
A Model Checker for AADL�

Marco Bozzano2, Alessandro Cimatti2, Joost-Pieter Katoen1,
Viet Yen Nguyen1, Thomas Noll1, Marco Roveri2, and Ralf Wimmer3

1 RWTH Aachen University, Germany
2 Fondazione Bruno Kessler, Trento, Italy

3 Albert-Ludwigs-University Freiburg, Germany

Abstract. We present a graphical toolset for verifying AADL models, which are
gaining widespread acceptance in aerospace, automobile and avionics industries
for comprehensively specifying safety-critical systems by capturing functional,
probabilistic and hybrid aspects. Analyses are implemented on top of mature
model checking tools and range from requirements validation to functional veri-
fication, safety assessment via automatic derivation of FMEA tables and dynamic
fault trees, to performability evaluation, and diagnosability analysis. The toolset
is currently being applied to several case studies by a major industrial developer
of aerospace systems.

1 Introduction

System-level languages like Architecture Analysis and Design Language (AADL) and
SysML are increasingly adopted by industry for designing new safety-critical systems.
Their added advantage is that they enable the system designer to capture the elusive
interaction between hardware and software. In particular nominal and degraded modes
of operation, the propagation of faults between subsystems, and the mechanisms for the
system to recover from them are essential to a comprehensive system-level design.

As part of the COMPASS project [1] (Correctness, Modelling and Performance of
Aerospace Systems) we developed a formal semantics for AADL (briefly discussed
in Sect. 2) that incorporates functional, probabilistic and hybrid aspects [5]. This is
fundamental for tool-supported formal verification. Over the past two years we have
built a graphical toolset, called the COMPASS platform (see Sect. 3), supporting AADL
and based on model checking techniques to verify them. The tool is currently being
applied to several case studies by a major industrial developer of aerospace systems [4].

2 Specification Language

To make AADL amenable to formal verification, we have cut out its superfluous fea-
tures and added support for hybrid aspects. The tool’s resulting input language thus
follows the component-based paradigm. It supports both software (e.g., processes and
threads) and hardware components (e.g., memories and processors) as first-class ob-
jects. Each component is given by its type, describing the interface, and its imple-
mentation, describing the interactions via a finite state automaton. Sets of interacting

� Funded by ESA/ESTEC under Contract No. 21171/07/NL/JD.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 562–565, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Model Checker for AADL 563

components can be grouped into composite components, enabling the modeler to man-
age the system’s complexity by introducing a component hierarchy. Communication
is achieved via exchange of messages on event ports, in a rendez-vous manner. More-
over, components may exchange data through typed data ports (e.g., bool, integer and
real data types). Timed and hybrid behavior can be expressed by means of real-valued
variables with (linear) time-dependent dynamics.

The resulting hierarchical system model, also referred to as nominal model, describes
the system behavior under normal operation. This is complemented by an error model
which expresses how the system can fail. Moreover, a subset of the nominal compo-
nents may be designated as dealing with error diagnosis and recovery; they are referred
to as FDIR (Fault Detection, Identification and Recovery). The error model expresses
how faults may affect normal operation and may lead the system into a degraded mode
of operation. It is modeled as a (probabilistic) finite state automaton, where transitions
may occur due to error events which may be annotated with a rate that indicates the ex-
pected number of occurrences per time unit. Transitions can also occur because of error
propagations from other components. The nominal and error models are linked through
a so-called fault injection. A fault injection expresses the effect of the occurrence of the
corresponding error on the nominal model. Multiple fault injections are possible. The
process of integrating the nominal models with the error models and the fault injections,
is called model extension [8]. Finally, in order to enable modeling of partial observabil-
ity and analysis of FDIR components, our language allows the modeler to explicitly
define a set of observables.

We refer to [5,6,7] for a more detailed description of the tool’s input language, a dis-
cussion of the similarities and extensions with respect to AADL, and a simple example
(a processor failover system). In particular, [5] presents a formal semantics for all the
language constructs, based on networks of event-data automata (NEDA).

3 Toolset

The COMPASS platform [7] is an integrated toolchain, based on state-of-the-art tools
and symbolic model checking techniques, for verification and validation of AADL mod-
els. It builds upon the NuSMV [16] symbolic model checker, the MRMC [15] proba-
bilistic model checker, the Sigref [18] bisimulation minimization tool, and the RAT [17]
requirements analysis tool. The architecture of the tool is sketched in Figure 1. It refers
to two inputs, namely the SLIM model (our extended variant of AADL) and prop-
erty patterns. The latter describe properties, expressed in the user-friendly patterns by
Grunske [14] and Dwyer [12], which are converted to respectively CSL [3], LTL and
CTL formulae. These inputs are processed into the lower-level formalisms of NuSMV
and MRMC. A set of visualizers transforms the output (like counterexample traces and
fault trees) back to the user. Feature-wise, the toolset supports the following analyses.

Requirements Validation, implemented by RAT, focuses on assessing the quality of a
set of requirements with respect to the user expectations, before a model of the actual
system is built. It is possible to check that a set of properties is logically consistent,
and that it is strict enough but not too strict, by checking for compatibility with a set of
possibilities, and for logical consequence of a set of assertions.



564 M. Bozzano et al.

Functional Verification comprises random and user-guided simulation, deadlock de-
tection, and verification of functional properties via model checking. The result can
be a statement that a property holds, or a counterexample or witness trace, in case the
property is refuted or for simulation. This analysis is based on NuSMV, which supports
BDD-based, SAT-based, and (for hybrid systems) SMT-based model checking.

