
A MODEL COMPLETE THEORY OF VALUED D-FIELDS

THOMAS SCANLON

Abstract. The notion of a D-ring, generalizing that of a differential or a
difference ring, is introduced. Quantifier elimination and a version of the Ax-
Kochen-Ershov principle is proven for a theory of valued D-fields of residual
characteristic zero.

The model theory of differential and difference fields has been extensively studied
(see for example [7, 3]) and valued fields have proven to be amenable to model
theoretic analysis (see for example [1, 2]). In this paper we subject a theory of
valued fields possessing either a derivation or an automorphism interacting strongly
with the valuation to such an analysis. Our theory differs from C. Michaux’s theory
of henselian differential fields [8] on this last point: in his theory, the valuation and
derivation have a very weak interaction.

In Section 1 we introduce the notion of a D-field and show that a differential ring
may be regarded as a specialization of a difference ring. This formal connection
supports the view that differential and difference algebra are instances of the same
theory. We introduce our axioms in Section 5 and prove quantifier elimination
in Section 7. This provides an example of a non-trivial difference ring admitting
elimination of quantifiers in a natural language. Differential fields possessing a
valuation compatible with the derivation in some way have appeared in many guises.
In model theory, these fields have arisen as Hardy fields associated to O-minimal
structures. However, in contrast to Hardy fields, the fields considered in this paper
have the property that for each value in the value group there is some differential
constant with that valuation. This restriction is intrinsic to the methods used here.

This paper derives from a chapter of my doctoral thesis [11] written under the
direction of E. Hrushovski whom I now thank for his advice and careful reading of
preliminary versions of this paper. I thank the referee for a very thorough reading
of this paper, for detailed and constructive suggestions for improvements and for
supplying a correct proof of Proposition 1.1.

1. Algebraic Preliminaries

In this paper, a valued field is a field K given together with a function v : K →
Γ ∪ {∞} where Γ is an ordered abelian group and ∞ is a formal symbol defined
by (∀γ ∈ Γ) (∞ > γ) ∧ (∞ + γ = ∞ = ∞ + ∞ = γ + ∞). v must satisfy
v(x) = ∞ ⇐⇒ x = 0, v(x · y) = v(x) + v(y), and v(x + y) ≥ min{v(x), v(y)}.
The ring of integers of K is OK := {x ∈ K : v(x) ≥ 0}. OK is a local ring with
maximal ideal mK := {x ∈ K : v(x) > 0}. The residue field of K is kK := OK/mK .
The quotient map π : OK → kK is called the residue map. If R is any (unital)
ring then we denote the units of R by R× := {x ∈ R : (∃y ∈ R) xy = 1}. We may
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recover Γ as K×/O×
K . We call an extension (L,w)/(K, v) of valued fields immediate

if w(L×) = v(K×) and π(OL) = π(OK). As described in Section 4, we think of a
valued field as a three-sorted structure: (K, kK ,Γ).

Let R be a commutative local ring with maximal ideal m. Let π : R → R/m
denote the reduction map. R is said to be henselian if Hensel’s Lemma is valid in
R. That is, whenever P (X) ∈ R[X] and a ∈ R such that π(P ′(a)) 6= 0 = π(P (a)),
then there is some b ∈ R such that P (b) = 0 and π(a) = π(b). A henselization of
R is a local homomorphism ϕ : R → Rh such that Rh is henselian and whenever
R → S is a local homomorphism from R to a henselian ring S, then there is a
unique local homomorphism Rh → S such that the following diagram commutes.

R −→ Rh

↓ ↙ ∃!
S

For a proof that henselizations exist, see [10].
By all rights the next proposition should be well known, but we could find

no published proof. A proof of this proposition follows from Lemma 4.5 of the
preprint [6]. The proof given below was supplied by the referee replacing my original
erroneous proof.
Proposition 1.1. Let (K, v) be a valued field of equicharacteristic zero. Let (L,w)
be a finite immediate extension of K. There is some α ∈ OL integral over OK such
that L = K(α) and if P (X) ∈ OK [X] is the minimal monic polynomial of α over
OK , then w(P ′(α)) = 0.

� Let M be a normal closure of L. Let w′ be an extension of w to M . Let RL be
the integral closure of OK in L and RM be the integral closure of OK in M . Let
p := {x ∈ RM : w′(x) > 0} be the prime ideal of w′ in RM .
Claim 1.2. If σ ∈ Gal(M/K) \Gal(M/L), then σ(p) ∩RL 6= p ∩RL.

z If σ(p)∩RL = p∩RL, then the valuations w′ and w′ ◦σ−1 agree on L. Since the
extensionM/L is Galois, Gal(M/L) acts transitively on the set of extensions of w to
M (see 14.1 of [4]). Thus, w′ ◦σ−1 = w′ ◦ τ for some τ ∈ Gal(M/L), but then w′ =
w′◦(τσ). Since the extension w of v to L is immediate, the residual and ramification
degrees of the conjugates of w′ over w are the same as they are over v. Call these
common degrees f and e. As (K, v) and (L,w) have residual characteristic zero,
they are each defectless in M (see Corollary 20.23 of [4]). Thus there are exactly
[M :K]
ef conjugates of w′ under the action of Gal(M/K) and [M :L]

ef conjugates of w′

under the action of Gal(M/L). We conclude that the decomposition group of w′

over K, the isotropy group of w′ for the action of Gal(M/K), is a subgroup of
Gal(M/L). So we must have τσ ∈ Gal(M/L) which implies that σ ∈ Gal(M/L)
contrary to our hypothesis. z

By the Chinese remainder theorem we can find α ∈ RL such that α ∈ σ(p)∩RL ⇔
σ ∈ Gal(M/L). Such an α works. Since σ(α) = α is only possible if α ∈ σ(p) in
which case σ ∈ Gal(M/L) we have the equality of fields L = K(α). The element
α reduces to zero with respect to w′ but every other conjugate of α over K is a
w′-unit. Thus, 0 is a simple root of the reduction of the minimal monic polynomial
of α over OK . �
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2. D-rings

To keep with the notation of the following sections, we use “e” rather than, say,
“X”, to denote an indeterminate.

Let R be a commutative Z[e]-algebra. De(R) is the ring which as an abelian group
is R2 with multiplication defined by (x1, x2)∗(y1, y2) := (x1y1, x1y2+y1x2+ex2y2).
De defines a functor from the category of commutative Z[e]-algebras to the category
of commutative rings.

The projection onto the first co-ordinate defines a ring homomorphism π0 :
De(R) → R. A De-structure on R is given by a section of this projection map.
Concretely, such a structure is given by an additive function D : R→ R satisfying
the twisted Leibniz rule D(x · y) = xDy+ yDx+ e(Dx)(Dy) and D(1) = 0 defining
a section ϕ : R→ De(R) by ϕ(x) = (x,Dx).
Remark 2.1. From the standpoint of logic, the restriction to Z[e]-algebras corre-
sponds to adding a constant symbol e to the language of rings.
Remark 2.2. Note that when e = 0 in R, a De-structure on R is simply given by a
derivation.
Definition 2.3. A D-ring is a Z[e]-algebra R given with a function D : R → R
defining a De-structure on R.

Proposition 2.4. Let (R,D) be a D-ring. The function σ : R → R defined by
x 7→ eDx+ x is a ring endomorphism of R.

� Additivity is clear as is the fact that σ(1) = 1. For multiplication:

σ(xy) = eD(xy) + xy

= e(xDy + yDx+ eDxDy) + xy

= e2DxDy + exDy + eyDx+ xy

= (eDx+ x)(eDy + y)

�

Remark 2.5. If e is a non-zero divisor, then σ determines D. So when e is a unit, a
D-ring is just a difference ring in disguise. That is, if e is a non-zero divisor, then
D and σ are inter-definable. If e is a unit and one includes e−1 as a constant, then
D is term definable from σ as Dx = σ(x)−x

e .
Of course, for fields e being zero or a unit exhaust the possibilities, but for more

general rings there is an intermediate case.
Remark 2.6. The Leibniz rule may also be written as D(x · y) = xDy + σ(y)Dx.

Proposition 2.7. If x ∈ R×, then D( 1
x ) = −Dx

xσ(x) .

�

0 = D(1)
= D(x−1x)
= x−1D(x) + σ(x)D(x−1)

Subtracting, we find that σ(x)D(x−1) = −(x−1)Dx. As x ∈ R×, we also have
σ(x) ∈ R×. Therefore, D( 1

x ) = −Dx
σ(x)x . �
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Proposition 2.8. If R is a D-ring and S ⊆ R is a multiplicative subset of R
containing 1 and is closed under σ, then there is a unique structure of a D-ring on
the localization S−1R.

� Proposition 2.7 shows how D must be defined. The original De-structure on R
corresponds to a map R

ϕ−−−−→ De(R) given by x 7→ (x,Dx). By functoriality of
De, there is a map De(R)

De(i)−−−−→ De(S−1R). For any s ∈ S there is an inverse
to i ◦ ϕ(s) = (s,Ds) in De(R), namely, (1

s ,
−Ds
σ(s)s ). By the universal property of

S−1R, there is a unique ring homomorphism S−1R −−−−→ De(S−1R) making the
following diagram commute.

R
ϕ−−−−→ De(R)

i

y yDe(i)

S−1R
∃!−−−−→ De(S−1R)

�

Let us also calculate Dxn.
Proposition 2.9. If R is a D-ring, x ∈ R, and n is a positive integer, then

Dxn =
n∑
i=1

(
n

i

)
ei−1xn−i(Dx)i

� We check this by induction on n. For n = 1 the assertion is obvious. Let us now
try the case of n+ 1.

