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Abstract A new method of model checking is proposed based on the existence of 

symmetries in system. We show how to fully handle the partial sym

metries of both properties and systems. Our method does not depend 

on a particular formalism and a priori can be applied to any one. Well

formed Petri Nets are used as an illustration. 
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1. INTRODUCTION 

Model checking of temporal logic formulas over finite state systems is 

now a widely used method of verification of protocols and distributed 

algorithms. Such a technique has led to numerous tools ([11]). However 

the main drawback of this kind of verification is the complexity factor 

depending on the size of the space of reachable states. Thus different 

improvements have been proposed (and implemented in tools). The 

partial order analysis exploits the independence of events of the system 

in order to avoid explorations of equivalent paths in the state graph ( 

[9]). Another fruitful research direction is based on the symmetries of 

the system to be analysed. The main idea is to build a quotient graph 

where nodes denote set of equivalent reachable states. Then the reduced 

graph is shown to be equivalent to the original one w.r.t. to some generic 

properties ([12],[2]). 

However the modeller often needs to check particular properties re

lated to the behaviour of its system. It is then necessary to adapt the 

quotient graph building with the aim of verifying a temporal logic for

mula. The key point is the characterisation of symmetries of a formula 

and we now discuss the previous approaches to this problem. We limit 
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our presentation to the linear time logic (e.g. LTL). So let us briefly 

recall its usual verification algorithm ([8]): 

• the negation of the formula is translated into a Biichi automaton, 

• the synchronised product of the automaton and the state graph of 

the system is built (product of compatible states and transitions), 

• a path is searched within the synchronised product, such that it 

ends by a loop containing a state associated with one of the ac

ceptation states of the Biichi automaton. We call such a path, an 

invalidating path. 

The formula is true if and only if such an invalidating path does not 

exist. Although the size of the automaton is exponentially larger than 

the size of formula, it remains low compared to the number of states in 

the system. This last parameter is the main complexity factor. 

In a first approach ([5]), one restricts the atomic propositions of the 

language to symmetric propositions. For instance, "In a future state, 

all processes will be idle" or "If some process is waiting for a resource, 

then some process will get it" are symmetric formulas. In other words, a 

formula is symmetric if its atomic propositions are invariant under any 

process identities permutation. For checking such formulas, one substi

tutes a quotient state graph to the state graph and one applies the above 

algorithm without any change. Unfortunately, many usual formulas are 

not considered as symmetric. For instance, the fairness formula "If some 

process is waiting for a resource, then it will get it" is not considered as 

a symmetric formula. 

The second approach ([7]), defines symmetric Biichi automata. An au

tomaton is symmetric if, given a (accepting) state and a process identities 

permutation, there is another (accepting) state whose atomic proposi

tions are obtained by the permutation applied on the atomic propositions 

of the first state and for any successor of one state, there is a successor 

of the other one for which the property is again fulfilled (and this re

cursively). Starting from this automaton and the model of the system, 

one directly builds a quotient synchronised product. It is then shown 

that the existence of an invalidating path in the original synchronised 

product and the quotient structure are equivalent. The symmetric for

mulas of the previous method, and also new temporal properties like the 

discussed fairness property are considered as symmetric formulas. 

Anyway, this technique does not cover the case of partially symmetric 

formulas which are considered as asymmetrical. Here is a partially sym-
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metric formula: "If some process is waiting for a resource then it will 

get it, provided none of the processes with higher identity will require the 

resource in the future". Therefore in ([1]), the authors have proposed 

a more refined definition of the quotient synchronised product than the 

previous one: 

• One computes an equivalence relation between states of the Biichi 

automaton per item of the "symmetry group" of the model in such 

a way that two states are equivalent whenever they induce the 

same present and future w.r.t. the action of this item. 

• A quotient synchronised graph is built by applying these equiva

lence relations on the pairs (state of the model, state of the au

tomaton). 

In case of a symmetric automaton, the quotient graph is identical to 

the previous one, but the technique also reduces the complexity of the 

verification in case of a partially symmetric automaton. In other words, 

it generalises the previous techniques. 

However none of the existing methods cover two important situations. 

At first, they require the system to be symmetric. Many models do not 

fulfill this requirement. In most cases, they are partially symmetric, 

meaning that large parts of the specification is symmetric but some crit

ical modules are asymmetric. In ([10]), a specific algorithm is proposed 

for partially symmetric high-level Petri nets, but it mainly deals with 

the reachability problem and it does not seem that it can be extended to 

the model checking. In ([6]), asymmetric behaviour is allowed in "sym

metric states" (left invariant by any process identities permutation). 

