
A model checking approach for verifying COWS
specifications?

Alessandro Fantechi1, Stefania Gnesi2, Alessandro Lapadula1, Franco Mazzanti2,
Rosario Pugliese1, and Francesco Tiezzi1

1 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI - CNR, Pisa

Abstract. We introduce a logical verification framework for checking functional
properties of service-oriented applications formally specified using the service
specification language COWS. The properties are described by means ofSocL,
a logic specifically designed to capture peculiar aspects of services. Service be-
haviours are abstracted in terms of Doubly Labelled Transition Systems, which
are used as the interpretation domain forSocL formulae. We also illustrate the
SocL model checker at work on a bank service scenario specified in COWS.

1 Introduction

Service-oriented computing(SOC) is an emerging paradigm for developing loosely
coupled, interoperable, evolvable applications, which exploits the pervasiveness of the
Internet and its related technologies. SOC systems deliver application functionality as
services to either end-user applications or other services. Current software engineering
technologies for SOC, however, remain at the descriptive level and do not support an-
alytical tools for checking that services enjoy desirable properties and do not manifest
unexpected behaviors. On the other end, logics have been since long proved able to
reason about such complex software systems as SOC applications, because they only
provide abstract specifications of these systems and can thus be used for describing
system properties rather than system behaviours. Indeed, in the last twenty years, sev-
eral modal, temporal and, more recently, spatial logics have been proposed as suitable
means for specifying properties of concurrent and distributed systems owing to their
ability of expressing notions of necessity, possibility, eventuality, etc.

In this paper, we introduce a logical verification framework for checking functional
properties of services by abstracting away from the computational contexts in which
they are operating. In what follows, services are abstractly considered as entities capable
of accepting requests, delivering corresponding responses and, on-demand, cancelling
requests. Thus, we will say that a service is

1. available: if it is always capable to accept a request.
2. reliable: if, when a request is accepted, a final successful response is guaranteed.
3. responsive: if it always guarantees a response to each received request.
4. broken: if, after accepting a request, it does not provide the (expected) response.

? This work has been partially funded by the EU project S (IST-2005-016004)

5. unavailable: if it refuses all requests.
6. fair: if it is possible to cancel a request before the response.
7. non-ambiguous: if, after accepting a request, it provides no more than one response.
8. sequential: if, after accepting a request, no other requests may be accepted before

giving a response.
9. asynchronous: if, after accepting a request, other requests may be accepted before

giving a response.
10. non-persistent: if, after accepting a request, no other requests can be accepted.

Albeit not exhaustive, this list contains many common properties that express desirable
attributes of services and SOC applications (see, e.g., the S ontology [5] or [2]).

To formalize the properties above, we introduceSocL, a logic specifically designed
to capture peculiar aspects of services.SocL is a variant of the logic UCTL [3], origi-
nally introduced to express properties of UML statecharts. UCTL andSocL have many
commonalities: they share the same temporal logic operators, they are both state and
event based branching-time logics, they are both interpreted on Doubly Labelled Tran-
sition Systems (L2TSs, [9]) by exploiting the same on-the-fly model-checking engine.
The two logics mainly differ for the syntax and semantics of state-predicates and action-
formulae, and for the fact thatSocL also permits to specify parametric formulae.

As specification language for the services and SOC applications of interest we use
COWS (Calculus for Orchestration of Web Services, [14]), a recently proposed pro-
cess calculus for specifying and combining services, while modelling their dynamic
behaviour. The design of the calculus has been influenced by the principles underlying
WS-BPEL [16], an OASIS standard language for orchestration of web services, and
in fact COWS supports service instances with shared states, allows a same process to
play more than one partner role and permits programming stateful sessions by corre-
lating different service interactions. COWS has also taken advantage of previous work
on process calculi. Indeed, it combines in an original way constructs and features bor-
rowed from well-known process calculi, e.g. not-binding input activities, asynchronous
communication, polyadic synchronization, pattern matching, protection, delimited re-
ceiving and killing activities, while however resulting different from any of them.

To check if a COWS term enjoys some abstract properties expressed asSocL for-
mulae, the following four steps must be performed. Firstly, the semantics of the COWS
term is defined by using a Labelled Transition System (LTS). Secondly, this LTS is
transformed into an L2TS by labelling each state with the set of actions the COWS term
is able to perform immediately from that state. Thirdly, by applying a set of application-
dependent abstraction rules over the actions, the concrete L2TS is abstracted into a
simpler L2TS. Finally, theSocL formulae are checked over this abstract L2TS. To as-
sist the verification process, we have developedCMC, an on-the-fly model checker for
SocL formulae over L2TS.

The rest of the paper is organized as follows. Section 2 introducesSocL, while
Section 3 presents syntax and main features of COWS; this is done in a step-by-step
fashion while modelling a bank service scenario, used for illustration purposes in the
rest of the paper. Section 4 demonstrates how to transform the original LTS of a COWS
term into an abstract L2TS by using suitable abstraction rules. Section 5 presentsCMC
and illustrates the results of the verification of the bank service scenario. Section 6
touches upon related work and directions for future works.