Dxn+1 = D(xnx)
= xnDx+ x(Dxn) + eDx(Dxn)

= xnDx+ (x+ eDx)
n∑
i=1

(
n

i

)
ei−1xn−i(Dx)i

= xnDx+
n∑
j=1

(
n

j

)
ej−1x(n+1)−j(Dx)j +

n∑
`=1

(
n

`

)
e`xn−`(Dx)`+1

= xnDx+
n∑
j=1

(
n

j

)
ej−1x(n+1)−j(Dx)j +

n+1∑
t=2

(
n

t− 1

)
et−1x(n+1)−t(Dx)t

= (n+ 1)xnDx+
n+1∑
j=2

[
(
n

j

)
+

(
n

j − 1

)
]ej−1x(n+1)−j(Dx)j

=
n+1∑
j=1

(
n+ 1
j

)
ej−1x(n+1)−j(Dx)j

�

Lemma 2.10. Let R be a local ring with maximal ideal m. Assume that e ∈ m.
Then De(R) is also a local ring with maximal ideal π−1

0 m.
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� Let (x, y) ∈ De(R) \ π−1
0 m. That is, x ∈ R×. Since e ∈ m, x+ ey ∈ R× as well.

The inverse to (x, y) is then ( 1
x ,

−y
x(x+ey) ). �

Proposition 2.11. If R is a henselian local ring with maximal ideal m and e ∈ m,
then De(R) is also henselian.

� Denote the reduction map R → R/m by x 7→ x. Denote the induced map
R[X] → (R/m)[X] by P (X) 7→ P (X) as well. Consider R as a subring of De(R) via
r 7→ (r, 0). Let P (X) ∈ De(R)[X] and let (x, y) ∈ De(R) such that x is a simple root
of π0(P )(X). Since R is henselian, there is a unique a ∈ R such that π0(P )(a) = 0
and a = x. Let ε := (0, 1). Since π0(P )(a) = 0, there is some Q(Y ) ∈ R[Y ] with

P (a+ εY ) = εQ(Y )

Taylor expand P (a + εY ) to compute that the linear term of Q(Y ) is π0(P ′(a))Y
and that all the higher order terms involve e as a factor. Hence, Q is a linear
polynomial and therefore has a unique solution in R/m. As R is henselian, there is
a unique lifting of this solution to some b ∈ R. The pair (a, b) is then the unique
solution to P (X) = 0 with a = x. �

The free algebra in the variety of D-rings has a particularly simple description.

Proposition 2.12. Let R be a D-ring. There is an extension of D-rings R→ R〈X〉
universal with respect to simple extensions of R.
As a ring, R〈X〉 = R[{DnX}∞n=0], the polynomial ring in countably many indeter-
minates.

� Let R′ := R[{DnX}∞n=0]. Let ϕ : R → De(R) be the ring homomorphism
making R into a D-ring. The inclusion R → R′ induces a map De(R) → De(R′).
Let ϕ′ : R→ De(R′) be the composite of this inclusion with ϕ. By the universality
property of the polynomial ring, there is a unique map of rings ϕ̃ : R′ → De(R′)
which agrees with ϕ′ on R and which sends DnX 7→ (DnX,Dn+1X). Thus, R′ is
a D-ring extending R.

Let us check now universality. Let ψ : R→ S be any map of D-rings. Let s ∈ S.
By the universality property of the polynomial ring, there is a unique map of rings
ψ̃ : R〈X〉 → S which agrees with ψ on R and sends DnX 7→ Dns. That this is a
map of D-rings is equivalent to the commutativity of the following diagram.

S −−−−→ De(S)

ψ̃

x xDe(ψ̃)

R〈X〉 −−−−→ De(R〈X〉)

Since ψ : R → S is a map of D-rings, this is commutative when restricted to
R. By construction, Dψ(DnX) = D(Dns) = Dn+1s = ψ(Dn+1X) = ψ(D(DnX)).
Thus, this diagram is commutative on all the generators of R〈X〉, and hence ev-
erywhere. �
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3. Notation and General Definitions

We refer to R〈X〉 as the ring of D-polynomials over R.
In general, if R is a D-ring and I ⊆ R is an ideal, then I is a D-ideal if D(I) ⊆ I.

When I ⊆ R is a D-ideal, then the De-structure on R induces such a structure on
R/I.

If R is a D-ring and Σ ⊆ R is a subset, then 〈Σ〉 is the D-ideal generated by Σ.
Since the intersection of a set of D-ideals is a D-ideal this notion is well-defined.
Concretely, 〈Σ〉 = ({Dnx}x∈Σ,n∈ω).

Define the order and degree of a D-polynomial by: The zero D-polynomial has
order and degree ∞. A nonzero constant polynomial is considered to have order
−1 and degree −∞. Otherwise, ordP := min{n : P ∈ R[X, . . . ,DnX]}. If n is the
order of P , then the degree is the degree of P as a polynomial in DnX.

The D-polynomial P is simpler than the D-polynomial Q, written P � Q, if in
the lexico-graphic order, the order-degree of P is less than that of Q.

If P is a D-polynomial of the form P (X) = F (X,DX, . . . ,DmX), then define
∂
∂Xi

P to be the D-polynomial ( ∂
∂Xi

F )(X,DX, . . . ,DmX). There are at least two
natural ways to extend D to R〈X〉. In the first case, we simply treat the new
variables as constants. That is, for P (X) =

∑
pαX

α0DXα1 · · ·DNXαN we set
PD(X) :=

∑
D(pα)Xα1 · · ·DNXαN . The other extension of D is the one coming

from D(DiX) = Di+1X used to make R〈X〉 into the universal D-extension of R.
We may define a more refined degree: the total degree. T.degP := (degXi

P )∞i=0

for nonzero P and T.deg0 := ∞. Notice that the image of T.deg on nonzero
D-polynomials comprises the set N(ω) := {(nj)∞j=0 : nj ∈ N, nj = 0 for j � 0}.
Define an ordering on N(ω) by (nj)∞j=0 < (mj)∞j=0 iff there is some N such that
nN < mN and nj ≤ mj for j > N . Observe that this ordering is a well-ordering of
N(ω). We define P ≺ Q if T.degP < T.degQ. The fact that this ordering on N(ω)

is a well-ordering means that we can (and will) argue by induction with respect to
≺.
≺ has the properties

• ∂
∂Xi

P � P and
• If P ≺ Q and P̃ and Q̃ differ from P and Q respectively by linear changes

of variables – that is, if P (X) = F ({DnX}) and Q(X) = G({DnX})
while P̃ (X) = F ({anDnX + bn}) and Q̃(X) = G({cnDnX + dn}) with the
parameters an, bn, cn, dn taken from R with an, cn 6= 0 – then P̃ ≺ Q̃.

If R is a D-ring then RD := ker(D : R → R). Observe that RD is a ring, D is
RD-linear, and that (RD)× = RD ∩R×.

If L/K is an extension of D-fields and a ∈ L, then K(〈a〉) denotes the D-subfield
of L generated by K and a.

4. The Language

The models under consideration have three sorts (K, k,Γ).

• K is the valued field given with the signature of aDe-ring: (+, ·,−, 0, 1, e,D).
• k is the residue field also given with the signature of a De-ring and possibly

with some extra predicates needed to ensure quantifier elimination for k.
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• Γ is the value group given with the signature of an ordered abelian group
with divisibility predicates (+,−,≤, 0, {n|·}n∈Z+) and possibly with some
extra predicates needed for quantifier elimination.

For convenience, an extra symbol ∞ is added to the language. For instance, one
defines 0−1 = ∞ and (∀γ ∈ Γ)γ < ∞. The sorts are connected by the functions
π : K → k ∪∞ (the residue map) and v : K → Γ ∪∞ (the valuation). Denote the
first-order language described above by L.

If M is an L-structure and P is a predicate, then we denote the realization of P
in M by PM . If P is a particular sort, then Sm,P (A) denotes the space of m-types
over A in the sort P . That is, each p(x1, . . . , xm) ∈ Sm,P (A) must contain the
formula

∧
1≤i≤m P (xi). It will be proven that in the cases of P = Γ or k that

A may be replaced by PA when A is an L-substructure of a model of the theory
described in Section 5.

5. Axioms

We restrict the models considered to those with a differential field of character-
istic zero as residue field. The more general cases of positive residual characteristic
or a difference field as residue field present technical problems. After the present
paper was written the author found a way to treat some of these additional cases
and will describe this argument in a forthcoming paper.

Let k be a differential field and G an ordered abelian group. We assume that k
satisfies

(1) chark = 0,
(2) (k×)n = k× for each n ∈ Z+, and
(3) any non-zero linear differential operator L ∈ k[D] is surjective as a map

L : k → k. We call a differential field satisfying this condition linearly
differentially closed.

We also assume that enough predicates have been added to L on the sort k
so that Th(k) admits elimination of quantifiers. Of course, one should take the
language to be as simple as possible.

We also assume that the language for Γ is sufficiently rich so that Th(G) admits
elimination of quantifiers. In many cases of interest (for example, Γ = Z) one may

achieve this with divisibility predicates defined by n|x ⇐⇒ (∃y)
n times︷ ︸︸ ︷

y + · · ·+ y =
x [13]. In general, more complicated predicates may be needed.

One can avoid cluttering L by taking k |= DCF0 and G = Q.
The first axioms describe general valued (k,G)-D-fields.

Axiom 1. K and k are D-fields of characteristic zero and k |= Th∀(k).
Axiom 2. K is a valued field whose value group is a subgroup of Γ via the valuation
v and whose residue field is a subfield of k via the residue map π and v(e) > 0.
Axiom 3. (∀x ∈ K) v(Dx) ≥ v(x) and π(Dx) = Dπ(x).
Axiom 4. Γ |= Th∀(G).

The next six axioms together with the first four describe (k,G)-D-henselian
fields.
Axiom 5. (∀x ∈ K)[([∃y ∈ K] yn = x) ⇐⇒ n|v(x)].
Axiom 6. Γ = v((KD)×).
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Axiom 7. k = π(OK).
Axiom 8 (D-Hensel’s Lemma). If P ∈ OK〈X〉 is a D-polynomial, a ∈ OK , and
v(P (a)) > 0 = v( ∂

∂Xi
P (a)) for some i, then there is some b ∈ K with P (b) = 0 and

v(a− b) ≥ v(P (a)).
If the hypotheses of the last axiom apply to P and a, then one says that DHL

applies to P at a.
Axiom 9. Γ ≡ G.
Axiom 10. k ≡ k.
Remark 5.1. Axioms 1 and 2 imply that D is a derivation on k.
Remark 5.2. Axiom 8 may be strengthened to v(b− a) = v(P (a)).