Unfortunately, this kind of asymmetry is very restrictive. 

The second situation which cannot be exploited by the previous meth

ods concerns the formula. Actually, the two automaton-based techniques 

assume that some symmetric relations hold on the structure of the au

tomaton. However in automata of partially symmetric formula, most of 

the states of the automaton are partially symmetric, but the automaton 

is globally asymmetric (i.e. the equivalence relations between states are 

almost reduced to the identity). 

In the present work, we will show how to overcome these two prob

lems. In the second section, a new method is presented which applies 

on a symmetric system and any Biichi automaton. Each state of this 

automaton is associated with the group of symmetries which left its set 

of atomic propositions globally invariant. No supplementary condition 

is required on the structure of the automaton. The method does not 
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depend on a specific formalism for the system and can be applied over 

any model where symmetries can be syntactically checked. So in the 

third section, we illustrate a possible implementation on well-formed 

Petri nets for which symmetries have been intensively studied [3]. More 

importantly, we show how to apply our method on asymmetric systems. 

The key point is that such systems are defined as synchronised prod

ucts of a symmetric model and an asymmetric Biichi automaton. In 

our opinion, many protocols and algorithms can be represented with the 

help of this formalism. In the conclusion, we discuss about combinations 

of techniques and experimentations. 

2. PRINCIPLES OF OUR METHOD 

2.1. VERIFICATION OF TRANSITION 

SYSTEMS 

In order to represent the general aspects of our method, we consider 

it at a semantic level, in other terms we consider the transition system 

that is generated from the syntactic model, e.g. a Petri net. 

Definition 1 A (finite) transition system S = (Q, Qo, R, Prop, II) is 

defined by : Q, a (finite) set of states; Qo, the set of initial states; R, a 

transition between states R( q, q'), also denoted q -t q'; Prop, the set of 

atomic propositions; II an injective mapping from Q to 2 Prop . 

The requirements that II is injective ensures that each state is totally 

characterised by the values of its atomic propositions. Since we focus on 

the verification of state formulas, there is no label attached to arcs. Our 

approach could be adapted easily to formulas expressing conditions on 

state transitions. The final result (see proposition 8) holds for any finite 

branching transition systems, i.e. the number of initial states is finite 

and each reachable state has a finite number of successors. 

One may express a linear time temporal logic formula with languages 

like LTL ([15]) or {L-calcul ([13]). During the model checking process, 

the considered formula can be translated in a Biichi automaton ([16]). 

Definition 2 A Buchi automaton A = (B, Bo, R, Prop, II, F) is defined 

by : B, a finite set of states; Bo, the subset of B of the initial states; R, 

a transition relation between states R(b, b'), also denoted b -t b'; Prop, 

the set of atomic propositions; II a mapping from B to 2Prop; F, the 

subset of B 0/ the accepting states. 

The verification problem of a formula expressed by the Biichi au

tomaton is usually reduced to the search of an infinite run within the 
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system: such a run {qdi=O .. oo with qo E Qo must correspond to an infi

nite path {bdi=O .. oo with bo E Bo within the automaton. More precisely, 

the atomic propositions labelling every state bi must also be present in 

state qi : TI(bi) C TI(qi). In addition, an accepting state must occur 

infinitely often in the considered path. This leads to the definition of 

the following key concept, called the synchronised product. 

Definition 3 Let S be a transition system and A a Biichi automa

ton. The synchronised product between S and A is a graph Gr(S, A) = 

(V, Vo, R), defined by: V = {(q, b) s.t. II(b) C II(q)} , the set of 

nodes; Va = {(q, b) E V s.t. q E Qo /\ b E Bo}, the set of initial 

states; R, the transition relation between nodes, denoted -t, and such 

that (q, b) -t (q', b') iff q -t q' and b -t b'. 

One standard model checking principle consists of a translation of 

the negation of the formula in a Biichi automaton, the building of the 

synchronised product, and the search of an "invalidating" path within 

the synchronised product. 