2

2 The logicSocL

In this section, we introduce theactionandstate-basedbranching time temporal logic
SocL that is interpreted over L2TSs [9].SocL combines the action paradigm, classically
used to describe systems via LTS, with predicates that are true over states, as usually
exploited when using Kripke structures as semantic model. The advantage ofaction and
state-basedlogics lies in the ease of expressiveness of properties that in pure action-
based or pure state-based logics can be quite cumbersome to write down. Indeed in
recent years, several logics that allow one to express both action-based and state-based
properties have been introduced, for many different purposes (see for example [3, 7, 8,
6, 13]).

Before presenting the syntax ofSocL, we report some basic definitions and nota-
tions used in the sequel.

Definition 1 (Doubly Labelled Transition System, L2TS). An L2TS is a tuple
〈Q,q0,Act,R,AP, L〉, where:

– Q is a set of states;
– q0 ∈ Q is the initial state;
– Act is a finite set of observable events (actions) withα ranging over2Act and ε

denoting the empty set;
– R ⊆ Q × 2Act × Q is the transition relation1; instead of(q, α,q′) ∈ R we may also

write q
α
−→q′.

– AP is a set of atomic propositions withπ ranging over AP;
– L : Q −→ 2AP is a labelling function that maps each state in Q to a subset of AP.

Basically, an L2TS is an LTS (defined as the quadruple〈Q,q0,Act,R〉), extended with
a labelling function from states to sets of atomic propositions. By means of an L2TS, a
system can be characterized by states and state changes and by the events (actions) that
are performed when moving from one state to another.

In the interpretation domain ofSocL, Act andAPare defined as follows.

– Act is a finite set of observable actions, ranged over bya, such as:request(i, c),
response(i, c), cancel(i, c) and f ail(i, c), where the namei indicates the interaction
to which the operation performed by a service belongs2, andc denotes a tuple of
correlation values that identifies a particular invocation of the operation. The mean-
ing of actions is as follows:request(i, c) indicates that the performed operation
corresponds to the initial request of the interactioni and its invocation is identi-
fied by the correlation tuplec; similarly, response(i, c), cancel(i, c) and f ail(i, c)
characterise operations that correspond to a response, a cancellation and a failure
notification, respectively, of the interactioni.

1 Notice that this definition differs from the classical one [9] for the labelling of the transitions:
we label transitions by sets of events rather than by single (un)observable events. This exten-
sion allows to model the occurrence of more than one action at the same time. Unobservable
actions are rendered by the empty set.

2 See to Section 5 for an explanation of the mapping between service operations and interactions.

3

– AP is a finite set of atomic propositions, parameterized by interactions and corre-
lation tuples, likeaccepting request(i) andacceptingcancel(i, c), that can be true
over a state of an L2TS.

To define the auxiliary logic of observable actionsAF (Act$), we extendAct to
include the possibility that the correlation tuples refer variables. Letvar be a correla-
tion variable name, we use $var to indicate the binder of the occurrences %var. For
example,request(i,$var) denotes a request action for the interactioni that is uniquely
identified through the correlation variable $var. This way, subsequent actions, corre-
sponding e.g. to response to that specific request, can unambiguously refer it through
%var. We denote the extended set byAct$ and leta$ to range over it. We will usea%
to range over actions ofAct$ whose correlation tuple does not contain variables of the
form $var. Note thatAct⊂ Act$.

Definition 2 (Action formulae). Given a set of observable actions Act$, the language
AF (Act$) of the action formulae on Act$ is defined as follows:

γ ::= a$ | χ χ ::= tt | a% | τ | ¬χ | χ ∧ χ

As usual,ff abbreviates¬tt andχ ∨ χ′ abbreviates¬(¬χ ∧ ¬χ′).
The introduction of variables to express correlation requires the notion ofsubstitu-

tion, that in its turn requires that of pattern-matching function.

Definition 3 (Substitutions and the pattern-matching function).

– Substitutions, ranged over byρ, are functions mapping correlation variables to
values and are written as collections of pairs of the form var/val.

– The empty substitution is denoted by∅.
– Application of substitutionρ to a formulaφ, writtenφ ·ρ, has the effect of replacing

every occurrence%var in φ with val, for each var/val ∈ ρ.
– The partial functionm (,) from pairs of actions to substitutions, that permits

performingpattern-matching, is defined by the following rules:

m (request(i, c), request(i, c′)) = m (c, c′) m ($var, val) = {var/val}

m (response(i, c), response(i, c′)) = m (c, c′) m (val, val) = ∅

m (cancel(i, c), cancel(i, c′)) = m (c, c′) m (f ail(i, c), f ail(i, c′)) = m (c, c′)

m ((e1 · c1), (e2 · c2)) = m (e1,e2) ∪m (c1, c2)

where notation e· c stands for a tuple with first element e.

