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ABSTRACT The volatility and uncertainty of wind power often affect the quality of electric energy,

the security of the power grid, the stability of the power system, and the fluctuation of the power market.

In this case, the research on wind power forecasting is of great significance for ensuring the better

development of wind power grids and the higher quality of electric energy. Therefore, a lot of new forecasting

methods have been put forward. In this paper, a new forecasting model based on a convolution neural

network and LightGBM is constructed. The procedure is shown as follows. First, we construct new feature

sets by analyzing the characteristics of the raw data on the time series from the wind field and adjacent

wind field. Second, the convolutional neural network (CNN) is proposed to extract information from input

data, and the network parameters are adjusted by comparing the actual results. Third, in consideration of

the limitations of the single-convolution model in predicting wind power, we innovatively integrated the

LightGBM classification algorithm at the model to improve the forecasting accuracy and robustness. Finally,

compared with the existing support vector machines, LightGBM, and CNN, the fusion model has better

performance in accuracy and efficiency.

INDEX TERMS Convolutional neural network, fusion model, LightGBM, ultra-short-term wind power

forecasting, wind energy.

I. INTRODUCTION

Continuous consumption of fossil energy has caused severe

energy shortages and environmental pollution problems.

To alleviate these situations, vigorous development of clean,

sustainable and renewable energy has become the major topic

recently. Wind energy, as the most efficient energy source,

has the advantages of zero emissions, free pollution, and

no fuel cost, and becomes the third largest energy source

after thermal power and hydropower. However, wind power

has its disadvantages, like uncertainties, which poses great

challenges to power quality, grid security, and power system

stability. Accurate and timely wind power forecasting has

great significance for the safe operation of the grid [1]–[3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Mouloud Denai.

According to the length of forecasting time, wind power

forecasting can be divided into the medium-long term, short-

term and ultra-short-term forecasting. The medium-long term

forecasting is mostly used for making quarterly power gen-

eration plans of grid and wind farm construction. The short-

term forecasting can help with the rationality of the economic

system and maintenance of the wind turbine. The ultra-short-

term forecasting is theoretically the most demanding fore-

casting method, mainly used control the daily operation of

the wind farm unit [4], [5]. According to the research object,

wind power forecasting can be divided into physical methods

and statistical methods. The main difference between them is

that the former uses real-time data such as weather, while the

latter pays more attention to the mining of historical data [6].

For statistical methods, commonly used single model

prediction schemes include persistence methods [7], sup-

port vector machines [8]–[10], the linear model including
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ARMA, ARIMA and autoregressive model [11], [12], and

nonlinear models such as Fuzzy model [13], wavelet-based

model [14] and ANN [15]–[19]. Since the ultra-short-term

forecast just takes a fewminutes as the forecasting unit, which

causes the data to fluctuate drastically.Meanwhile, the single-

model is sensitive to the data, none of the methods mentioned

above can well solve the problem. For the poor performance

of forecasting, researchers begin to pay more attention to

hybrid models, including a weather ensemble prediction

framework for wind power forecast was constructed [20],

an ensemble learning method for sample entropy technique,

empirical mode decomposition (EMD) and extreme learning

machine was proposed in [21]. In recent years, good results

have been achieved. The major difference between the hybrid

models and the single-model is that the former uses multi-

algorithm, which can make remedies to the disadvantages

of each method, and acquire the complementary strengths,

in consequence, much more stable and effective performance

will be achieved.

One similarity of some of the statistical learning methods

mentioned above is that they are shallow deep learning mod-

els, while considering the wind power data is complicated,

these shallow models may not be sufficient to extract corre-

sponding nonlinear characteristics [22]. In addition, with the

rapid development of smart grids, people pay more and more

attention to the importance of data, forcing us to enter the era

of big-data. It is difficult to extract the deep features of wind

power data by traditional methods [23]. So, in order to make

full use of these data, deep learning method may be the most

effective way, which can effectively learn the abstract features

in the complicated data.

