative to Igl

+ -cell. The domains
of Jgl are small relative to Jgl-cell.

Proof. The inclusion maps Sn−1 ⊂ Dn and Dn ⊂ [0, 1]×Dn are NDR pairs. So any
pushout of a morphism of Igl ∪ Jgl satisfies the S-homotopy extension property by
Corollary 9.8 and Theorem 9.5, and therefore is an element of INC by Theorem 10.6.
A pushout of C : ∅ −→ {0} does not change the path space. Therefore such a
pushout is necessarily in INC. It remains to examine the case of a pushout of
R : {0, 1} −→ {0}. Let us consider the pushout of flows

{0, 1} φ //

R

²²

X

²²
{0} // Y

If φ(0) = φ(1), then PX = PY and so there is nothing to prove. Otherwise, if φ(0) 6=
φ(1), then PY ∼= PXt(P.,φ(1)X×Pφ(0),.X)t(P.,φ(1)X×Pφ(0),φ(1)X×Pφ(0),.X)t. . . .
Hence the conclusion by Proposition 11.5.

12. Reminder about model category

Some useful references for the notion of model category are [27] [21]. See also
[9] [26].

If C is a category, one denotes by Map(C) the category whose objects are the
morphisms of C and whose morphisms are the commutative squares of C.

In a category C, an object x is a retract of an object y if there exists f : x −→ y
and g : y −→ x of C such that g ◦ f = Idx. A functorial factorization (α, β) of C is
a pair of functors from Map(C) to Map(C) such that for any f object of Map(C),
f = β(f) ◦ α(f).

Definition 12.1. Let i : A −→ B and p : X −→ Y be maps in a category C.
Then i has the left lifting property (LLP) with respect to p (or p has the right lifting
property (RLP) with respect to i) if for any commutative square

A

i

²²

α // X

p

²²
B

g
>>~

~
~

~ β // Y

there exists g making both triangles commutative.
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Definition 12.2. If I is a set of morphisms of flows, the collection of morphisms of
flows that satisfies the RLP with respect to any morphism of I is denoted by I− inj.
Denote by I − cof the collection of morphisms of flows that satisfies the RLP with
respect to any morphism that satisfies the LLP with respect to any element of I.
This is a purely categorical fact that I − cell ⊂ I − cof .

Definition 12.3. A model structure on a category C consists of three subcategories
of the category of morphisms Map(C) called weak equivalences, cofibrations, and
fibrations, and two functorial factorizations (α, β) and (γ, δ) satisfying the following
properties:

1. (2-out-of-3) If f and g are morphisms of C such that g ◦ f is defined and two
of f , g and g ◦ f are weak equivalences, then so is the third.

2. (Retracts) If f and g are morphisms of C such that f is a retract of g and g
is a weak equivalence, cofibration, or fibration, then so is f .

3. (Lifting) Define a map to be a trivial cofibration if it is both a cofibration
and a weak equivalence. Similarly, define a map to be a trivial fibration if it
is both a fibration and a weak equivalence. Then trivial cofibrations have the
LLP with respect to fibrations, and cofibrations have the LLP with respect to
trivial fibrations.

4. (Factorization) For any morphism f , α(f) is a cofibration, β(f) a trivial fi-
bration, γ(f) is a trivial cofibration , and δ(f) is a fibration.

Definition 12.4. A model category is a complete and cocomplete category C together
with a model structure on C.
Theorem 12.5. [27] Let C be a complete and cocomplete category. Let W be a
subcategory of Map(C). Let I and J be two sets of maps of C. Then there exists
a structure of model category on C such that the fibrations are exactly the arrows
satisfying the RLP with respect to the arrows of J , such that the trivial fibrations
are exactly the arrows satisfying the RLP with respect to the arrows of I, such that
the weak equivalences are exactly the arrows of W if the following conditions are
satisfied:

1. The subcategory W has the 2-out-of-3 property and is closed under retracts.
2. The domains of I are small relative to I-cell.
3. The domains of J are small relative to J-cell.
4. Any relative J-cell complex is a weak equivalence and satisfies the LLP with

respect to any morphism satisfying the RLP with respect to the arrows of I.
In other terms, J − cell ⊂ I − cof ∩W.