Definition 4 (Action formulae semantics).The satisfaction relation|= for action for-
mulae is defined over sets of observable actions in Act$ and over a substitution.

– α |= a$B ρ iff ∃! b ∈ α such thatm (a$,b) = ρ;
– α |= χ B ∅ iff α |= χ, where the relationα |= χ is defined as follows:
• α |= tt holds always;
• α |= a% iff ∃! b ∈ α such thatm (a%,b) = ∅;

4

• α |= τ iff α = ε;
• α |= ¬χ iff notα |= χ;
• α |= χ ∧ χ′ iff α |= χ andα |= χ′.

The notationα |= γ B ρ means: the formulaγ is satisfied over the set of observ-
able actionsα (only) under substitutionρ. Notably, in the above definition we require
that an observable actiona$ or a% matches only and only one action inα. This is
a consequence of the assumption that inside a single evolution step two or more ac-
tions with the same type and interaction do not occur. Thus, e.g., the transition la-
bel {request(i, 〈1〉), request(i, 〈2〉)} never appears inSocL interpretation models. Notice
also that actions containing correlation variable occurrences like %var (that have not
yet been replaced by values) cannot be assigned a semantics; indeed, the caseα |= a%
requires thatm (a%,b) = ∅ that, according to the rules defining the pattern-matching
function, means thata% ∈ Act, i.e.a% does not contain variables.

Definition 5 (SocL syntax).The syntax ofSocL formulae is defined as follows:

(state formulae) φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ
(path formulae) Ψ ::= Xγφ | φ χU φ′ | φ χUγ φ′ | φ χW φ′ | φ χWγ φ′

We comment on salient points of the grammar above.π ∈ AP are atomic propositions,
A and E arepath quantifiers, andX,U andW are indexednext, until andweak until
operators. The next operator says that in the next state of the path, reached by an action
satisfyingγ, the formulaφ holds; the meaning of the until operators is thatφ′ holds
at the current or at a future state (reached by an action satisfyingγ or without any
specific behaviour), andφ has to hold until that state is reached and the actions executed
satisfyχ; finally, the weak until operators hold either if the corresponding strong until
operators hold or if for all states of the path the formulaφ holds (by executing actions
satisfyingχ). A peculiarity ofSocL is that the satisfaction relation of the next and until
operators may define a substitution which is propagated to subformulae. Notably, in the
left side of until operators we useχ instead ofγ, to avoid formulae like the following
φ request(i,〈$v〉)Uγ φ′, where the satisfaction relation forrequest(i, 〈$v〉) could produce a
different substitution for each state that comes before the one whereφ′ holds.

To define the semantics ofSocL, we first formalise the notion ofpath in an L2TS.

Definition 6 (Path). Let 〈Q,q0,Act,R,AP, L〉 be an L2TS and let q∈ Q.

– σ is a path from q if σ = q (theempty pathfrom q) orσ is a (possibly infinite)
sequence(q0, α1,q1)(q1, α2,q2) · · · with q0 = q and(qi−1, αi ,qi) ∈ R for all i > 0.

– The concatenation of pathsσ1 andσ2, denoted byσ1σ2, is a partial operation,
defined only ifσ1 is finite and its final state coincides with the first state ofσ2.

– If σ = (q0, α1,q1)(q1, α2,q2) · · · then the ith state inσ, i.e. qi , is denoted byσ(i).
– We write path(q) for the set of all paths from q.

Definition 7 (SocL semantics).The satisfaction relation of closedSocL formulae, i.e.
formulae without unbound variables, over an L2TS is defined as follows:

– q |= true holds always;

5

– q |= π iff π ∈ L(q);
– q |= ¬φ iff not q |= φ;
– q |= φ ∧ φ′ iff q |= φ and q|= φ′;
– q |= EΨ iff ∃σ ∈ path(q) such thatσ |= Ψ ;
– q |= AΨ iff ∀σ ∈ path(q) σ |= Ψ ;
– σ |= Xγφ iff σ = (q, α,q′)σ′, α |= γ B ρ, and q′ |= φ · ρ;
– σ |= φ χUφ′ iff there exists j≥ 0 such thatσ(j) |= φ′ and for all0 ≤ i < j:

σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ impliesσ(i) |= φ andαi+1 = ε or αi+1 |= χ;
– σ |= φ χUγφ′ iff there exists j≥ 1 such thatσ = σ′(σ(j − 1), α j , σ(j))σ′′

andα j |= γ B ρ andσ(j) |= φ′ · ρ andσ(j − 1) |= φ, and for all0 < i < j:
σ = σ′i (σ(i − 1), αi , σ(i))σ′′i impliesσ(i − 1) |= φ, andαi = ε or αi |= χ;