Definition 4 Let S be a transition system and A a Biichi automaton 

expressing the negation of formula f. Formula f is valid iff there is no 

invalid path in Gr(S, A). An invalidating path of formula f is an infinite 

path within the synchronised product Gr(S, A), starting from one initial 

node and including infinitely often the subset of nodes {( q, b) s.t. b E F} 

If the system is finite, the verification procedure is reduced to the 

search of an elementary path ending by a state yet visited, s.t. be

tween the two occurrences, a state referring an accepting condition is 

met. Many improvements to this method can be found in the literature, 

among them there are the on-the-fly techniques which search for an inval

idating path simultaneously to the building of Gr{S, A) ([8]). All these 

techniques can be applied in the context of the quotient synchronised 

product we develop in section 2.3. 

2.2. SYMMETRIC TRANSITION SYSTEMS 

In order to highlight all the developed concepts, we consider in this 

section a model of a protocol where four processes, denoted by C = 
{u, v, w, x}, execute the same program. For sake of simplicity, we assume 

that communications are instantaneous, so that the global system is 

entirely defined by the local states of the processes. In the following, 

the local state of any process, e.g. x, is symbolically represented by a 

variable, e.g. Z(x). The definition domain for l(x) is {idle, transmit, 

wai t, access}. 
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Because "symmetries" are usually handled by group theory, we now 

recall some elementary notions of group ([14]). 

Definition 5 Let G be a group, containing a neutral element id, which 

operation is denoted by (.). 

• Let E be a set, an action of Gover E is a mapping from G x E to 

E s.t. the image of (g, e), denoted by g.e, fulfills: "Ie E E id.e = 
e Vg,g' E G (g. g').e = g.(g' .e) 

• The isotropy (sub}group Ge of an element e is defined by : Ge = 
{g s.t. g.e = e} 

• Let H be a subgroup of G, the orbit H.e of e under H is defined 

by : H.e = {g.e s.t. 9 E H} 

• This action can be straightforwardly extended to the powerset of E 

by : g.E' = {g.e s.t. e E E'} 

Let us assume that E is the set of the atomic propositions of our 

model. For instance, proposition [l(u) = idle] means that the local state 

of process u is idle. If G is the group of permutations of C and if 9 

is the permutation which exchanges processes u and v, then g.[l(u) = 

idle] = [l(v) = idle]. Let ([l(u) = idle], [l(v) = idle]} be a set of atomic 

propositions, then the isotropy group of this subset is the subgroup of 

permutations which let the subset {u, v} globally invariant. 

We are now able to characterise what is a symmetric transition system. 

Definition 6 Let S be a transition system and G be a group acting on 

Prop. 
S is said to be symmetric (w. r. t. G) iff : 

• Every state has a "symmetric " state w. r. t. any element of G : 

Vq E Q, Vg E G, 3q' E Q, II(q') = g.II(q) The action of the group 

on the states is extended, by denoting g.q, the unique if of the 

former formula. 

• The set of initial states is invariant under the action of G : G .Qo = 
Qo. 

• The action ofG is congruent w.r.t. the transition relation: '</q,q' E 

Q, '</g E G, q q' {:} g.q g.q' 

Observe that all these conditions hold regarding our model of protocol, 

by defining G as the group of process permutations. 
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2.3. MODEL CHECKING OF SYMMETRIC 

TRANSITION SYSTEM 

As a state is associated with a subset of Prop in both the Biichi 

automaton and the model, we will use the action of G on the powerset 

of Prop. Let b be a state of Biichi automaton A, Gn(b) will simply be 

denoted Gb (although one cannot define an action of G on B). Observe 

that Gb is strongly related to the symmetry degree of b independently 

of the structure of the Biichi automaton. 

Let us consider different cases of Gb in the context of our example. If 

this subgroup equals the group G, then the state is totally symmetric, 

e.g. this is the case for proposition set {[l(u) = idle], [l(v) = idle], [l(w) = 
idle], [l(x) = idle]}. In contrast, whenever the isotropy group is re

duced to the identity (denoted {id}), the state is totally asymmetric, 

e.g. {[l(u) = idle], [l(v) = transmit], [l(w) = wait], [l(x) = access]}. In 

most cases, the isotropy group is not trivial (i.e. it differs from id and 

G). Let us note that in the context of our model, the isotropy group 

of processes implicitly corresponds to a partition of processes, namely 

the group of permutations which left each set of the partition invariant. 

For {[l(u) = idle], [l(v) = idle]}, the partitionofC is {{u,v},{w,x}}. 
According to a state of the Biichi automaton, we call such a partition 

the local partition of the state. 

