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Using a simple mean field density functional theory (DFT), the authors investigate the structure and
phase behavior of a model colloidal fluid composed of particles interacting via a pair potential which
has a hard core of diameter o, is attractive Yukawa at intermediate separations, and is repulsive
Yukawa at large separations. The authors analyze the form of the asymptotic decay of the bulk fluid
correlation functions, comparing results from DFT with those from the self-consistent
Ornstein-Zernike approximation (SCOZA). In both theories the authors find rich crossover behavior,
whereby the ultimate decay of correlation functions changes from monotonic to long wavelength
damped oscillatory decay on crossing certain lines in the phase diagram or sometimes from
oscillatory to oscillatory with a longer wavelength. For some choices of potential parameters the
authors find, within the DFT, a \ line at which the fluid becomes unstable with respect to periodic
density fluctuations. SCOZA fails to yield solutions for state points near such a N line. The
propensity towards clustering of particles, which is reflected by the presence of a long wavelength
(>0) slowly decaying oscillatory pair correlation function, and a structure factor that exhibits a very
sharp maximum at small but nonzero wave numbers, is enhanced in states near the A\ line. The
authors present density profiles for the planar liquid-gas interface and for fluids adsorbed at a planar
hard wall. The presence of a nearby A transition gives rise to pronounced long wavelength
oscillations in the one-body density profiles at both types of interface. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2405355]

I. INTRODUCTION

Recently, colloidal systems have been synthesized in
which the effective pair potential between the colloidal par-
ticles is attractive just outside the core separation distance,
but is repulsive for larger particle sepa\rattions.l_6 The long-
range repulsion stems from the colloids being charged, and
the short range attraction is generated by the depletion
mechanism,’ arising from the addition of nonadsorbing poly-
mers to the solution.® Such competing interactions can give
rise to phase behavior that can be very different from that
found in “simple” liquids. Theory and simulation in both two
and three dimensions for model systems with competing in-
teractions predict that such interactions can give rise to a
state with undamped periodic density fluctuations, which in-
dicates a transition to cluster or striped phases (microphase
separation).gf18 In the cluster phase the colloids are ordered
in such a way that there are assemblies containing tens or
hundreds of particles and large voids between the clusters
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containing hardly any particles. Similarly, in the striped
phase in two dimensions the particles are arranged in parallel
stripes with low-density regions in between the stripes.z’m’18
In three dimensions the stripes form a gel-like network of
elongated clusters.'>!7 This behavior is most striking given
that the pair interactions between the particles are spherically
symmetrical and suggests that such systems could be impor-
tant candidates for developing self-assembling pattern form-
ing materials. The liquid-vapor phase transition may be pre-
empted by a transition to a cluster or stripe phase, but if the
long-range repulsion is not sufficiently strong, no permanent
clusters or stripes are present, and a liquid-vapor phase tran-
sition is found. However, the liquid-gas coexistence curve is
unusually flat in the critical region.19

While the bulk phase behavior has begun to be under-
stood, there are no detailed studies of how the long-range
decay of the pair correlation functions is affected by the
competition between attraction and repulsion and very little
is known about the properties of such fluids in inhomoge-
neous situations where the average fluid density is nonuni-
form. In the present paper we present a mean field density

© 2007 American Institute of Physics
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functional theory (DFT) for a simple model of such systems
which provides a means of analyzing correlation functions
and a first step in elucidating the properties of inhomo-
geneous fluids composed of particles with competing

Bv(r)={°°’

where B=1/kgT is the inverse temperature (we shall set B
=1), o is the diameter of the particles, and the amplitudes
€>0 and A >0. For a fixed value of A, the parameter € plays
a role somewhat akin to an inverse temperature. In the con-
text of colloid-polymer mixtures one can envisage an ather-
mal system at a fixed temperature and varying the chemical
potential of a polymer reservoir, thereby changing the
strength of the depletion attraction. Indeed, in the simple
Asakura-Oosawa-Vrij model, the depletion attraction be-
tween colloidal particles arising from the exclusion of ideal
polymers, yields a well depth proportional to z,,, the fugacity
of the ideal polymers.zé‘_26 Following the spirit of this ap-
proach, we can view our parameter € as a measure of the
polymer fugacity. In much of the work described here we
follow Pini et al.'”*° by setting the two (dimensionless) de-
cay lengths Z,=1 and Z,=0.5. However, we also present
some results for other choices of Z; and Z,.

A number of phase diagrams for this model system are
displayed in Refs. 19 and 20, for cases when A is not too
large, i.e., cases when the repulsive contribution to the pair
potential v(r) is not sufficiently large that the liquid-gas
phase separation is replaced by microphase separation. For
these cases one finds that there can be a substantial super-
critical region in the phase diagram where the compressibil-
ity is unusually lalrge.lg’20 In Refs. 19-23 a number of theo-
ries have been used to investigate the bulk fluid correlation
functions [radial distribution function g(r) and structure fac-
tor S(k)]. Here we make a systematic study of the asymptotic
decay r— o of g(r) in various regions of the phase diagram.
The form of the decay of g(r) is determined by the poles of
S(k) in the upper half of the complex k plane.”” We use a
simple DFT, equivalent to the random phase approximation
(RPA) of the tail potential outside the hard core for the bulk
fluid, to elucidate the pole structure for particles interacting
with pair potentials given by Eq. (1). Due to the competing
interactions, the fluid displays a propensity towards cluster
formation which is manifested for some state points as a
slowly decaying, long wavelength oscillatory decay of the
radial distribution function g(r)—the wavelength being re-
lated to the size of the clusters. Of course, at sufficiently low
densities the decay of g(r) is monotonic. We locate lines in
the phase diagram at which the ultimate asymptotic decay of
g(r) crosses over from monotonic to oscillatory. In addition
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interactions.

The particular model fluid we consider in this paper is
that described in Refs. 19-23, in which particles interact via
a double-Yukawa pair potential of the following form:

rso

(1)

—eoexp(=Z,(rlo—1))Ir+ Ao exp(— Zy(rloc—1))Ir, r> o,

we find, for some values of the fluid pair potential param-
eters, that there can be a crossover in the decay of g(r) from
long wavelength oscillatory to oscillatory with wavelength
~o. We find that the pole structure displayed by our simple
(RPA) DFT, and hence the crossover behavior, is mimicked
closely by the more accurate self-consistent Ornstein-Zernike
approximation (SCOZA),”** indicating that the simple DFT
describes, at least qualitatively, the main features of the fluid
structure.

For sufficiently large values of A we find that on increas-
ing €, the peak in the structure factor calculated from the
DFT can diverge at k=k.# 0. We denote the line in the phase
diagram at which this divergence occurs as the “A line.
On the N line the fluid becomes unstable with respect to
periodic density fluctuations with wave number k., indicating
that there is a phase transition to a modulated phase (either a
crystalline or striped phase), which may be preempted by a
transition to a glassy nonergodic state."”?"* In mean field
treatments the A line encloses a region of the phase diagram
where one would expect to find the liquid-gas critical point,
and it intersects the binodal at densities on either side of the
critical point.10 We find such behavior in the present DFT
approach.