– σ |= φ χWφ′ iff either
there exists j≥ 0 such thatσ(j) |= φ′ and for all0 ≤ i < j:
σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ impliesσ(i) |= φ andαi+1 = ε or αi+1 |= χ

or for all 0 ≤ i:
σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ impliesσ(i) |= φ, andαi+1 = ε or αi+1 |= χ;

– σ |= φ χWγφ′ iff either
there exists j≥ 1 such thatσ = σ′(σ(j − 1), α j , σ(j))σ′′ and
α j |= γ B ρ andσ(j) |= φ′ · ρ andσ(j − 1) |= φ, and for all0 < i < j:
σ = σ′i (σ(i − 1), αi , σ(i))σ′′i impliesσ(i − 1) |= φ, andαi = ε or αi |= χ

or for all 0 ≤ i:
σ = σ′i (σ(i − 1), αi , σ(i))σ′′i impliesσ(i − 1) |= φ, andαi+1 = ε or αi+1 |= χ.

Other useful operators can be derived as usual. In particular, the ones that we use in
the next sections are:falsestands for¬true; < γ > φ stands forEXγ φ; [γ]φ stands for
¬ < γ > ¬γ; EFφ stands forE(true tt Uφ); AGφ stands for¬EF¬φ; EFγ true stands
for E(truett Uγtrue); AFγ truestands forA(truett Uγtrue). The twoeventuallyoperators
EF permit to check if a state formula or an action formula is eventually satisfied. The
meaning ofAGφ is thatφ must be true always in the future.

We end this section by showing how the abstract properties presented in the Intro-
duction can be expressed as generic patterns inSocL. For the sake of readability, here
we consider correlation tuples composed of only one element and use notations $v and
%v instead of the more cumbersome notations〈$v〉 and〈%v〉, respectively.

1. Availableservice:AG(accepting request(i)).
This formula means that in every state the service may accept a request; a weaker
interpretation of service availability, meaning that the server accepts a request in-
finitely often, is given by the formulaAGAF(accepting request(i)).

2. Reliableservice:AG[request(i,$v)]AFresponse(i,%v) true.
Notably, the response belongs to the same interactioni of the accepted request and
they are correlated by the variablev.

3. Responsiveservice:AG[request(i,$v)] AFresponse(i,%v)∨ f ail(i,%v) true.
4. Brokenservice:¬AG[request(i,$v)] AFresponse(i,%v)∨ f ail(i,%v) true.

This formula means that the service istemporarily broken; instead, the formula
AG[request(i,$v)] ¬EFresponse(i,%v)∨ f ail(i,%v) true means that the service isperma-
nently broken.

5. Unavailableservice:AG[request(i,$v)] AF f ail(i,%v) true.

6

s ::= kill (k) | u•u′!ē |
∑l

i=0 pi •oi?w̄i .si (kill, invoke, receive-guarded sum)

| s | s | {|s|} | [d] s | ∗ s (parallel, protection, delimitation, replication)

Table 1.COWS syntax

6. Fair service:
AG[request(i,$v)] A(acceptingcancel(i,%v) ttWresponse(i,%v)∨ f ail(i,%v)true).
This formula means that the server is ready to accept a cancellation required by the
client (fairness towards the client); instead the formulaAG[response(i,$v)] ¬EF
< cancel(i,%v) > true means that the server cannot accept a cancellation after
responding to a request (fairness towards the server).

7. Non-ambiguousservice:
AG[request(i,$v)] ¬EF < response(i,%v) > EF< response(i,%v) > true.

8. Sequentialservice:
AG[request(i,$v)] A(¬accepting request(i) tt Uresponse(i,%v)∨ f ail(i,%v)true).

9. Asynchronousservice:
AG[request(i,$v)] EF < response(i,%v) ∨ f ail(i,%v) > true.

10. Non-persistentservice:AG[request(i,$v)] AG¬accepting request(i).

TheSocL formulation of the properties 1–10 shows that their natural language de-
scription can sometimes be interpreted in different ways: hence, formalization within
the logic enforces a choice among different interpretations.

3 COWS: Calculus for Orchestration of Web Services

In this section, we report the syntax of COWS and explain the semantics of its primitives
in a step-by-step fashion while modelling a bank service scenario, that will be used in
the rest of the paper for illustration purposes. Due to lack of space, here we only provide
an informal account of the semantics of COWS and refer the interested reader to [14, 15]
for a formal presentation, for examples illustrating its peculiarities and expressiveness,
and for comparisons with other process-based and orchestration formalisms.

The syntax of COWS is presented in Table 1. It is parameterized by three countable
and pairwise disjoint sets: the set of(killer) labels (ranged over byk, k′, . . .), the set
of values(ranged over byv, v′, . . .) and the set of ‘write once’variables(ranged over
by x, y, . . .). The set of values is left unspecified; however, we assume that it includes
the set ofnames, ranged over byn, m, o, p, . . . , mainly used to represent partners
and operations. The language is also parameterized by a set ofexpressions, ranged
over bye, whose exact syntax is deliberately omitted. We just assume that expressions
contain, at least, values and variables, but do not include killer labels (that, hence, are
not communicable values).