5. A morphism satisfies the RLP with respect to the morphisms of I if and only if
it is a weak equivalence and it satisfies the RLP with respect to the morphisms
of J . In other terms, I − inj = J − inj ∩W.

Definition 12.6. If the conditions of Theorem 12.5 are satisfied for some model
category C, the set I is the set of generating cofibrations, the set J is the set of
generating trivial cofibrations and one says that C is a cofibrantly generated model
category.
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The above conditions are satisfied for Top if W is the subcategory of weak
homotopy equivalences, if I is the set of inclusion maps Sn−1 −→ Dn with S−1 = ∅
and for n > 0, and if J is the set of continuous maps Dn −→ [0, 1]×Dn such that
x 7→ (0, x) and for n > 0. The fibrations of the model structure of Top are usually
called Serre fibration.

So far, we have proved:

Theorem 12.7. The category of flows Flow is complete and cocomplete. Moreover:

1. The subcategory S has the 2-out-of-3 property and is closed under retracts.

2. The domains of Igl
+ are small relative to Igl

+ -cell.

3. The domains of Jgl are small relative to Jgl-cell.

13. Characterization of the fibrations of flows

Definition 13.1. An element of Jgl− inj is called a fibration. A fibration is trivial
if it is at the same time a weak S-homotopy equivalence.

Proposition 13.2. A morphism of flows f : X −→ Y satisfies the RLP with respect
to Glob(U) −→ Glob(V ) if and only if for any α, β ∈ X0, Pα,βX −→ Pf(α),f(β)Y
satisfies the RLP with respect to U −→ V .

Proof. Considering a commutative square of topological spaces

U //

²²

Pα,βX

f

²²
V //

k1

::u
u

u
u

u Pf(α),f(β)Y

is equivalent to considering a commutative square of flows like

Glob(U)

0 7→ α
1 7→ β

//

²²

X

f

²²
Glob(V ) //

k2

;;w
w

w
w

w
Y

The existence of k1 making the first diagram commutative is equivalent to the
existence of k2 making the second diagram commutative. Hence the result.

Proposition 13.3. Let f : X −→ Y be a morphism of flows. Then f is a fibration
of flows if and only if Pf : PX −→ PY is a Serre fibration of topological spaces.

Proof. By Proposition 13.2, the morphism of flows f is a fibration if and only if for
any α, β ∈ X0, the continuous map Pα,βX −→ Pf(α),f(β)Y is a Serre fibration. But
Dn and Dn × [0, 1] are connected. Hence the result.
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14. About the necessity of R and C as generating cofibrations

One cannot take as definition of a cofibration an element of Igl − cof . Indeed:

Proposition 14.1. There does not exist any cofibrantly generated model structure
on Flow such that the generating set of cofibrations is Igl, the generating set of triv-
ial cofibrations Jgl, and the class of weak equivalences the one of weak S-homotopy
equivalences.

Proof. If such a model structure existed, then all cofibrations would be synchronized
because any cofibration is a retract of an element of Igl−cell, because any element of
Igl−cell is synchronized, and at last because the retract of a synchronized morphism
of flows is synchronized. Since a trivial fibration is a weak S-homotopy equivalence,
then such morphism is in particular synchronized. So all composites of the form p◦ i
where p would be a trivial fibration and i a cofibration would be synchronized. So
a non-synchronized morphism of flows could never be equal to such composite.

Proposition 14.2. There does not exist any cofibrantly generated model structure
on Flow such that the generating set of cofibrations is Igl ∪ {C}, the generating
set of trivial cofibrations Jgl, and the class of weak equivalences the one of weak
S-homotopy equivalences.

Proof. Suppose that such a model structure exists. Consider a commutative square

A

i

²²

// {0, 1}
R

²²
X //

k

==z
z

z
z

{0}

where i : A −→ X is an element of Igl ∪ {C}. Since the path spaces of the flows
{0, 1} and {0} are empty, then PA = PX = ∅. So i = C, A = ∅ and X = {0}. Let
k(0) = 0. Then k makes the diagram above commutative. Therefore R satisfies the
RLP with respect to any morphism of Igl ∪ {C}. So R is a trivial fibration for this
model structure. Contradiction.

Proposition 14.3. There does not exits any cofibrantly generated model structure
on Flow such that the generating set of cofibrations is Igl ∪ {R}, the generating
set of trivial cofibrations Jgl, and the class of weak equivalences the one of weak
S-homotopy equivalences.