In summary, the instability of the single model prediction

and the shallow model’s unsatisfactory data feature mining

have inspired us to move toward deep learning and ensem-

ble learning. There have been many papers in this area in

recent years, including model combining stacked autoen-

coder (SAE) and backpropagation algorithm [24], model

based on wavelets theory, wavelet packets, time series analy-

sis and ANNs [ 25]. The disadvantage of these deep learning

methods is that the ability to search for a global optimum

is limited, and the number of parameters to be substantially

increases as the neural network goes deeper. Because CNN

adopts the weight sharing technique, so it has fewer param-

eters than the previous method, and it also can effectively

extract the intrinsic features in wind power data [26]. How-

ever, the author of this article only converts wind power data

from 1d data to 2d and uses CNN for feature extraction.

This data construction method is unreasonable and does not

optimize CNN according to data. Meanwhile, the spatiotem-

poral correlation of wind power data is not well utilized.

Paper [27] proposed awind speed predictionmethod based on

correlation analysis of adjacent wind turbine data, and proved

the value of the correlations in this data.

The main contributions in the paper are listed as follows:

(1) By analyzing the correlation between adjacent wind

turbines, a way of combining adjacent wind turbine

data is proposed, it further reduces the forecasting

errors from original data.

(2) Construct time-order character and introduce convolu-

tional neural networks to explore the correlation and

nonlinear characteristics of data at adjacent time points.

(3) An ensemble learning method based on LightGBM and

CNN is proposed, which acquires better performance

in accuracy and reliability than usual wind power

forecasting model.

II. THE CONVOLUTIONAL NEURAL NETWORK MODEL

A. CNN OVERVIEW

In the deep learning theory, the most developed part is the

convolutional neural network [28], which has many achieve-

ments in the field of image recognition and pattern recog-

nition. The core of CNN is a convolutional layer, which

contains a lot of different convolution kernels to extract

various features. In the meanwhile, the convolutional layer

cooperates with the pooling layer to reduce the number of

parameters and speed up the calculation. Finally, a large

number of features extracted by the convolution kernel are

all passed to the fully connected layer, which is used to

combine the previously extracted features to achieve the final

forecasting. In this way, we can fetch the implicit information

of the data to achieve faster and more stable predictions.

B. DATA NORMALIZATION

Almost all of the wind power forecasting work requires

dimensionless processing of data to avoid errors caused

by different units. The types of normalized methods

mainly include Min-Max normalization and Zero-mean

normalization.

1) MIN-MAX NORMALIZATION

It’s a linear transformation method, also known as deviation

standardization, that makes the result fall to the interval [0,1].

The transformation formula is as follows:

x∗ =
x − min

max − min
(1)

where max is the maximum value of the sample data and min

is the minimum value of the sample data.

2) ZERO-MEAN NORMALIZATION

This method needs to calculate the mean and standard devi-

ation before transforming the original data. The processed

data conforms to the standard normal distribution, that is,

the mean value is zero, the standard deviation is one. The

transformation function is as follows:

x∗ =
x − µ

σ
(2)

where µ is the mean of all sample data and σ is the standard

deviation of all sample data.

In this paper, we use Min-Max normalization to trans-

form power data of the wind farm. Because temperature,
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TABLE 1. Comparison of the model error with or without pooling layer.

wind directions and other features of the data set have pos-

itive and negative values and the zero-mean normalization

can retain its direction information, so we adopt zero-mean

normalization.

C. CONVOLUTIONAL NEURAL NETWORK CONSTRUCTION

The construction parameters of the CNN include the size of

the convolution kernel, selection of pooling layer, and the

number of convolution layer. This section will focus on these

topics, analyze the reasons for selection and compare with

actual results.

1) ACTIVATION LAYER

The purpose of the activation layer is to change linearly

inseparable problem into a separable one. This change can

make the model more adaptable. Since the ReLU (Rectified

Linear Unit) function always has a derivative value of 1 when

the input value is greater than 0, the gradient diffusion phe-

nomenon is easy to overcome. and the function is as follows:

al(i,j) = f
(

yl(i,j)
)

= max{0,yl(i,j)} (3)

where al(i,j) is the activation value of the convolutional layer

output yl(i,j).