We assumed that k is linearly differentially closed and is closed under roots in
order to guarantee consistency of the theory of (k,G)-D-henselian fields.
Proposition 5.3. Axioms 1 - 8 together with G 6= 0 imply that k is linearly
differentially closed.

� Let K be a model of the first eight axioms. Let L(X) =
∑n
i=1 aiD

iX be a non-
zero linear D-polynomial over k. Let y ∈ k be given. By Axiom 7 there are bi ∈ OK
such that π(bi) = ai and z ∈ OK such that π(z) = y. Since G 6= 0, by Axiom 6
there is ε ∈ OK with Dε = 0 and v(ε) > 0. Let P (X) = −ε · z +

∑n
i=1 biD

iX.
Evaluating at zero we see that v(P (0)) > 0 and for some i we have π( ∂

∂Xi
P (0)) =

π(bi) = ai 6= 0. So by DHL there is some x ∈ OK such that P (x) = 0 and
v(x) ≥ v(P (0)) = v(ε). Let x′ = x

ε . We have

0 = P (x)

= −εz +
n∑
i=1

biD
ix

= ε(−z +
n∑
i=1

biD
ix′)

Hence, z =
∑n
i=1 biD

ix′. Applying π, we find that y = L(π(x′)). �

Proposition 5.4. Axioms 1 - 8 imply that (k×)n = k× for each positive integer n.

� Let K be a model of the first eight axioms. Let x ∈ k×. By Axiom 7 there exists
y ∈ OK such that π(y) = x. The valuation of y is zero so n|v(y) which implies by
Axiom 5 that y has an n-th root z. Thus, π(z) is an n-th root of x. �

6. Consistency and the Standard D-Henselian Fields

k and G continue to have the same meaning as in the previous section.
The generalized power series fields k((εG)) provide canonical models for the

theory of D-henselian fields. For the reader’s convenience, we recall the definition
of these fields.

As a set, k((εG)) = {f : G → k : supp(f) := {x ∈ G : f(x) 6= 0} is well-ordered
in the ordering induced by G}.
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We think of an element f ∈ k((εG)) as a formal power series.

f ↔
∑
γ∈G

f(γ)εγ

v(f) := min supp(f)
(f + h)(γ) := f(γ) + h(γ)

(fh)(γ) :=
∑

α+β=γ

f(α)h(β)

For the time being we denote the derivation on k by ∂.
If we wish to have e = 0, then define

(Df)(γ) = ∂(f(γ))

Otherwise, take for e any non-zero element of positive valuation and define an
endomorphism σ from which we recover D by the formula Dx := σ(x)−x

e . On k
define σ by

σ(x) :=
∞∑
n=0

∂nx

n!
en

Extend to all of k((εG)) by the rule

σ(f) =
∑

σ(f(γ))εγ

k((εG)) is a maximally complete valued field [9, 12].
That this field is a D-henselian field is clear except perhaps for DHL. We prove

DHL for K := k((εG)) in a prima facie stronger form.
Proposition 6.1. If P ∈ OK〈X〉 is a D-polynomial, a ∈ OK , and v(P (a)) >
2v( ∂

∂Xi
P (a)) for some i, then there is b ∈ K such that P (b) = 0 and v(a − b) ≥

v(P (a))− v( ∂
∂Xi

P (a)).

� Let i be a non-negative integer such that v( ∂
∂Xi

P (a)) ≤ v( ∂
∂Xj

P (a)) for all j.
Let γ0 := v( ∂

∂Xi
P (a)).

Inductively build an ordinal indexed Cauchy sequence of approximate solutions
{xα} from K. If at some point P (xα) = 0, stop. At each point in the construction
ensure that (∀β < α) v(P (xα)) > v(xα−xβ)+γ0 > 2v( ∂

∂Xi
P (a)) and that v(xα+1−

xα) ≥ v(P (xα)) − γ0. By starting with x0 = a, provided that one may construct
the sequence so as to be cofinal in G, the result is proven.

For each j, choose cj ∈ k such that v(cjεγ0 − ∂
∂Xj

P (a)) > γ0.
At successor stages, α+1, try to modify xα slightly so as to increase the valuation

of P . Let γ := v(P (xα))−γ0 which by the inductive hypothesis in the case of α > 0
or by the hypothesis of the theorem in case α = 0 is greater than γ0. Consider the
expansion:

P (Xεγ + xα) =
∑
m≥0

∑
|I|=m

∂IP (xα)εmγXI(1)

Every coefficient on the right hand side has value ≥ γ + γ0. For the constant
term, this is because γ + γ0 = v(P (xα)) by definition. For the linear terms, one
knows that each of v( ∂

∂Xj
P (xα)) is at least γ0. For the higher order terms, note

that mγ ≥ 2γ = 2v(P (xα)) − 2γ0 > v(P (xα)) + 2γ0 − 2γ0 = γ + γ0. (The strict
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inequality follows from the fact that v(P (xα)) > 2γ0.) Thus, we may divide the
right hand side by εγ+γ0 and still have a D- polynomial with integral coefficients.
In the residue field, the equation is

π(
P (Xεγ + xα)

εγ+γ0
) = π(

P (xα)
εγ+γ0

) +
∑

cjD
jX(2)

As ci 6= 0, Equation 2 is a non-trivial inhomogeneous linear D-equation over
k. As k is linearly differentially closed we may find x which is a solution to this
equation and set xα+1 = xεγ + xα. The inductive hypothesis is still true at xα+1

as v(P (xα+1)) > v(P (xα)).
At limits, simply find any xλ such that v(xλ − xα) < v(xλ − xβ) for α < β < λ.

Such exists by completeness of K. Let δ < α < λ and consider Equation 1.
We compute by induction that v(P (xλ)) ≥ min{v(P (xα)), v(xλ − xα) + γ0} >
v(xα − xδ) + γ0 = v(xλ − xδ) + γ0 > 2γ0.

Let b = limxα. �

7. Quantifier Elimination

Theorem 7.1. With the restrictions imposed on k and G in Section 5, the theory of
henselian (k,G)-D-fields eliminates quantifiers and is the model completion of the
theory of valued (k,G)-D-fields. Its completions are determined by the isomorphism
type of the valued D-field Q({Dne}n∈ω).

� We prove this by a standard back-and-forth test.
Claim 7.2. Let M1 and M2 be two ℵ1-saturated (k,G)-D-henselian fields. Let
A1 ⊂ M1 and A2 ⊂ M2 be countable substructures. Let f : A1 → A2 be an
isomorphism of L-structures. Let b ∈M1. Then f extends to a partial isomorphism
from M1 to M2 having b in its domain.

See Theorem 8.4.1 of [5] for a proof that Claim 7.2 implies that the theory of
(k,G)-D-henselian fields admits elimination of quantifiers.

We prove that the theory of D-henselian fields is the model completion of the
theory of valuedD-fields by showing that each of the constructions used in the proof
of Claim 7.2 may actually be used to extend any valued D-field to a D-henselian
field.

The description of the completions of the theory of (k,G)-D-henselian fields
follows from quantifier elimination.

Our strategy for the proof of Claim 7.2 is to extend f a little bit at a time so
that the type of b over dom(f) becomes transparent. We work mostly within the
sort of the valued field so that by “x ∈ A1” we mean that x is an element of the
valued field. We treat the extension of f as an inductive process in which at each
stage the current domain of f is equal to A1.

Before extending f we fix a countable elementary submodel N1 ≺ M1 of M1

containing A1 and b. We actually extend f a little beyond N1.
We start by enlarging A1 freely so that ΓN1 is contained in the divisible hull of

ΓA1 . We then extend f so that one has n|γ ⇐⇒ γ = nv(x) for some x ∈ A1 for
each γ ∈ ΓA1 . Once this is done we ensure that A1 has enough constants in the
sense of Definition 7.3 below. At this point we extend A1 so that the residue map is
surjective onto kN1 . The model N1 will be an immediate extension of A1 once this
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step has been achieved. Finally, we extend f to a particular immediate extension
of N1 by an inductive procedure. This step requires most of the work. �

7.1. Extensions of k and of Γ.

Definition 7.3. The valued D-field (K,Γ) has enough constants if it satisfies Ax-
iom 6.
Lemma 7.4. If K is a valued D-field with enough constants, then for any value
γ ∈ ΓK and any finite set of polynomials Q1(X), . . . , Qn(X) ∈ K[X] with Qi(X) =∑m
j=0 qi,jX

j there is some ε ∈ K with v(ε) = γ, Dε = 0, and v(Qi(ε)) = min{v(qi,j)+
jγ} for each Qi from the above set.

� As K has enough constants there is some η ∈ K with Dη = 0 and v(η) = γ. For
each i, let δi ∈ K with v(δi) = min{v(qi,j) + jγ}. If for each i it were the case that

π(
Qi(η)
δi

) 6= 0(3)

then the desired result would be true with ε = η for Inequality 3 means simply that
v(Qi(η)) = v(δi) = min{v(qi,j)+jγ}. Alas, it may happen that with our first choice
of η, some instance of Inequality 3 fails. We replace η with cη where v(c) = 0 and
Dc = 0. We need only ensure π(c) is not a solution to any of

∑
π( qi,jη

j

δi
)Y j = 0.