Our aim is to build a quotient of the synchronised product over which 

it is possible to search an invalidating path directly. In this " quotient" 

structure, each node is characterised by a triple (H, 0, b), where H is a 

subgroup of G, 0 c Q, b E B. Moreover, the following two points must 

hold: 

(Cl) T/q E 0, II(b) C II(q) 

(C2) H.O = 0 

The intuitive idea is that the node (H, 0, b) is an aggregation of a 

set of nodes of the synchronised product, more precisely {( q, b) } qEO. As 

we will see now, H is used in the definition in order to give a sound 

definition of the successor relation. 

The building of the quotient structure starts from the set of initial 

nodes, defined as follows: (GbO, GbO·qo,bo) with qo E Qo , bo E Bo and 

II(bo) C II(qo). Observe that condition C2 is fulfilled trivially because 

GbO is a group, moreover condition C1 is deduced from the definition of 

GbO· 

Then, there remains to define the successor relation. (H2 , is a 

successor of (HI, 0 1 , bt), denoted (HI, 0 1 , bt) -+ (H2' 02, b2), iff b1 -+ b2 
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and 3ql E 0 1 , 3q2 E Q s.t. ql -7 q2 and II(b2) C II(q2)' Then 

O2 = (HI n Gb2 ).q2 and H2 C Go2. 

Observe that both conditions C1 and C2 are fulfilled by the new 

node. Effectively, from O2 C Gb2.q2, one deduces that: E 02,3g E 

Gb2 s.t. = g.q2. So, II(b2) = g.II(b2) C g.II(q2) = Moreover, 

as H2 C G02 then H2·02 = O2. 

In order to make the successor relation operational, one must specify 

how the subgroup H2 is chosen. With regard to the successor relation, it 

is interesting to maximise H2, i.e. to choose H2 = Go2 , but this choice 

might not be possible w.r.t. the syntactical aspects of the model. In 

any case, H2 can be chosen as the subgroup (HI n Gb2)' The following 

lemma and proposition 1 show the validity of our construction. 

Lemma 1 Let S be a symmetric transition system and A be a Buchi 

automaton. Let Gr(S, A) be the corresponding synchronised product and 

GRQ(S, A) the corresponding quotient structure. 

• Let (HI, 0 1 , bI) and (H2, O2 , b2) be two nodes of GRQ(S,A). 

(Hl,Ol,bl ) -7 (H2,02,b2) Vq2 E O2, 3ql E 0 1, (ql,bl ) -7 

(q2, b2) 

• Let (qO, bo) -7 (ql, bd -7 ... -7 (qn, bn) -7 ... be a (infinite) path in 

Gr(S, A), then 3(Ho, 00, bo) -7 (HI, 0 1, bI) -7 ... -7 (Hn, On, bn) -7 

... a (infinite) path in GRQ(S,A) s.t. qi E Oi (i E l..n). 

It is worth noting that the first point becomes false in the case where 

one exchanges its consequence by the following one: "Vq1 E 0 1 ,3q2 E 

O2, (ql, bI) -7 (q2, 

Proposition 1 For a symmetric finite branching transition system, there 

is an invalidating path in the synchronised product if and only if there is 

an invalidating path in the quotient structure. 

3. APPLICATION TO THE WELL-FORMED 
PETRI NETS 

The well-formed Petri net model offers a global solution for the design, 

verification and performance evaluation of distributed systems graphs. 

A well-formed Petri net is a high level Petri net model. Its specific 

syntax has made possible to define methods which take profit from the 

symmetry relations existing in systems. One of the associated meth

ods is the building of the symbolic reachability graph which is a highly 

compact structure used to represent the state space. It can be used to 
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Figure 1 Automaton of one process 

analyse some standard properties of the Petri nets as well as to derive an 

aggregated Markov chain in order to compute performance indices ( [3]). 

We are interested in adapting this construction to our method, but we 

do not fully describe neither the well-formed Petri net definition nor the 

implementation of the symbolic reachability graph building (see [2] for 

more details). Actually, we will focus on the representation of nodes and 

on the building of the successor relation. 

3.1. PRESENTATION OF THE 
WELL-FORMED PETRI NET MODEL 

Description of the system and properties to verify. The 

system which is described here consists of n processes {Pdi=1..n accessing 

to a critical section. Like in the former model, we consider that the 

processes run the same critical section access protocol. They are now 

synchronised by shared variables. 