We usew to range over values and variables,u to range over names and variables,
andd to range over killer labels, names and variables. Notation ¯· stands for tuples of
objects, e.g. ¯x is a compact notation for denoting the tuple of variables〈x1, . . . , xn〉 (with
n ≥ 0 andxi , x j for eachi , j). In the sequel, we shall use+ to abbreviate binary

7

choice and write [d1, . . . ,dn] s in place of [d1] . . . [dn] s. We will write Z ,W to assign
a symbolic nameZ to the termW.

The COWS specification of the bank service is composed of two persistent subser-
vices:BankInterface, that is publicly invocable by customers, andCreditRating, that
is an ‘internal’ service that can only interact withBankInterface. The scenario also in-
volves the processesClient1 andClient2 that model requests for charging the customer’s
credit card with some amount. Thus, the COWS term representing the scenario is

[ocheck,ocheckOK,ocheckFail] (∗BankInterface| ∗CreditRating) | Client1 | Client2

The main operator isparallel composition | that allows the different components to
be concurrently executed and to interact with each other. Thedelimitationoperator []
is used here to declare thatocheck, ocheckOKandocheckFailare (operation) names known to
the bank services, and only to them. Moreover, thereplicationoperator∗ , that spawns
in parallel as many copies of its argument term as necessary, is exploited to model the
fact thatBankInterfaceandCreditRatingcan create multiple instances to serve several
requests simultaneously. Now,BankInterfaceandCreditRatingare defined as follows:

BankInterface, [xcust, xcc, xamount, xid]
pbank•ocharge?〈xcust, xcc, xamount, xid〉.
(pbank•ocheck!〈xid, xcc, xamount〉

| pbank•ocheckOK?〈xid〉. xcust•ochargeOK!〈xid〉

+ pbank•ocheckFail?〈xid〉. xcust•ochargeFail!〈xid〉)

CreditRating , [xid, xcc, xa]
pbank•ocheck?〈xid, xcc, xa〉.
[p,o] (p•o!〈〉 | p•o?〈〉. pbank•ocheckOK!〈xid〉

+ p•o?〈〉. pbank•ocheckFail!〈xid〉)

We only comment onBankInterface; CreditRating is similar and its description is
omitted. Thereceive-guarded prefixoperatorpbank • ocharge?〈xcust, xcc, xamount, xid〉. ex-
presses that each interaction with the bank starts with areceiveactivity of the form
pbank• ocharge?〈xcust, xcc, xamount, xid〉 corresponding to reception of a request emitted by
Client1 or Client2. Receives, together withinvokes, written asp • o!〈e1, . . . ,em〉, are the
basic communication activities provided by COWS. Besides input parameters and sent
values, they indicate anendpoint, i.e. a pair composed of a partner namep and an op-
eration nameo, through which communication should occur.p• o can be interpreted as
a specific implementation of operationo provided by the service identified by the logic
namep. An inter-service communication takes place when the arguments of a receive
and of a concurrent invoke along the same endpoint do match, and causes substitution
of the variables arguments of the receive with the corresponding values arguments of
the invoke (within the scope of variables declarations). For example, variablesxcust,
xcc, xamountandxid, declared local toBankInterfaceby means of the delimitation opera-
tor, are initialized by the receive leading the charge activity with data provided by either
Client1 or Client2.

Once prompted by a request,BankInterfacecreates one specific instance to serve
that request and is immediately ready to concurrently serve other requests. No-
tably, each instance uses thechoiceoperator + and exploits communication with

8

Fig. 1.Graphical representation of the bank scenario

CreditRatingon ‘internal’ operationsocheck, ocheckOK andocheckFail to model a condi-
tional choice (for simplicity sake, the choice between approving or not a request for
charging the credit card is here completely non-deterministic). Thus, if after some
invocations the service receives a message along the endpointspbank • ocheckOk or
pbank • ocheckFail, a certain number of service instances could be able to accept it. How-
ever, the message is routed to the proper instance by exploiting the customer data stored
in the variablexid as a correlation value.

To illustrate, define the customer processes as follows:

Client1 , pbank•ocharge!〈pC,1234,100, id1〉 | pC •ochargeOK?〈id1〉 + pC •ochargeFail?〈id1〉

Client2 , pbank•ocharge!〈pC,1234,200, id2〉 | pC •ochargeOK?〈id2〉 + pC •ochargeFail?〈id2〉

The processes perform two requests in parallel for charging the credit card 1234 with
the amounts 100 and 200. Two different correlation values,id1 and id2, are used to
correlate the response messages to the corresponding requests. A customized UML
sequence diagram depicting a possible run is shown in Figure 1.