With finitely many exceptions, any choice from Q will work. �

Corollary 7.5. Let K be an ℵ1-saturated valued D-field with enough constants.
Let L ⊂ K be a countable subfield of K. Let γ ∈ ΓK . There is some ε ∈ K such
that v(ε) = γ, Dε = 0 and for any polynomial Q(X) =

∑n
j=0 qjX

j ∈ L[X] one has
v(Q(ε)) = min{v(qj) + jγ}.
Remark 7.6. In the case that k already admits elimination of quantifiers in the
natural language of differential rings, Corollary 7.5 may be used to give a quick
proof that the isomorphism may be extended so that Ai has enough constants.
Unfortunately, in general the adjunction of constants may enlarge the residue field
so that there may be some ambiguity as to the extension unless the types of the
new elements of the residue field are controlled.
Lemma 7.7. If K is a valued field which is also a De-ring in which v(e) > 0 and
a, b ∈ K× satisfy v(Da) ≥ v(a) and v(Db) ≥ v(b), then v(D(ab )) ≥ v(ab ).

�

v(D(
a

b
)) = v(

D(a)b−D(b)a
bσ(b)

)

≥ min{v(Da)− v(σ(b)), v(a) + v(Db)− (v(b) + v(σ(b)))}
= min{v(Da)− v(b), v(a) + v(Db)− 2v(b)}
≥ min{v(a)− v(b), v(a) + v(b)− 2v(b)}
= v(a)− v(b)

= v(
a

b
)

�
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Lemma 7.8. Let K be a valued D-field. Let p ∈ S1,Γ(ΓK) be a 1-type in the value
group sort extending {nx 6= γ : n ∈ Z+, γ ∈ v(K×)}. There is a unique (up to LK-
isomorphism) structure of a valued D-field on K(x), the field of rational functions
over K in the indeterminate x, such that v(x) |= p, Dx = 0, and such that for any
polynomial P (x) =

∑n
i=0 pix

i ∈ K[x] one has v(
∑
pix

i) = min{v(pi) + iv(x)}.

� The hypotheses completely describe the De-structure and the valuation structure.
Since there is no extension of the residue field, we need not consider the extra
structure on it. Let us check now that this prescription actually gives a valued
D-field. We need to check that v(Dy) ≥ v(y) for y ∈ K(x). By Lemma 7.7, it
suffices to consider y = P (x) ∈ K[x]. Write P (x) =

∑
pix

i. Then

DP (x) =
∑

D(pixi)

=
∑

D(pi)xi + σ(pi)D(xi)

=
∑

D(pi)xi

Since K is a valued D-field, v(D(pi)) ≥ v(pi). Therefore,

v(DP (x)) = min{v(D(pi)) + iv(x)}
≥ min{v(pi) + iv(x)}
= v(P (x))

�

Lemma 7.9. If K is a valued D-field and L/K is an unramified valued field ex-
tension of K given with an extension of the De-structure with D(OL) ⊆ OL, then
L is also a valued D-field.

� Let x ∈ L×. Let y ∈ K such that v(x) = v(y). Let α = y
x . The hypothesis

that D(OL) ⊆ OL means that v(Dα) ≥ v(α) = 0. Since y ∈ K, v(Dy) ≥ v(y). As
x = y

α , Lemma 7.7 shows v(Dx) ≥ v(x). �

Remark 7.10. If in Lemma 7.9 one drops the requirement that the extension is
unramified, then the result is not true. For an example take K = Q with the
trivial valuation and derivation. Let L = Q((x)) with the order of vanishing at the
origin valuation and the derivation ∂ = d

dx . d
dx (Q[[x]]) ⊆ Q[[x]], but ordx( ddxx) =

ordx(1) = 0 < 1 = ordx(x).
Lemma 7.11. If K is a valued D-field, R is the henselization of OK , and L is the
quotient field of R, then L has a unique structure of a valued D-field extending K.

� Let ϕ : OK → De(OK) be the map x 7→ (x,Dx) expressing the D-structure on
OK . Let ϕ̃ : OK → De(R) be the composition of ϕ with the inclusion De(OK) ↪→
De(R). By the universal property of the henselization, there is a unique map of
local rings ψ : R → De(R) compatible with the inclusion OK ↪→ R and the map
ϕ̃. Define D : R → R as the function for which ψ(x) = (x,Dx). Then R is a D-
ring with respect to this function. By Proposition 2.8, L has a unique D-structure
extending that on R. By Lemma 7.9, L is a valued D-field with respect to this
structure. �
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Lemma 7.12. Let K be a valued D-field. Given a type p ∈ S1,k(kK) and a D-
polynomial P ∈ OK〈X〉 such that

• if x |= p, then π(P ) is of minimal total degree among nonzero Q(X) ∈
π(OK)〈X〉 with Q(x) = 0 and

• T.degP = T.degπ(P ),

there is a unique (up to LK-isomorphism) D-field L = K(〈a〉) such that P (a) = 0
and π(a) |= p.

Remark 7.13. Lemma 7.12 applies equally well in the case that P = 0. Recall that
in this case, T.degP = ∞.

� We begin by proving uniqueness and then prove existence. We analyze L = K(〈a〉)
as a direct limit of valued field extensionsKn := K(a,Da, . . . ,Dna). Letm := ordP
and b := π(a).

• (n ≤ m) Every element of Km is of the form Q1(a)
Q2(a)

with Qi � P so in
order to pin down the valuation on Km it suffices to compute v(Q(a)) for
Q(X) ∈ K〈X〉 with Q � P . Let α ∈ K such that αQ ∈ OK〈X〉 and
π(αQ) 6= 0. Since π(αQ)(b) 6= 0, we must have v(Q(a)) = −v(α).

• (n > m) If e = 0, then L = Km so there is nothing more to do.
We assume now that e 6= 0. Let P (X) = F (X, . . . ,DmX). Let G(X) :=

F (a, . . . ,Dm−1a,X). In the case e 6= 0, σy and Dy are inter-definable, so
it suffices to consider the extension

K(a,Da, . . . ,Dn−1a, σn−mDma)/K(a,Da, . . . ,Dn−1a)

σn−mDma satisfies σn−mG. So the minimal polynomial Qn of σn−mDma
over K(a, . . . ,Dn−1a) divides σn−mG. Since σ reduces to the identity
automorphism, π(σn−mDma) = Dmb which is a simple root of π(G) =
π(σn−mG) (as ∂

∂Xm
P � P ). Thus, π(G′)(Dmb) = π( ∂

∂Xm
(P ))(b) 6= 0.

Thus, b is a simple root of π(Qn) so the extension is completely determined
as an extension of valued fields.

We check now that the process used above to analyze such extensions may be
used to produce them. Let b |= p be a realization of p.

LetK ′ be the field of fractions ofK[X,DX, . . . ,DmX]/(F (X, . . . ,DmX)). Let a
denote the image ofX inK ′. K ′ is given a valuation structure by setting v(Q(a)) :=
max{−v(α) : αQ ∈ OK〈X〉} for Q(X) ∈ K〈X〉 with Q� P . In the case that e = 0,
K ′ is already a differential field. In the case that e 6= 0, let Q1 be the unique (up to
multiplication by a unit) factor of σ(G) (over OK′ [Y ]) for which π(Q1)(Dmb) = 0
and π(Q1) 6= 0. This was proven to exist in the course of the uniqueness proof.
Since Dmb is a simple root of π(Q1)(Y ) = 0, the equation Q1(Y ) = 0 has a unique
solution y inR a henselization ofOK′ such that π(y) = Dmb. Define σ onK as usual
by σ(x) := eDx + x and extend to σ : K ′ → K ′(y) via σ(Dia) := eDi+1a + Dia

for i < m and σ(Dma) := y. We formally define Dz := σ(z)−z
e as a function

K ′ → K ′(y). At this point, we could continue to incrementally define D as the
analysis in the uniqueness part of the proof might suggest. This works and the
reader is invited to finish the argument this way. We take a different tack. First
we check that the required inequalities continue to hold at least for z ∈ K ′.

Claim 7.14. v(Dm+1a) ≥ 0
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z Since σ reduces to the identity on OK [a, . . . ,Dm−1a]/(e), Dma is a root to σ(G)
modulo e. Thus, v(y − Dma) ≥ v(e). Since Dm+1a = y−Dma

e , the result is now
clear. z

The next claim is valid in general. That is, there is no restriction on e.
Claim 7.15. If Q(X) � P (X), then v(Q(a)) ≤ v(DQ(a)).

z By Lemma 7.7 we may assume that Q(X) ∈ OK〈X〉 and π(Q) 6= 0. This implies
v(Q(a)) = 0. Write Q(X) =

∑
qi(DmX)i where qi ∈ OK [a, . . . ,Dm−1a]. Then

DQ(X) =
∑
D(qi)(DmX)i + σ(qi)D(DmX)i ∈ OK〈X〉. For j ≤ m, it is clear

that v(Dja) ≥ 0. Claim 7.14 shows that v(Dm+1a) ≥ 0 in the case that e 6= 0. In
the case that e = 0, we observe that Dm+1a = −PD

∂
∂Xm

P
and ∂

∂Xm
P � P so that its

valuation is zero.
Since each of the Dja have non-negative valuation, v(DQ(a)) ≥ 0 = v(Q(a)).

z

Let R be the henselization of OK′ and let L be the field of fractions of R. Let
ϕ : K ′ → De(L) be the map x 7→ (x,Dx). By Claim 7.15, ϕ(OK′) ⊆ De(R). By
Lemma 2.10, De(R) is a local ring with maximal ideal π−1

0 mR. Since π0 ◦ ϕ = idR,
ϕ is a local homomorphism. By Lemma 2.11, De(R) is henselian. Thus, there is a
unique extension of ϕ to a local homomorphism ϕ̃ : R → De(R). By Lemma 2.7,
ϕ̃ extends uniquely to a ring homomorphism ψ : L → De(L). Let D denote the
function D : L→ L for which ψ(x) = (x,Dx). Since D(R) ⊆ R, by Lemma 7.9, L
is a valued D-field. �

Proposition 7.16. Let K be a valued D-field. Let a ∈ K×. There is an unramified
extension L/K of valued D-fields of the form L = K(x) for which v(x) = v(a) and
Dx = 0. Moreover, the LK-isomorphism type of L is determined by tp(π(ax )/kK).