This protocol is described for a process I{ in Figure 1. Initially, the 

process is idle (local state Re) then it may ask for an access to the critical 

section (local state De). Before accessing this section (local state Se) 

the process follows a sequel of two local states : Transmitting (Tr) and 

Waiting (At). We now detail the state transitions: (1) A requesting 

process can be in state Tr if there is no process in waiting state. The 

scheduler considers as privileged all the processes in state De. This is 

represented in the figure by a bold arc. (2) A process changes from state 

Tr to At without specific condition. (3) To enter the critical section, 

there must be no process in this section, but also no process in state Tr. 

We aim at demonstrating that the system is (weakly) fair : Every 

process which asks for the critical section will obtain it in a finite time. 

Intuitively, this property holds due to the conditions which ensures that 

requests are treated wave after wave. A wave starts from the moment 

when there is a requesting process and is completed as soon as one 

process enters the waiting state. 

Hence, a wave contains all the processes in state Tr and At, and these 

processes will enter the critical section without specific order. Due to 

the privilege of the change from De to Tr, a requesting process belongs 
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C(Re)=C(De)=C(Tr)=C(AI)=C(Sc)=C(Vg); 

C(Mu)=e; S S 

S 

x 

Figure 2 Modelling of the symmetri

cal behaviour of the system 

Figure:1 Biichi automaton of ...,f 

either to the current wave or to the following one. This ensures the 

fairness property. 

In a second stage, the system is modified so that within a wave, the 

executions of the critical section are ordered according to a priority re

lation, induced by the identity number of processes. Actually, the first 

system is symmetric, while the second is not. 

With respect to this new specification, the two expected properties 

are the followings : 

• Every requesting process will finally obtain the access 

• The processes in state Tr or At will be served according to the 

order induced by the specified priority relation. 

In contrast, the strong fairness property "A requesting process will be 

served before every process in state idle" is false. 

Formal modelling for the System and its properties. 

In order to represent our system, we proceed in two stages : a sym

metric system is specified first in terms of the well-formed Petri nets of 

Figure 2, then the runs which do not preserve the priority relation are 

prohibited by means of the additional automaton of Figure 4, namely 

control automaton. Actually, the system formally corresponds to the 

synchronised product of the well-formed Petri net and the control au

tomaton. 

In a well-formed Petri net, a colour domain is attached to each place 

and transition. Each token in a place is typed by a colour of the place 

colour domain. Each colour of a transition indicates a different way to 

fire the transition, hence, the labels of the arcs are no more integers but 

colour functions which denote for each firing the quantities of tokens to 



Model Checking Partially Symmetric Systems 131 

Figure 4 Control automaton w.r.t. a priority relation 

be consumed and produced per each colour. In well-formed Petri nets, 

the colour functions are written under a specific syntax which allows 

one to exploit the system symmetries. Function S represents a constant 

function, called a diffusion. Function S is a sum of tokens s. t. there is one 

token per colour of the domain, e.g. one for each process. Function X 

represents the colour which is used to instantiate the firing of a transition 

in the net. 

In addition, a priority number is associated with each transition of 

the well-formed Petri nets. Thus, among the transitions that are enabled 

from the current marking of the net, only the ones which have the highest 

priorities can be fired. 

In the well-formed Petri net of Figure 2, the local states of the pro

cesses are represented by means of the corresponding places. The set 

C = {(I)), (2)), (3)} is the colour domain of processes. It is the domain 

of all the places (except M u) and the domain of all transitions of the 

net. The marking of place Re by the (constant) diffusion function cor

responds to the fact that, initially, all processes are idle. Three more 

places allow one to implement the protocol mechanism: (1) Place M u 

is used to specify the control of accesses to the critical section; initially, 

it is set to an (uncoloured) token and prohibits the firing of transition 

t4, whenever place Se is marked. (2-3) Places V 9 and Co (initially set 

to B) are used to specify the wave mechanism. V 9 prohibits the firing 

of transition t2, whenever one of the At or Be places is marked. Place 

Co prohibits the firing of transition t4 whenever place Tr is not empty. 

At last, t2 is a transition the firing of which is privileged with respect to 

the others transition, so that the expected behaviour of the scheduler is 

obtained by the following priority relation: "It :j:. t2, Pri(t2) > Pri(t). 