The specification of the scenario only uses the COWS operators for service orches-
tration. The remaining two operators in Table 1 are especially useful when modelling
fault handling and compensation behaviours, that, for simplicity sake, are not consid-
ered in this paper. In fact,kill activities of the formkill (k), wherek is a killer label, can
be used to force termination of all unprotected parallel terms inside the enclosing [k] ,
that stops the killing effect. Kill activities runeagerlywith respect to the other parallel
activities but critical code, such as e.g. fault/compensation handlers, can be protected
from the effect of a forced termination by using theprotectionoperator{| |}.

4 L2TS semantics for COWS terms

The semantics of COWS associates an LTS to a COWS term. We have seen instead that
SocL is interpreted over L2TSs. We need therefore to transform the LTS associated to a
COWS term into an L2TS by defining a proper labelling for the states of the LTS. This
is done by labelling each state with the set of actions that each active subterm of the

9

C1
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,100,id1>,
 bank.charge!<client,1234,200,id2>,

... }

C3
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,100,id1>,
... }

C2
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,200,id2>,
... }

{ bank.charge!<client,1234,100,id1>,
 bank.charge?<CUST,CC,AMOUNT,ID>}

{ bank.charge!<client,1234,200,id2>,
 bank.charge?<CUST,CC,AMOUNT,ID>}

C5
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C4
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,200,id2>,
... }

{ bank.charge!<client,1234,200,id2>,
 bank.charge?<CUST,CC,AMOUNT,ID> } { bank.check#1!<client,1234,100>,

 bank.check#1?<CUST,CC,AMOUNT> }

C6
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

{ bank.check#1!<client,1234,200>,
 bank.check#1?<CUST,CC,AMOUNT> }

C54
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C45
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C49
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C58
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

{ client.chargeOK!<id2>,
 client.chargeOK?<id2> }

{ client.chargeFail!<id1>,
 client.chargeFail?<id1> }

{ client.chargeOK!<id1>,
 client.chargeOK?<id1> }

{client.chargeFail!<id2>,
 client.chargeFail?<id2> }

Fig. 2.Excerpt of the L2TS for the bank scenario with concrete labels

COWS specification would be able to perform immediately. Of course, the transforma-
tion preserves the structure of the original COWS LTS. For example, the concrete L2TS
obtained by applying this transformation to the bank scenario is shown in Figure 2.

Both in the original LTS and in the L2TS obtained as explained before, transitions
are labelled by ‘concrete’ actions, i.e. those actions occurring in the COWS term. No-
tice also that labels corresponding to communications retain all information contained
in the two synchronising invoke and receive activities. However, since we are interested
in verifying abstract properties of services, such as those shown in Section 2, we need to
abstract away from unnecessary details by transforming concrete actions in ‘abstract’
ones. This is done by applying a set of suitable abstraction rules to the concrete ac-
tions. Specifically, these rules replace concrete labels on the transitions with actions
belonging to the setAct, i.e. request(i, c), response(i, c), cancel(i, c) and f ail(i, c), that
better represent their semantics meaning. This way, different concrete actions can be
mapped into the sameSocL action. Moreover, the rules replace the concrete labels
on the states with predicates belonging to the setAP, e.g.accepting request(i) and

10

C1
{accepting_request(charge)}

{ request(charge,id1)}{ request(charge,id2)}

C3
 {accepting_request(charge)}

C49
 {accepting_request(charge)}

C2
{accepting_request(charge)}

{ request(charge,id2)}{}

C5
 {accepting_request(charge)}

C4
 {accepting_request(charge)}

C6
 {accepting_request(charge)}

{}

{ response(charge,id2)}
C45

 {accepting_request(charge)}
C54

 {accepting_request(charge)}

{ response(charge,id1)}

{ fail(charge,id1)} { fail(charge,id2)}

C58
 {accepting_request(charge)}

Fig. 3.Excerpt of the COWS specification of the banking example (abstract model)

acceptingcancel(i, c), that say if the service is able to accept a specific request or
a cancellation of a previous request. The transformation only involves the concrete ac-
tions we want to observe. Indeed, concrete actions that are not replaced by their abstract
counterparts cannot be observed.

For example, the abstract L2TS of the bank scenario shown in Figure 3 is obtained
by applying to the concrete L2TS of Figure 2 the following abstraction rules:

Action : bank.charge!〈∗, ∗, ∗,$1〉 → request(charge, 〈$1〉)
Action : bank.chargeOK!〈$1〉 → response(charge, 〈$1〉)
Action : bank.chargeFail!〈$1〉 → f ail(charge, 〈$1〉)
S tate: bank.charge? → accepting request(charge)

The first rule prescribes that whenever the output actionbank.charge!〈∗, ∗, ∗,$1〉 oc-
curs in the label of a transition, then it is replaced by the abstractSocL action
request(charge, 〈$1〉). Variables “$n” (with n natural number) can be used to defined
generic (templates of) abstraction rules. Also the wildcard “∗ ” can be used for increas-
ing flexibility. The last rule applies to concrete labels of states instead of transitions and
acts similarly. Notably, (internal) communications between the bank subservices are not
transformed and, thus, become unobservable.