� We wish to find x so that Dx = 0 and v(x) = v(a). This is equivalent to finding
y = “ax”. Such a y would have to satisfy Dy = Da

x = Da
a
a
x = Da

a y. Conversely, if y
satisfies Dy = Da

a y and we define x by x := a
y , then Dy = Da

x + σ(a)D( 1
x ) as well

so that 0 = D( 1
x ) which implies that Dx = 0.

One would also need v(y) = 0 in order for v(ay ) = v(a). That is, we need y to
be a solution to DY = Da

a Y with v(y) = 0. By Lemma 7.12, such extensions exist
and they are determined by tp(y/kK). �

Proposition 7.17. Let K be a valued D-field. Assume that v(K×) = v((KD)×).
Let η ∈ KD such that n|v(η). Assume that v(η) /∈ m · v(K×) for each positive
integer m dividing n. There exists a unique (up to LK-isomorphism) extension of
valued D-fields of the form K( n

√
η).

� Let ε = n
√
η. Since the extension is totally ramified, the valuation structure is

completely determined. I claim that the De-structure is determined by Dε = 0.
This fact would certainly fully specify the De-structure, the content of my claim
is that one must have Dε = 0. When e = 0, this follows from the fact that
0 = D(η) = D(εn) = nεn−1Dε. When e 6= 0, the assertion Dε 6= 0 is equivalent to
σ(ε) = ωε for some nontrivial n-th root of unity ω. But then Dε = σ(ε)−ε

e = εω−1
e .

Since ω 6= 1, v(ω−1
e ) = −v(e) < 0. So that v(Dε) < v(ε) which violates Axiom 3.
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We check that this prescription correctly defines a valued D-field. Let x =∑n−1
i=0 xiε

i ∈ L. Then v(x) = min{v(xi) + i
nv(η)} and Dx =

∑n−1
i=0 Dxiε

i so that
visibly, the inequality v(Dx) ≥ v(x) holds. �

Proposition 7.18. The isomorphism may be extended so that v(A×1 ) = v((AD1 )×).

� Let a ∈ A1 such that there is no constant in A1 having the same value as that
of a. Let p ∈ S1,k(kA1) be some type containing the formula Dx = π(Daa )x as well
as the formulas x 6= b for each b ∈ kA1 . By the saturation hypotheses, p is realized
in kM1 by some b1 and f(p) is realized in kM2 by some b2. By the surjectivity of
the residue map and DHL there is some c1 ∈ M1 and some c2 ∈ M2 such that
π(ci) = bi, Dc1 = Da

a c1 and Dc2 = f(Daa )c2. By Proposition 7.16, the extension
of f given by c1 7→ c2 (and therefore a

c1
7→ f(a)

c2
) is an isomorphism of L-structures

and the element a
c1

is a constant with value equal to that of a. �

Proposition 7.19. The isomorphism extends so that A1 has enough constants.

� By Proposition 7.18 we may now assume that v(A×1 ) = v((AD1 )×). Let γ ∈
ΓA1 \ v(A×1 ). In the case that tp(γ/v(A×1 )) ` {nγ 6= v(a) : n ∈ Z+, a ∈ A×1 }, we
find ε1 ∈ N1 with v(ε1) = γ and Dε1 = 0 and ε2 ∈M2 with v(ε2) |= f(tp(γ/v(A×1 ))
and Dε1 = Dε2 = 0 by Axiom 6. Lemma 7.8 shows that the extension given by
ε1 7→ ε2 is an isomorphism of L-structures.

In the case that nγ ∈ v(A×1 ) for some n ∈ Z+, take n minimal with this property
and find some η ∈ AD1 with v(η) = nγ. By Axiom 5, we may find εi ∈ Mi such
that εn1 = η and εn2 = f(η). By Proposition 7.17, this gives an isomorphism of
L-structures. �

Proposition 7.20. f extends so that ΓN1 ⊆ v((AD1 )×).

� As we have assumed quantifier elimination in the value group sort, we may fix
some elementary embedding f : ΓN1 → ΓM2 extending f . By Proposition 7.19, we
may extend f over f . �

Proposition 7.21. The map extends so that kN1 ⊆ π(OA1).

� As the theory of the residue field of M1 has quantifier elimination by assump-
tion we may fix some isomorphism f between kN1 and some countable elementary
substructure of kM2 extending f restricted to kA1 .

Take a ∈ ON1 so that π(a) is a new element of kN1 \ π(OA1). If π(a) is dif-
ferentially transcendental over π(OA1), then let b1 = a. Let b2 ∈ OM2 such
that π(b2) = f(a). Necessarily, b1 is D-transcendental over A1 while b2 is D-
transcendental over A2. Then Lemma 7.12 shows that we may extend the isomor-
phism by setting f(b1) = b2.

Otherwise, Let P ∈ OA1〈X〉 be such that π(P )(a) = 0, T.degP = T.degπ(P ),
π(P ) 6= 0 and T.degP is minimal with these properties. The minimality condition
on P implies that π(P ) is a minimal D-polynomial for π(a) over the residue field of
A1 so that for some i one has v( ∂

∂Xi
P (a)) = 0. By DHL in both N1 and M2 there

is some b1 ∈ N1 and b2 ∈M2 such that P (b1) = 0, f(P )(b2) = 0, π(b1) = π(a) and
π(b2) = f(π(a)).
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By Lemma 7.12, A1(〈b1〉) ∼= A2(〈b2〉) via an isomorphism extending f . �

7.2. Immediate Extensions. The rest of this section is devoted to proving that
the isomorphism may be extended to immediate extensions.
Definition 7.22.

(1) A pseudo-convergent sequence is a limit ordinal indexed sequence {xα}α<κ
of elements of K such that (∀α < β < γ < κ) v(xα − xβ) < v(xβ − xγ).

(2) If L/K is an extension of valued D-fields and {xα} is a pseudo-convergent
sequence from K, then the set of pseudo-limits of {xα} in L is the set of
c ∈ L such that (∀α < β < κ) v(xα − c) < v(xβ − c). In this case, one
writes xα ⇒ c and says that {xα} pseudo-converges to c.

(3) The pseudo-convergent sequence {xα} pseudo-solves the D-polynomial P
if either P (xα) ⇒ 0 or P (xα) = 0 for α� 0.

(4) A pseudo-convergent sequence from K is strict if it has no pseudo-limits in
K.

Remark 7.23. If {xα}α<κ is a pseudo-convergent sequence and one restricts to
{xα}α∈I where I is cofinal in κ, then the new sequence is also pseudo-convergent
with the same pseudo-limits and D-polynomials which it pseudo-solves as the origi-
nal sequence. As the value groups considered in this proof are countable, one could
always assume that κ = ω by making such a restriction.

We will repeatedly use this process of restricting to cofinal subsequences. The
next lemma shows that we may pass from one strict pseudo-convergent sequence
to a subsequence of another sequence known to well-approximate the first without
changing the set of pseudo-limits.
Lemma 7.24. Let {xα}α<κ be a strict pseudo-convergent sequence from K. Sup-
pose that {yα}α<κ is another sequence from K and that v(yα−xα) ≥ v(xα+1−xα)
for all α < κ. Then there is a cofinal S ⊆ κ such that {yα}α∈S is a strict pseudo-
convergent sequence with the same pseudo-limits as those of {xα}α<κ.

� We define S by transfinite recursion. We start with 0 ∈ S. At a stage α where
we have decided that α ∈ S, look for the least β > α such that v(xβ+1 − xβ) >
v(yα − xβ) and let β be the next element of S.

Such a β must exist for if it did not, then yα would be a pseudo-limit of {xγ}γ<κ
which is impossible as we assumed this sequence to be strict. In detail, if such a β
failed to exist, then for each γ > β > α, we would have v(yα−xγ) ≥ v(xγ+1−xγ) >
v(xβ+1 − xβ) = v(xγ − xβ) = min{v(yα− xγ), v(xγ − xβ)} = v(yα− xβ) so that yα
would be a pseudolimit of this sequence.

At limit stages, we simply take the least λ < κ not yet in S.
Let us check that this choice of S works. First we show that {yα}α∈S is a pseudo-

convergent sequence. Let α < β < γ be in S. Then v(yγ − yβ) ≥ v(yγ − xγ + xγ −
xβ + xβ − yβ) ≥ min{v(xγ+1 − xγ), v(xβ+1 − xβ)} = v(xβ+1 − xβ) > v(yα − xβ) =
min{v(xβ − yα), v(yβ − xβ)} = v(yβ − yα).

Let now a be a pseudo-limit of {xα}α<κ in some extension of K. Let α < β ∈ S.
Let α′ be the successor of α in S and β′ the successor of β in S. Then v(a− yβ) =
v(a − xβ′ + xβ′ − yβ) = v(xβ′+1 − xβ′) > v(xα′+1 − xα′) = v(a − yα). So every
pseudo-limit of {xα}α<κ is a pseudo-limit of {yα}α∈S .

Let now a be a pseudo-limit of {yα}α∈S . Let α < κ be given. Let β ∈ S be
minimal with β > α. Then v(a−xα) = v(a−yβ+yβ−xβ+xβ−xα) = v(xβ−xα) =
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v(xα+1−xα) as v(a−yβ) = v(yβ′ −yβ) ≥ v(xβ−yβ) ≥ v(xβ+1−xβ) > v(xβ−xα).
So, a is also a pseudo-limit of {xα}α<κ.

Since {xα}α<κ and {yα}α∈S have the same pseudo-limits and {xα}α<κ has no
pseudo-limits in K, {yα}α∈S is also strict. �

Lemma 7.25. Assume that the residue field of K is linearly differentially closed
and that K has enough constants. If DHL applies to P ∈ OK〈X〉 at a ∈ OK , then
either there is some b ∈ OK with P (b) = 0 and v(a−b) = v(P (a)) or there is a strict
pseudo-convergent sequence {xα}α<λ from K pseudo-solving P with v(xα − a) =
v(P (a)).