Proof. If such a model structure existed, then all cofibrations would restrict to an
onto set map between the 0-skeletons. So there would not exist any cofibrant object
since the initial flow is the empty set.

Hence the definition:

Definition 14.4. An element of Igl
+ − cof is called a cofibration. A cofibration is

trivial if it is at the same time a weak S-homotopy equivalence.
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15. Pushout of Glob(∂Z) → Glob(Z) in Flow

Let ∂Z −→ Z be a continuous map. Let us consider a diagram of flows as follows:

Glob(∂Z)
φ //

²²

A

²²
Glob(Z) // X

The purpose of this short section is an explicit description of the pushout X in the
category of flows.

Let us consider the set M of finite sequences α0 . . . αp of elements of A0 =
X0 with p > 1 and such that, for any i, at least one of the two pairs (αi, αi+1)
and (αi+1, αi+2) is equal to (φ(0), φ(1)). Let us consider the pushout diagram of
topological spaces

∂Z
φ //

²²

Pφ(0),φ(1)A

²²
Z // T

Let Zα,β = Pα,βA if (α, β) 6= (φ(0), φ(1)) and let Zφ(0),φ(1) = T . At last, for any
α0 . . . αp ∈ M, let [α0 . . . αp] = Zα0,α1 × Zα1,α2 × . . . × Zαp−1,αp . And [α0 . . . αp]i
denotes the same product as [α0 . . . αp] except that (αi, αi+1) = (φ(0), φ(1)) and
that the factor Zαi,αi+1 = T is replaced by Pφ(0),φ(1)A. We mean that in the product
[α0 . . . αp]i, the factor Pφ(0),φ(1)A appears exactly once. For instance, one has (with
φ(0) 6= φ(1))

[αφ(0)φ(1)φ(0)φ(1)] = Pα,φ(0)A× T × Pφ(1),φ(0)A× T

[αφ(0)φ(1)φ(0)φ(1)]1 = Pα,φ(0)A× Pφ(0),φ(1)A× Pφ(1),φ(0)A× T

[αφ(0)φ(1)φ(0)φ(1)]3 = Pα,φ(0)A× T × Pφ(1),φ(0)A× Pφ(0),φ(1)A.

The idea is that in the products [α0 . . . αp], there are no possible simplifications using
the composition law of A. On the contrary, exactly one simplification is possible
using the composition law of A in the products [α0 . . . αp]i. For instance, with the
examples above, there exist continuous maps

[αφ(0)φ(1)φ(0)φ(1)]1 −→ [αφ(0)φ(1)]

and
[αφ(0)φ(1)φ(0)φ(1)]3 −→ [αφ(0)φ(1)φ(1)]

induced by the composition law of A and there exist continuous maps

[αφ(0)φ(1)φ(0)φ(1)]1 −→ [αφ(0)φ(1)φ(0)φ(1)]

and
[αφ(0)φ(1)φ(0)φ(1)]3 −→ [αφ(0)φ(1)φ(0)φ(1)]

induced by the continuous map Pφ(0),φ(1)A −→ T .
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Let Pα,βM be the colimit of the diagram of topological spaces consisting of the
topological spaces [α0 . . . αp] and [α0 . . . αp]i with α0 = α and αp = β with the two
kinds of maps above defined. The composition law of A and the free concatenation
obviously defines a continuous associative map Pα,βM × Pβ,γM −→ Pα,γM .

Proposition 15.1. One has the pushout diagram of flows

Glob(∂Z)
φ //

²²

A

²²
Glob(Z) // M

Proof. Let us consider a commutative diagram like:

Glob(∂Z)
φ //

²²

A

²² φ1

±±

Glob(Z)

φ2 00

// M
h

ÃÃ@
@

@
@

X

One has to prove that there exists h making everything commutative. We do not
have any choice for the definition on the 0-skeleton: h(α) = φ1(α). The diagram of
flows above gives a commutative diagram of topological spaces

∂Z
φ //

²²

PA

²² φ1

²²

Z

φ2 00

// T
k

""D
D

D
D

PX

By construction of T , there exists a continuous map k : T −→ Ph(φ(0)),h(φ(1))X ⊂
PX making the diagram commutative.