2) POOLING LAYER

The purpose of the pooling layer at the beginning of the

design is to enlarge the local features of the image, speed up

the calculation and reduce the possibility of overfitting. In the

meanwhile, it can reduce the impact of data fluctuations on

predictions to some extent. The commonly used pooling layer

is the max-pooling layer, and the function is as follows:

P l(i,j) = max
(j−i)W+1≤t≤jW

{

al(i,t)
}

(4)

where al(i,t) represents the activation value of the t neuron in

the I layer of the l layer, and Pl(i,j) represents the width of the

pooled area.

The wind power data used in this paper is numerical data

and theoretically does not have the above characteristics of

picture data. For the difference between with and without

pooling layer in the model, the following table lists the results

of different structures. It can be seen that the model without

the pooling layer has a better forecasting effect than the other.

3) FULLY CONNECTED LAYER

The fully connected layer is generally located in the last of the

convolutional neural network. Its function is to summarize

the features extracted by the previous convolution layers,

and then make a forecasting. The function is as follows:

zl+1(j) =

n
∑

i=1

wlija
l(i) + blj (5)

where wlij is the weight of the i-th neuron (a
l(i)), and blj is the

bias value.

4) THE SIZE OF THE CONVOLUTION KERNEL

The convolution layer is to extract features by sliding the

convolution kernel on data and convolving with the covered

data. Because this method has the property of shared weights,

it reduces the risk of overfitting and increases the speed of

calculation. The calculation process is as follows:

yl(i,j) = kli ∗ x
l
(

xj
)

=

ω−1
∑

j′=0

k
l(j′)
i xl(j+j

′) (6)

where k
l(j′)
i represents the j′ weight of the I convolution

kernel of layer l, xl
(

xj
)

represents the j convolution local

area in layer l, and ω is the width of the convolution kernel.

There are not many parameters that can be adjusted in the

convolutional layer. If the size of the convolution kernel is

too large, the parameters of the network will increase, this

will result in training speed decrease. But if it is too small,

the accuracy of feature extraction will be affected, this will

result in a worse predictive effect. Therefore, the selection of

the convolution kernel size is particularly important.

Network depth has the similar considerations, too many

layers of the convolutional layer will result in too many

network parameters, slow training speed, and risk of over-

fitting. However, an overly simple network cannot guarantee

sufficient learning of the power of wind power changes.

At the same time, in order to reduce the noise caused by

padding, the convolutional layer in the structure does not

adopt padding. As a result, after the feature data entered CNN,

the length of time-order characters declined rapidly, so the

number of hidden layers could not be set toomuch. Therefore,

according to this rule, we set three models with convolu-

tional layers of one, two, and three, and compare the effects

of different convolution kernel sizes. Finally, according to

Table 2, for any number of CNN networks, the size of the

convolution kernel is set to 3. And two-layer convolution is

most suitable for the wind power data used in our experi-

ments, effectively extracting informationwithout over-fitting.

Therefore, the CNN structure adopted in this paper is shown

in Fig 1. It consists of two convolutional layers, two Dropout

layers, a Flatten layer, a fully connected layer, and an output

layer.

III. MODEL IMPROVEMENT

In general, the convolutional neural network has three types

of hidden layer—the convolutional layer, the pooling layer,

and the fully connected layer. The role of the fully connected

layer is to integrate features that have been highly abstracted
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TABLE 2. The errors of CNN with different structures.

FIGURE 1. The structure of the convolutional neural network.

after multiple convolutions and normalization. These non-

linear combination features are learned in a simple manner by

a fully connected layer to forecast output. Essentially, the con-

volutional layer provides a meaningful, low-dimensional, and

almost constant feature space, and then fully connected layer

learns a non-linear equation in this space. However, when the

amount of data is not enough or the quality of data is worse,

the learning of this nonlinear equation will fall into a local

optimum situation, which can be solved by replacing a fully

connected layer with a stronger classifier.

A. THE INTRODUCTION OF LightGBM

LightGBM is a data model based on GBDT proposed by

Microsoft in 2017. Like other boosting algorithms, GBDT

combines weak learners to form a strong one. However,

the decision tree used in the GBDT algorithm can only be a

regression tree which is because each tree of the algorithm

learns the conclusions and residuals of all previous trees.