This paper is laid out as follows: In Sec. II we introduce
our simple DFT approach, and in Sec. III we describe briefly
the implementation of the more accurate (bulk) SCOZA
theory for determining correlation functions and phase be-
havior. In Sec. IV we present results for the bulk phase be-
havior for a range of pair potential parameters. Section V
describes our approach for determining the ultimate
asymptotic decay of the radial distribution functions and pre-
sents a number of representative results. In Sec. VI we apply
our DFT to calculate inhomogeneous fluid profiles at a pla-
nar hard wall and at the liquid-gas planar free interface. We
conclude in Sec. VII with a summary and discussion of our
results.

Il. A MEAN FIELD DENSITY FUNCTIONAL THEORY

The basis of DFT is that there exists a functional, Q[p],
of the fluid one-body density profile p(r) such that the fluid
equilibrium profile p(r) minimizes this functional,
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‘,/[P ] =0, )
dp'(r) p’ (r)=p(r)

and the minimal value of this functional is the grand poten-
tial © of the fluid.** The grand potential functional Q,, can be
written as

lp)= Flp] - f drp() 4~ Vul©)], )

where u is the chemical potential, V,,(r) is a one-body ex-
ternal potential, and F[p], the intrinsic Helmholtz free en-
ergy functional, is a unique functional of p(r) for a given
interaction potential. We can write F[pl=Fiqlpl+ Felpl,
where

Fidlpl=kgT f drp(r)[In(p(r)A%) - 1] (4)

is the ideal-gas contribution, A is the thermal de Broglie
wavelength, and F, is the (unknown) excess contribution.
Taking two functional derivatives of F,,, we obtain the
(Ornstein-Zernike) pair direct correlation function for the in-
homogeneous ﬂuid,34

8 Folp]
Op(r')dp(r)”

In the present work we approximate the excess Helm-
holtz free energy functional by

Arr)=-p (5)

). (6)

Folp1=721e1+ [ ar [ ar oo e

where F%[p] is the reference hard sphere Helmholtz excess
free energy functional and the contribution due to the re-
mainder of the pair potential >o is treated in a mean field
fashion.** We define the “perturbation” potential as

—€+A, r<o

Poy(n) = {Bv(r), r>o. @
Note that —e+A is the value of Bu(r) at contact, i.e., at r
=o". We employ the Rosenfeld fundamental measure
theory™ " for F®[p]. This nonlocal functional, via Eq. (5),
generates cpy(r,pp), the Percus-Yevick (PY) pair direct cor-
relation function for a uniform hard sphere fluid. Thus, in
bulk, Egs. (5) and (6) together generate the following simple
approximation (RPA) for the pair direct correlation function:

c?(r:p) = cpy(ripy) — Bu,(r), (8)

where p,, is the bulk fluid density. As in other RPA treatments
of models with hard cores, the perturbation potential is not
defined uniquely within the hard core. We choose the form in
Eq. (7) for simplicity and because the resulting phase dia-
grams are closer to those obtained from the SCOZA than
those from other possible choices that we considered. With
this choice the Fourier transform of ¢(r)=c®(r;p,) can be
carried out analytically and yields

é(k) = Epy(k) — Bi(k), )

where Cpy(k), the Fourier transform of cpy(r;p,), is given
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q q

( a+B+y 2B+12y 247)
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q* q* q°

Xcosq+<24—6y—¥)}, (10)
q q

with g=ko, and the coefficients

(1+27)°
=41,
(1-n)?*
—6n9(1 + 9/2)?
B=—"""—i > (11)
(1-n*
_np(1+27)°
S 20-ptT
depend on #=p,0”/6, the packing fraction, and
56 (k) 4770'36< +Zl . )
0 =———|cosg+—sing
g Zi+q q
+47703A( 2y )
—— | cos g+ —sing
Z+q q
4ma’(e—A
e s q(3 )(sinq—qcosq). (12)

Thus we have a relatively simple analytic expression for ¢(k)
and therefore also for the static structure factor obtained
from the Ornstein-Zernike relation,39

S(k) = (13)

1= pyé(k)”
In Fig. 1, we display S(k) calculated at a bulk fluid density
pp0°=0.2457, the critical point density as obtained from
DFT (see Sec. IV), for a number of different values of the
parameter €, for the case when A=0.082, Z;=1, and Z,
=(.5. We see that as € ! is decreased, the structure factor
develops a peak at a small, but nonzero, wave vector k=k,
<2/ 0. This peak indicates the propensity towards cluster-
ing in the fluid 2> 4152123 A gimilar RPA approximation
was used in Ref. 14 to account for the structure factor of a
two dimensional fluid of particles with competing interac-
tions close to those of the present fluid. The propensity to-
wards clustering in the fluid can also be seen in Fig. 2 where
we plot the radial distribution function g(r) for the same fluid
at p,0°=0.2 and several values of € !. We observe the de-
velopment of long wavelength oscillations in g(r) as €! is
decreased. These results are obtained from the inverse Fou-
rier transform of S(k). Note that within this route, the core
condition that g(r)=0 for r< ¢ is violated. This would not be
the case if we were to use the test particle route to g(r), i.e.,
if we treat one of the particles as a fixed external potential
[Veu(r)=v(r) in Eq. (3)], use the DFT to calculate the inho-
mogeneous fluid density profile, p(r), around this fixed par-
ticle, and divide by the bulk density to obtain g(r)=p(r)/p,.
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FIG. 1. Static structure factors S(k) for a fluid with total density p,o”
=0.2457, the critical point density determined from the DFT (RPA), and
with the parameters A=0.082, Z,=1, and Z,=0.5, calculated for € '=10, 3,
and 2 (bottom to top). The solid lines are the results of the DFT (or RPA)
[Egs. (8)—(13)], and the dashed lines from SCOZA (there is no SCOZA
result for € '=10). Note that as €' is decreased, a peak develops and grows
at a small wave vector k=k.# 0, whereas the other peaks in S(k), deter-
mined primarily by correlations in the reference hard sphere fluid, are al-
most unchanged.

For sufficiently large values of A we find that on de-
creasing € ! at fixed p, the peak in the structure factor that
occurs at small k=k.# 0 can diverge. The line in the phase
diagram at which this occurs is the \ line.**** This line is
shown in the inset of Fig. 5 for the case where A=0.082.
Inside the region bounded by the A\ line, the RPA result for
S(k) is unphysical, since this becomes negative in a certain
interval of k, and goes from negative to positive divergent
values upon crossing the boundaries of the interval.

lll. THE SCOZA FOR CORRELATION FUNCTIONS
AND THERMODYNAMICS

The SCOZA is designed to deal with two-body poten-
tials which, like that of Eq. (1), consist of a singular hard
sphere repulsive part, with diameter o, and a longer-ranged
tail. As is customary in integral equation theories, this ap-
proach is based on the Ornstein-Zernike (OZ) equation link-
ing the radial distribution function g(r) to the pair direct
correlation function c(7). A closed theory is obtained by
supplementing the OZ equation with an approximate (clo-
sure) relation involving g(r) and ¢(r). In its simplest form,
the SCOZA amounts to setting2

g(r)=0,
c(r)=K(pp. Bv(r), r>o.