Of course, the set of “Action : ” and “S tate: ” rules is not defined once and for
all, but is application-dependent and, thus, must be defined from time to time. Indeed,
it embeds information, like the intended semantics of each action and the predicates on
the states, that are not coded into the COWS specification.

11

5 Model checking COWS specifications

To assist the verification process ofSocL formulae over L2TS, we are developingCMC,
an efficient model checker forSocL that can be used to verify properties of services
specified in COWS. A prototypical version ofCMC can be experimented via a web
interface available at the addresshttp://fmt.isti.cnr.it/cmc/.

CMC is implemented by exploiting an on-the-fly algorithm which permits to achieve
(in the most cases) the ‘linear’ complexity typical of on-the-fly model checking algo-
rithms. Indeed, depending on the formula to be checked, only a fragment of the overall
state space might need to be generated and analyzed in order to produce the correct re-
sult [4, 11, 17]. Moreover, in case of parametric formulae, only a subset of their possible
instantiations needs to be generated and verified, depending on the effective fragment
of the state space actually analysed.

The basic idea behindCMC is that, given a state of an L2TS, the validity of aSocL
formula on that state can be established by checking the satisfiability of the state predi-
cates, by analyzing the transitions allowed in that state, and by establishing the validity
of some subformula in some of the next reachable states. This schema has been extended
with appropriate data-collection activities in order to be able to produce, in the end, also
a clear and detailed explanation of the returned results (i.e. acounterexample), and with
appropriate formula instantiation activities in order to deal with parametric formulae.

To show the peculiarity of our framework with respect to parametric formulae eval-
uation, we illustrate the process of establishing the satisfiability of theSocL formula

φ = EXrequest(charge,〈$id〉) AXresponse(charge,〈%id〉) true

on the abstract L2TS of the bank scenario shown in Figure 3. We have therefore to check
if the following holds:

C1 |= EXrequest(charge,〈$id〉) AXresponse(charge,〈%id〉) true

Thus, the model checking algorithm tries to find a next state reachable with an action

matchingrequest(charge, 〈$id〉). SinceC1
request(charge,〈id1〉)
−−−−−−−−−−−−−−−→ C2, then, for the semantics

of action formulae, we have:

request(charge, 〈id1〉) |= request(charge, 〈$id〉) B ρ

where the produced substitutionρ is

ρ = m (request(charge, 〈$id〉), request(charge, 〈id1〉)) = m ($id, id1) = {$id/id1}

It remains then to check ifC2 |= AXresponse(charge,〈%id〉) true · ρ that is, by applying the
substitution, if

C2 |= AXresponse(charge,〈id1〉) true

SinceC2
response(charge,〈id1〉)
−−−−−−−−−−−−−−−−→ C4, by a trivial matching between the action formula and

the action on the transition, we get that the subformulaXresponse(charge,〈%id〉) true · ρ is

satisfied on this path. But if we take the other path, i.e.C2
f ail(charge,〈id1〉)
−−−−−−−−−−−−→ C3, we fail to

12

Property Result States

Available TRUE 274
Reliable FALSE 37
Responsive TRUE 274
Permanently BrokenFALSE 12
Temporarily BrokenFALSE 274
Unavailable FALSE 18

Property Result States

Fair 1 FALSE 3
Fair 2 TRUE 274
Non-ambiguousTRUE 274
Sequential FALSE 3
Asynchronous TRUE 274
Non-persistent FALSE 3

Table 2.Verification results

find a matching, hence the same subformula is not satisfied on this path. Therefore, since
the subformula is under a universal quantification, we conclude thatφ is not satisfied.

The results of the verification of the abstract properties introduced in Section 1 –
and formalized inSocL in Section 2 – on the bank service scenario are summarized in
Table 2, where we also report the number of states considered during the evaluation.
The instantiation of the generic patterns of formulae of Section 2 over the bank service
has been obtained by just replacing any occurrence ofi with charge. Thus, e.g., the
formula predicating responsiveness of the bank service becomes:

AG[request(charge,$id)] AFresponse(charge,%id)∨ f ail(charge,%id)true)

The results show that the bank service exhibits the desired characteristics to be
responsive, not broken, available, non ambiguous, and to admit parallel and iterated
requests. Reliability is a too strong request for our service which can explicitly fail:
indeed, responsiveness is sufficient to guarantee the expected behavior. Fairness prop-
erties are not significant for this service, that does not offer the possibility to cancel a
request. Finally, the service is persistent, and we can understand why just looking at the
counterexample generated when verifying the corresponding property:

The formula: AG [request] AG not (accepting_request(charge))

is FOUND_FALSE in State C1

because

the formula: [request] AG not (accepting_request(charge))

is FOUND_FALSE in State C1

because

C1 --> C2 { bank.charge!,bank.charge? } {{ request(charge,id1)}}

and the formula: AG not accepting_request(charge)

is FOUND_FALSE in State C2

because

the formula: not accepting_request(charge)

is FOUND_FALSE in State C2

because

the formula: ASSERT(accepting_request(charge))

is FOUND_TRUE in State C2

13

6 Concluding remarks

We have introduced a logical verification framework for checking functional properties
of service-oriented applications specified using COWS. Our approach consists in: first,
singling out a set of abstract properties describing desirable peculiar features of ser-
vices; then, expressing such properties asSocL formulae; finally, verifying satisfaction
of these properties by a COWS service specification by exploiting the model checker
CMC. We refer the interested reader to the full version [10] of this paper for additional
details on our logical verification framework and for further case studies.