By using the residual of each predicted result and target value

as the target of next learning, a current residual regression

tree is obtained. And the results of multiple decision trees are

added together as the final predicted output [29]. Although

GBDT has achieved good learning effects on many machine

learning tasks, GBDT is faced with adjustment of accuracy

and efficiency with the geometric growth of data volume in

recent years. LightGBM [30] algorithm has been put forward

at this time.While not reducing the accuracy of the prediction,

it greatly speeds up the forecasting speed and reduces the

memory utilization.

The computational time of traditional GBDT algorithm

is often consumed in the construction of a decision tree.

The construction of a decision tree needs to find the optimal

FIGURE 2. The generation strategy of tree in LightGBM.

segmentation point. The general method is to sort feature

values and then enumerate all possible feature points. This

method wastes time and needs lots of memory. LightGBM

algorithm uses an improved histogram algorithm. It divides

the continuous eigenvalues into k intervals, and the division

points are selected among the k values. So, it is better in

training speed and space efficiency than GBDT algorithm.

At the same time, the decision tree is a weak classifier. The

use of the histogram algorithm will have a regularization

effect and can effectively prevent overfitting.

In terms of reducing training data, LightGBM algorithm

uses a leaf-wise generation strategy. Compared with the

traditional method like level(depth)-wise, the leaf-wise can

reducemore losseswhen growing the same leaf. Furthermore,

the extra parameter is also used to limit the depth of the

decision tree and can avoid overfitting.
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In terms of reducing the number of features, the traditional

and mainly used method is PCA. This method is established

in the case where the features are redundant, so this method

has some limitations. The EFB algorithm used by Light-

GBM puts many features of high-dimensional data together

in a sparse feature space to avoid calculation of redundant

features.

And the histogram was constructed according to the

algorithm, which can accelerate calculation speed.

FIGURE 3. The forecasting process of ensemble learning model.

B. THE ENSEMBLE LEARNING MODEL

In this paper, we construct a model combining convolution

neural network and LightGBM algorithm. The ensemble pro-

cess is shown in Fig 3. The features of wind power data

are extracted and filtered through the convolution layer of

the convolutional neural network. Then use the model of

LightGBM to fetch information and classification again on

the output of flatten layer. Improve forecasting effect of the

model.

The final prediction process of the ensemble learning

model is as follows:
(1) According to the conclusions of the data analysis after-

wards, the data of multiple wind turbines are spliced

together, constructed the time series and normalized.

(2) Input the preprocessed data into the constructed CNN

model for pre-training, and obtain the parameters of the

convolutional layer and the fully connected layer.

(3) Freeze the parameters of the convolutional layer in the

CNN model, and input the data from the Flatten layer

into the LightGBM model, and retrain the model.

(4) Predict the test set data, anti-normalize the results, and

output the results.

IV. DATA ANALYSIS AND PREPROCESSING

The good predictive effect of a model is often not only related

to the model itself, but also to good data or good data analysis

and data processing methods. They can always directly or

indirectly affect the final prediction effect. The content of

this chapter is to analyze the wind power data in general,

so as to construct features on the basis of data. Meanwhile,

these analyses will help us to better understand data and fetch

information.

A. SAMPLE OVERALL EXPLORATION

The data set used in this paper is real data collected from a

wind farm in the northwest of China. These data included

5 groups of wind turbine for the whole 2013 year, with a

sampling period of 5min. Each sampling is the instantaneous

data of the current state. The data stored in the initial data

set includes time, ambient temperature, fan status, generated

power, wind speed, motor speed, ID, wind direction, daily

power generation, pitch angle. The features that need to be

deleted included date, time and ID. Because the daily power

generation is total power generation of the wind turbine

between early morning and the current time point, this feature

will induce the model to divide the data of each day into a

certain degree. This condition for the continuous prediction

of timing is unfavorable, so we convert this feature into total

power generation of 5 minutes before the current time point.