Constructing a continuous map PM −→ PX is equivalent to constructing contin-
uous maps [α0 . . . αp] −→ Ph(α0),h(αp)X and [α0 . . . αp]i −→ Ph(α0),h(αp)X for any
finite sequence α0 . . . αp of M such that any diagram like

[α0 . . . αp]i

²²

// Ph(α0),h(αp)X

[α0 . . . αp]

77ooooooooooo
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or like
[α0 . . . αp]i

²²

// Ph(α0),h(αp)X

[α0 . . . ̂φ(0)φ(1) . . . αp]

55llllllllllllll

is commutative. There are such obvious maps by considering the continuous maps
Zα,β −→ Ph(α),h(β)X and by composing with the composition law of X. Hence the
result.

Theorem 15.2. Suppose that one has the pushout of flows

Glob(P )
φ //

²²

A

²²
Glob(Q) // X

where P −→ Q is an inclusion of a deformation retract of topological spaces. Then
the continuous map Pf : PA −→ PX is a weak homotopy equivalence.

Proof. Let us start with the diagram D = D0 of topological spaces constructed for
Proposition 15.1 calculating PX. We are going to modify D, by transfinite induction,
in order to obtain another diagram of topological spaces, whose colimit will still be
isomorphic to PX and such that all arrows will be inclusions of a deformation
retract.

We are going to add vertices and arrows to the diagram above in the following
way. For any configuration like

[α0 . . . αp]i
j //

c

²²

[α0 . . . αp]

[α0 . . . α̂i . . . αp]

where c is induced by the composition law of A and j is the unique possible inclusion
of a deformation retract, let us draw the cocartesian square

[α0 . . . αp]i
j //

c

²²

[α0 . . . αp]

d

²²Â
Â
Â

[α0 . . . α̂i . . . αp]
k //_____ U

Notice that k is an inclusion of a deformation retract because the class of inclusions
of a deformation retract is closed under pushout : cf. [27] for an elementary proof, or
[35] for a model-categoric argument. Indeed, an inclusion of a deformation retract is
a trivial cofibration for the Strøm model category of compactly generated topological
spaces. So the corresponding class is closed under pushout because it coincides with
the class of morphisms satisfying the LLP with respect to any Hurewicz fibration.
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One will say that the maps j and k are orthogonal to the composition law of A
and that the maps c and d are parallel to the composition law of A. Repeat the
process for any configuration like

U
j //

c

²²

V

W

where j is orthogonal to the composition law of A and c parallel to the composition
law of A by completing the configuration by a cocartesian square of topological
spaces

U
j //

c

²²

V

d

²²Â
Â
Â

W
k //___ X

By induction, one will say that k is orthogonal to the composition law and that d
is parallel to the composition law. Notice that, in this diagram, any map which is
orthogonal to the composition law is an inclusion of a deformation retract of topolog-
ical spaces. At each step consisting of adding an object so that it creates a pushout
square in the diagram, one obtains a diagram Dλ+1 from a diagram Dλ. There is a
canonical continuous map lim−→Dλ −→ lim−→Dλ+1 which is an homeomorphism.

Let us say that the topological spaces [α0 . . . αp] and [α0 . . . αp]i are of length p.
By induction , one defines the length of a topological space as being constant along
the arrows orthogonal to the composition law of A. The length is strictly decreasing
along the arrows parallel to the composition law of A. Therefore the process stops
after an, eventually, transfinite number of steps. Moreover the only map which can
starts from an element of length 1 is an arrow orthogonal to the composition law
of A. Therefore such a map is necessarily an inclusion of a deformation retract of
topological spaces.

Let us say that the process stops for λ = λ0. For any vertex v of Dλ0 , there exists
an arrow v −→ w of Dλ0 with w of length 1. Therefore the colimit of the diagram
Dλ0 is isomorphic to the colimit of the subdiagram of Dλ0 consisting of the vertex
of length 1.