One advantage of our approach is that, since the logic interpretation model (i.e.
L2TSs) is independent from the service specification language (i.e. COWS), it can be
easily tailored to be used in conjunction with other SOC specification languages. To
this aim, one has to define first an LTS-based operational semantics for the language
of interest and then a suitable set of abstraction rules mapping the concrete actions of
the language into the abstract actions ofSocL. Another advantage is thatSocL permits
expressing properties about any kind of interaction pattern, such asone-way, request-
response, one request–multiple responses, one request-one of two possible responses,
etc. Indeed, properties of complex interaction patterns can be expressed by correlating
SocL observable actions using interaction names and correlation values.

With respect to pure action-based or pure state-based temporal logics, action/state-
based temporal logics facilitate the task of formalizing properties of concurrent systems,
where it is often necessary to specify both state information and evolution in time by
actions. Moreover, the use of L2TS as model of the logic helps to reduce the state space
and, hence, the memory used and the time spent for verification. In [3], we have intro-
duced the action/state-based branching time temporal logic UCTL that was originally
tailored to express properties over UML statecharts. UCTL has been already used in [1]
to describe some properties of services specified in SRML [12]. The main difference of
SocL with respect to UCTL is that the former permits specifying parametric formulae,
allowing correlation between service requests and responses to be expressed.

We leave for future work the extension of our framework to support a more compo-
sitional verification methodology. In fact, we are currently only able to analyse systems
of services ‘as a whole’, i.e. we cannot analyse isolated services (e.g. a provider service
without a proper client). This is somewhat related to the original semantics of COWS
that follows a ‘reduction’ style; we are now defining an alternative operational seman-
tics that should permit to overcome this problem.

Acknowledgements.We thank the anonymous referees for their useful comments.

References

1. J. Abreu, L. Bocchi, J. Fiadeiro, and A. Lopes. Specifying and composing interaction
protocols for service-oriented system modelling. InFORTE, LNCS4574, pages 358–373.
Springer, 2007.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services. Springer, 2004.
3. M.H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-based model-

checking approach for the analysis of communication protocols for Service-Oriented Ap-
plications. InFMICS, LNCS. Springer, 2007. To appear.

14

4. G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for ctl*. In
LICS, pages 388–397. IEEE Computer Society, 1995.

5. L. Bocchi, A. Fantechi, L. G̈onczy, and N. Koch. Prototype language for service modelling:
Soa ontology in structured natural language. Sensoria deliverable D1.1a, 2006.

6. S. Chaki, E.M. Clarke, O. Grumberg, J. Ouaknine, N. Sharygina, T. Touili, and H. Veith.
State/event software verification for branching-time specifications. InIFM, LNCS3771,
pages 53–69. Springer, 2005.

7. S. Chaki, E.M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based software
model checking. InIFM, LNCS2999, pages 128–147. Springer, 2004.

8. S. Chaki, E.M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Concurrent software veri-
fication with states, events, and deadlocks.Form. Asp. Comp., 17(4):461–483, 2005.

9. R. De Nicola and F. Vaandrager. Three logics for branching bisimulation.J. ACM,
42(2):458–487, 1995.

10. A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi. A model check-
ing approach for verifying COWS specifications. Technical report, Dipartimento di Sistemi
e Informatica, Univ. Firenze, 2007. Available athttp://rap.dsi.unifi.it/cows.

11. J. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification techniques for the
generation of test suites. InCAV, LNCS1102, pages 348–359. Springer, 1996.

12. J. Fiadeiro, A. Lopes, and L. Bocchi. A formal approach to service component architecture.
In WS-FM, LNCS4184, pages 193–213. Springer, 2006.

13. M. Huth, R. Jagadeesan, and D.A. Schmidt. Modal transition systems: A foundation for
three-valued program analysis. InESOP, LNCS2028, pages 155–169. Springer, 2001.

14. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services. In
ESOP, LNCS4421, pages 33–47. Springer, 2007.

15. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services
(full version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze, 2007.
Available athttp://rap.dsi.unifi.it/cows.

16. OASIS WSBPEL TC. Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS, April 2007. Available athttp://docs.oasis-open.org/
wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

17. C. Stirling and D. Walker. Local model checking in the modalµ-calculus. InTAPSOFT,
LNCS354, pages 369–383. Springer, 1989.

15