The specification of the well-formed Petri net is completed by the 

control automaton Ac given in Figure 4. The first state of Ac specifies 
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that there is no process currently in the critical section, and that there is 

no request for that. The three states at the left side specify the different 

cases where a process must be privileged, provided the critical section is 

empty. Moreover, the three processes in the right side determine which 

processes is in the critical section. The arcs from left to right ensure the 

priority mechanism. The others follow the behaviour of the net. 

The semantic of the system is defined by the synchronised product 

between the control automaton and the reachability graph of the net. 

In order to illustrate our method, we wish evaluate the following 

strong fairness property : "A requesting process will be served be/ore 

every idle process". The corresponding LTL formula is the following ( 

[15]) : / = 1\,jEIG[(Dei 1\ Rej) => X(SCjUSCi)] 

The Biichi automaton partially represented by Figure 3 models 

the possible runs of the system for which the negation of property / 

holds. For sake of simplicity, only one branch (i,j) is represented. In 

this elementary case, the structure of the automaton is immediately 

deduced from the formula to invalidate. With the help of the first state 

of the automaton, one waits to the moment when (Dei 1\ Rej) holds, 

which will cause the invalidation of the property. Then, the next states 

of the automaton ensures that process j will enter the critical section 

before i. The last state represents the remaining part of the infinite run, 

without meaning according to the considered property. 

We highlight now (for this kind of specification) that the checking 

of a formula on an asymmetric system can be reduced to the checking 

of an asymmetric formula on a symmetric system. The search of a 

path must be computed through the synchronised product of the three 

structures : the reachability graph of the well-formed Petri net, the 

control automaton and the automaton of the negation of the formula. 

However, the synchronised product is a commutative and associative 

operation. It is thus possible to perform the synchronised product of 

the two automata, Ac and in order to obtain a new one, then to 

apply our construction on this new automaton and the well-formed Petri 

net (a symmetric model). 

On can check that the following path in the synchronised product in

validates the desired formula : 

(mo, (co, bo) (CO, (co, b2)/d(2p(m3, (CO, 

(m4, (CO, (C3, (C3, b2))t4(2P(m7, (C4' b3)) 

Each node (m,(c,b)) of such a sequence corresponds respectively to 

one marking of the net and one pair obtained by a state of the Biichi 

automaton and a state of the control automaton. Observe that, the 
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label of an arc represents some firing in the net. For instance, h({lP 

corresponds to the firing of transition tl with respect to process {1}. 

3.2. BUILDING OF THE SYMBOLIC 
SYNCHRONISED PRODUCT 

The symbolic synchronised product is a representation of the quotient 

synchronised product. We call them symbolic due to the analogy with the 

symbolic reachability graph representation ([2]). Its major peculiarity 

is that objects are never more represented explicitly, but are viewed 

under a symbolic form. For instance, one can say symbolically that two 

processes require the same resource, instead of saying that processes 

1 and 2 require resource 1. From such a symbolic representation, a 

symbolic firing rule can be defined which allows one to compute the 

symbolic reachability graph, automatically and directly from the object 

specification within the well-formed net. 

Computation of local partitions of colours. Before computing 

the quotient synchronised product, one must compute and represent the 

isotropy group of each state of the automaton. The most easy way to 

proceed consists in detecting the colours which marks the same propo

sitions in the states. These colours are gathered in subsets and these 

subsets form a partition, named local partition. The isotropy group is 

implicitly defined as the group of permutations which left each set of 

the partition globally invariant. Let us give three examples: (1) For a 

state where the atomic propositions are {Atl' At2, At3}, the partition is 

composed by a unique singleton {(1), {2}, (3}} (i.e. all the permutations 

are admissible). (2) For a state where the atomic propositions are {At2}, 

the partition is composed of a singleton { {2}} and a set composed of the 

remaining colours, here {{I}, {3}} (the permutations must left {2} invari

ant). (3) For a state where the atomic propositions are {At2' At3}, the 

partition is composed of three elements, {{I}}, {{2}}, {(3}}. The isotropy 

group is reduced to the identity permutation. 