The initial diagram D = D0 has therefore the same colimit as a diagram of
topological spaces of the form a concatenation of straight lines of the form

Pα,βA −→ M1 −→ M2 −→ . . .

where all arrows are inclusions of a deformation retract. Therefore PA −→ PX is a
weak homotopy equivalence since any inclusion of a deformation retract is a closed
T1 inclusion and a weak homotopy equivalence and since any transfinite composition
of such maps is a weak homotopy equivalence (cf [27] Lemma 2.4.5, Corollary 2.4.6
and Lemma 2.4.8).
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16. Jgl − cell ⊂ Igl
+ − cof ∩ S

Proposition 16.1. One has Jgl − cell ⊂ Igl − cof ∩ S.

Proof. The continuous maps Dn ∼= Dn × {0} −→ Dn × [0, 1] are inclusions of
a deformation retract for any n > 0. So by Theorem 15.2, Jgl − cell ⊂ S. The
class Igl − cof is closed under pushout and transfinite composition. So it then
suffices to prove that Jgl ⊂ Igl − cof . A morphism of flows f : X −→ Y satisfies
the RLP with respect to Glob(Dn) −→ Glob(Dn × [0, 1]) if and only if for any
α, β ∈ X0, Pα,βX −→ Pf(α),f(β)Y is a Serre fibration by Proposition 13.2. But
again by Proposition 13.2, for any element f : X −→ Y of Igl − inj, for any
α, β ∈ X0, Pα,βX −→ Pf(α),f(β)Y is a trivial Serre fibration, so a Serre fibration.
Hence the result.

Proposition 16.2. Let f be a morphism of flows. Then the following conditions
are equivalent:

1. f is synchronized
2. f satisfies the RLP with respect to R : {0, 1} −→ {0} and C : ∅ ⊂ {0}.

Proof. Let f : X −→ Y that satisfies the RLP with respect to R : {0, 1} −→ {0}
and C : {0} ⊂ {0, 1}. Let us suppose that f(a) = f(b) for some a, b ∈ X0. Then
consider the commutative diagram

{0, 1} 0 7→a,1 7→b //

R

²²

X

f

²²
{0}

g

77ppppppp 0 7→f(a) // Y

By hypothesis, there exists g making both triangles commutative. So b = g ◦R(1) =
g(0) = g ◦ R(0) = a. So f induces a one-to-one map on the 0-skeletons. Now take
a ∈ Y 0. Then consider the commutative diagram

∅ //

C

²²

X

f

²²
{0}

g

88ppppppp 0 7→a // Y

By hypothesis, there exists g making both triangles commutative. Then a = f(g(1)).
So f induces an onto map on the 0-skeletons. Therefore condition 2 implies condi-
tion 1. Conversely, if f is synchronized, let (f0)−1 : Y 0 −→ X0 be the inverse of
the restriction f0 of f to the 0-skeleton. Consider a commutative diagram like

A
α //

u

²²

X

f

²²
B

g

88ppppppp β // Y

where A and B are two flows such that A = A0, B = B0 and where u is any set map.
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Then g = (f0)−1 ◦ β makes both triangles commutative. Indeed f ◦ (f0)−1 ◦ β = β
and (f0)−1 ◦ β ◦ u = (f0)−1 ◦ f ◦ α = α.

Corollary 16.3. Jgl − cell ⊂ Igl
+ − cof ∩ S.

Proof. The elements of Igl − cof satisfies the LLP with respect to any element of
Igl − inj. So in particular, the elements of Igl − cof satisfies the LLP with respect
to any synchronized element of Igl − inj. But a synchronized element of Igl − inj
is precisely an element of Igl

+ − inj by Proposition 16.2. Therefore Igl − cof ⊂
Igl
+ − cof .

17. Igl
+ − inj = Jgl − inj ∩ S

Proposition 17.1. Any morphism of Igl
+ −inj is a trivial fibration. In other terms,

Igl
+ − inj ⊂ Jgl − inj ∩ S.

Proof. Let f : X −→ Y be a morphism of flows with f ∈ Igl
+ − inj. Then f

is synchronized by Proposition 16.2. By Proposition 13.2, for any α, β ∈ X0,
Pα,βX −→ Pf(α),f(β)Y is a trivial Serre fibration. So f is a weak S-homotopy
equivalence. And again by Proposition 13.2, this implies that f satisfies the RLP
with respect to Jgl. Hence the result.

Proposition 17.2. Any trivial fibration is in Igl
+ − inj. In other terms, Jgl− inj ∩

S ⊂ Igl
+ − inj.