This closure differs from the RPA considered in Sec. II in
two respects: first, the core condition on the radial distribu-
tion function is satisfied. Second, the amplitude K of the
direct correlation function outside the repulsive core has not
been set to K=-L. Rather, K is regarded as an unknown
state-dependent quantity, to be determined in such a way that
consistency between the compressibility and the energy route

rso

(14)

J. Chem. Phys. 126, 014104 (2007)

2 T T T T T T
1-03 T T T T
1.02 =17 ¢ '=1.66 ]
15 + 1 A
1 1 1 1 1
20 30 40 50 60
~
~ 1 F
>

c'e5 € =166

05 7/ b

0 5 10 15 20 25 30 35
rlo

o

FIG. 2. Radial distribution function g(r) for a fluid with total density
p0°=0.2, with the parameters A=0.082, Z,;=1, and Z,=0.5, calculated for
€'=5,2, 1.7, and 1.66. Note that as €' is decreased, g(r) becomes longer
ranged; the decay is oscillatory, with a wavelength of about 250 for €'
=1.66 [a state close to the X\ line for this system (see Fig. 5); see the
magnification in the inset]. Within the present DFT (RPA) treatment, based
on Fourier transforming [Eq. (13)], the core condition g(r)=0 for r<o is
violated (see text).

to thermodynamics is enforced. The previous applications of
SCOZA, including the study of fluids with competing
interactions,19’20 were aimed at thermal systems with a
temperature-independent potential, such that the phase dia-
gram can be plotted as a function of density and temperature.
For thermal fluids, the consistency condition amounts to re-
quiring that the reduced compressibility x,.q and the excess
internal energy per unit volume u satisfy the condition

&B Xred _pbﬁpg’

where x,.q 1S obtained from the compressibility sum rule, i.e.,
Xrea=S(0), while u is obtained from the energy equation
u=277p,2,f£;drr2v(r)g(r). If the closure [Eq. (14)] is imple-
mented for the correlations, the consistency condition [Eq.
(15)] yields a closed partial differential equation (PDE) for
the function K(p,,B). It should be noted that in the present
case Bu(r) is in effect independent of temperature [see Eq.
(1)], and the phase diagrams will be plotted as a function of
€', the inverse strength of the attractive tail potential. For
such an athermal system, Eq. (15) does not hold anymore, as
a consequence of the trivial dependence on the temperature
of the Helmholtz free energy, F~ k7. However, for any
given ¢, the value of BF of the athermal system is the same
as that given by a temperature-independent interaction v(r)
=wpBv(r) at a temperature kzT=w, where Bv(r) is given in
Eq. (1) and w is an arbitrary energy scale. For this system,
Eq. (15) is valid. Therefore, the phase diagram and the cor-
relations of the original potential [Eq. (1)] have been deter-
mined by integrating the SCOZA PDE for 9(r) down to the
reduced temperature 7" =kzT/w=1 for each of the values of
€ considered. Equivalently, one may reformulate Eq. (15) for
the athermal system by replacing the inverse temperature 3
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with a coupling constant which varies from zero to unity,
whose purpose is to switch on the tail interaction.

In the present case, implementing the SCOZA scheme is
made simpler by taking advantage of the analytical results*
obtained for the mean spherical approximation (MSA) when
the tail potential has a two-Yukawa form as in Eq. (1). These
enable one to obtain y,.4 as a function of p, and u. The
function x,.q(pp,u) can then be used in Eq. (15) by taking u
instead of K as the unknown quantity. The algebraic manipu-
lations have been described in detail in Ref. 41. The resulting
PDE for u supplemented with suitable initial and boundary
conditions® is integrated numerically. Integration of u with
respect to 3 then yields the Helmholtz free energy and hence
all the other thermodynamic quantities.

The SCOZA, like the RPA, yields a spinodal curve, i.e.,
a locus in the temperature-density plane where the compress-
ibility diverges. As soon as one enters the region bounded by
the spinodal, x,.q is no longer positive, so that the theory
ceases to be meaningful. Therefore, the region bounded by
the spinodal must be excluded from the integration domain.
If the temperature is below its critical value and one ap-
proaches the critical density p,. either from p=0 or from the
high-density boundary p,, it is found that y,.4 is no longer
positive for p=p,, or p=p,, where p;, and p,, are
temperature-dependent densities with p;,<p.<p,,. The in-
tegration is then restricted to the intervals (0,p;,—Ap) and
(pas+Ap,py), where Ap is the density spacing. Within the
accuracy of the numerical discretization, p;, and p,, give the
densities of the spinodal curve at the temperature considered.
The liquid-gas coexistence curve is determined by equating
the pressures and chemical potentials on the low- and high-
density branches of the subcritical isotherms.

IV. RESULTS FOR PHASE DIAGRAMS

In this section we present results for the liquid-gas co-
existence curve (binodal) and spinodal calculated from both
theories. Within the present DFT it is straightforward to de-
termine liquid-gas coexistence. By replacing p(r)=p, in the
Helmholtz free energy functional [Eq. (6)], we obtain an ex-
pression for the bulk Helmholtz free energy per particle, f.
The corresponding pressure can exhibit a van der Waals
loop, and we calculate the coexisting gas and liquid densities
in the standard way. We obtain the spinodal from the free
energy as the locus of state points where ¢*f/dv?>=0, where
v=1/p, is the specific volume, i.e., the locus where the iso-
thermal compressibility diverges. This is identical to the lo-
cus of points where S(k=0) diverges, where S(k) is given by
the Ornstein-Zernike relation [Eq. (13)] together with Egs.
(9)—-(12). The self-consistency between the free energy cal-
culated directly from the functional and from the compress-
ibility route is one of the appealing features of the simple
theory. In Figs. 3—-6 we display the resulting DFT phase dia-
grams for Z;=1 and Z,=0.5 and a number of choices of the
parameter A. In Figs. 4 and 5 we also display the correspond-
ing SCOZA results for the spinodal and binodal. We find
quite good agreement between the two theories although the
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MONOTONIC line
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Kirkwood line (1)

Kirkwood line (2)

binodal

spinodal

FIG. 3. Phase diagram for the case when Z,=1, Z,=0.5, and A=0.0001
obtained from the DFT (RPA). The solid lines denote the binodal and spin-
odal. The two dotted Kirkwood lines denote loci at which the asymptotic
decay of h(r) crosses over from monotonic to oscillatory. For the present
choices of Z; and Z,, the Fisher-Widom line is at densities p,0° = 0.9 which
lie inside the liquid-solid coexistence region (Ref. 20).

DFT, being a mean field theory, is unable to describe cor-
rectly the shape of the coexistence curve in the region of the
critical point.