Because ultra-short-term wind power forecasting is gen-

erally predicting wind power within three hours. We try to

draw a numerical graph of power on time series and explore

its numerical characteristics. Fig 4 (a) depicts the variation

of wind power over the one day in 2013. Because the power

of wind field is mainly affected by surrounding environ-

ment, like wind speed, atmospheric density, temperature and

so on, thus leading the power of wind field to occur an

irregular change in a very short time. The red curve in the

figure is the power curve after smoothing. It can be seen

from the figure that even ultra-short-term wind power has

the great numerical correlation in timing, so we construct the

time-order character as the model inputs.

There are often several wind turbines on a wind farm.

These turbines are highly consistent due to their close prox-

imity to weather, climate, batch size, and even operator

impact. This will cause them to have a certain connection in

the power generation. Fig 4(b) shows the power curve of the

five adjacent wind turbines of the samewind farm on the same

day. It can be seen that there is a strong correlation between

them.

For the power grid, they are more concerned with the pre-

diction of the total wind power compared to the accuracy of

the single wind turbine power prediction. Therefore, as with

ensemble learning, we can use this correlation to reduce

the interference that may exist in the single wind turbine

power data. So, we combine the characteristics of adjacent
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TABLE 3. Description and unit of data features used in the experiment.

FIGURE 4. The daily variation graph of wind power.

TABLE 4. Description and unit of data features used in the experiment.

wind fields at the same time point as the characteristics

of a time point. And, their power is averaged as output

power. To demonstrate the effectiveness of the method in

a subsequent experiment, we compared the error between

the prediction of the five wind turbines, the error between

actual value and mean predicting value in 5 single models

and the error between actual value and predicting value by

5 group data sets. We put the results in Table 4. By comparing

the error between the prediction error of the first five sets

of single wind turbine power and the average error of the

group 6, we can see that the addition ofmultiple wind turbines

to predict wind field power can largely compensate for the

impact of single wind turbine data fluctuations on forecasting

results, and the relationship between single wind turbine can

also be learned. These can be seen through the comparison of

the data in groups 6 and 7. To some extent, this method can

reduce the disturbance of single wind turbine power data and

improve the model robustness.

B. TIME-ORDER CHARACTER

From the first subsection, we can see that there is a tim-

ing correlation between the values of wind power. In this
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FIGURE 5. The structure of a time-order character.

FIGURE 6. The error curve of different lengths time-order characters.

subsection, we will build time-order character according to

the correlation, and the time-order character will be used to

predict the power of the next time point. At the same time,

the power of all time points is predicted by sliding-window

prediction and compared with the actual value. For example,

as shown in figure 5, all the features of the first eight data are

selected as the first input x1 of a model to predict the power

y1 of the next time point. In the same way, we select the data

from the second to the ninth time point as the next input x2

to predict y2.

Although the CNN can better learn the temporal correla-

tion in wind power data by building time-order characters,

if the time-order characters are too long, there will be too

much redundant data in the features. These redundant data

will reduce the accuracy of the prediction.

Fig.6 shows the error magnitude of MSE and MAE cor-

responding to the prediction of time-order characters of dif-

ferent lengths by CNN. The horizontal axis is the length

of time-order characters and the vertical axis is the error

magnitude. It can be seen that the first half of the error curve

shows a downward trend, and the second half of the error

curve starts to rise with the increase in length. According to

the curve, both MSE and MAE errors are small at the same

time, so we set the length of time-order character to eight.

As thus, we can make use of the original data.

V. RESULTS ANALYSIS

In the experiment, to fully verify the proposedmodel’s perfor-

mance, two widely used forecast accuracy evaluation criteria

are chosen to compare with SVM, LightGBM, DNN, CNN

and CNN_LGBM. The smaller the value, the better forecast-

ing effect. These criteria are theMeanAbsolute Error (MAE),

and the Mean Square Error (MSE). Each criterion is defined

using the following formula:

MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ (7)

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (8)

The data split ratio adopted by the test was 8:1:1. That

is, eighty percent of original data are used as the training

set to train the model parameters, ten percent of the original

data is used as the validation set, which is used for model

optimization during model training, and another ten percent

of original data is used as the test set to test the forecasting

effect of model.