� This is proven exactly as in the proof of DHL for complete fields so we give only
a sketch here referring the reader to the proof of Proposition 6.1 for the detailed
computations.

We produce either a solution to P (b) = 0 and v(a− b) = v(P (a)) or a sequence
with the properties:

• x0 = a,
• v(xα+1 − xα) = v(P (xα)), and
• v(P (xα)) is strictly increasing.

Start with x0 = a.
At a limit stage, look for xλ such that xα ⇒ xλ. If no xλ exists, then stop – the

sequence {xα}α<λ is a strict pseudo-solution of P .
At a successor stage, since K has enough constants, there is some ε ∈ KD with

v(ε) = v(P (xα)). We look to solve

P (xα + εY ) = 0

As in the proof of Proposition 6.1, we let y ∈ OK be a lifting of a solution to

0 = π(
P (xα)
ε

) +
ordP∑
i=0

π(
∂

∂Xi
P (a))DiY

Set xα+1 = xα + εy. �

Definition 7.26. Let N ∈ N(ω)∪{∞}. The valued D-field K is N- full if whenever
{xα} is a pseudo-convergent sequence from K and there is an immediate extension
K(〈a〉) with

• xα ⇒ a,
• Q(a) = 0 for some Q ∈ K〈X〉 with T.degQ < N, and
• {xα} pseudo-satisfies Q,

then {xα} has a pseudo-limit in K.
Remark 7.27. Another way of stating the definition of N-fullness is to say that no
strict pseudo-convergent sequences satisfying the three listed hypotheses exist.
Definition 7.28. Let A ∈ K〈X〉 be a non-zero D-polynomial. A refinement of A
at a is a D-polynomial G(Y ) = A(εY+a)−A(a)

c where c, ε ∈ (KD)× and G ∈ OK〈X〉
but π(G) 6= 0. ε is called the internal scale and c is the external scale. The D-
polynomial H(Y ) = 1

cA(a + εY ) = G(Y ) + A(a)
c is called the rescaling of A at a

with scales ε and c. Note that H need not have integral co-efficients.
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Remark 7.29. Notice that G may be expressed as

G(Y ) =
∑
|I|>0

ε|I|

c
∂IA(a)Y I

Observe that the valuation of the external scale is entirely determined by the
conditions G(Y ) ∈ OK〈Y 〉 and π(G) 6= 0.

Definition 7.30. Let {xα} be a pseudo-convergent sequence. Let A be a D-
polynomial. A refinement of A along {xα} is a sequence of refinements of A at xα
having internal scale εα where v(εα) = v(xα+1 − xα). Likewise, a rescaling of A
along {xα} is a sequence of rescalings of A at xα having internal scale εα as above.

Definition 7.31. The non-zero D-polynomial A(X) ∈ OK〈X〉 is residually linear
if π(A) ∈ k〈X〉 is a non-constant linear D-polynomial. A is potentially residually
linear if some refinement of A is residually linear. We will stipulate that the zero
polynomial is residually linear.

Proposition 7.32. Let K be a valued D-field. Let P (X) ∈ K〈X〉 be an irreducible
D-polynomial. Assume that K has enough constants, has a linearly differentially
closed residue field, and is T.degP -full. Let {xα}α<κ be a strict pseudo-convergent
sequence from OK .

(1) If {xα} is a pseudo-solution of P , then there is an immediate extension of
valued D-fields of the form K(〈a〉) in which P (a) = 0 and xα ⇒ a.

(2) If K(〈a〉) is an extension in which xα ⇒ a and P (a) = 0, then K(〈a〉) is
unique up to LK-isomorphism.

(3) P is potentially residually linear. In fact, for α � 0 any refinement of P
along {xα} is residually linear.

Remark 7.33. Our proof of Proposition 7.32 is more complicated than one might
expect it needs to be. The idea behind the proof is fairly simple, but technical
problems arose for us. For the existence proof, one would like to take some sort of
limit. Of course, {xα} may be merely pseudo-convergent rather than convergent,
so that there will not be a good notion of a completion. One might try to find
the limit by working in some saturated extension and then specializing so as to
eliminate excess infinitesimals. Instead, we employ an algebraic construction. For
the uniqueness proof, one might like to argue that for Q ≺ P the sequence v(Q(xα))
is non-decreasing so that either {xα} pseudo-solves Q and hence pseudo-converges
to some a ∈ K by the inductive hypothesis and fullness (contradicting the strictness
of the sequence) or the value settles down. Again some technical problems arise,
notably with controlling the qualitative behavior of {v(Q(xα))}, so that our actual
proof is a bit more involved.
Remark 7.34. Proposition 7.32 allows us to finish extending f . We will arrange
that the hypotheses are true of A1 by an inductive argument. We use potential
residual linearity to see that after a linear change of variables, any solution to a D-
polynomial may be analyzed as an instance of DHL so that we can find the relevant
solutions on both sides.

Definition 7.35. If {γα}α<κ is a sequence of elements of Γ, then we say that the
limit of the sequence exists iff the sequence is eventually constant. In that case, we
write lim γα = γ where γα = γ for α� 0.
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Most of the lemmata proved in what follows will be employed to prove Propo-
sition 7.32 and they depend inductively on Proposition 7.32. We indicate this by
the condition
†: The hypotheses of Proposition 7.32 are assumed to hold and we assume in-

ductively on T.degP that Proposition 7.32 is true.
Lemma 7.36 (†). Let Q ∈ OK〈X〉. Suppose that Q ≺ P and DHL applies to Q at
a ∈ OK . There is some b ∈ K such that Q(b) = 0 and v(b− a) = v(Q(a)).

� By Lemma 7.25 either the lemma is true or there is a strict pseudo-convergent
sequence {yβ}β<κ from K pseudo-solving Q with y0 = a and v(yβ − a) = v(Q(a)).
By the inductive hypothesis (via †), there is an immediate extension K(〈c〉) in
which Q(c) = 0 and yβ ⇒ c. By T.degP -fullness of K, {yβ} is not strict. This is a
contradiction. �

Lemma 7.37 (†). Let Q ∈ OK〈X〉. If Q ≺ P , then lim v(Q(xα)) exists.

� We prove this lemma by ≺-induction on Q. When Q is a constant D-polynomial,
the result is obvious. We may now assume that Q is not constant. Thus, there is
some i for which ∂

∂Xi
Q is not the zero D-polynomial. By the inductive hypothesis,

lim v( ∂
∂Xi

Q(xα)) exists. We finish this proof by a series of lemmata. In each of
these lemmata, we assume inductively † as well as
‡: Lemma 7.37 is true for Q̃ ≺ Q. �

Lemma 7.38 (†, ‡). Let Q ≺ P . There is a pseudo-convergent sequence {yα}
having the same pseudo-limits as {xα} such that if Hα is a refinement of Q at yα
with internal scale ηα with v(ηα) = v(yα+1 − yα), then v(Hα(yα+1−yα

ηα
)) = 0.

Remark 7.39. While the lemma and certainly the proof are stated in terms of the
refinements of Q, the point of this lemma is to understand Q itself. In terms of Q,
we find a pseudo-convergent sequence {yα} having the same pseudo-limits as {xα}
such that for any α one has v(Q(yα+1)−Q(yα)) = min{v( ∂

∂Xi
Q(yα))+v(yα+1−yα) :

0 ≤ i ≤ ord(Q)}.

� We may assume that no cofinal sequence in {xα} already works. For each α let
Gα be a refinement of Q at xα with internal scale εα having v(εα) = v(xα+1− xα).
So for α� 0 we have that v(Gα(xα+1−xα

εα
)) > 0.

We construct the sequence {yα} allowing repetition and later thin using Lemma 7.24
to get an actual pseudo-convergent sequence.

Using the inductive hypotheses we may assume that the valuations of the partials
of Q have stabilized (via ‡) and any refinement of Q along xα is residually linear
(via †).
Claim 7.40. For each α, there is some β > α minimal with the properties that
v(Gα(xβ−xα

εα
)) < v(εβ)− v(εα) and v(Gα(xγ−xα

εα
)) ≤ v(Gα(xβ−xα

εα
)) for γ ≥ β.

z There cannot be a cofinal sequence of γ’s on which v(Gα(xγ−xα

εα
)) is increasing

for if this were to occur, by the inductive hypothesis for existence and fullness the
sequence {xα} would not be strict.

If the first condition were to fail, then since Gα is residually linear, DHL would
apply at xβ−xα

εα
so that Lemma 7.36 would produce wβ with Gα(wβ) = 0 and
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v(wβ − xβ−xα

εα
) ≥ v(εβ) − v(εα). Set zβ := xα + εαwβ . We may restrict to a

subsequence of {zβ} which is pseudo-convergent and has the same pseudo-limits as
{xβ} by Lemma 7.24.

For each β, one has Q̃(zβ) := Q(zβ) − Q(xα) = 0 so that by the inductive
hypothesis, there is some extension K(ζ) of K in which zβ ⇒ ζ and Q̃(ζ) = 0. By
fullness, {zβ} is not strict. Consequently {xα} is not strict. This is a contradiction.
z

We construct the sequence {yα} now.
By Claim 7.40, there is a cofinal S ⊆ κ such that for any α ∈ S if α′ denotes

the successor of α in S, then v(Gα(xα′−xα

εα
)) < v(εα′) − v(εα) and for any β ≥ α′

one has v(Gα(xβ−xα′
εα

)) ≤ v(Gα(xα′−xα

εα
). We restrict to S and omit it from the

notation.
As in the proof of Claim 7.40, find zα such that Gα(zα) = 0 and v(zα −

xα+1−xα

εα
) = v(Gα(xα+1−xα

εα
). Define yα := xα+zαεα. Since v(yα−xα) = v(zαεα) ≥

v(εα) = v(xα+1 − xα), Lemma 7.24 applies and we can find a cofinal pseudo-
convergent subsequence of {yα}α∈S having the same pseudo-limits as those {xα}.