Within the present DFT, having calculated the spinodal
and binodal for a particular value of A, one can obtain results
for all other values of A by a simple rescaling of the vertical
(e7!) axis. It is straightforward to show that, within the DFT,
the critical density is independent of A. For the case where
A=0 (not displayed), the present theory yields a critical den-
sity within 5% of the value obtained from the more accurate

8 ' Y A —
MONOTONIC gg - MONOTONIC

FIG. 4. As in Fig. 3, except here A=0.02 and we also display SCOZA
results: the dashed lines denote the SCOZA spinodal and binodal and the
open circles correspond to points on the two SCOZA Kirkwood lines. Note
that within the DFT (RPA) the lower Kirkwood (dotted) line is quite close to
the spinodal which means that there is only a very small supercritical region
where the asymptotic decay of 4(r) is monotonic. A similar scenario pertains
to SCOZA (see magnification of the critical region in the inset).
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FIG. 5. As in Figs. 3 and 4, except here A=0.082. The binodal and spinodal
calculated from DFT (solid lines) lie close to the corresponding SCOZA
results (dashed lines). Note that solutions to SCOZA do not exist for 1.18
< €< 1.56 and for € ! >4.04 for this value of A (see text). Within the DFT
(RPA) there is a X\ line (dash-dotted line in magnification in the inset) at
which the structure factor S(k) diverges at k=k.# 0, where k. <2/ o.

SCOZA." However, as A is increased the discrepancy in-
creases. The general trend that the value of € ! at the critical
point is decreased as A is increased is found in both
theories. "

In Figs. 5 and 6, which refer to A=0.082 and 0.5, respec-
tively, the dash dotted line denotes the N\ line as obtained
from the DFT (RPA). The A line takes the shape of a loop
which crosses both branches of the binodal and meets the
spinodal at values of € ! below where one would expect the
critical point.

When considering the SCOZA results, one should keep
in mind that, unlike the RPA, there are regimes in which the
theory cannot be solved. In particular, this is the case for
values of A and e such that the competition between attrac-
tion and repulsion is very strong, and the fluid is expected to
form microphases. In the RPA, this regime is marked by the
appearance of the \ line, where the structure factor S(k) has
a singularity for k=k.# 0. However, such a singularity is
incompatible with the fulfillment of the core condition
[Eq. (14)] if the direct correlation function in Fourier space
¢(k) is analytic on the real axis, which is indeed the case in
SCOZA. As a consequence, the SCOZA fails to have solu-
tions before a divergence in S(k) occurs. Because of the non-
local character of the SCOZA PDE, this lack of convergence
involves the full range of density. Therefore, it is not possible
to locate the A\ line using SCOZA. Another constraint is re-
lated to the numerical integration procedure, which requires
the SCOZA PDE to be stable with respect to small fluctua-
tions of the solution. However, such a requirement is not
fulfilled when A is sufficiently large that the repulsive tail
contribution to the potential overwhelms the attractive one.
In this case, the PDE behaves like a diffusion equation with
a negative diffusion coefficient and cannot be integrated nu-
merically. An estimate of this intrinsic stability limit is pro-
vided by the condition that the spatial integral of the tail
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FIG. 6. As in Fig. 3, except here A=0.5. Now the region of the phase
diagram enclosed by the X line (dash-dotted) is quite large. Furthermore, the
region enclosed by the Kirkwood (dotted) line is also very large (see larger
scale in the inset). Note that solutions to SCOZA exist only for e!
<0.194 (see text).

potential 47 [ drr*v(r) should remain negative. How the
above constraints affect the existence of the solution in the
present representation, in which the phase diagram is studied
as a function of the attraction amplitude € at fixed repulsion
amplitude A, can be gleaned by considering the case where
A=0.082 reported in Fig. 5. For a temperature-independent
two-Yukawa potential with the same inverse-range param-
eters Z,=1 and Z,=0.5 as those considered here,"” the liquid-
gas transition is found to disappear when the relative ampli-
tude of the repulsion A/e is larger than 0.097. For A
=0.082 this requires € !> 1.18. When this condition on € is
met, the theory fails to converge below a certain threshold
temperature Ty, before liquid-vapor separation takes place.
Whether this happens or not in the phase diagram of Fig. 5
depends on whether the reduced temperature 7°=1 lies be-
low or above the threshold temperature. For A/ € just above
0.097, Fig. 1 of Ref. 19 shows that Ty =1.7¢ which, for
€ 1=1.18, is indeed above unity. Therefore, the SCOZA so-
lution disappears as soon as € ' >1.18. However, as € ! in-
creases, the reduced threshold temperature T:h decreases, un-
til for €1>1.56 one has Tfh< I, so that convergence for
T"=1 is again achieved. In the RPA picture, this corresponds
to being above the maximum of the A line. For larger values
of €, the SCOZA can be solved. However, the solution
disappears again at high values of €!, when the repulsive
part of the interaction dominates. For Z;=1, Z,=0.5, and A
=0.082, the SCOZA PDE fails to converge for €'>4.04, in
fair agreement with the value e '=4.06 above which the spa-
tial integral of the tail potential for > o becomes positive.
In summary, for A=0.082 the SCOZA solution does not exist
for 1.18<€ ! < 1.56 and for €' >4.04. Turning now to the
case where A=0.5 shown in Fig. 6, the SCOZA solution
disappears for €'>0.097/A=0.194. However, for this
choice of A the solution does not reappear at larger values of
€ ! because the region where the competition is strong and a
\ line is present according to RPA, overlaps with the region
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€'>0.67 where the integral of the tail potential becomes
positive and the SCOZA PDE is unstable. Therefore, for A
=0.5 only the interval €!<0.194 is accessible to the
SCOZA. We did calculate portions of the binodal and spin-
odal in this interval, finding good agreement with the DFT
results. However, for these comparatively low values of € !
the relevant densities are either very low or very high, and
are not displayed in Fig. 6.

V. ASYMPTOTIC DECAY OF CORRELATION
FUNCTIONS

In this section we determine the asymptotic decay, r
— oo, of the total pairwise correlation function h(r)=g(r)—1
in our model. The basic procedure follows that in Ref. 27. In
Fourier space the OZ relation is given by Eq. (13), or equiva-
lently by

é(k)
1 - pyé(k)’

where A(k) is the three-dimensional Fourier transform (FT)

h(k) = (16)

of h(r). Inverting the FT, and noting that ﬁ(k) is even, we can
write

1 (” .
h(r)=— | dkke™h(k
rh(r) 4712if_m e""h(k)

1 (7 o Clk)
- —— | dkke—"A—
4 )_, 1 — pc(k)

which can be evaluated by contour integration in the com-

(17)

plex plane.27 We expect the singularities of ﬁ(k) to be simple
poles. Choosing an infinite radius semicircle contour in the
upper half of the complex plane, we obtain

1 .
rh(r) = — 2 R,e, (18)
277,

where R, is the residue of kﬁ(k) for the nth pole at k=k,. The
k,, are solutions of

1 - pyé(k,) =0. (19)

In general, there are an infinite number of poles. Poles lying
off the imaginary axis occur in conjugate pairs k,=z+q;
+ia and such a pair contributes a damped oscillatory term
of the form exp(—ayr)cos(a;r—6) to the sum in Eq. (18).
Poles that lie on the imaginary axis, k,=ic,, contribute a
pure exponential term of the form exp(—&yr) to the sum in
Eq. (18). The longest range decay of h(r) is determined by
the pole(s) with the smallest imaginary part. If ay<a, the
longest range decay is damped oscillatory, but if ay> &,
then the asymptotic r— oo decay of /(r) is monotonic.