Proof. Let f be a trivial fibration. By Proposition 13.2, for any α, β ∈ X0, the
continuous map Pα,βX −→ Pf(α),f(β)Y is a fibration. But f ∈ S. Therefore the
fibrations Pα,βX −→ Pf(α),f(β)Y are trivial. So by Proposition 13.2, f satisfies the
RLP with respect to Igl. Since f is also synchronized, then f satisfies the RLP with
respect to R and C as well.

18. The model structure of Flow

Corollary 18.1. The category of flows together with the weak S-homotopy equiva-
lences, the cofibrations and the fibrations is a model category. The cofibrations are
the retracts of the elements of Igl

+ − cell. Moreover, any flow is fibrant.

Proof. The first part of the statement is a consequence of Proposition 11.5, Proposi-
tion 16.1, Proposition 17.1, Proposition 17.2 and Theorem 12.5. It remains to prove
that any flow is fibrant. Let X be a flow. Let 1 be the flow such that 10 = {0} and
P1 = {1}. Then 1 is a terminal object of Flow. Consider a commutative diagram
like

Glob(Dn)

i0

²²

α // X

²²
Glob([0, 1]×Dn)

g

88qqqqqq
β // 1
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Let g(0) = α(0), g(1) = α(1) and g(t, z) = α(z) for any (t, z) ∈ [0, 1]×Dn. Then g
makes both triangles commutative.

Corollary 18.2. Any cofibration for this model structure induces a closed inclusion
between path spaces.

Proof. This is a consequence of Corollary 9.8 and of Corollary 18.1.

19. S-homotopy and the model structure of Flow

In any model category, the canonical morphism X tX −→ X factors as a cofi-
bration XtX −→ I(X) and a trivial fibration I(X) −→ X. One then says that two
morphisms f and g from X to Y are left homotopy equivalent (this situation being
denoted by f ∼l g) if and only if there exists a morphism I(X) −→ Y such that the
composite XtX −→ I(X) −→ Y is exactly f tg. On cofibrant and fibrant objects,
the left homotopy is an equivalence relation simply called homotopy. Then one can
say that two cofibrant and fibrant flows X and Y are left homotopy equivalent (this
situation being denoted by X ∼l Y ) if and only if there exists a morphism of flows
f : X −→ Y and a morphism of flows g : Y −→ X such that f ◦ g ∼l IdY and
g ◦ f ∼l IdX .

Theorem 19.1. Two cofibrant flows are left homotopy equivalent if and only if
they are S-homotopy equivalent.

The similar fact is trivial in Top because for any cofibrant topological space X,
the continuous map X tX −→ [0, 1] ×X sending one copy of X to {0} ×X and
the other one to {1}×X is a relative I-cell complex, and therefore a cofibration for
the model structure of Top, and the continuous projection map [0, 1]×X −→ X is
a fibration. A similar situation does not hold in the framework of flows.

Proposition 19.2. There exists a cofibrant flow X such that the canonical mor-
phism of flows [0, 1] £ X −→ X such that t £ x 7→ x is not a fibration for the model
structure of Flow.

Proof. Let X0 be the three-element set {α, β, γ}. Let Pα,βX = {u}, Pβ,γX = {v},
and Pα,γX = D1 with the relation 1 = u ∗ v. Consider the commutative diagram

Glob(S0)

²²

α // [0, 1] £ X

²²
Glob(D1)

β // X

with α(−1) = 0£−1, α(1) = (0£u)∗(1£v) and β(z) = z for z ∈ D1. Suppose that
there exists g : Glob(D1) −→ [0, 1] £ X making the above diagram commutative.
For z ∈ D1\{1}, then the execution path t £ z of [0, 1] £ X is composable with
nothing by construction. So for such z, g(z) = φ(z) £ z for some continuous map
φ : D1\{1} −→ [0, 1]. Then n 7→ φ(1−1/(n+1)) is a sequence of [0, 1] and so contains
a subsequence converging to some t0 ∈ [0, 1]. Then (0 £ u) ∗ (1 £ v) = t0 £ 1, which
contredicts the explicit description of [0, 1] £ X of Corollary 8.3.
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Definition 19.3. Let X be a flow. Then the flow ¤X is defined by the cocartesian
diagram

X0

i

²²

i // X

²²
X // ¤X

where i : X0 −→ X is the canonical inclusion. This flow is called the square of X.