− FMEA Tables

Extension
Model

SAFETY
ANALYSIS
− Dynamic Fault Trees

Slim2SMV

Instantiator
Slim Property

Table
Symbol

Sigref2MRMCSMV2SigrefNuSMV MRMC

RAT

Instantiator
Property

REQUIREMENTS
VALIDATION
− Property Assurance
− Property Simulation

CORRECTNESS
VERIFICATION
− Property verification
− Simulation

DIAGNOSABILITY
ANALYSIS
− FDIR effectiveness measures
− Synthesis of Observability Requirements

SMV2Slim

Viewer
Fault Tree

Viewer
Trace

SigRef

PERFORMABILITY
ANALYSIS
− Performability measures
− Probabilistic fault trees

Slim

Model

Property

Pattern

Fig. 1. Architecture of the toolset

Safety Analysis com-
prises traditional tech-
niques for hazard anal-
ysis, such as (Dynamic)
Fault Tree Analysis (FTA)
and Failure Mode and
Effects Analysis (FMEA),
that are used to as-
sess system behavior in
presence of faults. FTA
constructs all possible
chains of basic faults,
represented as a tree,
that may be responsi-
ble for an undesired be-
havior. FMEA is simi-
lar, but starts from a set
of faults and analyzes
the impact on a set of
properties.

Diagnosability Analysis checks whether a system is diagnosable with respect to a user-
specified property, that is, whether an ideal diagnoser has enough observations to iden-
tify the set of causes of a specific faulty behavior.

Fault Detection, Isolation and Recovery (FDIR) focus on, respectively, verifying
whether a given fault can be properly detected, isolated and recovered.

Performance Evaluation computes, using a probabilistic property, system performance
under degraded operations. It furthermore includes the evaluation of fault trees by com-
puting the probability of the top event. These analyses are based on MRMC.

The toolset is being extensively evaluated on a set of industrial-size case-studies [4].
Moreover, it is being tuned to achieve optimal performance. Preliminary experiments
indicate that the choice of the verification technique (e.g., BDD-based versus SAT-based)
may be important to achieve a good performance and scalability for the different types
of analyses. The details of those experiments can be found on the project’s website [1].

4 Related Work and Conclusions

In this paper we have presented a comprehensive toolset for the verification and valida-
tion of AADL models. The toolset supports several analyses ranging from requirements
validation to functional verification, safety analysis, diagnosability and performance
evaluation. It is available under an open source license via the COMPASS website [1].



A Model Checker for AADL 565

Several tools have been developed to analyse AADL specifications, however none of
them provides support for all analysis described in this paper. We mention AADL2BIP
[11], which translates AADL models into a formalism called BIP, and is able to per-
form simulation and deadlock detection. ADeS [2] is a software tool to simulate the
behaviour of system architectures described in AADL. This tool is mainly a simulator
that allows for the evaluation and analysis of system behavior, with no formal anal-
ysis underneath. Finally, Cheddar [10] and the FurnessTM Toolset [13] support only
schedulability analysis.

Due to constraints on paper-length, this paper only describes an overview of the
COMPASS toolset. An in-depth discussion of the toolset, the formal semantics of AADL
and the relation to other works can be found in our journal paper [9].

References

1. The COMPASS project, http://compass.informatik.rwth-aachen.de/
2. ADeS, a simulator for AADL, http://www.axlog.fr/aadl/ades_en.html
3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for

continuous-time Markov chains. IEEE Trans. on Soft. Eng. 29(6), 524–541 (2003)
4. Bozzano, M., Cavada, R., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Olive, X.: Formal

Verification and Validation of AADL Models. In: Proc. ERTS 2010 (to be published, 2010)
5. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Codesign of De-

pendable Systems: A Component-Based Modelling Language. In: Proc. MEMOCODE’09,
pp. 121–130. IEEE, Los Alamitos (2009)

6. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Model-based
codesign of critical embedded systems. In: Proc. ACES-MB’09, pp. 87–91 (2009)

7. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The COMPASS
Approach: Correctness, Modelling and Performability of Aerospace Systems. In: Buth, B.,
Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 173–186. Springer,
Heidelberg (2009)

8. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform. Int. J. on
Software Tools for Technology Transfer 9(1), 5–24 (2007)

9. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, depend-
ability, and performance analysis of extended AADL models. The Computer Journal (March
2010) doi: 10.1093/com

10. Cheddar: a free real time scheduling tool,
https://wiki.sei.cmu.edu/aadl/index.php/Cheddar

11. Chkouri, M.Y., Robert, A., Bozga, M., Sifakis, J.: Translating AADL into BIP – applica-
tion to the verification of real-time systems. In: Proc. ACES-MB’08, pp. 39–53. Springer,
Heidelberg (2008)

12. Dwyer, M., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proc. ICSE’99, pp. 411–420. IEEE, Los Alamitos (1999)

13. The FurnessTM Toolset, http://www.furnesstoolset.com/
14. Grunske, L.: Specification patterns for probabilistic quality properties. In: Schäfer, W.,

Dwyer, M.B., Gruhn, V. (eds.) ICSE, pp. 31–40. ACM, New York (2008)
15. MRMC – Markov Reward Model Checker, http://www.mrmc-tool.org/
16. The NuSMV Model Checker, http://nusmv.fbk.eu
17. RAT – Requirements Analysis Tool, http://rat.fbk.eu
18. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref – A Symbolic

Bisimulation Tool Box. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp.
477–492. Springer, Heidelberg (2006)

http://compass.informatik.rwth-aachen.de/
http://www.axlog.fr/aadl/ades_en.html
https://wiki.sei.cmu.edu/aadl/index.php/Cheddar
http://www.furnesstoolset.com/
http://www.mrmc-tool.org/
http://nusmv.fbk.eu
http://rat.fbk.eu

	A Model Checker for AADL
	Introduction
	Specification Language
	Toolset
	Related Work and Conclusions
	References