Given the analytic expression we have for ¢(k) within
the DFT (RPA) treatment [Eqgs. (9)—(12)], it is fairly straight-
forward to calculate the full set of solutions {k,} to Eq. (19)
for the present model fluid. Thus we are able to determine
the pole(s) with the smallest « and determine the ultimate
decay of h(r).

Before presenting our numerical results, we first discuss
a simplified model, which should provide insight into the
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origin of the leading order poles. In Eq. (7), v,(r) takes a
constant value for r<o. If we replace this constant value by
the form that v(r) takes for r>o (i.e., keeping a double-
Yukawa form for all values of r), then the denominator func-
tion D(k)=1-p,¢(k) takes the simple form

4mwaAp,
Z+q

dma’ep,
Zi+q

D(k) =1 - pyCpy(k) = (20)
with g=ko. We find that this simplified model displays the

same pole structure as the full version with v,(r) given by
Eq. (7). When A=0 this is simplified even further,

dma’ep,

. (21)
Zi+ ¢

Dy(k) =1 = pyCpy(k) -
We first seek purely imaginary poles and substitute k=ia,
into Eq. (21). Provided @&,o <10, then épy(idy) = Cpy(0), so
that

Dy(ia) = B <

O(la) Z% _ 0_2&% B
where B=[1-p,¢py(0)]>0 and C=4mc’ep,>0 are con-
stants dependent on the state point of the fluid. There is only
one solution to the equation Dy(i&))=0, where D, is given
by Eq. (22). When B=C/ Z% then we obtain the solution &
=0; this is just the spinodal. Furthermore, the solution is
bounded above, i.e., @yo<Z;.

We find that there are an infinite number of complex
poles. These are essentially just the poles of the hard sphere
reference fluid. Of these, the pole with the smallest imagi-
nary part has a real part «; =2m/0. The imaginary part of
this pole, «, takes relatively large values at low densities
and decreases as the density is increased. Thus we find, for
the fluid with A=0, that at low densities the purely imaginary
pole dominates the asymptotic decay of &(r). However, as
the density is increased, one finds that at some point &
=ay; on further increasing the density, the asymptotic decay
of h(r) crosses over from monotonic to damped oscillatory
decay, with a wavelength ~o. The line in the phase diagram
defined by the locus ap=q is termed the Fisher-Widom
(FW) line.””** For the case when Z,=1 and Z,=0.5, this line
is at high densities. In Fig. 3 we display the FW line for the
case A=0.0001 where this line is at densities po”>0.9 and
lies within the liquid-solid coexistence region.20

We now consider the case A #0. For purely imaginary
poles, k=i&, Eq. (20) becomes [cf. Eq. (22)]

D(id) ~ B C E

R I P BT
where E=4m0’Ap,>0 is independent of &, When B
=C/ Z%—E / Z%, then we obtain the solution =0 to the equa-
tion D(ia,;)=0, which corresponds to the spinodal. When A
is sufficiently small that there is no A line in the phase dia-
gram, then we find the following scenario: At the critical
point (or more generally, on the spinodal) there are two roots
of D(iay)=0, the solution @&,=a;=0 and another at a larger
value of &0=&8<Zz/ 0. On increasing €', moving away
from the spinodal, ag increases in value, while ag decreases
in value. As one moves further from the spinodal these two

(22)

(23)
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roots (poles) coalesce at a minimum of D(i&;) in the interval
0<a®y<Z,/o. On moving still further from the spinodal, we
find that there are no solutions to the equation D(ia,) =0, i.e.,
there are no purely imaginary poles in this portion of the
phase diagram. Near the spinodal, D(i&,) <0 for Z,/ o< &,
<Z,/o. However, on moving away from the spinodal, one
finds that in this interval the function increases and its maxi-
mum touches the axis D(i@,)=0. On increasing €' further
the function crosses the axis and there are two roots (purely
imaginary poles) in the interval Z,/o<ay<Z,/o. As one
continues to move away from the spinodal these two poles
separate, and very far from the spinodal one finds that one

pole o —Z7/o and the other pole af —Z3/a.

Analyzing the roots of D(k)=0 more generally, we find
that when the two purely imaginary poles discussed above
coalesce, they form a conjugate pair of complex poles at k
=+ +iag. At the point of coalescence a;=0, i.e., the wave-
length of the oscillations is infinite. For all the relevant val-
ues of €, a; remains small, such that 0<a;<27/0. It is
this conjugate pair of poles which generates the oscillatory
decay of h(r) with a wavelength >, indicating the tendency
toward cluster formation. The line in the phase diagram at
which these pairs of purely imaginary poles coalesce is de-
noted the Kirkwood line.*™* Kirkwood® was the first to
describe this mechanism for crossover from monotonic to
oscillatory decay in his study of (charge) correlations in elec-
trolytes. Moving away from the spinodal in the phase dia-
gram, the conjugate pair of complex poles with small «;
move from the real axis (increasing a;). Eventually, a; —0
and the poles rejoin the imaginary axis at some point in the
interval Z,/oc<ay<Z;/o, coalescing to form the second
pair of purely imaginary poles described above. There is
therefore a second Kirkwood line in the phase diagram. In
Fig. 7 we display the poles calculated numerically from Eq.
(19) with é(k) given by Egs. (9)—(12) along a path at the
critical density po>=0.2457 for a fluid with A=0.02, Z,=1,
and Z,=0.5. These results exhibit all the features of the sim-
pler model described above.

Figure 7(a) plots the imaginary part of the low lying
poles. For small values of €' there is a pair of purely imagi-
nary poles [solid line in Fig. 7(a)] coalescing at the first
Kirkwood point at €'=2.38 and evolving as a conjugate
complex pair (dash dotted line) until the second Kirkwood
point € '=6.03 when a second pair of pure imaginary poles
emerge. Figure 7(b) shows that the real part of the lowest
lying complex pole a;0 remains <0.16 throughout the range
where the asymptotic decay of A(r) is oscillatory. We see that
the pole with a; =2/, arising from the reference hard
sphere correlations, has ayo=2.8>Z,, and therefore for all
values of €', at this density, this pole does not determine the
asymptotic decay of h(r). We also display the next higher
order pole arising from the reference hard sphere correla-
tions, which has «;=4m/0o and ayo=4.3; the imaginary
and real parts of these poles are plotted as dashed lines in
Figs. 7(a) and 7(b). Note that for the poles originating from
the reference hard sphere correlations, the values of «; and
@, change very little as €' is increased.