Since we added the Dropout layer and the early stop

mechanism in CNN to prevent the model from overfit-

ting, the results of the experiment have some randomness.

So, we trained each model separately for 10 times to prevent

the contingency of a single forecasting and to guarantee

the fairness of the result. Meanwhile, in order to ensure the

validity of the evaluation criteria, the input of all models in the

experiment is the same. The parameters used in all the models

are tuned by grid search or experiment, and the parameters of

the ensemble learning model are the same as the parameters

of the single model, which ensures the validity of ensemble

learning. The key parameters of all the models used in the

experiment are summarized in table 5.

Table 6 shows the error for different model predictions.

(1) It can be seen from the Mean Square Error (MSE) that

the three deep learningmodels have different degrees of

advantages over LGBMand SVM, indicating that in the

case of more complex data, machine learning methods

are not sufficient to learn non-structural features and it

is difficult to predict accurately. Although the ensem-

ble learning model is inferior to CNN in two out of

ten results, the overall trend of the ensemble learning

model is better. Facing data extracted through CNN,

it is oftenmore effective to use simplemachine learning

methods to predict than the fully connected layer.

(2) It can be seen from the Mean Absolute Error (MAE)

that the performance of the CNN and the DNN is

slightly worse than the LGBM. However, our ensemble

learning model effectively overcomes this defect and

has lower errors. The reason for this phenomenon is

that the CNN and DNN prediction errors of very small

samples are much larger than the traditional machine

learning methods. This also proves that the deep learn-

ing method is easy to over- when the training data is not

good enough. The effect of other models is obviously

better than the SVM which indicates that SVM is not

adaptable enough to deal with wind power, and does

not dominant in accuracy and speed;

(3) At the end of the table is the average results of the

model running 10 times. On the MSE error, the ensem-

ble learning method has a 4%2% 2.5% improvement

VOLUME 7, 2019 28315



Y. Ju et al.: Model Combining CNN and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting

TABLE 5. The parameter values for different models.

TABLE 6. The results of different models.

FIGURE 7. The whole test set and last six hours’ forecasting curve.

compared to the LGBM CNN DNN. There are also

1%4.4% and 5% improvements on MAE. At the same

time, MSE and MAE increased by 28.5% and 35%

respectively compared with SVM;

Fig 7 shows the forecasting results of the test set by the

fusion model. Fig 7(a) is the forecasting curve for the whole

test set, and the Fig 7(b) is the forecasting curve for the

last 6 hours. It can be seen from the figure that even if the

28316 VOLUME 7, 2019



Y. Ju et al.: Model Combining CNN and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting

wind power changes in a short period of time, the ensemble

learning model can extract the conventional information and

have a good prediction effect.

VI. CONCLUSION

This paper proposed a wind power forecasting model based

on CNN and LightGBM algorithm for high accuracy of

wind power forecasting. By analyzing the diurnal variation

numerical curves of wind power, it is determined that wind

power has a great correlation in time series. Then combined

with forecasting results of the CNN, the optimal length of

the time-order character is determined. By calculating the

Pilton correlation coefficient of adjacent wind turbines power,

the characteristics of adjacent wind fields are constructed to

improve the stability of the forecasting model.

An ensemble learning model of convolutional neural net-

work and LGBM is constructed to achieve higher accuracy

based on above. Finally, comparing the errors between the

actual and forecast values of different models, we can see that

CNN can effectively fetch information of wind power data,

LightGBM can summarize this information and improve

model robustness. It also shows that the ensemble learning

model of this paper has better prediction accuracy than the

traditional prediction model when dealing with the volatility

of ultra-short-term wind power.

One of the limitations of this paper is that whether it is

CNN or LGBM, whether it is a single model or an ensemble

learning model, their robustness is difficult to guarantee for

abnormal data and false data, but compared to two single

models, the model generated by ensemble learning is still

better, but it will consume more computing resources. Fortu-

nately, the computational complexity of these two algorithms

is actually relatively small, and the main purpose of this paper

is to explore the performance of ensemble learning methods.

However, if we can solve the above problems, it will be more

conducive to the improvement of the algorithm, this part of

the task will be placed in our follow-up work.
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