Proposition 19.4. For any flow X, the canonical morphism of flows kX : X t
X −→ ¤X is a cofibration.

Proof. This map is indeed an (eventually transfinite) composition of pushouts of
R : {0, 1} −→ {0}, so an element of Igl

+ − cell ⊂ Igl
+ − cof .

Proposition 19.5. Let X be a cofibrant flow. Then the canonical morphism of
flows jX : X tX −→ [0, 1] £ X induced by the inclusions X ∼= {0}£ X ⊂ [0, 1] £ X
and X ∼= {1}£ X ⊂ [0, 1] £ X is a cofibration.

Proof. The morphism jX factors as jX = `X ◦kX . Using Proposition 19.4, it suffices
to prove that `X : ¤X −→ [0, 1] £ X is a cofibration. Both functors X 7→ ¤X and
X 7→ [0, 1]£X commute with colimits and a colimit of cofibrations is a cofibration.
So it suffices to prove that for any CW-complex Z, `Glob(Z) : ¤Glob(Z) −→ [0, 1] £
Glob(Z) is a cofibration. But ¤Glob(Z) ∼= Glob(Z t Z) and [0, 1] £ Glob(Z) ∼=
Glob([0, 1] × Z). Since Z t Z −→ [0, 1] × Z is a cofibration in Top, then it is a
retract of an element of I − cell. So `Glob(Z) is a retract of an element of Igl − cell.
Therefore `Glob(Z) is a cofibration of flows.

Proposition 19.6. Let f : X −→ Y be a morphism of flows. If f is a S-homotopy
equivalence, then it is synchronized and for any α, β ∈ X0, the continuous map
Pα,βf : Pα,βX −→ Pf(α),f(β)Y is an homotopy equivalence.

Proof. Let g : Y −→ X be a S-homotopic inverse of f . Let F : [0, 1] £ X −→ X be
a S-homotopy from g ◦ f to IdX . Let G : [0, 1] £ Y −→ Y be a S-homotopy from
f ◦ g to IdY . Let α, β ∈ X0. Then the composite

F ′ : Glob ([0, 1]× Pα,βX) ∼= [0, 1] £ Glob (Pα,βX) −→ [0, 1] £ X −→ X

defined by
F ′ (0) = f (α) and F ′(1) = f (β)
F ′ (t, x) = F (t £ x) for (t, x) ∈ [0, 1]× Pα,βX

yields an homotopy from Pα,βg ◦Pα,βf to IdPα,βX . In the same way, one constructs
from G an homotopy from Pα,βf ◦ Pα,βg to IdPα,βY .

Proof of Theorem 19.1. The canonical morphism of flows [0, 1]£X −→ X factors as
a cofibration iX : [0, 1]£X −→ I(X) followed by a trivial fibration pX : I(X) −→ X.
So the canonical morphism XtX −→ X factors as a cofibration iX ◦jX : XtX −→
I(X) followed by a trivial fibration pX : I(X) −→ X.
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Now let X and Y be two S-homotopy equivalent cofibrant flows. Let f : X −→ Y
be a S-homotopy equivalence between X and Y . Then f is a weak S-homotopy
equivalence by Proposition 19.6. So X and Y are left-homotopy equivalent. Recip-
rocally, let X and Y be two left-homotopy equivalent cofibrant flows. Therefore
there exists a morphism of flows f : X −→ Y and a morphism of flows g : Y −→ X
such that f ◦ g ∼l IdY and g ◦ f ∼l IdX . Then there exists morphisms of flows
HX : I(X) −→ X and HY : I(Y ) −→ Y such that HX ◦ iX ◦ jX = (g ◦ f) t IdX

and HY ◦ iY ◦ jY = (f ◦ g) t IdY . So HX ◦ iX is a S-homotopy between g ◦ f and
IdX and HY ◦ iY is a S-homotopy between f ◦ g and IdY . Therefore X and Y are
S-homotopy equivalent.

One obtains finally the following theorem:

Theorem 19.7. There exists a structure of model category on Flow such that
1. The weak equivalences are the weak S-homotopy equivalences.
2. The fibrations are the morphisms of flows that satisfy the RLP with respect to

the morphisms of flows Glob(Dn) −→ Glob([0, 1]×Dn) induced by the maps
x 7→ (0, x).