As the parameter A is increased, the maximal separation
between the two Kirkwood lines increases (see Figs. 3-5);
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FIG. 7. (a) The imaginary part a, of the low lying poles for a fluid with
A=0.02, Z;=1, and Z,=0.5, calculated within the DFT (RPA) along a line of
constant density po°=0.2457, the critical density. The dashed lines corre-
spond to complex poles arising from the reference hard sphere correlations,
the dot dashed line to a complex pole with a small real part 0<a,
<2/ 0, and the solid lines to two purely imaginary poles. The point near
€'=2.38, where the first pair of purely imaginary poles coalesce corre-
sponds to the first Kirkwood point and the point near € '=6.03 where the
second pair coalesce corresponds to the second Kirkwood point for this
density (see Fig. 4). (b) The real part «; for the complex poles plotted in (a).
The inset is a magnification. Note that ;=0 at the two Kirkwood points and
remains small in the oscillatory region.

one Kirkwood line moves towards the spinodal (decreasing
€!) and the other moves away from the spinodal. Within the
DFT the lower Kirkwood line meets the spinodal at a value
of A=0.051 (for Z,=1 and Z,=0.5). For greater values of A
a \ line appears in the phase diagram, enclosing the region
where one expects the critical point. The N\ line corresponds
to the situation where the imaginary part ay— 0 for the com-
plex pole that has a small real component 0 <a;<<27/0 at
some point above the spinodal. A divergence is generated in
the static structure factor at k=k.=a,. Decreasing €' and
following the A line, one finds that the value of k. decreases
continuously and eventually k.—O0, i.e., the N\ line converts
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to the spinodal. For the case Z;=1 and Z,=0.5 we could not
obtain a solution for the SCOZA, near where one might ex-
pect to find the N\ line, above a certain value of A. On the
basis of the discussion at the end of Sec. IV, the value of A
above which SCOZA fails to converge is determined by re-
quiring that the threshold value of the relative amplitude19
A/€=0.097 is reached when the corresponding threshold
temperature Tfh: 1.7€ is equal to unity. This gives A
=0.057. This bound on A is somewhat larger than the value
A=0.051 predicted by the present DFT.

We confirmed that the scenarios for the pole structure
described in Fig. 7 are also present in the SCOZA theory.
The calculation of poles is straightforward because in
SCOZA one has analytic expressions for &(k).** In Figs. 4
and 5 we display the Kirkwood lines (open circles) calcu-
lated from the SCOZA alongside those from DFT (dotted
lines). We find good agreement between the results, demon-
strating that our simple DFT (RPA) describes correctly the
behavior of the poles in the model fluid.

We emphasize that there are two distinct mechanisms for
a crossover in the asymptotic decay of /(r) from monotonic
to damped oscillatory: (i) the coalescence of two purely
imaginary poles to form a conjugate pair of complex poles
defines a point on the Kirkwood line and (ii) the simpler FW
mechanism where, on decreasing the fluid density, a purely
imaginary pole descends down the imaginary axis and ac-
quires an imaginary part &, smaller than that of the dominant
complex pole with imaginary part ¢, so that the ultimate
decay becomes monotonic. As mentioned earlier, when Z;
=1 and Z,=0.5, the FW line is at high densities, inside the
region where we expect the solid phase to be the equilibrium
state (see Fig. 3). However, for larger values of Z, and Z, we
find that the FW line moves to lower densities, where it can
intersect the Kirkwood lines. In Fig. 8 we display the phase
diagram for a fluid with Z,;=6, Z,=2, and A=0.3. We find
that when the Kirkwood and FW lines intersect, another kind
of structural crossover line appears in the phase diagram:
there is a crossover from damped oscillatory decay with one
wavelength to damped oscillatory decay with another
wawelength.%’47 In the present case the crossover is from a
decay with a long wavelength of many particle diameters
(clustering in the fluid) to a decay with a wavelength ~o as
€ ! is increased (see Figs. 8 and 9). Note that for the choice
of parameters corresponding to the phase diagram in Fig. 8,
the liquid-gas transition may be weakly metastable with re-
spect to the fluid-solid transition. However, this does not
affect the crossover behavior of correlations, which is in a
region of the phase diagram far from any phase transitions.”’

The pole analysis described above points to those re-
gions of the phase diagram where clustering might occur,
i.e., the region between the Kirkwood lines. However, so far
we have determined only the form of the asymptotic decay
of h(r): whether it is monotonic or oscillatory as r— 0. One
must also calculate the amplitude of the longest wavelength
oscillatory contribution to 4(r) in order to assess how signifi-
cant clustering is in the fluid. This is straightforward within
the present DFT. The amplitude is determined by the residue
of the pole [see Eq. (18)], which is given by
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FIG. 8. Phase diagram for the case when Z,=6, Z,=2, and A=0.3. The
Kirkwood line (dotted) denotes the line at which the asymptotic decay of
h(r) crosses over from monotonic to damped oscillatory with wavelength
>0, and the FW line the crossover from monotonic to damped oscillatory
with wavelength ~o. Between the two regions of oscillatory decay there is
another (oscillatory to oscillatory) crossover line. The dashed line is the
continuation of the Kirkwood line, although in this region of the phase
diagram it denotes crossover between higher order poles, i.e., those with
larger values of ¢, than the leading order pole. There is also a second
Kirkwood line located just above the critical point so that in the immediate
vicinity of the critical point A(r) decays monotonically (OZ-type). However,
on the scale of this figure, this second Kirkwood line is indistinguishable
from the spinodal.
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where the prime denotes the derivative with respect to k. For
states just below the upper Kirkwood line the amplitude is
generally quite small. For example, when A=0.02, for the
fluid with Z,=1 and Z,=0.5 (see phase diagram in Fig. 4), at
the state point with p,0°=0.25 and € '=5, there is a complex
pole with @;0=0.0909 and ay0=0.613. This makes a
damped oscillatory contribution to h(r) of the form
A exp(—ayr)cos(ar—0)/r, with amplitude A=0.0994 and
phase 6=0.992; i.e., this term gives quite a small contribu-
tion to h(r), despite being the term that determines the ulti-
mate asymptotic decay. However, further below the Kirk-
wood line the amplitude .4 can become larger and in the
vicinity of a \ line, .4 can be very large so that the pole
provides a large contribution to g(r)=1+h(r) (see, for ex-
ample, the results in Fig. 2). Indeed, when the \ line is
reached, the amplitude A diverges since the pole k, in Eq.
(24) corresponds to a maximum of ¢(k) on the real axis and
¢’ (k,) vanishes. We will return to this point in Sec. VII.

(24)

VI. INHOMOGENEOUS FLUID: DENSITY PROFILES AT
INTERFACES

In this section we turn our attention away from the uni-
form fluid to situations where the one-body density is spa-
tially varying. We consider two separate cases: (a) the fluid
adsorbed at a hard wall and (b) the liquid-gas interface. In
both cases the pole analysis for the decay of A(r) is directly
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(b)

FIG. 9. The imaginary part a;, of the lowest lying poles for a fluid with Z,=6, Z,=2, and A=0.3, calculated within the DFT (RPA) along lines of constant
density: (a) pa=0.15, (b) the critical density po>=0.2457, and (c) po>=0.4. The dashed lines correspond to complex poles arising from the reference hard
sphere correlations, the dot dashed line to the complex pole with a small real part 0 <a; <27/ 0, and the two solid lines to two purely imaginary poles. The
point where the two lowest lying pure imaginary poles coalesce corresponds to a Kirkwood point [see (a)]. In (b) this coalescence occurs between higher order
poles. The crossover at €'=1.79 is between complex poles with different oscillatory wavelengths (see the line in Fig. 8). The subsequent crossover at €'
=2.42 is from oscillatory to monotonic decay. In (c) there is oscillatory to oscillatory crossover at € '=0.75. The pole with a0~ 2 remains the dominant

one for larger €. Note that in (a)—(c) there is a second Kirkwood point at € ' =~ 0.4, very near the critical value of €', so that at smaller values of €' (close

to the spinodal) there are two purely imaginary poles, similar to the results displayed in Fig. 7(a).

relevant to the decay of inhomogeneous fluid one-body den- imaginary and
sity profiles; the same pole(s) which determine the
asymptotic decay of h(r) determine the asymptotic decay of
the one-body density proﬁles.27 For density profiles which
vary only in one (Cartesian) direction, e.g., when the external
potential V,(r) =V (z), then provided V,(z) is sufficiently

short ranged the longest range decay of the profile into bulk ~ When the pole with the smallest «, is complex. The P01%§
at z=o takes the form k,=iay or k,==xa;+ia, correspond to the bulk density p,,.