Let us compute the valuation of yβ − yα for β > α both from S.

v(yβ − yα) = v(xβ + εβzβ − xα − εαzα)

= v(εβzβ + εα(
xβ − xα
εα

− zα))

= v(εα) + v(Gα(
xα+1 − xα

εα
))

The last equality uses the definition of zα and the fact that v(εβ) − v(εα) >
v(Gα(xα+1−xα

εα
)) = v(Gα(xβ−xα

εα
)).

To finish the proof, let θ ∈ Γ be mini{v( ∂
∂Xi

Q(xα))}. (Recall that these values
do not depend on α.) In what follows, Hβ denotes a refinement of Q at yβ with
internal scale ηβ having v(ηβ) = v(yβ+1 − yβ). Since Hβ is residually linear, the
minimal valuation of a coefficient of Q(yα + ηαY )−Q(yα) is θ + v(ηα).

Let now α < β ∈ S

v(Hα(
yβ − yα
ηα

)) = v(Q(yβ)−Q(yα))− θ − v(ηα)

= v(Q(xβ))−Q(xα))− θ − v(εα)− v(Gα(
xα+1 − xα

εα
))

= v(Gα(
xβ − xα
εα

))− v(Gα(
xα+1 − xα

εα
))

= 0

The last equality is justified by the observations that Hα and its arguments are
integral so that the final expression can be no less than zero, but it can be no more
then zero because of the second condition of Claim 7.40. �

Lemma 7.41 (†, ‡). If Q ≺ P , then there is some β < κ such that if L/K is
any extension of valued D-fields and c ∈ L with v(xβ+1 − c) > v(xβ+1 − xβ), then
v(Q(c)) = v(Q(xβ)). Moreover, Q(xα) ⇒ Q(c).
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� Let L be an extension of K (as a valued D-field) and in L take c with xα ⇒ c.
Let {yα}, Hα and θ be as in Lemma 7.38. Since v(Hβ(

yβ+1−yβ

ηβ
)) = 0 and yβ ⇒ c

(so that π( c−yβ

ηβ
) = π(yβ+1−yβ

ηβ
)), we have

0 = v((Hβ(
c− yβ
ηβ

))

= v(Q(c)−Q(yβ))− θ − v(ηβ)

So v(Q(c)−Q(yβ)) = θ+v(ηβ). The right-hand side is growing with β so Q(xβ) ⇒
Q(c). This implies that either v(Q(c)) = v(Q(yβ)) eventually (and we’re done) or
v(Q(yβ)) is increasing cofinally. In this second case, by † and fullness of K, {yβ} is
not strict. This contradicts the strictness of {xα}.

By the compactness theorem, there is some β < κ for which we have v(c−xβ+1) >
v(xβ − xβ+1) ⇒ v(Q(c)) = v(Q(xβ)). �

Lemma 7.41 finishes the proof of Lemma 7.37.

Lemma 7.42 (†). For α� 0, any refinement of P along xα is residually linear.

� By Lemma 7.37, lim v(∂IP (xα)) exists for any non-zero multi-index I. From now
on, work only with α large enough so that this common value has been attained.

For each α, let Gα be a refinement of P along xα with scales εα and cα. Write
Gα(Y ) =

∑
I gI,αY

I .

Claim 7.43. The set of multi-indices {I : v(gI,α) = 0} does not depend on α for
α sufficiently large. In fact, all such I have the same length.

z If it ever happens that for some I and J with |I| < |J | that v(gα,I) ≤ v(gα,J),
then v(gβ,I) < v(gβ,J) for β > α. To see this, observe that the hypothesis is that

v(
ε
|I|
α

cα
) + v(∂IP (xα)) = v(gI,α)

≤ v(gJ,α)

= v(
ε
|J|
α

cα
) + v(∂JP (xα))

That is,

v(∂IP (xα)) ≤ (|J | − |I|)v(εα) + v(∂JP (xα))

Since the valuations of the partials are the same whether evaluated at xα or xβ ,
|J | − |I| > 0, and v(εβ) > v(εα), we conclude

v(∂IP (xβ)) < (|J | − |I|)v(εβ) + v(∂JP (xβ))

Reversing the above manipulations, the claim follows. z

If the lemma were not true, then for some non-zero multi-indices I and J and
cofinal sequence of α’s we would have

• J = (i0, . . . , ij−1, ij + 1, ij+1, . . . , in) where I = (i0, . . . , in) and
• v(gI,α) > 0 = v(gJ,α)
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Using the chain rule, we calculate

∂IGα(Y ) =
ε
|I|
α

cα
∂IP (εαY + xα)(4)

By the expansion for Gα and the fact that v(∂IP (xβ)) is stable, we have

v(∂IGα(
xβ − xα
εα

)) = v(gI,α)(5)

for β ≥ α. So by Equation 4 with J playing the rôle of I and Equation 5, we have

v(
∂

∂Xj
∂IG(

xβ − xα
εα

)) = v(gJ,α)

= 0
< v(gI,α)

= v(∂IG(
xβ − xα
εα

))

for β > α.
Claim 7.44. There is another pseudo-convergent sequence {yδ} having the same
pseudo-limits as {xα}α<κ but pseudo-satisfying ∂IP .

z We build {yδ} while following along the sequence {xα}.
Start with y0 := x0. At stage α, if yβ = y is constant for α > β � 0 (N.B.: If α

is a successor, this condition will always be true.) and v(xα+1−y) ≥ v(xα+1−xα),
then set yα := y.

(N.B.: Since {xα} is strict, cofinally we will not be in this case.)
Otherwise, since DHL applies to ∂IGα at xα+1−xα

εε
, by Lemma 7.36 there is some

wα ∈ K such that ∂IGα(wα) = 0 and v(wα − xα+1−xα

εα
) ≥ v(∂IGα(xα+1−xα

εα
)) > 0.

Define yα := εαwα + xα.
Let S := {α < κ : yβ is not constant for 0 � β < α}. S is cofinal in κ, so

{xα}α∈S is pseudo-convergent with the same pseudo limits as those of {xα}α<κ.
Equation 4 shows that if α ∈ S, then ∂IP (yα) = 0. By the construction,

v(yα − xα) ≥ v(εα) so that by Lemma 7.24 there is a cofinal J ⊆ S such that
{yα}α∈J is pseudo-convergent with the same pseudo-limits as those of {xα}α∈S
and hence of {xα}α<κ. z

By the inductive hypothesis since ∂IP ≺ P and {yα} is a pseudo-solution to
∂IP (X) = 0, there is some b in some immediate valued D-field extension of K such
that yα ⇒ b and ∂IP (b) = 0. By T.degP -fullness of K, {yα} is not strict. This is
a contradiction. �

Lemma 7.45 (†). Suppose that K(〈a〉) is a valued D-field extending K in which
P (a) = 0 and xα ⇒ a. Then every rescaling of P along xα has integral co-efficients
for α� 0.

� By Lemma 7.41 for any non-zero multi-index I we have v(∂IP (a)) = v(∂IP (xα))
for α� 0. By Lemma 7.42 any refinement of P along xα is residually linear. Work
now only with α large enough so that the stable value of the partials has been
achieved and so that the refinements are residually linear. A rescaling of P at xα,
with internal scale εα having v(εα) = v(xα+1 − xα) must have an external scale c
with valuation min{v( ∂

∂Xi
P (xα)) + v(εα)} = min{v( ∂

∂Xi
P (a)) + v(εα)}. Thus, the
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D-polynomial H(Y ) := 1
c [P (a + εαY ) − P (a)] = 1

cP (a + εαY ) is a refinement of
P at a. In particular, H(Y ) ∈ OL〈Y 〉. Since v(a − xα) = v(xα+1 − xα) = v(εα),
the element xα−a

εα
is integral. Thus, 0 ≤ v(H(xα−a

εα
)) = v( 1

cP (xα)). That is, the
rescaling of P at xα with scales c and εα is integral. �

Lemma 7.46 (†). The structure of a valued D-field on K(〈a〉) is determined by
P (a) = 0 and xα ⇒ a.

� When e = 0, this is an immediate consequence of Lemma 7.41 since every element
of K(〈a〉) is of the form Q(a)

R(a) with Q,R� P .
Take now e 6= 0. Lemma 7.41 shows that K(a, . . . ,Dma) is an immediate ex-

tension of K. So the extension K(a, . . . ,Dma)/K(a, . . . ,Dm−1a) is generated by
some single element b satisfying F (b) = 0, π(b) = 0 and v(F ′(b)) = 0 for some
irreducible F ∈ OK(a,...,Dm−1a)[X] by Proposition 1.1. Write σ(F ) =

∏`
i=1Gi as a

factorization into irreducibles of σ(F ) in OK(a,...,Dma)[X]. As zero is a simple root
of the reduction of F , it is also a simple root of σ(F ). Hence, π(Gi(0)) = 0 for
exactly one choice of i, say i = 1, and zero is a simple root of π(G1). The extension
K(a, . . . ,Dm+1a)/K(a, . . . ,Dma, b) is then generated by σ(b) which is the unique
root of G1 which reduces to zero. As in the proof of Lemma 7.12, the extension of
D to the henselization of OK(a,...,Dma) is now determined. �

At this point we would like to show that this analysis may be used to produce a
valued D-field extending K determined by the data xα ⇒ a and P (a) = 0.
Lemma 7.47 (†). Assume that {xα} pseudo-satisfies P . There is an immediate
extension of K of the form K(〈a〉) in which xα ⇒ a and P (a) = 0.

�
We break the argument into cases depending on whether or not m := ordP is

zero.
Consider first the case that m = 0. Let R be the henselization of OK . Let L be

the field of fractions of R. By Proposition 7.32 and Lemma 7.45 all rescalings of
P along {xα} are residually linear for α � 0. If Q(Y ) is one such rescaling at xα
with internal scale εα (having v(εα) = v(xα+1 − xα)), we set yβ := xβ−xα

εα
, and we

find a solution b ∈ R to Q(b) = 0 and yβ ⇒ b, then a := xα + bεα is a solution to
P and xβ ⇒ a. So, it suffices to find such a b.