3. The cofibrations are the morphisms of flows that satisfy the LLP with respect
to any morphism of flows that satisfies the RLP with respect to the morphisms
of flows Glob(Sn−1) −→ Glob(Dn) induced by the inclusions Sn−1 ⊂ Dn and
with respect to R : {0, 1} −→ {0} and C : ∅ ⊂ {0}.

4. Any flow is fibrant.
5. The fibration are the morphism of flows inducing a Serre fibration of topological

spaces between path spaces.
6. Two cofibrant flows are homotopy equivalent for this model structure if and

only if they are S-homotopy equivalent.

Corollary 19.8. Let X and Y be two cofibrant flows. Let f : X −→ Y be a
synchronized morphism of flows. Then the following conditions are equivalent:

1. for any α, β ∈ X0, the continuous map Pα,βX −→ Pf(α),f(β)Y is a weak
homotopy equivalence

2. for any α, β ∈ X0, the continuous map Pα,βX −→ Pf(α),f(β)Y is homotopy
equivalence

3. f is a weak S-homotopy equivalence
4. f is a S-homotopy equivalence.

Question 19.9. How to find two flows X and Y (necessarily not cofibrant) and a
synchronized morphism of flows f : X −→ Y which is not a S-homotopy equivalence
and such that for any α, β ∈ X0, f induces an homotopy equivalence from Pα,βX
to Pf(α),f(β)Y .

20. Why no identity maps in the notion of flow ?

There exist several reasons. Here is one of them. The section “Why non-contract-
ing maps ?” of [20] is also related to this question. A similar phenomenon appears
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in the construction of the “corner homology” of an ω-category in [13] (cf. Proposi-
tion 4.2 of the latter paper).

Let X be a flow. Let us consider the topological space P−X which is solution of
the following universal problem: there exists a continuous map h− : PX −→ P−X
such that h(x ∗ y) = h(x) and any continuous map f : PX −→ Y such that
f(x ∗ y) = f(x) factors uniquely as a composite f ◦h− for a unique continuous map
f : P−X −→ Y . And let us consider the topological space P+X which is solution of
the following universal problem: there exists a continuous map h+ : PX −→ P+X
such that h(x ∗ y) = h(y) and any continuous map f : PX −→ Y such that
f(x ∗ y) = f(y) factors uniquely as a composite f ◦h+ for a unique continuous map
f : P+X −→ Y . The space P−X is called the branching space of X and the space
P+X is called the merging space of X. Both mappings P− : Flow −→ Top and
P+ : Flow −→ Top are crucial for the definition of T-homotopy (cf. [17] [11]).

Suppose now that a flow X is a small category enriched over the category of
compactly generated topological spaces Top, that is we suppose that there exists
an additional continuous map i : X0 −→ PX with s(i(α)) = α and t(i(α)) = α for
any α ∈ X0. Then for any x ∈ PX, we would have x = s(x) ∗ x and x = x ∗ t(x).
So both topological spaces P−X and P+X would be discrete. Therefore, in such
a setting, the correct definition would be for P−X (resp. P+X) the quotient of
PX\i(X0) by the identifications x = x ∗ y (resp. y = x ∗ y). But with such a
definition, the mappings X 7→ P−X and X 7→ P+X cannot be functorial anymore.

21. Concluding discussion

If Z is a cofibrant topological space, then Glob(Z) is a cofibrant flow. Let us
denote by Topc the full and faithful subcategory of cofibrant topological spaces.
Let us denote by Flowc the full and faithful subcategory of cofibrant flows. Then
one has the commutative diagram of functors

Topc
//

Glob(−)

²²

Top

Glob(−)

²²
Flowc

// Flow

which becomes the commutative diagram of functors

Topc[SH−1]
' //

� _

Glob(−)

²²

Top[W−1]� _

Glob(−)

²²
Flowc[SH−1]

' // Flow[S−1]

where SH is the class of homotopy equivalences (of topological spaces or of flows),
W the class of weak homotopy equivalences of topological spaces, and at last S
the class of weak S-homotopy equivalences of flows. Both horizontal arrows of the
latter diagram are equivalence of categories. The notation C[X−1] means of course
the localization of the category C with respect to the class of morphisms X .
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