Using the DFT described in Sec. II, we have determined
the one-body density profiles p(z) for the two cases men-
tioned above. Minimizing our approximation for [p]
p(2) = pp ~ ppA,, exp(= &gz), z— (25) yields an Euler-Lagrange equation for the equilibrium den-
sity profile p(z) which can be solved by means of a standard
iterative scheme. In Fig. 10, we display the one-body density
when the pole with the smallest value of « is purely profiles at a planar hard wall with

p(2) = pp ~ ppA,, exp(- agz)cos(az— 6,), z—
(26)



014104-11  Colloidal fluid with competing interactions

05 T T

zlo

FIG. 10. Density profiles p(z) at a planar hard wall for a fluid with param-
eters A=0.082, Z;=1, and Z,=0.5 (see the phase diagram in Fig. 5). The
profiles are calculated for a fixed bulk density p,0°=0.2, for €'=1.7, 2, 3,
and 16. In the inset we plot In|p(z)>~p,o°|. For €'=16 the asymptotic
decay of p(z) is monotonic (exponential). The other three states lie on the

oscillatory side of the Kirkwood line. Note that the decay length increases as

€! is reduced and the \ line is approached. For a given value of €' the

wavelength of the oscillations is the same as that of g(r) in Fig. 2.
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The fluid has parameters A=0.082, Z,=1, and Z,=0.5 (see
phase diagram in Fig. 5). The density profiles are calculated
for a fixed bulk density pbo3=0.2, for €'=16, 3, 2, and 1.7.
For € '=16 the state point is above the Kirkwood line, and
the bulk asymptotic decay of /(r) is monotonic of the form
in Eq. (25). This is confirmed in the inset of Fig. 10 which
plots In|p(z)”—p,a”| vs z; when the decay of the density
profile is of the form in Eq. (25) the decay of the profile in
this representation is a straight line. The other profiles are
calculated for state points inside the Kirkwood line, with
increasing proximity to the A line. From the inset to Fig. 10
we see that the decay of these profiles is indeed of the form
in Eq. (26). The profile for € '=1.7, a state point near the \
line, has a long decay length and oscillates with a long wave-
length of about 230. The density profiles for state points in
the vicinity of the N line are significantly different from those
far away. These profiles should be compared with the radial
distribution functions g(r) in Fig. 2 where the same trends
with €! are observed.

It is striking that as €' is reduced the contact density
p(o/2) reduces dramatically and for € '=1.7 there is a re-
gion where the density near the wall is significantly depleted
below the bulk value out to distances of about 4o0. That the
density at contact should become smaller follows from the
hard-wall sum rule: kzgTp(o/2)=p, where p is the pressure of
the bulk fluid far from the wall. Decreasing € ! corresponds
to turning on more of the attractive interaction, thereby de-
creasing p.

In Fig. 11 we display the density profiles for the free
planar gas-liquid interface of the same fluid. Profiles are cal-
culated for coexisting states with e€'=14,1.5, 1.6, and 1.64.

1

J. Chem. Phys. 126, 014104 (2007)

0.7 T T T T T T T T T

1 1 1 [ N L N N N

30 20 -10 0 10 20 30 40 50
zlo

O 1
-50 -40

FIG. 11. Density profiles for the free gas-liquid interface calculated for
various values of €', for a fluid with parameters A=0.082, Z,;=1, and
7Z,=0.5 (see the phase diagram in Fig. 5). This fluid has a \ line close to
where one expects the critical point. We find that as €' is increased, the
density difference between the coexisting phases decreases and the profiles
become more structured, i.e., the oscillations become more pronounced on
both sides of the interface. This is opposite to what occurs in simple fluids
and reflects the proximity of the coexisting states to the \ line.

This fluid exhibits a A\ line enclosing the region of the phase
diagram where one expects the critical point, see the inset to
Fig. 5. States outside the A line, i.e., for €1=<1.65, corre-
spond to conventional coexistence between (disordered) lig-
uid and gas. However, as the four coexisting states that we
consider lie inside the Kirkwood line, within our mean field
DFT we expect the asymptotic decay of the density profiles
to be damped oscillatory on both sides of the interface. This
is indeed what we find. Such behavior was found previously
in DFT studies of fluid-fluid interfaces of the binary Gauss-
ian core model.*® What is striking about the present results
and what makes them different from results for other models
is that as €! is increased and the density difference between
the coexisting phases decreases, the profiles become more
structured at the interface. Normally, the interfacial density
profile becomes less structured when the difference in den-
sity between the coexisting phases decreases. The difference
is due to the fact that the present system exhibits a A line and
the coexisting densities become closer to this line as € ! is
increased (see Fig. 5). The proximity of the \ line implies
long wavelength oscillatory density profiles decaying slowly
into bulk on either side of the interface. It should also imply
that the propensity towards cluster formation in both phases
is stronger. Clustering should manifest itself in highly struc-
tured interfacial profiles.

VIl. DISCUSSION

Using a simple DFT and the SCOZA integral equation
theory, we have investigated the bulk structure and phase
behavior of a model colloidal fluid with competing interac-
tions. In particular, we have examined in detail the
asymptotic decay of the radial distribution function g(r) and
have found a rich variety of decay scenarios. The presence of
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clustering in the fluid, which occurs for sufficiently large
values of the repulsion amplitude A in the pair potential
[Eq. (1)], is reflected in a long wavelength (>0) damped
oscillatory decay of g(r). For small values of A the region of
the phase diagram in which the decay of g(r) is long wave-
length oscillatory is bounded above and below by two Kirk-
wood lines (see Figs. 3 and 4). On these lines the asymptotic
decay of g(r) crosses over from damped oscillatory to mono-
tonic (exponential) decay. As A is increased we find within
the mean field DFT (RPA) that the lower Kirkwood line is
replaced by a \ line (see Figs. 5 and 6), indicating a transi-
tion to a phase with undamped periodic density fluctuations,
e.g., a cluster or a stripe phase. Note that the appearance of a
region in the phase diagram with long wavelength oscillatory
decay of correlation functions is not restricted to fluids with
competing interactions. Such behavior is to be expected in
any system with competing interactions.”®* In Ref. 49 the
authors investigate the form of the correlation functions in
frustrated O(n) spin systems. They find that as the strength of
the frustration parameter (the analog of the parameter A in
the present system) is increased, a region in the phase dia-
gram opens up in which the decay of spin-spin correlations is
oscillatory, crossing over above and below to regions of
monotonic decay, in much the same way as in the present
fluid system.