Since Q is residually linear, there is a unique solution, call it b, to Q(X) = 0 in R
with π(yβ) = π(b). Taylor expand Q about b to see that yβ ⇒ b. By Lemma 7.11,
the D-structure on K extends to a D-structure on L with respect to which L is a
valued D-field.

Work now in the case that m > 0. Write P (X) = F (X,DX, . . . ,DmX) for some
F (X0, . . . , Xm) ∈ OK [X0, . . . , Xm].

We let K ′ be the field of fractions of K[X0, . . . , Xm]/(F ). Denote by Dia the
image of Xi in K ′. We define a valuation on K ′ by v(G(a,Da, . . . ,Dma)) :=
lim v(G(xα, Dxα, . . . , Dmxα)) for G ∈ K[X0, . . . , Xm] whose degree in Xm is less
than that of F . By Lemma 7.41 these limits exist and one checks easily that this
defines a valuation extending v on K having the same value group. In particular,
if R denotes the henselization of OK(a,Da,...,Dm−1a) and L is its field of fractions,
then K ′ embeds into L as a valued field.
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We define ϕ : OK(a,Da,...,Dm−1a) → De(R) by ϕ(x) := (x,Dx) for x ∈ K and
ϕ(Dia) := (Dia,Di+1a) for 0 ≤ i < m. By the universal property of the henseliza-
tion, this extends uniquely to ψ : R → De(R). Let D : R → R be the function
defined by ψ(x) = (x,Dx). By Lemma 7.9, L is a valued D-field with respect to
this valuation and D-structure. Moreover, P (a) = 0 in L and xα ⇒ a. �

We note now that the †-lemmata give a full proof of Proposition 7.32

� Via † we proceed by induction on T.degP . Lemma 7.46 proves uniqueness.
Lemma 7.47 proves existence. Lemma 7.42 proves potential residual linearity. �

Proposition 7.32 is the last step needed to prove that any (k,G)-D-field may be
embedded into a (k,G)-D-henselian field. We give the details of this in the next
subsection.

To finish proving Theorem 7.1 it remains to show that for any particular b ∈M1

we can enlarge A1 so that A1(〈b〉) is an immediate extension of A1 and if P ∈ A1〈X〉
is of minimal T.deg such that P (b) = 0, then A1 is T.degP -full. We show this
using the following lemmata.

Lemma 7.48. If K ⊆ M1 is a sub-valued D-field whose value group is countable,
then there is an unramified ∞-full extension L of K in M1. If K has a linearly
differentially closed residue field, one may take L to be an immediate extension.

� Extend K to some K ′ first so that the residue field of K ′ is linearly differentially
closed using Lemma 7.21. Let L be a maximal immediate extension of K ′ inside
M1. We show now that this L works. Take a minimal counter-example to ∞-
fullness of L. That is, find some strict pseudo-convergent sequence {xα}α<κ from
L pseudo-solving some D-polynomial P (X) ∈ K〈X〉 and some a in an extension
valued D-field for which P (a) = 0, xα ⇒ a and T.degP is minimal.

Since v(K×) is countable, we may assume that κ = ω. Replacing a with a
ε , xα

with xα

ε , and P with P (εX) for some ε ∈ KD with v(ε) = v(a), we may assume
that v(a) = 0 = v(xα). By Proposition 7.32 and Lemma 7.45, by replacing P with
a rescaling we may assume that P has integral coefficents and is residually linear.
We note that DHL applies to P at each xα (α > 0): {xα} pseudo-solves P , so
v(P (xα)) is increasing. As everything in sight is integral, v(P (xα)) ≥ 0. Hence, for
α > 0 we have v(P (xα)) > v(P (x0)) ≥ 0. As P is residually linear, there is some i
such that v( ∂

∂Xi
P (xα)) = 0 or any α.

As M1 is ℵ1-saturated and satisfies DHL, the partial type {P (y) = 0} ∪ {v(y −
xn+1) > v(y − xn)}n∈ω is realized by some element b ∈ M1. By Proposition 7.32
again the extension L(〈b〉) is immediate. As L is a maximal immediate extension of
K ′ inside M1, b ∈ L. This contradicts the strictness of {xα}. �

Lemma 7.49. If L/K is an immediate extension of valued D-fields, L is ∞-full and
has a linearly differentially closed residue field, and K has enough constants, then
L may be realized as a direct limit L = ∪i<|L\K|Ki where K0 = K, Kλ := ∪i<λKi

for λ a limit, and Ki+1 = Ki(〈ai〉) where Ki is T.degP -full for P (X) ∈ Ki〈X〉 a
minimal D-polynomial for ai over Ki.



A MODEL COMPLETE THEORY OF VALUED D-FIELDS 25

� Well-order L \K in order type |L \K|. Build Ki inductively. Set K0 := K. For
i = λ, a limit ordinal, let Kλ := ∪i<λKi. At stage i+ 1, let N be min{T.deg(P ) :
P (X) ∈ Ki〈X〉, P (a) = 0 for some a ∈ L \ Ki}. Let ai be minimal in the well-
ordering of L \K such that the T.degP = N for P a minimal D-polynomial for ai
over Ki.
Claim 7.50. Ki is N-full.

z Consider a minimal counter-example to N-fullness:
• a strict pseudo-convergent sequence {xα}α<κ from Ki,
• a in some immediate extension of Ki and
• Q(X) ∈ OKi

〈X〉
satisfying

• T.degQ < N,
• Q(a) = 0,
• {xα} pseudo-solves Q,
• xα ⇒ a, and
• T.degQ is minimal subject to these conditions.

By Proposition 7.32 and ∞-fullness of L, {xα} cannot continue to be strict in
L. Let b ∈ L such that xα ⇒ b. Since Q was chosen to have minimal T.deg
among those D-polynomials witnessing the failure of N-fullness, Ki is T.degQ-full.
Thus, Proposition 7.32 shows that Q is potentially residually linear along {xα}.
As {xα} pseudo-solves Q, v(Q(xα)) is eventually increasing. Fix α large enough
so that the valuations of the partials have stabilized, the refinements are residually
linear, and for γ > β > α we have v(Q(xγ)) > v(Q(xβ)) or Q(xβ) = 0. Let
A := min{v( ∂

∂Xi
Q(a))}.

Let β > α. Taylor expandQ around xβ to conclude that v(Q(b)) ≥ min{v(Q(xβ), A+
v(εβ)} where as usual εβ is a D-constant with v(εβ) = v(xβ+1 − xβ). If v(Q(b)) <
A + v(εβ), then we have v(Q(b)) = v(Q(xβ)). This can happen at most once
since either v(Q(xγ)) > v(Q(xβ)) or Q(xγ) = 0 for γ > β and our calcula-
tion used only the hypothesis that β > α. Thus, v(Q(b)) > A + v(εβ) for any
β > α. It follows that if H(Y ) = 1

cQ(xα + εαY ) is a rescaling of Q at xα, then
v(H( b−xα

εα
)) ≥ v(εβ) − v(εα) > 0 for every β > α. By Lemma 7.36 there is some

b′ ∈ L with H(b′) = 0 and v(b′ − b−xα

εα
) = v(H( b−xα

εα
)). Let d := xα + εαb

′. Then
Q(d) = 0 and xβ ⇒ d. The T.degQ-fullness of Ki contradicts the strictness of
{xα}. z

Set Ki+1 := Ki(〈ai〉). �

We use these lemmata to finish the extension of f to b.
Proposition 7.51. If A1 has a countable value group, has a linearly differentially
closed residue field and has enough constants and A1(〈b〉) is an immediate extension
of A1, then f extends so that b is in the domain of f .

� Let L be an ∞-full immediate extension of A1(〈b〉) produced by Lemma 7.48.
We will extend f to all of L. Express L =

⋃
i<|L\A1|Ki as in Lemma 7.49. In

extending f , the only issue comes at successor stages. At stage i + 1, we need
to define f(ai). Since Ki is T.degP -full where P is a minimal D-polynomial for
ai over Ki and Ki has enough constants and linearly differentially closed residue
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field, Proposition 7.32 implies that the extension Ki(〈ai〉) is entirely determined by
a strict pseudo-convergent approximation {xα} to ai (which can be taken to be
countable) and the equation P (ai) = 0. By Proposition 7.32 and Lemma 7.45, any
rescaling of P along xα for α � 0 is integral and residually linear, so that DHL
applies to the rescaling. Thus, by DHL in M2 and ℵ1-saturation, there is some
bi ∈ M2 satisfying f(P )(bi) = 0 and f(xα) ⇒ bi. Extend f by defining f(ai) = bi.
�

This completes the proof of completeness and quantifier elimination, though we
recap the argument in the next subsection.

7.3. Recap. With the necessary lemmata now proven, let us go through the proof
of Theorem 7.1 again.

Let us first prove quantifier elimination for the theory of (k,G)-D-henselian
fields.

We fix a countable elementary substructure N1 ≺ M1 of M1 containing A1 and
b. Using Proposition 7.20 we extend f so that its domain has enough constants
and has value group equal to the value group of N1. We then use Proposition 7.21
to extend f so that its domain has residue field containing kN1 . Finally, we use
Proposition 7.51 to extend f to an ∞-full immediate extension of N1. In particular,
the extension will be defined at b.

As to proving that the theory of (k,G)-D-henselian fields is the model completion
of the theory of (k,G)-D-fields we use the existence parts of the lemmata cited
above to show that any (k,G)-D-field may be embedded into a (k,G)-D-henselian
field.

Let K be a (k,G)-D-field. We use the existence part of Proposition 7.19 to prove
that K may be enlarged so as to have enough constants. We use Lemma 7.17 to
enlarge K to satisfy Axiom 5 and so that its value group is a model of Th(G). We
use the existence part of Lemma 7.12 to enlarge K so that its residue field is a model
of Th(k). Using Lemma 7.25 we produce the necessary pseudo-convergent sequence
in K and then use Proposition 7.32 to actually find a solution in an immeditate
valued D-field extension.
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