States of the symbolic synchronised product. Let us recall 

that we want to represent triples (H,O,(b,c)), such that 0 is subset 

of markings which is unchanged under the action of the subgroup H 

(0 = H.o, "10 EO). The subgroup H will be implicitly represented by 

a local partition, which may differ from the partition attached to the 

state of the automaton (H may be different from Gb). The subset of 

markings will be represented in a symbolic way : the colour domain 

is partitioned in abstract subsets, called dynamic subclasses (i.e. the 
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composition is not known). However for each subset, the cardinality 

and the reference to a local partition is preserved. The markings of the 

net are now symbolic since their tokens are no more colour but dynamic 

subclasses. Symbolic markings are denoted like m. 
In our example, there is one initial symbolic node, such that : 

(mo, (bo, CO)) where mo is a symbolic marking of the net such that: 

• mo is defined from a unique local partition {(I), (2), (3)} composed 

of a unique dynamic subclass (denoted Zl s.t. 1 Zl 1= 3), 

• mo = (ZI.Re + ZI.CO + ZI.V g) + Mu, meaning that there is one 
token of each process in places Re, Co and V 9 and that there is 

one uncoloured token in place M u. 

The atomic propositions of bo and Co ({Atih=1..3,Mu) are satisfied by 

mo. Observe that mo is a symbolic representation for both subgroup H 

of permutations and subset 0 of markings. 

Symbolic firing in the quotient synchronised product. In or

der to build a successor of a node (H 0, 0 0 , (bo, CO)) within the symbolic 

synchronised product, a successor of the current state in the automa

ton is selected. For instance from (bo, CO), one can choose state (bl , co) 

as a possible successor. Then a new local partition is computed, by 

intersecting the local partition of the state currently considered within 

the symbolic synchronised product and the local partition of the state 

newly considered within the automaton. This is equivalent to consider 

the group Ho n G(bt.co). 

For state (mo, (bo, CO)), the local partition in the symbolic synchro

nised product is given by {{I}, (2), (3}} and the one of the state within 

the automaton is given by {{I}}, {(2)}, {{3}}. Hence, a decomposition 

identical to colours is obtained. Let m' 0 be the symbolic representation 

mo after the above decomposition: 

• Vi E {I, 2, 3} Zi is the unique dynamic subclass of {(i)} 

• ;;'0 = (ZI.Re + Z2·Re + Z3.Re) + (ZI.CO + Z2.CO + Z3.Go) + 

(ZI.Vg+ Z2.Vg + Z3.vg) + Mu 

Then, a symbolic firing is performed in the net which is similar to the 

ordinary one (see [2] for more details). For instance, the firing of tI(Zi) 

leads to symbolic marking;;'1 = (ZI.De + Z2.Re + Z3.Re) + (Z1.CO + 

Z2·CO + Z3.Go) + (Z1.vg + Z2.Vg + Z3.vg) + Mu. 

Additionally, one must verify that ;;, 1 satisfies the atomic properties of 

(bl, cd : ({Atih=1..3, Mu, Del, Re2). 



Model Checking Partially Symmetric Systems 135 

The last stage consists in grouping some local partitions which con

tain a single dynamic subclass, provided the distributions of the con

cerned dynamic subclasses over the places are the same. Actually, this 

does not modifies the set of ordinary markings associated with the sym

bolic marking and this means that the group of admissible permutations 

HonG(bl,co) is extended. For instance in ;;;;1, sets {{2}} and {{3}} can be 

grouped yielding symbolic marking ml : ZI is the unique dynamic sub

class of {(I}} and Z2 is the unique dynamic subclass of {(2), (3}}; more

over, ml = (Zl.De+Z2.Re) + (ZI·CO+ Z2.CO) + (Zl.Vg+Z2.Vg) +Mu. 

4. CONCLUSION 

Complexity reduction of the verification by use of the symmetries is 

now well established. However most of the proposed techniques do not 

handle (or in a limited way) the partially symmetric systems. In this 

work we have proposed an efficient way to deal with asymmetric models 

and/or formulas. Our method does not depend on a particular formalism 

and a priori can be applied to anyone. Here we have illustrated the 

method on well-formed Petri nets in order to clarify the principles based 

on actions of groups on transition systems. 

This work needs to be completed in two ways. At first, it must be 

integrated in a tool. So the implementation of the presented work is 

under progress. We have chosen to develop our method in the GreatSPN 

tool ([4]) as symmetries are already exploited for well-formed Petri nets. 

To this implementation, must succeed a stage of evaluation in order to 

characterise systems for which our algorithm is efficient. 

Moreover, we plan to combine our method with the global analysis of 

symmetries of the automaton as done in ([1]). At last, we investigate 

the way to extend this method to performance evaluation of stochastic 

well-formed Petri nets. 
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