In general, the results of our simple mean field DFT
(RPA) are in good qualitative and sometimes quantitative
agreement with the more sophisticated (and more accurate)
SCOZA theory. This reflects the fact that our focus has been
on state points where the parameters A, e<1. Recall that
(—e+A)kgT is the value of the pair potential at contact,
r=0", so that we have focused on cases where the portion of
the pair potential that we treat in mean field fashion has an
amplitude <kzT. We expect the present mean field DFT to
be less reliable when (e—A)>1, or when the width of the
attractive portion of the pair potential becomes narrow, i.e.,
when Z; becomes very large. In the present study we have, in
the main, avoided these regimes; an exception is the system
described in Fig. 8 where Z,=6.

In Sec. VI we presented results from DFT for inhomo-
geneous one-body fluid density profiles. The oscillatory den-
sity profiles in Figs. 10 and 11 correspond to state points
between the Kirkwood and the A line in the phase diagram of
Fig. 5, where the system is a disordered fluid, albeit with a
propensity towards cluster formation. For state points in the
vicinity of the A line we find some very striking density
profiles with pronounced long wavelength (>o) oscillations.
It is important to inquire whether such behavior pertains be-
yond the mean field (MF) treatment we present here.

Determining the existence or nonexistence of a \ line is
a problem that arises for other types of fluids, e.g., micro-
emulsions near the transition to a lamellar phase and smectic
liquid crystals. Recently, much effort has been focused on a
possible A\ transition for charge ordering in the restricted
primitive model (RPM) in which the two species of ions are
modeled by equal sized hard spheres carrying equal and op-
posite c:harges.30 It is well known that in the RPM the loca-
tion of the A line in the phase diagram depends sensitively on
the choice of (MF) approximation (see Ref. 30 and refer-

J. Chem. Phys. 126, 014104 (2007)

ences therein). For example, a simple DFT yields a \ line of
continuous transitions between a uniform disordered phase
and a charge-ordered phase, whereas the more sophisticated
MSA predicts no N transition. For the former case Ciach et
al.*® studied correlation functions in some detail and found
that on approaching the A line, from the disordered side, both
the decay length and the amplitude of the charge-charge pair
correlation function diverge as 712 where 7 measures the
“distance” of the state point from the N line. The derivation
of Ciach et al. is based on a particular form for the (charge-
charge) inverse correlation function. However, their results
generalize straightforwardly50 to any fluid system where the
dominant poles approach the real axis at Re(k,)=k,.# 0 and
the other poles are well removed. As this situation pertains in
the present DFT (RPA) treatment of our model fluid, we
expect that close to the A\ transition,

rh(r) ~ A exp(— agr)sin(k,r), , (28)

r— ®

with ay~ 72 and A~ 72, where again 7 measures the dis-
tance from the N line. This result arises also in a simplified
treatment based on the small-k expansion of the direct cor-
relation function: 1/5(k)=1-pé(k) ~a+bk>+ck*. For a>0,
¢>0, the condition that 1/S5(k) should be positive definite
for every k>0 is violated for b<<0, b2 —4ac=0, and the
appearance of the N\ line corresponds to the marginal case
where b*>~4ac=0. As the \ line is approached from the dis-
ordered side, one has b<0, b*~4ac— 0, which via contour
integration, gives Eq. (28) with A~ 1/\4ac—b. Clearly the
MF treatment implies the unphysical result that pair correla-
tions are unbounded on approaching the A line. What occurs
beyond the MF theory? For the RPM a field theoretic
treatment,”’ based on the approach of Brazovskii,”> shows
that incorporating fluctuations leads to the disappearance of
the N\ transition. Rather, a first-order transition to a charge-
ordered (crystalline) phase occurs at a temperature below
that of the original MF \ transition. (Note that the \ transi-
tion is absent in simulation studies of the continuum RPM.)
Moreover, the charge-charge correlation function changes
smoothly near the original MF N\ transition; the decay length
and amplitude vary continuously.53

One might infer that the very striking long-ranged decay
of g(r) observed in Fig. 2 for € '=1.66, at a state point rather
close to the A line in Fig. 5, is an artifact of the MF treatment
since including fluctuation effects would remove the A tran-
sition, replacing this with a first-order transition to some or-
dered state (cluster or stripe phase, perhaps). For state points
somewhat further from the \ line, such as € '=2.0, the long
wavelength oscillations still develop in g(r), but these are
more highly damped. Nevertheless, the corresponding struc-
ture factor S(k) exhibits a pronounced peak at a nonzero
wave number k, (see Fig. 1). The fact that SCOZA yields a
very similar structure factor gives us some confidence in the
results of the mean field DFT (RPA) for such state points. On
the other hand, unlike the RPA, SCOZA does not yield a A
line. Rather, it fails to converge in the regime in which a A
line is expected according to the RPA. As the convergence
limit is approached, the cluster peak in S(k) may reach values
much larger than unity, but nevertheless the peak height does
not grow arbitrarily, since a singularity in S(k) at nonvanish-
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ing k is incompatible with the core condition [Eq. (14)],
which is fulfilled in SCOZA. This can be regarded as
an indication that the N\ transition will be removed when one
goes beyond the MF approximation. It is tempting to
introduce a rough and ready criterion, analogous to the
Hansen-Verlet criterion for freezing, that establishes when
we expect the MF treatment to fail or to imply the onset of
ordering. Such a criterion might be when the peak height
S(k.)~0O(10").

Returning to the one-body profiles, we note that none of
the bulk state points in Fig. 10 for adsorption at the planar
hard wall are particularly close to the N line, and we might
expect our DFT results to be at least qualitatively correct.
However, in Fig. 11 for the density profiles at the planar
liquid-gas interface it is clear that the striking increase in
structuring as € ! is increased is a direct consequence of the
close proximity of the \ line. It is unlikely that such behavior
could survive beyond MF. A possible scenario when fluctua-
tions are included is the phase diagram of Fig. 4 where there
are two Kirkwood lines and the critical point lies below the
lower line [labeled (2) in Fig. 4]. The MF DFT would yield
monotonically decaying profiles on both sides of the inter-
face for coexisting states just below the critical point, but for
1.9<€'=<2.25 one would expect damped oscillatory pro-
files on both the liquid and the gas side. For states with
€'!=<1.9, where the upper Kirkwood line [labeled (1) in
Fig. 4] intersects the gas binodal, the asymptotic decay on
the gas side would be monotonic. Of course, the MF DFT
omits effects of capillary wavelike fluctuations that act to
erode the amplitude of the oscillations; this mechanism is
discussed in Ref. 26 for the case of model colloid-polymer
mixtures.

We believe that much more work is required to under-
stand the nature of the fluid correlations in such systems,
particularly in regions of the phase diagram where the
present MF theory predicts a N line. Indeed, some of us are
already engaged in such studies using Monte Carlo simula-
tions and various integral equation theories. Of course, one
could also employ DFT to investigate possible spontaneous
ordering, i.e., whether there are solutions corresponding to
nonuniform (e.g., periodic; stripe or cluster) phases that have
a lower free energy than those corresponding to a uniform
phase.

We conclude by speculating that since colloidal systems
with competing interactions display modulated structures,
these systems will have interesting optical properties and
may have applications in display technologies.
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